高中数学人教版选修2-2(理科) 第二章推理与证明 2.3数学归纳法 同步练习A卷
最新人教版选修2-2高中数学第二章 推理与证明2.3数学归纳法习题课 同步习题及答案
习题课 数学归纳法明目标、知重点1.进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题.2.掌握证明n =k +1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.1.归纳法归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明. 2.数学归纳法(1)应用范围:作为一种证明方法,用于证明一些与正整数n 有关的数学命题; (2)基本要求:它的证明过程必须是两步,最后还有结论,缺一不可; (3)注意点:在第二步递推归纳时,从n =k 到n =k +1必须用上归纳假设.题型一 用数学归纳法证明不等式思考 用数学归纳法证明不等式的关键是什么?答 用数学归纳法证明不等式,首先要清楚由n =k 到n =k +1时不等式两边项的变化;其次推证中可以利用放缩、比较、配凑分析等方法,利用归纳假设证明n =k +1时的结论.例 1 已知数列{b n }的通项公式为b n =2n ,求证:对任意的n ∈N *,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1都成立. 证明 由b n =2n ,得b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n=32·54·76·…·2n +12n>n +1成立. (1)当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.(2)假设当n =k (k ≥1且k ∈N *)时不等式成立, 即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k>k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2 >k +1·2k +32k +2=(2k +3)24(k +1)=4k 2+12k +94(k +1)>4k 2+12k +84(k +1)=4(k 2+3k +2)4(k +1)=4(k +1)(k +2)4(k +1)=k +2=(k +1)+1. 所以当n =k +1时, 不等式也成立. 由(1)、(2)可得不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n>n +1对任意的n ∈N *都成立.反思与感悟 用数学归纳法证明不等式时要注意两凑:一凑归纳假设;二凑证明目标.在凑证明目标时,比较法、综合法、分析法都可选用.跟踪训练1 用数学归纳法证明122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *).证明 当n =2时,左式=122=14,右式=1-12=12,因为14<12,所以不等式成立.假设n=k(k≥2,k∈N*)时,不等式成立,即122+132+142+…+1k2<1-1k,则当n=k+1时,1 22+132+142+…+1k2+1(k+1)2<1-1k+1(k+1)2=1-(k+1)2-kk(k+1)2=1-k2+k+1k(k+1)2<1-k(k+1)k(k+1)2=1-1k+1,所以当n=k+1时,不等式也成立.综上所述,对任意n≥2的正整数,不等式都成立.题型二利用数学归纳法证明整除问题例2 求证:a n+1+(a+1)2n-1能被a2+a+1整除,n∈N*.证明(1)当n=1时,a1+1+(a+1)2×1-1=a2+a+1,命题显然成立.(2)假设当n=k(k∈N*)时,a k+1+(a+1)2k-1能被a2+a+1整除,则当n=k+1时,a k+2+(a+1)2k+1=a·a k+1+(a+1)2·(a+1)2k-1=aa k+1+(a+1)2k-1]+(a+1)2(a+1)2k-1-a(a+1)2k-1=aa k+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1.由归纳假设,上式中的两项均能被a2+a+1整除,故n=k+1时命题成立.由(1)(2)知,对任意n∈N*,命题成立.反思与感悟证明整除性问题的关键是“凑项”,先采用增项、减项、拆项和因式分解等手段,凑成n=k时的情形,再利用归纳假设使问题获证.跟踪训练2 证明x2n-1+y2n-1(n∈N*)能被x+y整除.证明(1)当n=1时,x2n-1+y2n-1=x+y,能被x+y整除.(2)假设当n=k(k∈N*)时,命题成立,即x2k-1+y2k-1能被x+y整除.那么当n=k+1时,x2(k+1)-1+y2(k+1)-1=x2k+1+y2k+1=x2k-1+2+y2k-1+2=x2·x2k-1+y2·y2k-1+x2·y2k-1-x2·y2k-1=x2(x2k-1+y2k-1)+y2k-1(y2-x2).∵x2k-1+y2k-1能被x+y整除,y2-x2=(y+x)(y-x)也能被x+y整除,∴当n=k+1时,x2(k+1)-1+y2(k+1)-1能被x+y整除.由(1),(2)可知原命题成立.题型三利用数学归纳法证明几何问题思考用数学归纳法证明几何问题的关键是什么?答用数学归纳法证明几何问题的关键是“找项”,即几何元素从k个变成k+1个时,所证的几何量将增加多少,还需用到几何知识或借助于几何图形来分析,实在分析不出来的情况下,将n=k+1和n=k分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.例3 平面内有n(n∈N*,n≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明:交点的个数f(n)=n(n-1)2.证明(1)当n=2时,两条直线的交点只有一个,又f(2)=12×2×(2-1)=1,∴当n=2时,命题成立.(2)假设n=k(k>2)时,命题成立,即平面内满足题设的任何k条直线交点个数f(k)=12k(k-1),那么,当n=k+1时,任取一条直线l,除l以外其他k条直线交点个数为f(k)=12k(k-1),l与其他k条直线交点个数为k,从而k+1条直线共有f(k)+k个交点,即f(k+1)=f(k)+k=12k(k-1)+k=12k(k-1+2)=12k(k+1)=12(k+1)(k+1)-1],∴当n=k+1时,命题成立.由(1)(2)可知,对任意n∈N*(n≥2)命题都成立.反思与感悟用数学归纳法证明几何问题时,一要注意数形结合,二要注意有必要的文字说明.跟踪训练3 有n个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n个圆把平面分成f(n)=n2-n+2部分.证明(1)n=1时,分为2块,f(1)=2,命题成立;(2)假设n=k(k∈N*)时,被分成f(k)=k2-k+2部分;那么当n=k+1时,依题意,第k+1个圆与前k个圆产生2k个交点,第k+1个圆被截为2k段弧,每段弧把所经过的区域分为两部分,所以平面上净增加了2k个区域.∴f(k+1)=f(k)+2k=k2-k+2+2k=(k+1)2-(k+1)+2,即n=k+1时命题成立,由(1)(2)知命题成立.呈重点、现规律]1.数学归纳法证明与正整数有关的命题,包括等式、不等式、数列问题、整除问题、几何问题等.2.证明问题的初始值n0不一定,可根据题目要求和问题实际确定n0.3.从n=k到n=k+1要搞清“项”的变化,不论是几何元素,还是式子;一定要用到归纳假设.一、基础过关1.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N*),验证n=1时,左边应取的项是( )A.1 B.1+2C.1+2+3 D.1+2+3+4答案 D解析等式左边的数是从1加到n+3.当n=1时,n+3=4,故此时左边的数为从1加到4.2.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取( )A.2 B.3C.5 D.6答案 C解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.3.已知f(n)=1+12+13+…+1n(n∈N*),证明不等式f(2n)>n2时,f(2k+1)比f(2k)多的项数是( )A.2k-1项B.2k+1项C.2k项D.以上都不对答案 C解析观察f(n)的表达式可知,右端分母是连续的正整数,f(2k)=1+12+…+12k,而f(2k+1)=1+12+…+12k+12k+1+12k+2+…+12k+2k.因此f(2k+1)比f(2k)多了2k项.4.用数学归纳法证明不等式1n+1+1n+2+…+12n>1124(n∈N*)的过程中,由n=k递推到n=k+1时,下列说法正确的是( )A.增加了一项12(k+1)B.增加了两项12k+1和12(k+1)C.增加了B中的两项,但又减少了一项1 k+1D.增加了A中的一项,但又减少了一项1 k+1答案 C解析当n=k时,不等式左边为1k+1+1k+2+…+12k,当n=k+1时,不等式左边为1k+2+1k+3+…+12k+12k+1+12k+2,故选C.5.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开( )A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3答案 A解析假设当n=k时,原式能被9整除,即k3+(k+1)3+(k+2)3能被9整除.当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k3即可.6.已知数列{a n}的前n项和为S n,且a1=1,S n=n2a n(n∈N*).依次计算出S1,S2,S3,S4后,可猜想S n的表达式为________________.答案S n=2n n+1解析S1=1,S2=43,S3=32=64,S4=85,猜想S n=2nn+1.7.已知正数数列{a n}(n∈N*)中,前n项和为S n,且2S n=a n+1an,用数学归纳法证明:a n=n-n-1.证明(1)当n=1时,a1=S1=12(a1+1a1),∴a21=1(a n>0),∴a1=1,又1-0=1,∴n=1时,结论成立.(2)假设n=k(k∈N*)时,结论成立,即a k=k-k-1. 当n=k+1时,a k+1=S k+1-S k=12(a k+1+1ak+1)-12(a k+1ak)=12(a k+1+1ak+1)-12(k-k-1+1k-k-1)=12(a k+1+1ak+1)-k.∴a2k+1+2ka k+1-1=0,解得a k+1=k+1-k(a n>0),∴n=k+1时,结论成立.由(1)(2)可知,对n∈N*都有a n=n-n-1.二、能力提升8.对于不等式n2+n≤n+1 (n∈N*),某学生的证明过程如下:①当n=1时,12+1≤1+1,不等式成立.②假设n=k (n∈N*)时,不等式成立,即k2+k≤k+1,则n=k+1时,(k+1)2+(k+1)=k2+3k+2<k2+3k+2+(k+2)=(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立,上述证法( )A.过程全部正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确答案 D解析从n=k到n=k+1的推理中没有使用归纳假设,不符合数学归纳法的证题要求.9.用数学归纳法证明122+132+…+1(n+1)2>12-1n+2.假设n=k时,不等式成立.则当n=k+1时,应推证的目标不等式是__________________________.答案122+132+…+1k2+1(k+1)2+1(k+2)2>12-1k+3解析观察不等式中的分母变化知,122+132+…+1k2+1(k+1)2+1(k+2)2>12-1k+3.10.证明:62n-1+1能被7整除(n∈N*).证明(1)当n=1时,62-1+1=7能被7整除.(2)假设当n=k(k∈N*)时,62k-1+1能被7整除.那么当n=k+1时,62(k+1)-1+1=62k-1+2+1=36×(62k-1+1)-35.∵62k-1+1能被7整除,35也能被7整除,∴当n=k+1时,62(k+1)-1+1能被7整除.由(1),(2)知命题成立.11.求证:1n+1+1n+2+…+13n>56(n≥2,n∈N*).证明(1)当n=2时,左边=13+14+15+16>56,不等式成立.(2)假设当n=k(k≥2,k∈N*)时命题成立,即1k+1+1k+2+…+13k>56.则当n=k+1时,1 (k+1)+1+1(k+1)+2+…+13k+13k+1+13k+2+13(k+1)=1k+1+1k+2+…+13k+(13k+1+13k+2+13k+3-1k+1)>56+(13k+1+13k+2+13k+3-1k+1)>56+(3×13k+3-1k+1)=56,所以当n=k+1时不等式也成立.由(1)和(2)可知,原不等式对一切n≥2,n∈N*均成立.12.已知数列{a n }中,a 1=-23,其前n 项和S n 满足a n =S n +1S n+2(n ≥2),计算S 1,S 2,S 3,S 4,猜想S n 的表达式,并用数学归纳法加以证明. 解 当n ≥2时,a n =S n -S n -1=S n +1S n+2.∴S n =-1S n -1+2(n ≥2). 则有:S 1=a 1=-23,S 2=-1S 1+2=-34,S 3=-1S 2+2=-45,S 4=-1S 3+2=-56,由此猜想:S n =-n +1n +2(n ∈N *).用数学归纳法证明:(1)当n =1时,S 1=-23=a 1,猜想成立.(2)假设n =k (k ∈N *)猜想成立,即S k =-k +1k +2成立,那么n =k +1时,S k +1=-1S k +2=-1-k +1k +2+2=-k +2k +3=-(k +1)+1(k +1)+2. 即n =k +1时猜想成立.由(1)(2)可知,对任意正整数n ,猜想结论均成立. 三、探究与拓展13.已知递增等差数列{a n }满足:a 1=1,且a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式a n ;(2)若不等式(1-12a 1)·(1-12a 2)·…·(1-12a n )≤m 2a n +1对任意n ∈N *,试猜想出实数m 的最小值,并证明.解 (1)设数列{a n }公差为d (d >0),由题意可知a 1·a 4=a 22,即1(1+3d )=(1+d )2,解得d =1或d =0(舍去).所以a n =1+(n -1)·1=n .(2)不等式等价于12·34·56·…·2n -12n ≤m 2n +1, 当n =1时,m ≥32;当n =2时,m ≥358; 而32>358,所以猜想,m 的最小值为32. 下面证不等式12·34·56·…·2n -12n ≤322n +1对任意n ∈N *恒成立. 下面用数学归纳法证明: 证明 (1)当n =1时,12≤323=12,命题成立. (2)假设当n =k 时,不等式,12·34·56·…·2k -12k ≤322k +1成立, 当n =k +1时,12·34·56·…·2k -12k ·2k +12k +2≤322k +1·2k +12k +2, 只要证322k +1·2k +12k +2≤ 322k +3, 只要证2k +12k +2≤12k +3,只要证2k +12k +3≤2k +2, 只要证4k 2+8k +3≤4k 2+8k +4,只要证3≤4,显然成立.1 2·34·56·…·2n-12n≤322n+1恒成立.所以,对任意n∈N*,不等式。
高中数学人教版选修2-2(理科) 第二章推理与证明 2.3数学归纳法 同步练习C卷
高中数学人教版选修2-2(理科)第二章推理与证明 2.3数学归纳法同步练习C卷姓名:________ 班级:________ 成绩:________一、单选题 (共1题;共2分)1. (2分) (2019高二上·上海月考) 用数学归纳法证明:,在验证时,左边为()A . 1B .C .D . 都不正确二、选择题 (共7题;共14分)2. (2分) (2017高二下·定西期中) 在数学归纳法的递推性证明中由假设n=k时成立推导n=k+1时成立时f (n)=1+ + +…+ 增加的项数是()A . 1B . 2k+1C . 2k﹣1D . 2k3. (2分) (2015高二下·宁德期中) 设Sk= + + +…+ (k≥3,k∈N*),则Sk+1=()A . Sk+B . Sk+ +C . Sk+ + ﹣D . Sk﹣﹣4. (2分)用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证 n=k+1时的情况,只需展开()A . (k+3)3B . (k+2)3C . (k+1)3D . (k+1)3+(k+2)5. (2分)已知,则f(k+1)= ()A .B .C .D .6. (2分)用数学归纳法证明1+2+3+...+2n =2n-1+22n-1时,假设n=k时命题成立,则当n=k+1时,左端增加的项数是()A . 1项B . k-1 项C . k 项D . 2k 项7. (2分)用数学归纳法证明等式时,第一步验证 n=1 时,左边应取的项是()A . 1B . 1+2C . 1+2+3D . 1+2+3+48. (2分)用数学归纳法证明在验证n=1时,左边所得的项为()A . 1B . 1+a+a2C . 1+aD . 1+a+a2+a3三、填空题 (共3题;共3分)9. (1分)用数学归纳法证明“2n+1≥n2+n+2(n∈N+)”时,第一步验证为________.10. (1分)已知数列{an}的通项公式(n∈N+),f(n)=(1-a1)(1-a2)…(1-an),试通过计算f(1),f(2),f(3)的值,推测出f(n)的值是________11. (1分)用数学归纳法证明“ 5n-2n 能被3整除”的第二步中,当 n=k+1 时,为了使用归纳假设,应将5k+1-2k+1 变形为________四、解答题 (共3题;共25分)12. (5分) (2019高二下·蓝田期末) 已知函数对任意实数都有,且.(I)求的值,并猜想的表达式;(II)用数学归纳法证明(I)中的猜想.13. (15分)设曲线在点处的切线斜率为 ,且 .对一切实数 x ,不等式恒成立(a ≠0).(1)求的值;(2)求函数的表达式;(3)求证:14. (5分)已知数列{an}的前n项和为Sn ,,n∈N* .(Ⅰ)求S1 , S2 , S3;(Ⅱ)由(Ⅰ)推测Sn的公式,并用数学归纳法证明你的推测.参考答案一、单选题 (共1题;共2分)1-1、二、选择题 (共7题;共14分)2-1、3-1、4-1、5-1、6-1、7-1、8-1、三、填空题 (共3题;共3分)9-1、10-1、11-1、四、解答题 (共3题;共25分)12-1、13-1、13-2、13-3、14-1、。
2019_2020学年高中数学第2章推理与证明2.3数学归纳法练习新人教A版选修2_2
§2.3 数学归纳法[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.用数学归纳法证明3n≥n 3(n ≥3,n ∈N),第一步应验证 A .n =1 B .n =2 C .n =3 D .n =4 解析 由题知,n 的最小值为3,所以第一步验证n =3是否成立. 答案 C2.已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n -1=2(1n +2+1n +4+…+12n)时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证 A .n =k +1时等式成立 B .n =k +2时等式成立 C .n =2k +2时等式成立D .n =2(k +2)时等式成立解析 因为已知n 为正偶数,故当n =k 时,下一个偶数为k +2. 答案 B3.某个命题与正整数n 有关,如果当n =k (k ∈N)时该命题成立,那么可推得当n =k +1时该命题也成立,现已知当n =5时,该命题不成立,那么可推得A .当n =6时该命题不成立B .当n =6时该命题成立C .当n =4时该命题不成立D .当n =4时该命题成立解析 反证法.若n =4时成立,则n =4+1也成立,与已知矛盾,故n =4不成立. 答案 C4.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324(n ∈N +)的过程中,由n =k 到n =k +1时,不等式左边的变化情况为A .增加12(k +1)B .增加12k +1+12(k +1)C .增加12k +1+12k +2,减少1k +1D .增加12(k +1),减少1k +1答案 C5.在数列{a n }中,a 1=2,a n +1=a n3a n +1(n ∈N *),依次计算a 2,a 3,a 4归纳推测出{a n }的通项表达式为A.24n -3 B.26n -5 C.24n +3D.22n-1解析 a 1=2,a 2=27,a 3=213,a 4=219,…,可推测a n =26n -5,故选B. 答案 B6.对于不等式n 2+n <n +1(n ∈N +),某同学用数学归纳法的证明过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N +)时,不等式成立,即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+k +2=(k +2)2=(k +1)+1, ∴n =k +1时,不等式成立,则上述证法 A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析 在n =k +1时,没有应用n =k 时的归纳假设,不是数学归纳法. 答案 D二、填空题(每小题5分,共15分)7.设f (n )=1+12+13+…+13n -1(n ∈N +),那么f (n +1)-f (n )等于________.解析 注意末项与首项,所以f (n +1)-f (n )=13n +13n +1+13n +2.答案13n +13n +1+13n +28.已知S n =11×3+13×5+15×7+…+1(2n -1)(2n +1),依次计算出S 1,S 2,S 3,S 4后可猜想S n 的表达式为________.解析 S 1=13,S 2=25,S 3=37,S 4=49,猜想S n =n2n +1.答案 n 2n +19.用数学归纳法证明:1+2+22+…+2n -1=2n-1(n ∈N +)的过程如下:(1)当n =1时,左边=1,右边=21-1=1,等式成立. (2)假设当n =k (k ∈N +)时等式成立,即1+2+22+…+2k -1=2k-1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N +,等式都成立.上述证明的错误是________.解析 本题在由n =k 成立,证n =k +1成立时,应用了等比数列的求和公式,而未用上假设条件,这与数学归纳法的要求不符.答案 未用归纳假设三、解答题(本大题共3小题,共35分)10.(10分)证明:12+122+123+…+12n -1+12n =1-12n (其中n ∈N +).证明 (1)当n =1时,左边=12,右边=1-12=12,等式成立.(2)假设当n =k (k ≥1,k ∈N +)时,等式成立,即12+122+123+…+12k -1+12k =1-12k ,那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-2-12k +1=1-12k +1=右边.所以当n =k +1时,等式也成立.根据(1)和(2),可知等式对任何n ∈N +都成立. 11.(12分)求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N +). 证明 (1)当n =2时, 左边=13+14+15+16=5760>56,不等式成立.(2)假设当n =k (k ≥2,k ∈N +)时不等式成立,即 1k +1+1k +2+…+13k >56. 则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13k +3=1k +1+1k +2+…+13k +⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1>56+⎝ ⎛⎭⎪⎫13k +1+13k +2+13k +3-1k +1>56+⎝ ⎛⎭⎪⎫3×13k +3-1k +1=56.所以当n =k +1时不等式也成立.由(1)、(2)可知,原不等式对一切n ≥2,n ∈N +都成立.12.(13分)已知集合X ={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明. 解析 (1)Y 6={1,2,3,4,5,6},S 6中的元素(a ,b )满足:若a =1,则b =1,2,3,4,5,6;若a =2,则b =1,2,4,6;若a =3,则b =1,3,6.所以f (6)=13. (2)当n ≥6时,f (n )=⎩⎪⎪⎪⎨⎪⎪⎪⎧n +2+⎝ ⎛⎭⎪⎫n 2+n 3,n =6t ,n +2+⎝ ⎛⎭⎪⎫n -12+n -13,n =6t +1,n +2+⎝ ⎛⎭⎪⎫n 2+n -23,n =6t +2,n +2+⎝ ⎛⎭⎪⎫n -12+n 3,n =6t +3,n +2+⎝ ⎛⎭⎪⎫n 2+n -13,n =6t +4,n +2+⎝ ⎛⎭⎪⎫n -12+n -23,n =6t +5(t ∈N *).下面用数学归纳法证明:①当n =6时,f (6)=6+2+62+63=13,结论成立.②假设n =k (k ≥6)时结论成立,那么n =k +1时,S k +1在S k 的基础上新增加的元素在(1,k +1),(2,k +1),(3,k +1)中产生,分以下情形讨论:a .若k +1=6t ,则k =6(t -1)+5,此时有f (k +1)=f (k )+3=k +2+k -12+k -23+3=(k +1)+2+k +12+k +13,结论成立;b .若k +1=6t +1,则k =6t ,此时有f (k +1)=f (k )+1=k +2+k 2+k3+1=(k +1)+2+(k +1)-12+(k +1)-13,结论成立;c .若k +1=6t +2,则k =6t +1,此时有f (k +1)=f (k )+2=k +2+k -12+k -13+2=(k +1)+2+k +12+(k +1)-23,结论成立;d .若k +1=6t +3,则k =6t +2,此时有f (k +1)=f (k )+2=k +2+k 2+k -23+2=(k +1)+2+(k +1)-12+k +13,结论成立;e .若k +1=6t +4,则k =6t +3,此时有f (k +1)=f (k )+2=k +2+k -12+k3+2=(k +1)+2+k +12+(k +1)-13,结论成立;f .若k +1=6t +5,则k =6t +4,此时有f (k +1)=f (k )+1=k +2+k 2+k -13+1=(k +1)+2+(k +1)-12+(k +1)-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立.。
高中数学人教版选修2-2(理科) 第二章推理与证明 2.2.2反证法 同步练习D卷
高中数学人教版选修2-2(理科)第二章推理与证明 2.2.2反证法同步练习D卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)已知a,b,c都是正数,则三数()A . 都大于2B . 都小于2C . 至少有一个不大于2D . 至少有一个不小于22. (2分) (2018高二下·滦南期末) 用反证法证明“如果,那么”假设的内容应是()A .B .C . 且D . 或3. (2分)用反证法证明“a、b∈N+,ab可被5整除,那么,a、b中至少有一个能被5整除”时,假设的内容是()A . a不能被5 整除B . a,b不能被5整除C . a、b都不能被5 整除D . 以上都不对4. (2分) (2017高二下·洛阳期末) 用反证法证明“a、b∈N* ,如果a、b能被2017整除,那么a、b中至少有一个能被2017整除”时,假设的内容是()A . a不能被2017整除B . b不能被2017整除C . a、b都不能被2017整除D . a、b中至多有一个能被2017整除5. (2分)(2020·沈阳模拟) 新高考的改革方案开始实施后,某地学生需要从化学,生物,政治,地理四门学科中选课,每名同学都要选择其中的两门课程.已知甲同学选了化学,乙与甲没有相同的课程,丙与甲恰有一门课相同,丁与丙也没有相同课程.则以下说法正确的是()A . 丙没有选化学B . 丁没有选化学C . 乙丁可以两门课都相同D . 这四个人里恰有2个人选化学6. (2分) (2018高二下·中山期末) 用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设()A . x>0或y>0B . x>0且y>0C . xy>0D . x+y<07. (2分)用反证法证明命题“三角形的内角中至少有一个角不大于”时,反设正确的是()A . 假设三个内角都不大于B . 假设三个内角都大于C . 假设三个内角至多有一个大于D . 假设三个内角至多有二个大于8. (2分)用反证法证明命题“若abc=0,则a,b,c中至少有一个为0”时,假设正确的是()A . 假设a,b,c中只有一个为0B . 假设a,b,c都不为0C . 假设a,b,c都为0D . 假设a,b,c不都为0二、填空题 (共3题;共3分)9. (1分)某个命题的结论是“实数a,b都不大于2”,如果用反证法证明,正确的反设为________10. (1分) (2017高二下·黑龙江期末) 甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,回答如下.甲说:丙没有考满分;乙说:是我考的;丙说:甲说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是________.11. (1分) A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎.则________ 必定是在撒谎.三、解答题 (共3题;共15分)12. (5分) (2016高二下·黄骅期中) 用反证法证明:已知x,y∈R,且x+y>2,则x,y中至少有一个大于1.13. (5分)已知a,b,c是互不相等的实数,求证:由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.14. (5分)已知f(x)=x2+ax+b,用反证法证明:|f(1)|,|f(2)|,|f(3)|不都小于.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共3分)9-1、10-1、11-1、三、解答题 (共3题;共15分)12-1、13-1、14-1、。
高中数学第二章推理与证明2.3数学归纳法优化练习新人教A版选修2-2(2021年整理)
2017-2018学年高中数学第二章推理与证明2.3 数学归纳法优化练习新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章推理与证明2.3 数学归纳法优化练习新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章推理与证明2.3 数学归纳法优化练习新人教A版选修2-2的全部内容。
2.3 数学归纳法[课时作业][A组基础巩固]1.在应用数学归纳法证明凸n边形的对角线为错误!n(n-3)条时,第一步检验第一个值n等于( )A.1 B.2C.3 D.0解析:边数最少的凸n边形是三角形.答案:C2.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n=k到n=k+1”左边需增乘的代数式为()A.2k+1 B.2(2k+1)C。
错误!D。
错误!解析:当n=k时,左边=(k+1)(k+2)·…·(k+k),当n=k+1时,左边=(k+2)(k+3)·…·(k+k)(k+1+k)(2k+2)=(k+1)·(k+2)·…·(k+k)(2k+1)×2,故需增乘的代数式为2(2k+1).答案:B3.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2解析:增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1。
高中数学人教版选修2-2(理科) 第二章推理与证明 2.2.2反证法 同步练习A卷
高中数学人教版选修2-2(理科)第二章推理与证明 2.2.2反证法同步练习A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018高二下·滦南期末) 用反证法证明“如果,那么”假设的内容应是()A .B .C . 且D . 或2. (2分)用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是()A . 假设三个内角都不大于60°B . 假设三个内角都大于60°C . 假设三个内角至多有一个大于60°D . 假设三个内角至多有两个大于60°3. (2分) (2018高二下·中山期末) 用反证法证明“若x+y≤0则x≤0或y≤0”时,应假设()A . x>0或y>0B . x>0且y>0C . xy>0D . x+y<04. (2分)用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是()A . 假设至少有一个钝角B . 假设没有一个钝角C . 假设至少有两个钝角D . 假设没有一个钝角或至少有两个钝角5. (2分) (2017高二下·武汉期中) 设a,b∈(﹣∞,0),则()A . 都不大于﹣2B . 都不小于﹣2C . 至少有一个不大于﹣2D . 至少有一个不小于﹣26. (2分)用反证法证明命题“自然数a,b,c,中恰有一个偶数”时,需假设()A . a,b,c都是奇数B . a,b,c都是偶数C . a,b,c都是奇数或至少有两个偶数D . a,b,c至少有两个偶数7. (2分)设a,b,c∈(0,+∞),则三个数a+, b+, c+的值()A . 都大于2B . 都小于2C . 至少有一个不大于2D . 至少有一个不小于28. (2分) (2018高二下·聊城期中) 用反正法证明命题“若,则、全为()”,其假设正确的是()A . 、至少有一个为B . 、至少有一个不为C . 、全不为D . 、只有一个为二、填空题 (共3题;共3分)9. (1分) (2015高二下·霍邱期中) 设ai∈R+ ,xi∈R+ , i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,则的值中,现给出以下结论,其中你认为正确的是________.①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1.10. (1分) (2017高二下·黑龙江期末) 甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,回答如下.甲说:丙没有考满分;乙说:是我考的;丙说:甲说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是________.11. (1分) A、B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎.则________ 必定是在撒谎.三、解答题 (共3题;共15分)12. (5分)设a1 , a2 ,…,a2n+1均为整数,性质P为:对a1 , a2 ,…,a2n+1中任意2n个数,存在一种分法可将其分为两组,每组n个数,使得两组所有元素的和相等求证:a1 , a2 ,…,a2n+1全部相等当且仅当a1 , a2 ,…,a2n+1具有性质P.13. (5分)在平面直角坐标系中,横坐标、纵坐标均为有理数的点称为有理点.试根据这一定义,证明下列命题:若直线y=kx+b(k≠0)经过点M(, 1),则此直线不能经过两个有理点.14. (5分)已知f(x)=x2+ax+b,用反证法证明:|f(1)|,|f(2)|,|f(3)|不都小于.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共3题;共3分)9-1、10-1、11-1、三、解答题 (共3题;共15分)12-1、13-1、14-1、。
贵州省高中数学人教版选修2-2(理科)第二章推理与证明2.3数学归纳法同步练习
贵州省高中数学人教版选修2-2(理科)第二章推理与证明 2.3数学归纳法同步练习姓名:________ 班级:________ 成绩:________一、单选题 (共1题;共2分)1. (2分) (2018高二下·葫芦岛期中) 假设n=k时成立,当n=k+1时,证明 ,左端增加的项数是()A . 1项B . k﹣1项C . k项D . 2k项二、选择题 (共7题;共14分)2. (2分) (2017高二下·保定期末) 用数学归纳法证明:1+ + ++ <n(n∈N* ,n≥2)时,第二步证明由“k到k+1”时,左端增加的项数是()A . 2k﹣1B . 2kC . 2k﹣1D . 2k+13. (2分)用数学归纳法证明:1+x+x2+x3+…+xn+2= (x≠1,n∈N+)成立时,验证n=1的过程中左边的式子是()A . 1B . 1+xC . 1+x+x2D . 1+x+x2+x34. (2分)用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*)时,从n=k 到n=k+1,左端需要增加的代数式为()A . 2k+1B . 2(2k+1)C .D .5. (2分)用数学归纳法证明1+2+3+...+2n =2n-1+22n-1时,假设n=k时命题成立,则当n=k+1时,左端增加的项数是()A . 1项B . k-1 项C . k 项D . 2k 项6. (2分)用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,第二步归纳假设应写成()A . 假设n=2k+1(k∈N*)正确,再推n=2k+3正确B . 假设n=2k﹣1(k∈N*)正确,再推n=2k+1正确C . 假设n=k(k∈N*)正确,再推n=k+1正确D . 假设n=k(k≥1)正确,再推n=k+2正确7. (2分)用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是()A . 假设n=k(k∈N*)时命题成立,证明n=k+1时命题也成立B . 假设n=k(k是正奇数)时命题成立,证明n=k+1时命题也成立C . 假设n=k(k是正奇数)时命题成立,证明n=k+2时命题也成立D . 假设n=2k+1(k∈N)时命题成立,证明n=k+1时命题也成立8. (2分)已知1+2×3+3×32+4×33+…+n×3n-1=3n(na-b)+c对一切n∈N+都成立,则a、b、c 的值为()A .B .C . a=0,D . 不存在这样的a、b、c三、填空题 (共3题;共3分)9. (1分)已知数列 ,通过计算得,由此可猜测Sn=________.10. (1分)用数学归纳法证明命题:,从“第 k 步到 k+1 步”时,两边应同时加上________.11. (1分)用数学归纳法证明:,在验证n=1时,左边计算所得的项为________四、解答题 (共3题;共25分)12. (5分) (2019高二下·蓝田期末) 已知函数对任意实数都有,且.(I)求的值,并猜想的表达式;(II)用数学归纳法证明(I)中的猜想.13. (10分)设个正数满足(且).(1)当时,证明:;(2)当时,不等式也成立,请你将其推广到(且)个正数的情形,归纳出一般性的结论并用数学归纳法证明.14. (10分) (2016高二下·连云港期中) 证明(1)如果a,b都是正数,且a≠b,求证:+ > +(2)设x>﹣1,m∈N*,用数学归纳法证明:(1+x)m≥1+mx.参考答案一、单选题 (共1题;共2分)1-1、二、选择题 (共7题;共14分)2-1、3-1、4-1、5-1、6-1、7-1、8-1、三、填空题 (共3题;共3分)9-1、10-1、11-1、四、解答题 (共3题;共25分)12-1、13-1、13-2、14-1、14-2、。
高中数学人教新课标A版选修2-2(理科)第二章推理与证明2.1.2演绎推理同步测试
高中数学人教新课标A版选修2-2(理科)第二章推理与证明 2.1.2演绎推理同步测试共 14 题一、选择题1、下面说法正确的有()①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个2、《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是()A.类比推理B.归纳推理C.演绎推理D.以上都不对3、下面几种推理是演绎推理的是()B.猜想数列5,7,9,11,…的通项公式为A.由金、银、铜、铁可导电,猜想:金属都可以C.由正三角形的性质得出正四面体的性质D.半径为的圆的面积,则单位圆的面积4、有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误5、有一段演绎推理:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线∥平面,则∥ ”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6、下列三句话按“三段论”模式排列顺序正确的是( )①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①7、“三段论”是演绎推理的一般模式,推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是()A.①B.②C.③D.以上均错8、在中,,求证:证明: “ .” ,其中,引号包括部分是演绎推理的()A.大前提B.小前提C.结论D.三段论二、填空题9、已知结论“函数y=2x+5的图象是一条直线”,若将其恢复成完整的三段论后,大前提是________.10、“不能被2整除的整数是奇数,35不能被2整除,所以35奇数.”把此演绎推理写成“三段论”的形式.大前提:________,小前提:________,结论:________.11、若定义在区间D上的函数f(x)对于D上的n个值x1, x2, …,x n总满足 [f(x1)+f(x2)+…+f(x n)]≤,称函数f(x)为D上的凸函数.现已知f(x)=sin x在(0,π)上是凸函数,则在△ABC中,sin A+sin B+sin C的最大值是________.三、解答题12、在数列{a n}中,a1=1, a n+1= (n∈N+),归纳猜想这个数列的通项公式,并用三段论加以论证.13、已知:在梯形ABCD中,如图,AB=DC=DA,AC和BD是梯形的对角线.用三段论证明:AC平分∠BCD,DB平分∠CBA.14、将下列演绎推理写成“三段论”的形式.(1)太阳系的大行星都以椭圆形轨道绕太阳运行,海王星是太阳系中的大行星,所以海王星以椭圆形轨道绕太阳运行;(2)菱形的对角线互相平分;(3)函数f(x)=x2-cos x是偶函数.参考答案一、选择题1、【答案】C【解析】【解答】①③④正确,②错误的原因是:演绎推理的结论要为真,必须前提和推理形式都为真.故答案为:C.【分析】①演绎推理是由一般到特殊的推理,显然正确;②演绎推理得到的结论不一定是正确的;故不正确;③演绎推理的一般模式是“三段论”形式;显然正确;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关,显然正确.2、【答案】C【解析】【解答】本题为三段论推理,三段论推理分为大前提、小前提、结论三部分构成,本题采用了这种推理模式.故答案为:C.【分析】本题为三段论推理,三段论推理分为大前提、小前提、结论三部分构成.3、【答案】D【解析】【解答】由演绎推理的定义可知它的推理为由一般到特殊,与归纳推理相反.分析可知:D选项是演绎推理.而A,B为归纳推理,C为类比推理.故答案为:D.【分析】A,B是由特殊到一般,为归纳推理;C是由平面图到空间,为类比推理.只有D是由一般到特殊,为演绎推理.4、【答案】C【解析】【解答】∵大前提的形式:“有些有理数是真分数”,不是全称命题,∴不符合三段论推理形式,∴推理形式错误,故答案为:C.【分析】本题考查的知识点是演绎推理的基本方法及整数的,在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“有些…”,不难得到结论。
【专业资料】新版高中数学人教A版选修2-2习题:第二章推理与证明 2.3 含解析
2.3 数学归纳法课时过关·能力提升 基础巩固1用数学归纳法证明3n ≥n 3(n ≥3,n ∈N *),第一步应验证( ) A.当n=1时,不等式成立B.当n=2时,不等式成立C.当n=3时,不等式成立D.当n=4时,不等式成立解析由题知n 的最小值为3,所以第一步验证当n=3时,不等式成立,选C .答案C2已知f (n )=1n +1n+1+1n+2+…+1n 2,则( ) A.f (n )共有n 项,当n=2时,f (2)=12+13B.f (n )共有(n+1)项,当n=2时,f (2)=12+13+14C.f (n )共有(n 2-n )项,当n=2时,f (2)=12+13D.f (n )共有(n 2-n+1)项,当n=2时,f (2)=12+13+14 解析由题意知f (n )的最后一项的分母为n 2,故f (2)=12+13+122,排除选项A,选项C. 又f (n )=1n+0+1n+1+…+1n+(n 2-n ), 所以f (n )的项数为n 2-n+1.故选D.答案D3已知n 为正偶数,用数学归纳法证明1-12+13−14+…+1n -1−1n =2(1n+2+1n+4+ (12))时,若已假设当n=k (k ≥2,且为偶数)时,命题为真,则还需要用归纳假设再证( )A.当n=k+1时,等式成立B.当n=k+2时,等式成立C.当n=2k+2时,等式成立D.当n=2(k+2)时,等式成立解析因为假设n=k (k ≥2,且为偶数),故下一个偶数为k+2,故选B.答案B4用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A.7B.8C.9D.10 解析左边=1+12+14+…+12n -1=1-12n 1-12=2-12n -1,代入验证可知n 的最小值是8. 答案B 5用数学归纳法证明1-12+13−14+…+12n -1−12n =1n+1+1n+2+…+12n ,则当n=k+1时,等式左边应在n=k 的基础上加上( )A.12k+2 B.-12k+2 C.12k+1−12k+2 D.12k+1+12k+2 解析当n=k 时,左边=1-12+13−14+…+12k -1−12k ,当n=k+1时,左边=1-12+13−14+…+12k -1−12k +12k+1−12k+2. 答案C 6用数学归纳法证明“当n 为正奇数时,x n +y n 能被x+y 整除”,当第二步假设n=2k-1(k ∈N *)命题为真时,进而需证n= 时,命题为真.解析因为n 为正奇数,所以奇数2k-1之后的奇数是2k+1.答案2k+17在用数学归纳法证明“34n+2+52n+1(n ∈N *)能被14整除”的过程中,当n=k+1时,式子34(k+1)+2+52(k+1)+1应变形为 .答案(34k+2+52k+1)34+52k+1(52-34)8用数学归纳法证明122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *). 分析验证当n=2时不等式成立→假设当n=k 时不等式成立→证明当n=k+1时不等式成立→结论证明(1)当n=2时,左边=122=14,右边=1-12=12. 因为14<12,所以不等式成立.(2)假设当n=k (k ≥2,k ∈N *)时,不等式成立,即122+132+142+ (1)2<1-1k , 则当n=k+1时,122+132+142+ (1)2+1(k+1)2<1-1k +1(k+1)2=1-(k+1)2-k k (k+1)2=1-k 2+k+1k (k+1)2<1-k (k+1)k (k+1)2 =1-1k+1. 所以当n=k+1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.9用数学归纳法证明1×4+2×7+3×10+…+n (3n+1)=n (n+1)2(其中n ∈N *).证明(1)当n=1时,左边=1×4=4,右边=1×22=4,左边=右边,等式成立.(2)假设当n=k (k ∈N *)时等式成立,即1×4+2×7+3×10+…+k (3k+1)=k (k+1)2,则当n=k+1时,1×4+2×7+3×10+…+k (3k+1)+(k+1)·[3(k+1)+1]=k (k+1)2+(k+1)[3(k+1)+1]=(k+1)(k 2+4k+4)=(k+1)[(k+1)+1]2, 即当n=k+1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.能力提升1某同学解答“用数学归纳法证明√n (n +1)<n+1(n ∈N *)”的过程如下:证明:①当n=1时,显然命题是正确的;②假设当n=k (k ≥1,k ∈N *)时,有√k (k +1)<k+1,则当n=k+1时,√(k +1)2+(k +1)=√k 2+3k +2<√k 2+4k +4=(k+1)+1,所以当n=k+1时命题是正确的.由①②可知对于n ∈N *,命题都是正确的.以上证法是错误的,错误的原因在于( )A.从n=k 到n=k+1的推理过程中没有使用归纳假设B.假设的写法不正确C.从n=k 到n=k+1的推理不严密D.当n=1时,验证过程不具体解析由分析证明过程中的②可知,从n=k 到n=k+1的推理过程中没有使用归纳假设,故该证法不能叫数学归纳法,选A . 答案A2用数学归纳法证明“凸n (n ≥3,n ∈N *)边形的内角和公式”时,由n=k 到n=k+1增加的是( )A.π2B.πC.3π2D.2π解析如图,由n=k 到n=k+1时,凸n 边形的内角和增加的是∠1+∠2+∠3=π,故选B.答案B3用数学归纳法证明(n+1)(n+2)·…·(n+n )=2n ·1·3·…·(2n-1),从n=k 到n=k+1,左边需要增乘的代数式为( )A.2k+1B.2(2k+1)C.2k+1k+1D.2k+3k+1解析当n=k 时,等式左边为(k+1)(k+2)·…·(k+k ),而当n=k+1时,等式左边为(k+1+1)(k+1+2)·…·(k+1+k+1)=(k+2)·(k+3)·…·(k+k+2),前边少了一项(k+1),后边多了两项(k+k+1)(k+k+2),故增乘的代数式为(k+k+1)(k+k+2)k+1=2(2k+1). 答案B★4某个与正整数有关的命题:若当n=k (k ∈N *)时,命题成立,则可以推出当n=k+1时,该命题也成立.现已知当n=5时,命题不成立,则可以推得( )A.当n=4时,命题不成立B.当n=6时,命题不成立C.当n=4时,命题成立D.当n=6时,命题成立解析“若n=k 时,命题成立,则n=k+1时,该命题也成立”的等价命题是“若n=k+1时,命题不成立,则n=k 时,命题也不成立.”故选A.答案A★5用数学归纳法证明“n 3+5n 能被6整除”的过程中,当n=k+1时,式子(k+1)3+5(k+1)应变形为 .解析采取凑配法,凑出归纳假设k 3+5k 来,(k+1)3+5(k+1)=k 3+3k 2+3k+1+5k+5=(k 3+5k )+3k (k+1)+6.答案(k 3+5k )+3k (k+1)+66设实数c>0,整数p>1,n ∈N *.(1)用数学归纳法证明:当x>-1,且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n+1=p -1p a n +c p a n 1-p ,证明:a n >a n+1>c 1p . 证明(1)①当p=2时,(1+x )2=1+2x+x 2>1+2x ,原不等式成立.②假设当p=k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.则当p=k+1时,(1+x )k+1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k+1)x+kx 2>1+(k+1)x.所以当p=k+1时,原不等式也成立.综合①②可得,当x>-1,x ≠0时,对一切整数p>1,不等式(1+x )p >1+px 均成立.(2)先用数学归纳法证明a n >c 1p .①当n=1时,由题设a 1>c 1p 知a n >c 1p 成立.②假设当n=k (k ≥1,k ∈N *)时,不等式a k >c 1p 成立.由a n+1=p -1p a n +c p a n 1-p 及a 1>c 1p >0,易知a n >0,n ∈N *.则当n=k+1时,a k+1a k =p -1p +c p a k -p =1+1p (c a k p -1). 由a k >c 1p >0,得-1<-1p <1p (c a k p -1)<0. 由(1)中的结论得(a k+1a k )p =[1+1p (c a k p -1)]p >1+p ·1p (c a k p -1)=c a k p .因此a k+1p >c ,即a k+1>c 1p . 所以当n=k+1时,不等式a n >c 1p 也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.因此a n+1>c 1p 也成立. 再由a n+1a n =1+1p (c a n p -1)可得a n+1a n <1, 即a n+1<a n .综上所述,a n >a n+1>c 1p ,n ∈N *.7已知集合X={1,2,3},Y n ={1,2,3,…,n }(n ∈N *),设S n ={(a ,b )|a 整除b 或b 整除a ,a ∈X ,b ∈Y n }.令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n ≥6时,写出f (n )的表达式,并用数学归纳法证明.解(1)f (6)=13.(2)当n ≥6时,f (n )={ n +2+(n 2+n 3),n =6t ,n +2+(n -12+n -13),n =6t +1,n +2+(n 2+n -23),n =6t +2,n +2+(n -12+n 3),n =6t +3,n +2+(n 2+n -13),n =6t +4,n +2+(n -12+n -23),n =6t +5(t ∈N *). 下面用数学归纳法证明: ①当n=6时,f (6)=6+2+62+63=13,结论成立;②假设当n=k (k ≥6)时结论成立,那么n=k+1时,S k+1在S k 的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t ,则k=6(t-1)+5,此时有f (k+1)=f (k )+3=k+2+k -12+k -23+ 3=(k+1)+2+k+12+k+13,结论成立;2)若k+1=6t+1,则k=6t ,此时有f (k+1)=f (k )+1=k+2+k 2+k 3+1=(k+1)+2+(k+1)-12+(k+1)-13,结论成立;3)若k+1=6t+2,则k=6t+1,此时有 f (k+1)=f (k )+2=k+2+k -12+k -13+2 =(k+1)+2+k+12+(k+1)-23,结论成立;4)若k+1=6t+3,则k=6t+2,此时有 f (k+1)=f (k )+2=k+2+k 2+k -23+2=(k+1)+2+(k+1)-12+k+13,结论成立;5)若k+1=6t+4,则k=6t+3,此时有 f (k+1)=f (k )+2=k+2+k -12+k 3+2=(k+1)+2+k+12+(k+1)-13,结论成立;6)若k+1=6t+5,则k=6t+4,此时有 f (k+1)=f (k )+1=k+2+k 2+k -13+1=(k+1)+2+(k+1)-12+(k+1)-23,结论成立.综上所述,结论对满足n ≥6的自然数n 均成立.。
高中数学人教版选修2-2(理科) 第二章推理与证明 2.3数学归纳法 同步练习(I)卷
高中数学人教版选修2-2(理科)第二章推理与证明 2.3数学归纳法同步练习(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共1题;共2分)1. (2分) (2018高二下·葫芦岛期中) 假设n=k时成立,当n=k+1时,证明 ,左端增加的项数是()A . 1项B . k﹣1项C . k项D . 2k项二、选择题 (共7题;共14分)2. (2分) (2018高二下·沈阳期中) 用数学归纳法证明()时,第一步应验证不等式()A .B .C .D .3. (2分) (2018高二下·河南月考) 用数学归纳法证明“ ”时,由不等式成立,推证时,左边应增加的项数是()A .B .C .D .4. (2分)用数学归纳法证明“n3+(n+1)3+(n+2)3 ,(n∈N+)能被9整除”,要利用归纳法假设证n =k+1时的情况,只需展开().A . (k+3)3B . (k+2)3C . (k+1)3D . (k+1)3+(k+2)35. (2分)如果命题p(n)对n=k(k∈N+)成立,则它对n=k+2也成立.若p(n)对n=2也成立,则下列结论正确的是()A . p(n)对所有正整数n都成立B . p(n)对所有正偶数n都成立C . p(n)对所有正奇数n都成立D . p(n)对所有自然数n都成立6. (2分)用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证 n=k+1时的情况,只需展开()A . (k+3)3B . (k+2)3C . (k+1)3D . (k+1)3+(k+2)7. (2分)已知,则f(k+1)= ()A .B .C .D .8. (2分) (2018高二下·保山期末) 用数学归纳法证明“ … ”时,由到时,不等试左边应添加的项是()A .B .C .D .三、填空题 (共3题;共3分)9. (1分) (2018高二下·邗江期中) 利用数学归纳法证明“ ,()”时,在验证成立时,左边应该是 ________.10. (1分)已知数列{an}的通项公式(n∈N+),f(n)=(1-a1)(1-a2)…(1-an),试通过计算f(1),f(2),f(3)的值,推测出f(n)的值是________11. (1分)用数学归纳法证明“ n3+5n 能被6整除”的过程中,当 n=k+1 时,式子(k+1)3+5(k+1) 应变形为________.四、解答题 (共3题;共20分)12. (5分) (2019高二下·蓝田期末) 已知函数对任意实数都有,且.(I)求的值,并猜想的表达式;(II)用数学归纳法证明(I)中的猜想.13. (5分)(2017·南通模拟) 已知数列{an}的前n项和为Sn ,通项公式为.(Ⅰ)计算f(1),f(2),f(3)的值;(Ⅱ)比较f(n)与1的大小,并用数学归纳法证明你的结论.14. (10分) (2017高二下·惠来期中) 数列{an}满足(1)计算a1,a2,a3,a4(2)猜想an的表达式,并用数学归纳法证明你的结论.参考答案一、单选题 (共1题;共2分)1-1、二、选择题 (共7题;共14分)2-1、3-1、4-1、5-1、6-1、7-1、8-1、三、填空题 (共3题;共3分)9-1、10-1、11-1、四、解答题 (共3题;共20分)12-1、13-1、14-1、14-2、。
高中数学人教版选修2-2(理科) 第二章推理与证明 2.3数学归纳法 同步练习(II)卷
高中数学人教版选修2-2(理科)第二章推理与证明 2.3数学归纳法同步练习(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共1题;共2分)1. (2分)(2018高二下·济宁期中) 用数学归纳法证明()时,从向过渡时,等式左边应增添的项是()A .B .C .D .二、选择题 (共7题;共14分)2. (2分) (2016高二下·会宁期中) 用数学归纳法证明1+ + +…+ <n(n∈N* , n>1)时,第一步应验证不等式()A .B .C .D .3. (2分) (2015高二下·九江期中) 用数学归纳法证明34n+1+52n+1(n∈N)能被8整除时,当n=k+1时34(k+1)+1+52(k+1)+1可变形()A . 56×34k+1+25(34k+1+52k+1)B . 34k+1+52k+1C . 34×34k+1+52×52k+1D . 25(34k+1+52k+1)4. (2分) (2018高二下·重庆期中) 用数学归纳证明:时,从到时,左边应添加的式子是()A .B .C .D .5. (2分) (2018高二下·河南期中) 用数学归纳法证明不等式“ ”时的过程中,由到,不等式的左边增加的项为()A .B .C .D .6. (2分)用数学归纳法证明,则当n=k+1时左端应在n=k的基础上增加()A . k2+1B . (k+1)2C .D . (k2+1)+(k2+2)+(k2+3)+…+(k+1)27. (2分)凸n边形有f(n)条对角线,则凸n+1边形的对角线的条数f(n+1)为()A . f(n)+n+1B . f(n)+nC . f(n)+n-1D . f(n)+n-28. (2分)下列代数式(其中k∈N+)能被9整除的是()A . 6+6·7kB . 2+7k-1C . 2(2+7k+1)D . 3(2+7k)三、填空题 (共3题;共3分)9. (1分)用数学归纳法证明“ n3+5n 能被6整除”的过程中,当 n=k+1 时,式子(k+1)3+5(k+1) 应变形为________.10. (1分) (2018高二下·邗江期中) 利用数学归纳法证明“ ,()”时,在验证成立时,左边应该是 ________.11. (1分)用数学归纳法证明:第一步应验证的等式是________.四、解答题 (共3题;共25分)12. (5分) (2015高二下·和平期中) 用数学归纳法证明:12﹣22+32﹣42+…+(﹣1)n﹣1n2=(﹣1)n﹣1.13. (10分)(2017·南通模拟) 设.有序数组经m次变换后得到数组,其中,( 1,2,,n),,.例如:有序数组经1次变换后得到数组,即;经第2次变换后得到数组.(1)若,求的值;(2)求证:,其中 1,2,,n.(注:当时,, 1,2,,n,则.)14. (10分) (2017高二下·郑州期中) 设正项数列{an}的前n项和为Sn ,且满足.(1)计算a1,a2,a3的值,并猜想{an}的通项公式;(2)用数学归纳法证明{an}的通项公式.参考答案一、单选题 (共1题;共2分)1-1、二、选择题 (共7题;共14分)2-1、3-1、4-1、5-1、6-1、7-1、8-1、三、填空题 (共3题;共3分)9-1、10-1、11-1、四、解答题 (共3题;共25分)12-1、13-1、13-2、14-1、14-2、。
高中数学人教版选修2-2(理科) 第二章推理与证明 2.3数学归纳法 同步练习A卷
高中数学人教版选修2-2(理科)第二章推理与证明 2.3数学归纳法同步练习A卷姓名:________ 班级:________ 成绩:________一、单选题 (共1题;共2分)1. (2分) (2019高二上·上海月考) 用数学归纳法证明:,在验证时,左边为()A . 1B .C .D . 都不正确二、选择题 (共7题;共14分)2. (2分) (2017高二下·定西期中) 在数学归纳法的递推性证明中由假设n=k时成立推导n=k+1时成立时f (n)=1+ + +…+ 增加的项数是()A . 1B . 2k+1C . 2k﹣1D . 2k3. (2分) (2015高二下·郑州期中) 用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2…(2n﹣1)(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是()A . 2k+1B . 2k+3C . 2(2k+1)D . 2(2k+3)4. (2分)凸n边形有f(n)条对角线,则凸n+1边形的对角线的条数f(n+1)为()A . f(n)+n+1B . f(n)+nC . f(n)+n-1D . f(n)+n-25. (2分)用数学归纳法证明(n∈N* , n>1)时,第一步应验证不等式()A .B .C .D .6. (2分) (2018高二下·河南月考) 用数学归纳法证明“ ”时,由不等式成立,推证时,左边应增加的项数是()A .B .C .D .7. (2分)用数学归纳法证明1+2+3+...+2n =2n-1+22n-1时,假设n=k时命题成立,则当n=k+1时,左端增加的项数是()A . 1项B . k-1 项C . k 项D . 2k 项8. (2分)用数学归纳法证明等式时,第一步验证 n=1 时,左边应取的项是()A . 1B . 1+2C . 1+2+3D . 1+2+3+4三、填空题 (共3题;共3分)9. (1分)已知数列 ,通过计算得,由此可猜测Sn=________.10. (1分)用数学归纳法证明命题:,从“第 k 步到 k+1 步”时,两边应同时加上________.11. (1分)用数学归纳法证明“ n3+5n 能被6整除”的过程中,当 n=k+1 时,式子(k+1)3+5(k+1) 应变形为________.四、解答题 (共3题;共25分)12. (10分)(2019高二下·涟水月考) 已知,.(1)当时,分别比较与的大小(直接给出结论);(2)由(1)猜想与的大小关系,并证明你的结论.13. (5分)(2017·南通模拟) 已知数列{an}的前n项和为Sn ,通项公式为.(Ⅰ)计算f(1),f(2),f(3)的值;(Ⅱ)比较f(n)与1的大小,并用数学归纳法证明你的结论.14. (10分) (2016高二下·东莞期中) 在数列{an}中,,an+1= .(1)计算a2,a3,a4并猜想数列{an}的通项公式;(2)用数学归纳法证明你的猜想.参考答案一、单选题 (共1题;共2分)1-1、二、选择题 (共7题;共14分)2-1、3-1、4-1、5-1、6-1、7-1、8-1、三、填空题 (共3题;共3分)9-1、10-1、11-1、四、解答题 (共3题;共25分)12-1、12-2、13-1、14-1、14-2、。
最新人教版选修2-2高中数学第二章 推理与证明2.3数学归纳法 同步习题及答案
【创新设计】2016-2017学年高中数学第二章推理与证明2.3 数学归纳法课时作业新人教版选修2-2明目标、知重点1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:①(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;②(归纳递推)假设当n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.2.应用数学归纳法时特别注意:(1)用数学归纳法证明的对象是与正整数n有关的命题.(2)在用数学归纳法证明中,两个基本步骤缺一不可.(3)步骤②的证明必须以“假设当n=k(k≥n0,k∈N*)时命题成立”为条件.情境导学]多米诺骨牌游戏是一种用木制、骨制或塑料制成的长方形骨牌,玩时将骨牌按一定间距排列成行,保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下.只要推倒第一块骨牌,就必然导致第二块骨牌倒下;而第二块骨牌倒下,就必然导致第三块骨牌倒下…,最后不论有多少块骨牌都能全部倒下.请同学们思考所有的骨牌都一一倒下蕴涵怎样的原理?探究点一数学归纳法的原理思考1 多米诺骨牌游戏给你什么启示?你认为一个骨牌链能够被成功推倒,靠的是什么?答(1)第一张牌被推倒;(2)任意相邻两块骨牌,前一块倒下一定导致后一块倒下.结论:多米诺骨牌会全部倒下.所有的骨牌都倒下,条件(2)给出了一个递推关系,条件(1)给出了骨牌倒下的基础.思考2 对于数列{a n},已知a1=1,a n+1=an1+a n,试写出a1,a2,a3,a4,并由此作出猜想.请问这个结论正确吗?怎样证明?答a1=1,a2=12,a3=13,a4=14,猜想a n=1n(n∈N*).以下为证明过程:(1)当n=1时,a1=1=11,所以结论成立.(2)假设当n=k(k∈N*)时,结论成立,即a k=1 k ,则当n=k+1时a k+1=ak1+a k(已知)=1k1+1k(代入假设)=1kk+1k(变形)=1k+1(目标)即当n=k+1时,结论也成立.由(1)(2)可得,对任意的正整数n都有a n=1n成立.思考3 你能否总结出上述证明方法的一般模式?答一般地,证明一个与正整数n有关的命题P(n),可按下列步骤进行:(1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设当n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 上述证明方法叫做数学归纳法.思考 4 用数学归纳法证明1+3+5+…+(2n -1)=n 2,如采用下面的证法,对吗?若不对请改正.证明:(1)n =1时,左边=1,右边=12=1,等式成立. (2)假设n =k 时等式成立,即1+3+5+…+(2k -1)=k 2, 则当n =k +1时,1+3+5+…+(2k +1)=(k +1)×[1+(2k +1)]2=(k +1)2等式也成立.由(1)和(2)可知对任何n ∈N *等式都成立.答 证明方法不是数学归纳法,因为第二步证明时,未用到归纳假设.从形式上看这种证法,用的是数学归纳法,实质上不是,因为证明n =k +1正确时,未用到归纳假设,而用的是等差数列求和公式. 探究点二 用数学归纳法证明等式 例1 用数学归纳法证明 12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1, 右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)6,那么,12+22+…+k 2+(k +1)2 =k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.反思与感悟 (1)用数学归纳法证明与正整数有关的一些等式命题,关键在于“先看项”,弄清等式两边的构成规律,等式的两边各有多少项,项的多少与n 的取值是否有关.由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项. 跟踪训练1 求证:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (n ∈N *).证明 当n =1时,左边=1-12=12,右边=12,所以等式成立. 假设n =k (k ∈N *)时, 1-12+13-14+…+12k -1-12k =1k +1+1k +2+ (12)成立. 那么当n =k +1时,1-12+13-14+…+12k -1-12k +12(k +1)-1-12(k +1)=1k +1+1k +2+…+12k +12k +1-12(k +1) =1k +2+1k +3+…+12k +12k +1+1k +1-12(k +1)]=1(k +1)+1+1(k +1)+2+…+1(k +1)+k +12(k +1),所以n =k +1时,等式也成立.综上所述,对于任何n ∈N *,等式都成立. 探究点三 用数学归纳法证明数列问题 例2 已知数列11×4,14×7,17×10,…,1(3n -2)(3n +1),…,计算S 1,S 2,S 3,S 4,根据计算结果,猜想S n 的表达式,并用数学归纳法进行证明. 解 S 1=11×4=14; S 2=14+14×7=27; S 3=27+17×10=310; S 4=310+110×13=413. 可以看出,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为3n +1. 于是可以猜想S n =n 3n +1.下面我们用数学归纳法证明这个猜想. (1)当n =1时,左边=S 1=14,右边=n 3n +1=13×1+1=14,猜想成立.(2)假设当n =k (k ∈N *)时猜想成立,即11×4+14×7+17×10+…+1(3k -2)(3k +1)=k 3k +1, 那么,11×4+14×7+17×10+…+1(3k -2)(3k +1)+1[3(k +1)-2][3(k +1)+1]=k3k+1+1(3k+1)(3k+4)=3k2+4k+1 (3k+1)(3k+4)=(3k+1)(k+1) (3k+1)(3k+4)=k+13(k+1)+1,所以,当n=k+1时猜想也成立.根据(1)和(2),可知猜想对任何n∈N*都成立.反思与感悟归纳法分为不完全归纳法和完全归纳法,数学归纳法是“完全归纳”的一种科学方法,对于无穷尽的事例,常用不完全归纳法去发现规律,得出结论,并设法给予证明,这就是“归纳——猜想——证明”的基本思想.跟踪训练2 数列{a n}满足S n=2n-a n(S n为数列{a n}的前n项和),先计算数列的前4项,再猜想a n,并证明.解由a1=2-a1,得a1=1;由a1+a2=2×2-a2,得a2=3 2;由a1+a2+a3=2×3-a3,得a3=7 4;由a1+a2+a3+a4=2×4-a4,得a4=15 8.猜想a n=2n-1 2n-1.下面证明猜想正确:(1)当n=1时,由上面的计算可知猜想成立.(2)假设当n=k时猜想成立,则有a k=2k-1 2k-1,当n=k+1时,S k+a k+1=2(k+1)-a k+1,∴a k+1=122(k+1)-S k]=k+1-12(2k-2k-12k-1)=2k+1-1 2(k+1)-1,所以,当n=k+1时,等式也成立.由(1)和(2)可知,a n=2n-12n-1对任意正整数n都成立.1.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有( )A.命题对所有正整数都成立B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D.以上说法都不正确答案 C解析由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n=n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C.2.用数学归纳法证明“1+a+a2+…+a2n+1=1-a2n+21-a(a≠1)”.在验证n=1时,左端计算所得项为( )A.1+a B.1+a+a2C.1+a+a2+a3D.1+a+a2+a3+a4答案 C解析将n=1代入a2n+1得a3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下: (1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k =1-2k +11-2=2k +1-1.所以当n =k +1时等式也成立.由此可知对于任何n ∈N *,等式都成立. 上述证明的错误是________. 答案 未用归纳假设 解析 本题在由n =k 成立, 证n =k +1成立时, 应用了等比数列的求和公式, 而未用上假设条件, 这与数学归纳法的要求不符.4.用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *)证明 (1)当n =1时,左式=1+12,右式=12+1,所以32≤1+12≤32,命题成立.(2)假设当n =k (k ∈N *)时,命题成立,即1+k 2≤1+12+13+…+12k ≤12+k ,则当n =k +1时,1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12. 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k ·12k =12+(k +1),即当n =k +1时,命题成立.由(1)和(2)可知,命题对所有的n ∈N *都成立. 呈重点、现规律]在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1;(2)递推是关键:正确分析由n=k到n=k+1时式子项数的变化是应用数学归纳法成功证明问题的保障;(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.一、基础过关1.某个命题与正整数有关,如果当n=k(k∈N*)时,该命题成立,那么可推得n =k+1时,该命题也成立.现在已知当n=5时,该命题成立,那么可推导出( ) A.当n=6时命题不成立B.当n=6时命题成立C.当n=4时命题不成立D.当n=4时命题成立答案 B2.一个与正整数n有关的命题,当n=2时命题成立,且由n=k时命题成立可以推得n=k+2时命题也成立,则( )A.该命题对于n>2的自然数n都成立B.该命题对于所有的正偶数都成立C.该命题何时成立与k取值无关D.以上答案都不对答案 B解析由n=k时命题成立可以推出n=k+2时命题也成立.且n=2,故对所有的正偶数都成立.3.在应用数学归纳法证明凸n边形的对角线为12n(n-3)条时,第一步验证n等于( )A.1 B.2 C.3 D.0答案 C解析因为是证凸n边形,所以应先验证三角形,故选C.4.若f(n)=1+12+13+…+12n+1(n∈N*),则n=1时f(n)是( )A.1 B.1 3C.1+12+13D.以上答案均不正确答案 C5.已知f(n)=1n+1n+1+1n+2+…+1n2,则( )A.f(n)中共有n项,当n=2时,f(2)=12+13B.f(n)中共有n+1项,当n=2时,f(2)=12+13+14C.f(n)中共有n2-n项,当n=2时,f(2)=12+13D.f(n)中共有n2-n+1项,当n=2时,f(2)=12+13+14答案 D解析观察分母的首项为n,最后一项为n2,公差为1,∴项数为n2-n+1.6.在数列{a n}中,a1=2,a n+1=an3a n+1(n∈N*),依次计算a2,a3,a4,归纳推测出an的通项表达式为( )A.24n-3B.26n-5C.24n+3D.22n-1答案 B解析a1=2,a2=27,a3=213,a4=219,…,可推测a n=26n-5,故选B.7.用数学归纳法证明(1-13)(1-14)(1-15)…(1-1n +2)=2n +2(n ∈N *). 证明 (1)当n =1时,左边=1-13=23,右边=21+2=23,等式成立. (2)假设当n =k (k ≥1,k ∈N *)时等式成立,即(1-13)(1-14)(1-15)…(1-1k +2)=2k +2, 当n =k +1时,(1-13)(1-14)(1-15)…(1-1k +2)·(1-1k +3) =2k +2(1-1k +3)=2(k +2)(k +2)(k +3)=2k +3=2(k +1)+2, 所以当n =k +1时等式也成立.由(1)(2)可知,对于任意n ∈N *等式都成立.二、能力提升8.用数学归纳法证明等式(n +1)(n +2)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从k 到k +1左端需要增乘的代数式为( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1 答案 B解析 n =k +1时,左端为(k +2)(k +3)…(k +1)+(k -1)]·(k +1)+k ]·(2k +2)=(k +1)(k +2)…(k +k )·(2k +1)·2,∴应增乘2(2k +1).9.已知f (n )=1n +1+1n +2+…+13n -1(n ∈N *),则f (k +1)=________. 答案 f (k )+13k +13k +1+13k +2-1k +110.证明:假设当n =k (k ∈N *)时等式成立,即2+4+…+2k =k 2+k ,那么2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时等式也成立.因此对于任何n ∈N *等式都成立.以上用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N *)”的过程中的错误为________.答案 缺少步骤归纳奠基11.用数学归纳法证明12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n (n +1)2. 证明 (1)当n =1时,左边=1,右边=(-1)1-1×1×22=1, 结论成立.(2)假设当n =k 时,结论成立.即12-22+32-42+…+(-1)k -1k 2=(-1)k -1·k (k +1)2, 那么当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2=(-1)k -1·k (k +1)2+(-1)k (k +1)2=(-1)k·(k +1)-k +2k +22 =(-1)k·(k +1)(k +2)2. 即n =k +1时结论也成立.由(1)(2)可知,对一切正整数n 都有此结论成立.12.已知数列{a n }的第一项a 1=5且S n -1=a n (n ≥2,n ∈N *),S n 为数列{a n }的前n 项和.(1)求a 2,a 3,a 4,并由此猜想a n 的表达式;(2)用数学归纳法证明{a n }的通项公式.(1)解 a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a 3=5+5+10=20,猜想a n =⎩⎨⎧ 5 (n =1)5×2n -2, (n ≥2,n ∈N *).(2)证明 ①当n =2时,a 2=5×22-2=5,公式成立.②假设n=k(k≥2,k∈N*)时成立,即a k=5×2k-2,当n=k+1时,由已知条件和假设有ak+1=S k=a1+a2+a3+…+a k=5+5+10+…+5×2k-2.=5+5(1-2k-1)1-2=5×2k-1.故n=k+1时公式也成立.由①②可知,对n≥2,n∈N*,有a n=5×2n-2. 所以数列{a n}的通项公式为a n =⎩⎨⎧5 (n=1)5×2n-2(n≥2,n∈N*).三、探究与拓展13.已知数列{a n}的前n项和S n=1-na n(n∈N*).(1)计算a1,a2,a3,a4;(2)猜想a n的表达式,并用数学归纳法证明你的结论.解(1)计算得a1=12;a2=16;a3=112;a4=120.(2)猜想:a n=1n(n+1).下面用数学归纳法证明①当n=1时,猜想显然成立.②假设n=k(k∈N*)时,猜想成立,即a k=1k(k+1).那么,当n=k+1时S k+1=1-(k+1)a k+1,即S k+a k+1=1-(k+1)a k+1.又S k=1-ka k=kk+1,所以kk+1+a k+1=1-(k+1)a k+1,从而a k+1=1(k+1)(k+2)=1(k+1)[(k+1)+1].即n=k+1时,猜想也成立.故由①和②,可知猜想成立.。
高中数学人教A版选修2-2习题 第2章 推理与证明2.3 Word版含答案
选修第二章选择题.(·郑州市高二检测)用数学归纳法证明+++…++=(∈*,≠),在验证=时,左边所得的项为( )..++.+.+++[答案][解析]因为当=时,+=,所以此时式子左边=++.故应选..用数学归纳法证明+++…+(-)=(-)过程中,由=递推到=+时,不等式左边增加的项为( ).() .(+).(+) .(+)[答案][解析]用数学归纳法证明+++…+(-)=(-)的过程中,第二步,假设=时等式成立,即+++…+(-)=(-),那么,当=+时,+++…+(-)+(+)=(-)+(+),等式左边增加的项是(+),故选..对于不等式≤+(∈+),某学生的证明过程如下:()当=时,≤+,不等式成立.()假设=(∈+)时,不等式成立,即<+,则=+时,=<==(+)+,∴当=+时,不等式成立,上述证法( ).过程全都正确.=验证不正确.归纳假设不正确.从=到=+的推理不正确[答案][解析]=的验证及归纳假设都正确,但从=到=+的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选..用数学归纳法证明命题“当是正奇数时,+能被+整除”,在第二步的证明时,正确的证法是( ).假设=(∈*)时命题成立,证明=+时命题也成立.假设=(是正奇数)时命题成立,证明=+时命题也成立.假设=(是正奇数)时命题成立,证明=+时命题也成立.假设=+(∈)时命题成立,证明=+时命题也成立[答案][解析]∵为正奇数,当=时,下面第一个正奇数应为+,而非+.故应选..凸边形有()条对角线,则凸+边形对角线的条数(+)为( ).()++.()+.()+-.()+-[答案][解析]增加一个顶点,就增加+-条对角线,另外原来的一边也变成了对角线,故(+)=()+++-=()+-.故应选..观察下列各式:已知+=,+=,+=,+=,+=,…,则归纳猜测+=( ) ....[答案][解析]观察发现,+=+=+=+=+=,∴+=.二、填空题.用数学归纳法证明“当为正偶数时,-能被+整除”,第一步应验证=时,命题成立;第二步归纳假设成立应写成[答案]-能被+整除[解析]因为为正偶数,故第一步取=,第二步假设取第个正偶数成立,即=,故应假设成-能被+整除..(·九江高二检测)观察下列等式,照此规律,第个等式为=++=++++=++++++=…[答案]+(+)+(+)+…+(-)=(-)[解析]将原等式变形如下:==++==++++==++++++==…由图知,第个等式的左边有-项,第一个数是,是-个连续整数的和,则最后一个数为+(-)-=-,右边是左边项数-的平方,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学人教版选修2-2(理科)第二章推理与证明 2.3数学归纳法同步练习A卷姓名:________ 班级:________ 成绩:________
一、单选题 (共1题;共2分)
1. (2分)(2018高二下·济宁期中) 用数学归纳法证明
()时,从向过渡时,等式左边应增添的项是()
A .
B .
C .
D .
二、选择题 (共7题;共14分)
2. (2分)用数学归纳法证明不等式2n>n2时,第一步需要验证n0=_____时,不等式成立()
A . 5
B . 2和4
C . 3
D . 1
3. (2分)用火柴棒摆“金鱼”,如图所示:
按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()
A . 6n-2
B . 8n-2
C . 6n+2
D . 8n+2
4. (2分)用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,第二步归纳假设应写成()
A . 假设n=2k+1(k∈N*)正确,再推n=2k+3正确
B . 假设n=2k﹣1(k∈N*)正确,再推n=2k+1正确
C . 假设n=k(k∈N*)正确,再推n=k+1正确
D . 假设n=k(k≥1)正确,再推n=k+2正确
5. (2分)已知,则f(k+1)= ()
A .
B .
C .
D .
6. (2分)用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时,应得到()
A . 1+2+22+…+2k-2+2k-1=2k+1-1
B . 1+2+22+…+2k+2k+1=2k-1+2k+1
C . 1+2+22+…+2k-1+2k+1=2k+1-1
D . 1+2+22+…+2k-1+2k=2k+1-1
7. (2分)某个命题与正整数有关,若当n=k时该命题成立,那么可推得当 n=k+1 时该命题也成立,现已知当 n=4 时该命题不成立,那么可推得()
A . 当 n=5 时,该命题不成立
B . 当 n=5 时,该命题成立
C . 当 n=3 时,该命题成立
D . 当 n=3 时,该命题不成立
8. (2分)用数学归纳法证明“当 n 为正奇数时,xn+yn 能被 x+y 整除”,第二步归纳假
设应该写成()
A . 假设当n=k时, xk+yk 能被 x+y 整除
B . 假设当N=2K 时, xk+yk 能被 x+y 整除
C . 假设当N=2K+1 时, xk+yk 能被 x+y 整除
D . 假设当 N=2K-1时, x2k-1+y2k-1 能被 x+y 整除
三、填空题 (共3题;共3分)
9. (1分)用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,当第二步假设n=2k-1(k∈N +)命题为真时,进而需证n=________时,命题亦真.
10. (1分)已知,则 f(n) 中共有________项.
11. (1分)用数学归纳法证明:,在验证n=1时,左边计算所得的项为________
四、解答题 (共3题;共25分)
12. (10分) (2016高二下·潍坊期末) 已知{fn(x)}满足f1(x)= (x>0),fn+1(x)=f1[fn(x)],
(1)
求f2(x),f3(x),并猜想fn(x)的表达式;
(2)
用数学归纳法证明对fn(x)的猜想.
13. (5分)(2017·南通模拟) 已知数列{an}的前n项和为Sn ,通项公式为.
(Ⅰ)计算f(1),f(2),f(3)的值;
(Ⅱ)比较f(n)与1的大小,并用数学归纳法证明你的结论.
14. (10分) (2017高二下·太原期中) 已知数列{an}的前n项和为Sn ,且满足a1= ,2Sn﹣SnSn﹣1=1(n≥2).
(1)猜想Sn的表达式,并用数学归纳法证明;
(2)设bn= ,n∈N*,求bn的最大值.
参考答案一、单选题 (共1题;共2分)
1-1、
二、选择题 (共7题;共14分)
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
三、填空题 (共3题;共3分)
9-1、
10-1、
11-1、
四、解答题 (共3题;共25分)
12-1、
12-2、13-1、
14-1、14-2、。