二次根式加减运算

合集下载

《二次根式的加减运算》PPT课件

《二次根式的加减运算》PPT课件

步骤:
第一步:把每个二次根式 化为最简二次根式。 第二步:对能合并 的二次根式进行合并。
x2
3分钟
总结:
像 3, 12 , 75 这样的二次根式,化简后 被开方数 相同 我们把它们叫做同类二次根式。
因此对于二次根式的加减运算,
首先是将每个二次Байду номын сангаас式化为最简二次根式 ,
然后 是 将被开方数相同的最简二次根式的项进行合并 。
1.预习下一节 2.完成《中考考什么》本节的习题
只有登上山顶,才能看到那边的风光。 不要常常觉得自己很不幸,世界上比我们痛苦的人还要多。 多用心去倾听别人怎么说,不要急着表达你自己的看法。 越是没有本领的就越加自命不凡。——邓拓 生命力的意义在于拚搏,因为世界本身就是一个竞技场。 奋斗的双脚在踏碎自己的温床时,却开拓了一条创造之路。 狂妄的人有救,自卑的人没有救。 没有热忱,世间便无进步。 对于每一个不利条件,都会存在与之相对应的有利条件。 在幸运时不与人同享的,在灾难中不会是忠实的友人。——伊索 错误犯过一次,尽可能的不要再犯第二次。 诚实的面对你内心的矛盾和污点,不要欺骗你自己。

二次根式的计算和化简

二次根式的计算和化简

二次根式的计算和化简二次根式是指包含平方根的表达式。

在数学中,我们经常需要进行二次根式的计算和化简。

本文将介绍如何进行二次根式的计算和化简,并提供一些相关的例子和方法。

一、二次根式的计算二次根式的计算主要包括加减乘除四则运算和指数运算。

下面将分别介绍这些运算的方法。

1. 加减运算对于两个二次根式的加减运算,首先要确定根号下的数(即被开方数)是否相同。

如果相同,则可以直接对根号下的数进行加减运算,并保持根号不变。

如果根号下的数不同,则需要进行化简,使根号下的数相同,再进行加减运算。

例如,计算√3+ √5。

由于根号下的数不同,我们可以进行化简。

将√3与√5相加,得到√3 + √5。

这就是最简形式的结果,无法再进行化简。

2. 乘法运算对于两个二次根式的乘法运算,可以直接将根号下的数相乘,并保持根号不变。

例如,计算√3 × √5。

将根号下的数相乘,得到√15。

这就是最简形式的结果。

3. 除法运算对于两个二次根式的除法运算,可以将被除数与除数的根号下的数相除,并保持根号不变。

例如,计算√15 ÷ √3。

将根号下的数相除,得到√5。

这就是最简形式的结果。

4. 指数运算对于二次根式的指数运算,可以将指数应用于根号下的数,并保持根号不变。

例如,计算(√2)²。

将指数应用于根号下的数2,得到2。

因此,(√2)² = 2。

二、二次根式的化简化简二次根式的目的是使根号下的数尽量小。

下面将介绍一些常用的化简方法。

1. 提取公因数如果根号下的数可以被某个数整除,可以将其提取出来,并保持根号不变。

这是一种常见的化简方法。

例如,化简√16。

16可以被4整除,所以可以将16写成4×4,即√(4×4)。

继续化简,得到2×√4。

最后,我们得到2×2 = 4。

因此,√16 = 4。

2. 合并同类项如果有多个二次根式相加或相乘,可以合并同类项,使根号下的数相加或相乘。

二次根式的加减法

二次根式的加减法

概念
例子
异类二次根式是指根指数或被开方数不同 的二次根式。
$\sqrt{4}$ 和 $\sqrt{9}$ 是异类二次根式 。
减法运算
加法运算
两个异类二次根式相减,先进行化简,再 进行减法运算。
两个异类二次根式相加,先将它们化成最 简二次根式,再进行加法运算。
运算结果化为最简二次根式
概念
最简二次根式是指被开方数不含分母,被开方数不含能开得尽方的因数或因式 。
乘法运算
$\sqrt{a} \times \sqrt{b}$在$ab \geq 0$ 时成立。
减法运算
$\sqrt{a} - \sqrt{b}$在a=b或ab=0时成立 。
除法运算
$\frac{\sqrt{a}}{\sqrt{b}}$在$ab \geq 0$ 且$a \neq 0$时成立。
二次根式的加减法
总结词
掌握含加减法的二次根式混合运算法则,能 够准确进行运算。
详细描述
含加减法的二次根式混合运算涉及到根式和 整式的加减法,运算顺序是先乘方,再乘除 ,最后加减。在运算中,需要注意各项均需 乘以平方数,根式外的数要移到根号内,相
加减时根式部分不变。
复杂二次根式混合运算的步骤和技巧
总结词
掌握复杂二次根式混合运算的步骤和技巧,能够准确 快速地进行运算。
02
同类二次根式的加减法
概念
同类二次根式是指根指数相同且被开 方数相同的二次根式。
例子
$\sqrt{4}$ 和 $\sqrt{9}$ 是同类二 次根式。
减法运算
两个同类二次根式相减,直接进行减 法运算。
加法运算
两个同类二次根式相加,先将它们化 成最简二次根式,再进行加法运算。

二次根式的运算知识点总结

二次根式的运算知识点总结

二次根式的运算知识点总结二次根式是指具有形如√a的表达式,其中a是非负实数。

在数学中,二次根式的运算是一个重要的知识点,掌握了这个知识点,我们可以更好地理解和利用二次根式。

下面将总结二次根式运算的基本规则和常见的运算方法。

一、二次根式的基本规则1. 二次根式的化简:当被开方数存在平方因子时,可以进行化简。

例如√4×3 = √(4×3) = 2√3。

2. 二次根式的乘法运算:对于两个二次根式的乘法运算,可以将两个二次根式的根号内的数相乘,根号外的数相乘,并进行化简。

例如:√2 × √3 = √(2 × 3) = √6。

3. 二次根式的除法运算:对于两个二次根式的除法运算,可以将两个二次根式的根号内的数相除,根号外的数相除,并进行化简。

例如:√6 ÷ √2 = √(6 ÷ 2) = √3。

4. 二次根式的加减运算:对于两个二次根式的加减运算,只能进行同类项相加减,并进行化简。

例如:√2 + √3 无法进行化简,可以写成2√2 + 3√5。

二、二次根式的运算方法1. 二次根式与整数的运算:当二次根式与整数进行运算时,可以将整数视为二次根式的特殊形式。

例如:√2 + 4 = √2 + √(4×4) = √2 + 2√2 = 3√2。

2. 二次根式的有理化:有时候需要将二次根式的分母变为有理数,这个过程称为有理化。

有理化的方法有两种:(1) 乘以共轭根式:对于分母中含有二次根式的情况,可以通过乘以分母的共轭根式来进行有理化。

例如:(3 + √2)/(1 + √2) = [(3 + √2)/(1 + √2)] * [(1 - √2)/(1 - √2)] = (3 - 3√2 + √2 - 2)/(1 - 2)= (1 - 2√2)/(-1)= 2√2 - 1(2) 分离根号:对于分母中含有二次根式的情况,可以通过将二次根式的根号部分与非根号部分分离,并进行化简,从而实现有理化。

二次根式的性质与运算

二次根式的性质与运算

二次根式的性质与运算二次根式是指形如√a的数,其中a是非负实数。

在数学中,二次根式是一种常见的数学表达式,它具有一些特定的性质与运算规则。

本文将探讨二次根式的性质与运算,帮助读者更好地理解和运用二次根式。

1. 二次根式的简化与化简二次根式可以通过简化和化简来使得表达更简洁、易读。

简化是指通过寻找因式分解或者找到平方数的形式来减少根号下的数字。

例如,√12可以简化为2√3。

化简是指将数的乘方分解成不包含二次根式的形式。

例如,√16可以化简为4。

2. 二次根式的加减运算在进行二次根式的加减运算时,需要满足被加减数的被开方数相同。

例如,√2 + √3无法进行直接运算,但可以通过换元化简为(√2 + √3)(√2 + √3)。

运用公式(a + b)(a + b) = a² + 2ab + b²,可以得到√2 + √3 = √2 +√3 + (√2)(√3)。

因此,二次根式的加减运算可以转化为求和的形式。

3. 二次根式的乘法运算二次根式的乘法运算可以通过将两个二次根式相乘,并通过关键的化简步骤来简化最终结果。

例如,√2 * √3 = √6。

如果需要计算更复杂的二次根式乘法,可以利用公式√a * √b = √(ab)进行化简。

4. 二次根式的除法运算二次根式的除法运算也是通过适当的化简步骤来求解。

例如,√6 /√2 = √3。

类似于乘法运算,可以利用公式√a / √b = √(a/b)进行化简。

5. 二次根式的幂运算二次根式也可以进行幂运算,即将二次根式的指数设置为非负整数。

例如,(√2)² = 2。

值得注意的是,在进行幂运算时,需要将指数应用于根号内的数字,并对结果进行简化。

6. 二次根式的有理化有理化是将二次根式与分母中的二次根式相消,使得根号仅出现在被开方数中。

例如,将分数1/√3有理化,可以通过乘以√3 / √3进行,得到√3 / 3。

综上所述,二次根式具有许多特定的性质与运算规则。

二次根式的概念与运算

二次根式的概念与运算

二次根式的概念与运算二次根式是指形如√a的数,其中a为非负实数。

在数学中,我们常常遇到二次根式的概念与运算,本文将详细介绍二次根式的概念与运算方法。

一、二次根式的概念及表示二次根式是一种特殊的无理数形式,具有根号(√)作为符号,其表示如下:√a其中,a表示被开方数,且a必须是非负实数。

如果a为正实数,则二次根式具有两个相等的实数解;如果a为0,则二次根式等于0;如果a为负实数,则二次根式无实数解,但可以表示为复数形式。

二次根式可以进一步扩展,形式如下:b√a其中,b为系数,a为被开方数,同样要求a为非负实数。

二、二次根式的运算法则1. 二次根式的加减法:当二次根式的被开方数相同,即√a与√a相加或相减时,可以直接对系数进行加减运算。

例如:2√3 + 3√3 = 5√34√5 - √5 = 3√5当二次根式的被开方数不同,即√a与√b相加或相减时,无法简化为一个二次根式,需要保持原样。

例如:2√3 + 3√53√7 - 5√22. 二次根式的乘法:二次根式相乘时,可以分别对系数和被开方数进行乘法运算,并合并结果。

例如:2√3 * 3√2 =6√64√5 * 2 = 8√53. 二次根式的除法:二次根式相除时,可以分别对系数和被开方数进行除法运算,并合并结果。

例如:3√6 / √2 = 3√(6/2) = 3√34√10 / 2 = 2√10三、二次根式问题的简化与应用在实际问题中,我们常常需要对二次根式进行简化,使其表达更加简洁和明确。

1. 简化二次根式:当二次根式的被开方数可以被分解为完全平方数与非完全平方数的乘积时,可以进行简化。

例如:√18 = √(9 * 2) = 3√22. 二次根式的应用:二次根式在几何学、物理学等领域具有广泛应用。

例如,计算三角形的边长、面积等问题中常常涉及到二次根式的运算。

四、总结本文对二次根式的概念与运算进行了详细的介绍。

二次根式是一种特殊的无理数形式,具有根号作为符号。

二次根式的运算

二次根式的运算

二次根式的运算在数学中,二次根式是指具有形如√a的表达式,其中a为一个非负实数。

二次根式在代数计算和几何问题中经常出现,因此正确地进行二次根式的运算是很重要的。

本文将介绍二次根式的基本概念和运算规则,以帮助读者更好地理解和应用二次根式。

一、二次根式的定义二次根式是由一个非负实数的平方根构成的表达式。

表达式√a中,a为非负实数。

根据二次根式的定义,我们可以得出以下性质:1. 非负实数的平方根为一个实数,记为√a,其中a ≥ 0。

2. 非负实数的平方根有两个值,一个为正数,一个为负数。

我们通常将正数平方根表示为√a,将负数平方根表示为-√a。

二、二次根式的运算规则1. 二次根式的相加减:当二次根式的底数相同时,可直接进行相加减运算,并保持底数不变。

如√a ± √a = 2√a。

当二次根式的底数不同时,无法直接进行运算,需要进行合并或化简。

2. 二次根式的乘法:将二次根式写成指数形式,再利用指数法则进行运算。

如√a × √b = √(a × b)。

3. 二次根式的除法:将二次根式写成指数形式,再利用指数法则进行运算。

如√a ÷ √b= √(a ÷ b)。

4. 二次根式的分式运算:对于一个分式,其中分子或分母是二次根式时,可以使用有理化的方法进行运算。

有理化的方法是将分母的根式进行合并或化简,使得表达式中不再有分母为二次根式的情况。

三、二次根式的应用举例接下来,我们通过几个具体的例子,来演示二次根式的运算。

1. 例子1:计算√18 + √50 - √32。

解:根据二次根式的相加减规则,我们可以合并相同底数的根式:√18 + √50 - √32 = 3√2 + 5√2 - 4√2合并相同底数的根式后,进行系数的相加减运算,得到:3√2 + 5√2 - 4√2 = 4√22. 例子2:计算(√7 + √3) × (√7 - √3)。

解:根据二次根式的乘法规则,我们可以将此表达式视为两个二次根式的乘积:(√7 + √3) × (√7 - √3) = (√7)² - (√3)²根据乘积公式和平方根的定义,我们得到:(√7)² - (√3)² = 7 - 3 = 43. 例子3:计算√(5/12) ÷ (√3/6)。

二次根式的加减运算

二次根式的加减运算

二次根式的加减运算
二次根式的加减运算是指两个二次根式进行加法或减法运算。


进行二次根式的加减运算,需满足被开方数相同,且根号内的数也相同。

即若两个二次根式为√a和√b,则可进行加减运算的前提是a=b。

具体操作时,对于加法运算,将两个二次根式的系数相加,并保
持根号内的数不变。

例如:√a + √a = 2√a。

对于减法运算,将两个二次根式的系数相减,并保持根号内的数
不变。

例如:√a - √a = 0。

需要注意的是,除非被开方数相同,否则两个二次根式不能进行
加减运算。

二次根式的加减

二次根式的加减
_________;
2
(3)10 2 + (3 8 − 7 2) =9_______;
4 3−6 2
(4)5 12 − 3 8 + 2 27 = __________.
随堂训练
8.若最简根式
2+1
3 − 2 与 3 可以合并,求 的值.
2 + 1 = 2,
解:积为(2+3) 2=5 2(2 ).
2 2+3 2= (2+3) 2
也可由分配律得出:
2 2+3 2= (2+3) 2= 5 2.
新课导入
议一议
问题2:如果两个正方形的面积分别是18和8,那么大正
方形的边长比小正方形的边长大多少?
此问题需要计算 18 − 8,但由于 18, 8不是最简二次根式,先把它们
上面提到的3 2与2 2, 18与 8都是同类二次根式.
同类二次根式可以像同类项那样进行合并.
知识讲解
思考: 观察新课导入两个问题的计算过程,你能总结出二次根式
加减计算的过程吗?
二次根式的加减
一般地,二次根式相加减,先把各个二次根式分别化成最简二次根
式,然后再将同类二次根式分别合并.有括号时,要先去括号.
1
1
= 48 − 4
−3
+ 4 0.5
8
3
=2 11 − 3 11 − 11 2
2
3
2
=4 3 − 4 ×
−3×
+4×
4
3
2
= − 11 − 11 2.
=4 3 − 2 − 3 + 2 2
=3 3 + 2.
随堂训练

《二次根式的加减运算》PPT课件

《二次根式的加减运算》PPT课件

1.预习下一节 2.完成《中考考什么》本节的习题
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
பைடு நூலகம்
120、人生就像骑单车,想保持平衡就得往前走。 121、成功不是凭梦想和希望,而是凭努力和实践。 122、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有久久不会退去的余香。 123、活在当下,别在怀念过去或者憧憬未来中浪费掉你现在的生活。 124、不为模糊不清的未来担忧,只为清清楚楚的现在努力。 125、出路出路,走出去了,总是会有路的。困难苦难,困在家里就是难。 126、生命不是要超越别人,而是要超越自己。 127、长得漂亮是优势,活得漂亮是本事。 128、如果要飞得高,就该把地平线忘掉。 129、你不要一直不满他人,你应该一直检讨自己才对。 130、生活是一面镜子。你对它笑,它就对你笑;你对它哭,它也对你哭。 131、要改变命运,首先改变自己。 132、人生就像一个动物园,当你以为你在看别人耍猴的时候,却不知自己也是猴子中的一员! 133、把事情办好的秘密就是行动。成功之路就是有条理思考之后的行动!行动!行动! 134、人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花。 135、没有播种,何来收获;没有辛苦,何来成功;没有磨难,何来荣耀;没有挫折,何来辉煌。——佩恩 136、上天完全是为了坚强你的意志,才在道路上设下重重的障碍。 137、最可怕的敌人,就是没有坚强的信念。 ——罗曼· 罗兰 138、你硬要把单纯的事情看得很严重,那样子你会很痛苦。 139、执着追求并从中得到最大快乐的人,才是成功者。——梭罗 140、就算全世界都否定我,还有我自己相信我。 141、人的缺点就像花园里的杂草,如果不及时清理,很快就会占领整座花园。 142、目标的坚定是性格中最必要的力量源泉之一,也是成功的利器之一。没有它,天才也会在矛盾无定的迷径中徒劳无功。 143、在必要时候需要弯一弯,转一转,因为太坚强容易折断,我们需要更多的柔软,才能战胜挫折。 144、即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。 145、笑对人生,能穿透迷雾;笑对人生,能坚持到底;笑对人生,能化解危机;笑对人生,能照亮黑暗。 146、什么是天才!我想,天才就是勤奋的结果。——郭沫若 147、还能冲动,表示你还对生活有激情,总是冲动,表示你还不懂生活。 148、现在站在什么地方不重要,重要的是你往什么方向移动。 149、世上只有想不通的人,没有走不通的路。 150、觉得自己做得到和做不到,其实只在一念之间。 151、人的一生就像一篇文章,只有经过多次精心修改,才能不断完善。摘自:读书名言 152、自以为拥有财富的人,其实是被财富所拥有。 153、一个懒惰的少年将来就是一褴褛的老人。 154、坚持最难,但成果也最大。 155、再多一点努力,就多一点成功。 156、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。 157、活着一天,就是有福气,就该珍惜。当我哭泣我没有鞋子穿的时候,我发现有人却没有脚。 158、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 159、机不可失,时不再来。 160、随随便便浪费的时间,再也不能赢回来。 161、环境永远不会十全十美,消极的人受环境控制,积极的人却控制环境。 162、学的到东西的事情是锻炼,学不到的是磨练。 163、命运就像自己的掌纹,虽然弯弯曲曲,却永远掌握在自己手中。 164、环境不会改变,解决之道在于改变自己。 165、成大事不在于力量多少,而在能坚持多久。 166、只要路是对的,就不怕路远。 167、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。 168、你能做到的,比想像的更多。 169、天道酬勤。也许你付出了不一定得到回报,但不付出一定得不到回报。 170、成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。 171、在生活中,我跌倒过。我在嘲笑声中站起来,虽然衣服脏了,但那是暂时的,它可以洗净。 172、放弃谁都可以,千万不要放弃自己! 173、尝试去把别人拍过来的砖砌成结实的地基,生活就不会那么辛苦了。 174、如果我们都去做自己能力做得到的事,我们会让自己大吃一惊。 175、每个人都有潜在的能量,只是很容易被习惯所掩盖,被时间所迷离,被惰性所消磨。 176、上帝从不抱怨人们的愚昧,人们却抱怨上帝的不公平。 177、没有所谓幸运或厄运,每件事情有因必有果。

二次根式的运算

二次根式的运算

二次根式的运算二次根式是代数中常见的一种形式,它包括了平方根和其他次方根。

在数学中,我们经常需要对二次根式进行各种运算。

本文将介绍二次根式的基本运算方法和相关概念。

一、二次根式的定义二次根式可以表示为√a的形式,其中a为非负实数。

根号下的数称为被开方数,它代表了一个数的平方根。

二次根式也可以写为指数形式,如a的1/2次方或a的1/3次方。

二、二次根式的基本运算1. 二次根式的加减法对于同类项的二次根式,可以对它们的被开方数进行加减运算。

例如,√2 + √3可以简化为√(2 + 3),即√5。

2. 二次根式的乘法二次根式的乘法运算需要注意求根的法则。

例如,√2 × √3可以化简为√(2 × 3),即√6。

3. 二次根式的除法同理,对于二次根式的除法运算,我们需要将除数和被除数的根号下的数相除,并合并同类项。

例如,√6 ÷ √2 可以化简为√(6 ÷ 2),即√3。

三、二次根式的化简有时候,我们需要将二次根式进行进一步的化简。

以下是几种常见的化简方式:1. 化简平方根如果一个二次根式的被开方数可以被完全平方数整除,那么我们可以化简为一个整数。

例如,√4可以化简为2。

2. 合并同类项对于具有相同根号下数的二次根式,我们可以合并它们,得到一个更简洁的表达式。

例如,√2 + √2可以合并为2√2。

3. 有理化分母当二次根式出现在分母中时,我们通常需要对分母进行有理化。

有理化的目的是将分母化为有理数,方便进行运算。

例如,将1/√3有理化分母,可以得到√3/3。

四、二次根式的应用二次根式在代数中有着广泛的应用。

它常出现在几何学、物理学等领域的计算中。

在几何学中,二次根式可以表示线段长度、面积以及体积等。

例如,计算某个多边形的面积时,可能需要计算边长的二次根式。

在物理学中,二次根式可以表示物理量的大小。

例如,物体的质量、速度等都可以用二次根式来表示。

总结:二次根式是代数中常见的一种形式,它包括平方根和其他次方根。

二次根式加减法

二次根式加减法

二次根式加减法二次根式加减法是中学数学教学中十分重要的一环,对学习者掌握二次根式的解法有非常重要的意义。

首先,我们来了解一下二次根式的定义:二次根式是一种一元二次方程的根式表达形式,也就是说,其中有一个未知量的二次多项式的根的表达式,即形如ax + bx + c = 0形式,其中a、b、c都是任意实数,x是未知量。

二次根式加减法,也叫求解二次根式的公式,是一种有效求解二次根式的方法,也称为二次公式。

其求解过程可简述为:先把原式化为标准格式→利用公式求出两个相等的根→把二次根式的根代入原式中→根据求解的结果,得出最终的求解结果。

具体求解过程如下:1.将二次根式化为标准格式:原式ax + bx + c = 0为标准格式:x + (b/a)x + (c/a) = 02.求出两个相等的根:令x1 与 x2解,那么有x1+x2=-(b/a),x1*x2=(c/a)3.将两个根代入原式:将上面2个相等的根分别代入原方程,有ax +bx+(c/a) = 0 与ax + bx+(-x1x2) = 0,此时有(c/a) = -x1*x2,化简得x1+x2=-(b/a),x1*x2=(c/a)4.求出最终解:由以上3个等式,可以依次求出 x1 x2,即x1=(-b+√(b-4ac))/(2a),x2=(-b-√(b-4ac))/(2a),最终得出二次根式的两个解。

二次根式加减法的应用广泛,不仅仅是用于解二次方程,而且在分析几何和抽样统计中也有着重要的作用,为学习者掌握此运算解法,对学习者的提高有着重要的意义。

在有效解决二次根式的运算时,学习者首先要正确理解二次方程的定义和含义,其次,要掌握相应的解法,要力求高效、熟练地掌握本文介绍的二次根式加减法,在实际应用时,明确结论,注意细节,内容科学,运算完全,快速准确求出最终解。

综上所述,就是要掌握二次根式加减法的运算,在遇到二次根式时就能快速又有效地求解,有效解决学习者的困惑,提高学习者数学水平。

(完整版)二次根式的加减法

(完整版)二次根式的加减法

二次根式的加减法一、知识概述1、同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式.同类二次根式与整式中的同类项类似.2、二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:(1)二次根式的加减常分为两大步骤进行,第一步化简;第二步合并;(2)在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的;在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减,被开方数和根指数不变.3、二次根式的混合运算二次根式的混合运算顺序与有理数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).注意:(1)在运算过程中,每一个根式可以看作是一个“单项式”,多个被开方数不同的二次根式的和可以看作“多项式”;(2)有理数(或整式)中的运算律、运算法则及所有的乘法公式在二次根式的运算中仍然适用;(3)二次根式的运算结果必须是最简二次根式.二、重难点知识1、二次根式的加减法运算实质上是合并同类二次根式,在进行二次根式的加减法时,注意先把各个二次根式化为最简二次根式,再把同类项合并,合并同类二次根式的方法与合并同类项类似.2、二次根式的混合运算中可以与有理数的混合运算及整式的混合运算及分式的运算作比较,使二次根式的混合运算易于理解和掌握,并能合理应用运算律及技巧进行计算.二次根式的除法运算转化为分母有理化的问题,同时可避免错误地使用运算律.三、典型例题讲解例1、计算:.分析:本组题中各个加数都不是最简二次根式,因此需先进行化简,然后再把被开方数相同的根式进行合并.解:.例2、计算:分析:先根据去括号的法则,去掉括号,再进行二次根式的加减运算.总结:解此类问题分为三个步骤:一是去括号,二是化简,三是合并,但在去括号时应注意符号的处置.例3、计算下列各题:.思路:(1)题可仿照单项式乘以多项式的方法进行计算;(2)、(3)题可仿用多项式乘法法则进行计算;(4)题可套用完全平方公式计算.例4、计算下列各题.解:例5、化简:总结:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可交换相邻项的位置,如,结果为-1,继续运算易出现符号上的差错,而把变为,这样则为1,继续运算可避免错误.例6、已知x、y都为正整数,且.求x+y的值.分析:因为只有化简后被开方数相同的二次根式才能合并,而,易知化简后的被开方数必为222,故可设.由此求出正整数a、b即可求出x、y.解:,于是即a+b=3∴a=2,b=1或a=1,b=2,故x=222,y=888或x=888,y=222.∴x+y=1110,总结:几个二次根式化简后被开方数相同,则它们可以合并,本题则是逆用该结论,即几个二次根式能合并成一个二次根式,则它们化简后的被开方数必相同.课外拓展:例、已知a、b是实数,且,问a、b之间有怎样的关系?请推导.思路分析:由特殊探求一般,在证明一般性的过程中,由因导果,从化简条件等式入手,而化简的基本方法是有理化.解:原等式两边分别乘以,得两式相加得,所以.A 卷一、选择题1、下列计算结果正确的是( )A.B.C.D.2、下列计算正确的是( )A.B.C.D.3、下列各式化简结果不正确的是()A.B.C.D.4、下列计算正确的是()A.B.C.D.5、计算等于()A.·1 B.3C.D.6、在数轴上点A表示实数,点B表示,那么离原点较远的点是()A.A B.BC.A、B的中点D.不能确定B 卷二、填空题7、△ABC的三边长为a、b、c,且a、b满足则△ABC的周长的取值范围是______.8、若成立,则xy的值为______.9、若,则______.10、已知正数a、b,有下列结论:(1)若a=1,b=1,则;(2)若,则;(3)若a=2,b=3,则;(4)若a=1,b=5,则.根据以上几个命题提供的信息,请猜想:若a=6,b=7,则______.三、解答题11、计算或化简下列各题:12、计算:13、已知,求代数式的值.14、计算.[15、先观察下列等式,再回答问题:(1)根据上面三个等式提供的信息,请猜想的结果,并进行验证;(2)请按照上面各等式反映的规律,试写出n(n为正整数)表示的等式,并加以验证.一.选择题DDCBDB二.填空题7、△ABC的周长大于6且小于10.8、由题意有x=2,y=3,∴x y=8.9、.10、=13.三.解答题11.12.13..14. 解:(1)配方法:本题中的根式不符合型,我们可根据分式的基本性质,分子、分母都乘以2,将原式变形为(2)换元法:设,两边同时平方得,所以x2=10,又因为x>0,所以,即.15.。

人教版八年级数学下册教学课件-16.3二次根式的加减

人教版八年级数学下册教学课件-16.3二次根式的加减

达标检测
1.二 次 根 式 2a - 4与 2可 以 合 并 , 那 么a的 值 ∴在这块木板上可以截出两个分别是8dm2和18dm2的正方形木板.
可 以 为 (B ) (2)化简后被开方式不相同的不能合并,只能用+
(2)化简后被开方式不相同的不能合并,只能用+ 1、二次根式加减法运算法则
二次根式的加减运算法则
的二相次同根式分别
。 合并
注意:合并的实质是对被开方式相同的二次 根式的系数进行合并,即把根号外系数相加减,根
指数和被开方数不变。
梳理
二次根式加减法运算步骤
(1)将每个二次根式化为最简二次根;一化 (2)合并被开方数相同的二次根式。 二合并
注意: 化简后被开方式不相同的不能合并,只能用+或-号连接 在一起。
3.细心算一算
(1)( 8 2 0.25) ( 11 50 2 72)
8
3
(2)( 80 14) ( 31 4 45)
5
55
(3)2a 3ab2 (b 27a3 2ab 3 a)
6
4
拓展提升
如 果a, b都 是 有 理 数 , 且a 2b 5 7 (a b) 5, 求a, b的 值 。
试一试
判断下列计算是否正确? 如有错误,说出错误 原因并改正。
(1) 8 2 2
22 3 5 2 7 5 X
2 3与5 2被开放式不相同, 所以不能合并。
例1计算下列各题:
(1) 54 24
(2) 1 18 3 8
2
9
(3) 90 2 20 5 4 5
解:
4 (1) 54 24 (3) 90 2 20 5
也就是被开方数是整数或整式;

二次根式运算

二次根式运算

②合并同类二次根式与整式中的合并同类项类似,只需把同类二次根式前面的有理数(或有理式)相加减就行了。

题型1:题型2:二次根式的性质及简单运算例1:化简 (1(2 (3 (4.11)1(到根号里面中的根号外面的因式移将aa --例2:计算 (1)2(x ≥0) (2)2(3)2 (4))2题型3:最简二次根式和同类二次根式 例1: 把下列两组中的各二次根式分别化为最简二次根式,并指出哪些是同类二次根式。

(1) (2)例2:已知是最简二次根式,它与是同类二次根式,求a 与n 的值。

题型4:二次根式的运算例1:101531251812775,,,-3453x x y x y x y x y,,-7--a n a 328n (.)()052131875---例2:把下列各式分母有理化(1) (2)例3:(1)(+)×(2) (4632)22-÷.例4:19961997(3(3+-三、课堂达标检测 1. ,则( )A .a <B . a ≤C .a > D . a ≥ 2.已知,则的值为( )A .B .C .D . 3.当实数x 的取值使得有意义时,函数y =4x +1中y 的取值范围是( ) A .y ≥-7 B . y ≥9 C . y >9 D . y ≤94. 有意义,则的取值范围是 。

5. 在实数范围内分解因式:。

5. 当1≤x<5。

1945-322322-+12a -121212123y =2xy 15-15152-1522-x 11m +m 429__________,2__________x x -=-+=5_____________x -=6. 把的根号外的因式移到根号内等于 。

7.成立的条件是 。

8. 若互为相反数,则。

9.,求x 、y 的值。

10. 已知的值。

11.数轴上与1,2对应的点分别为A 、B ,点B 关于点A 的对称点为点C ,设点C 表示的数为x ,则=+-xx 22 .12.计算:21-2-38232-+⨯+13.已知3232-=+=b a ,,试求a b b a -的值.1x =+1x+1a b -+()2005_____________a b -=2440y y -+=2310x x -+=。

学生版二次根式的运算(基础)知识讲解

学生版二次根式的运算(基础)知识讲解

二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用. (2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质:(a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题. 要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用. 要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式. 【典型例题】类型一、二次根式的加减运算1.计算: (1).+(2). 311932a a a a a+-举一反三:【变式】计算:011(1)()527232π--++--类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);举一反三【变式】各式是否正确,不正确的请予以改正:(1); (2)×=4××=4×=4=8.3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯类型三、二次根式的混合运算4.(聊城模拟)下列计算正确的是( ) A .5﹣2=3 B .2×3=6 C .=3 D .3=35、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________.举一反三:【变式】(汉阳区期中)已知x=1﹣,y=1+,则x 2+y 2﹣xy ﹣2x ﹣2y 的值为 .二次根式的运算(基础)巩固练习【巩固练习】一、 选择题1.计算18827÷⨯的结果是( ). A .463 B.186 C.932 D.1642. (广西)下列计算正确的是( ) A .﹣=B .3×2=6C .(2)2=16D .=13. 化简二次根式3a -的正确结果是( ).A .a a --B .a a -C .a aD .a a - 4. (泰安模拟)下列计算或化简正确的是( ). A. 2+4=6B.=4C.=﹣3 D.=35.若,则的值等于( ).A. 4B.C. 2D.6.下列计算正确的是( ).A. 2=b a b ++(a ) B. a b ab +=C.22+a b a b =+D. 1aa a= 二. 填空题 7.计算:4118(2854)33-÷⋅=____________________________. 8.(潍坊)计算:(+)= .9. 化简:(1).111a a +=_________,(2).2411a a a+=___________. 10. (新泰市期末)若=,则x 的取值范围为 .11. 一个三角形的三边长分别为,,,则它的周长是________cm.12. 101100103103)()(-+=________________. 三 综合题13. (1)11(318504)52+-÷32 (2)()1212328-⎪⎭⎫⎝⎛+--14.(市南区校级期中)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)15.(1)先化简,再求值:(a +((6)a a a --,其中12a =.(2).已知251,251+=-=b a ,求722++b a 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档