复合材料
第十一章 复合材料
碳素(纤维, 粒料)
碳纤维增强 金属
增强陶瓷
陶瓷增玻 璃
增强水泥
碳纤维增强 碳复合材料
无
碳纤维增强 塑料
碳纤炭黑增 强橡胶
玻璃(纤维, 粒料) 木材 有 机 材 料
无
无
无
增强水泥
无
无
玻璃纤维增 强塑料 纤维板
玻璃纤维增 强橡胶 无
无
无
无
水泥木板 丝 增强水泥 无
无
无
高聚物纤维 橡胶胶粒
无 无
无 无
无 无
二、复合材料的性能特点
1、比强度和比模量高
比强度 材料的强度与其密度之比。
比模量 材料的模量与其密度之比。 材料的比强度或比模量越高,构件的自重就小,或者体积会 越小。通常,复合材料的复合结果是密度大大减小,高的比强 度和比模量是复合材料的突出性能特点。
气瓶
质 量 轻
玻璃钢充气船
小飞守角制作
头盔
玻璃纤维的特点是强度高,弹性模量低,密度小,比强度、 比模量高;化学稳定性好;不吸水、不燃烧、尺寸稳定、隔热、 吸声、绝缘等。缺点是脆性较大,耐热性低,250℃以上开始软化。 由于价格便宜,制作方便,是目前应用最多的增强纤维。
(2)碳纤维 碳纤维是人造纤维(粘胶纤维、聚丙烯腈纤维等)在200~300℃ 空气中加热并施加一定张力进行预氧化处理,然后在氮气的保护下, 在1000~1500℃的高温下进行碳化处理而制得。其含碳量可达 85%~95%。由于其具有高强度,因而称高强度碳纤维,也称Ⅱ型 碳纤维。 如果将碳纤维在2000~3000℃高温的氩气中进行石墨化处理, 就可获得含碳量为98%以上的碳纤维。这种碳纤维中的石墨晶体的 层面有规则地沿纤维方向排列,具有高的弹性模量,又称石墨纤维 或高模量碳纤维,也称Ⅰ型碳纤维。
复合材料工学
复合材料工学摘要:一、复合材料工学简介1.复合材料的定义2.复合材料的发展历程3.复合材料的主要分类二、复合材料的基本性能1.力学性能2.热学性能3.电学性能4.化学性能三、复合材料的制备工艺1.原材料的选择与处理2.复合材料的制备方法3.制备工艺的影响因素四、复合材料的应用领域1.航空航天领域2.汽车制造领域3.建筑行业4.能源行业5.其他领域五、复合材料的发展趋势与挑战1.新型复合材料的研究与发展2.低成本、高效率的制备工艺3.环境友好型复合材料4.跨学科研究与创新正文:复合材料工学是一门研究复合材料的组成、性能、制备工艺及其应用的学科。
复合材料是由两种或两种以上不同功能和性质的材料通过特定的工艺手段组合而成,以实现各种优异性能。
在过去的几十年里,复合材料在各个领域得到了广泛的应用,并取得了显著的成果。
复合材料的主要分类包括:金属基复合材料、陶瓷基复合材料、聚合物基复合材料以及它们的复合材料。
每种复合材料都有其独特的性能,可以满足不同领域的需求。
复合材料具有很多优异的性能,如高强度、高刚度、低密度、耐磨、耐腐蚀、导电、导热、电磁屏蔽等。
这些性能使得复合材料在很多领域取代了传统材料,成为现代工程技术的重要组成部分。
复合材料的制备工艺主要包括:熔融法、溶液法、化学气相沉积法、物理气相沉积法、聚合物固化法等。
这些制备工艺对原材料的选择和处理、设备要求、工艺参数等方面都有严格的要求。
合适的制备工艺可以得到具有理想性能的复合材料。
复合材料在航空航天、汽车制造、建筑、能源等众多领域都有广泛的应用。
如在航空航天领域,复合材料可以用于制造飞机、火箭、卫星等部件,以减轻结构重量、提高燃料效率;在汽车制造领域,复合材料可用于制造车身、底盘等部件,以降低汽车重量、提高燃油经济性;在建筑行业,复合材料可用于制造建筑模板、建筑补强等;在能源行业,复合材料可用于制造风力发电机叶片、太阳能电池板等。
尽管复合材料已经取得了显著的成果,但仍面临着许多挑战和发展趋势。
复合材料是什么意思
复合材料是什么意思
复合材料是指由两种以上的不同材料组合而成,其性能比单一材料好的一种新型材料。
根据组合方式的不同,可以分为层状复合材料、颗粒复合材料等。
复合材料结构复杂,可以根据需要进行设计和制造,具有很高的机械性能、物理性能、化学性能和耐腐蚀性能,同时还具有很好的导热、绝缘、声学、热学、光学等特性,是一种理想的结构材料。
复合材料的组成部分主要有增强体和基体。
增强体是指在复合材料中起增强作用的成分,如纤维、颗粒、片、膜等;基体是指增强体所嵌入的材料,如塑料、金属、陶瓷等。
增强体和基体的组合可以根据需要进行选择,以达到最佳的性能要求。
复合材料广泛应用于航空航天、汽车、建筑、体育用品、电子产品等领域。
在航空航天领域,复合材料因其轻质高强、耐腐蚀等优势被广泛应用于飞机、导弹等部件的制造;在汽车领域,复合材料可以减轻车重、提高燃油效率;在建筑领域,复合材料可以提供更好的保温、隔热等性能。
然而,与传统材料相比,复合材料的制造过程更加复杂,成本更高。
同时,复合材料也存在着可回收性、耐久性等方面的问题,需要进一步的研发和改进。
综上所述,复合材料是一种由两种以上不同材料组合而成的新
型材料。
其具备优异的性能和特性,广泛应用于各个领域,但也面临着一些挑战,需要不断地进行研究和改进。
复合材料名词解释
复合材料名词解释复合材料是指由两种或两种以上的材料组合而成的材料,具有合成材料和传统材料的特点和优势。
复合材料的优点主要包括轻质、强度高、刚性好、耐腐蚀、耐磨损、导热性能好、成型性好、设计自由度高等。
复合材料由两种或以上的材料组成,其中一种称为基体(matrix),另一种或其他几种材料则是增强体(reinforcement)或填充物。
基体材料的主要作用是提供整体结构的支撑和连续性,而增强体则起到增加复合材料强度和刚性的作用。
常用的基体材料有塑料、树脂、金属等,而增强体则包括纤维、颗粒、薄膜等。
复合材料的制备过程主要包括预制部分、成型部分和固化部分。
在预制部分,根据所需材料和形状,将基体材料和增强材料等按一定比例混合、搅拌、形成复合材料的原料。
在成型部分,将预制的原料放入模具中,常见的成型方式包括压力成型、注塑成型、挤出成型等。
在固化部分,通过热固化或化学反应等方式使复合材料成型,得到最终的复合材料制品。
复合材料具有许多优点。
首先,由于增强体的加入,复合材料具有很高的强度和刚性,远远超过单一材料的强度。
其次,复合材料的密度相对较低,可以做到轻质化,便于携带和使用。
再次,复合材料的导热性能好,具有较高的绝缘性能,可以用于电子、电气和航空航天等领域。
此外,复合材料的耐腐蚀性能好、耐磨损性能好,可以提高材料使用寿命。
最后,由于复合材料可以灵活设计,成型性好,可以根据需要制作出各种形状和尺寸的制品。
复合材料在许多领域有着广泛应用。
在航天航空领域,复合材料被用于飞机、火箭、导弹的制造,可以减轻重量、提高载荷能力和提高耐用性。
在汽车工业中,复合材料被用于汽车车身和零部件的制造,可以减轻整车重量,提高燃油经济性和安全性能。
在建筑领域,复合材料被用于建筑结构、钢材替代、建筑保温材料等,可以提高建筑品质和节能效果。
在体育用品领域,复合材料被用于制作高尔夫球杆、网球拍、滑雪板等,可以提高运动器材的性能。
总之,复合材料是一种由两种或两种以上材料组合而成的材料,具有轻质、强度高、刚性好、耐腐蚀、耐磨损、导热性能好、成型性好、设计自由度高等优点。
复合材料的定义以及修复的方法
复合材料的定义以及修复的方法复合材料是指由两种或更多种不同性质的材料组合而成的新材料,具有优良的综合性能。
它通常由增强材料和基体材料组成,增强材料可以是玻璃纤维、碳纤维、Kevlar纤维等,而基体材料可以是树脂、金属、陶瓷等。
由于复合材料具有轻量、高强度、耐腐蚀、设计自由度大等特点,被广泛应用于航空航天、汽车、船舶、建筑等领域。
复合材料与传统材料相比,具有很好的强度和韧性,可以满足不同工程领域的需求。
但是复合材料在使用过程中依然会遭受磕碰、挤压、拉伸等外力的影响,由此导致材料的损伤。
为了延长复合材料的使用寿命和保证其性能,需要进行修复。
复合材料修复常用的方法包括表面修复和结构修复两种。
表面修复是指对复合材料的表面进行简单的修补,一般用于处理轻微的表面划痕、凹坑等情况。
修复过程包括以下步骤:清洁表面、打磨、涂覆填料、光照固化。
需要清洁损坏的表面,清除杂质和油脂,以便填料能够充分粘附。
然后,对受损区域进行打磨处理,以便填料能够充分附着。
接着,涂覆填料,填平损伤表面。
使用紫外线照射或烤箱加热等方法进行固化,使填料与基材紧密结合,完成表面修复。
结构修复是指对复合材料的内部结构进行修复,通常用于处理较为严重的损伤,如层间剥离、穿孔、裂纹等。
结构修复的步骤相对复杂,需要先对损伤部位进行评估,确定损伤的类型和程度。
然后,根据具体情况选择合适的修复方法,如层间剥离可以采用注射修复法,穿孔可以采用布贴修复法,裂纹可以采用层压修复法。
修复过程中需要采用适当的树脂和增强材料,确保修复区域与原材料具有相似的力学性能。
进行固化处理,确保修复部位与基材紧密结合,恢复材料的整体性能。
复合材料的修复方法丰富多样,可以根据具体的损伤情况选择合适的修复策略,保证材料的完整性和性能,延长其使用寿命。
在未来,随着复合材料应用领域的不断扩大和深入,复合材料的修复技术也将不断发展和完善,为各行业提供更可靠、更经济的修复方案。
复合材料的组成及作用基体
层状陶瓷复合材料断口形貌
三明治复
双金属、表面涂层等也是层状复合材料。 层状结构材料根据材质不同,分别用于飞机制造 、运输及包装等。
有TiN涂层的高尔夫球头
层状复合
铝合金蜂窝夹层板
9.3 复合材料的成型工艺
复合材料成型工艺是复合材料工业的发展基础 和条件。随着复合材料应用领域的拓宽,复合 材料工业得到迅速发镇,其老的成型工艺日臻 完善,新的成型方法不断涌现,目前聚合物基 复合材料的成型方法已有20多种,并成功地 用于工业生产.
2 复合材料的特点
A 组成与结构特点 (1)具有可设计性 (2)组元间有明显界面或 呈梯度变化的多相材料; (3)性能取决于各组分性 能及协同效应。 B 性能特点 比强度高
抗疲劳性能好
耐磨减磨性能高 减震能力强 高温性能好 化学稳定性高
成型工艺简单灵活
复合材料性能不足之处
1、横向拉伸强度和层间剪切强度低。 2、断裂伸长率低,冲击韧性有时不好。 3、制造时产品性能不稳定,分散性大,质 检困难。 4、抗老化性能不好。 5、机械连接困难。 6、成本太高。
9.4 复合材料在设计中的应用
聚合物基纤维增强复合材料 通常用碳纤维、玻璃纤维和芳纶纤维增强高分子材料 。 这类复合材料的性能较环氧树脂等基体有大幅度的提 高,比强度也高得多。
材料种类
环氧树脂 环氧树脂 / E级玻璃纤维
纵向抗拉强 度 MPa
69 1020
纵向弹性模 量 GPa
6.9 45
环氧树脂 / 碳纤维(高弹性) 环氧树脂 / 芳纶纤维(49)
3 复合材料分类
按组成分 ①金属与金属复合材料 ②非金属与金属复合材料 ③非金属与非金属复合材料 按结构特点: ①纤维复合材料 ②夹层复合材料 ③细粒复合材料 ④混杂复合材料
复合材料
的种类、配比、加工方法和纤维含量等进行设计,由于基体、增强体材料种 类很多,故其选材设计的自由度很大。
7、独特的成型工艺 复合材料可以整体成型,可以减少零部件紧固和接头数目,简化
结构设计,减轻结构重量。在中等批量生产的车型中,用树脂基复合 材料取代铝材可降低成本40%左右。
一、复合材料的组成及分类
复合材料=基体+增强体
基体是复合材料的主体,即自 身保持连续而包围增强相的材料。 起粘结作用,可以是金属、高分子 或陶瓷材料中的一种。
复合材料可以分为金属材料、高 分子材料和陶瓷材料中的任意两种 或几种制备而成。
二、复合材料的性能特点
1.高的比强度和比模量 复合材料最显著的特点是比强度和比模量高,对要求减轻自重和高速运转 的结构和零件是非常重要的,碳纤维增强环氧树脂复合材料的比强度是钢 的7倍,比模量是钢的4倍。
增强的复合材料的高温强度和弹性模量均较高。特别是金属基复合材 料,例如7075铝合金,在400℃时,弹性模量接近于零,强度值也从 室温时的500MPs降至30-50MPa。而碳纤维或硼纤维增强组成的复 合材料,在400℃时,强度和弹性模量可保持接近室温下的水平:碳 纤维增强的镍基合金也有类似的情况。
玻璃纤维增强塑料也称为玻璃钢。玻璃钢是汽车上应用最广的复合材料, 目前在轿车、吉普车以及卡车上使用的玻璃钢部件逐步增多。随着研究和开 发的不断深入,将更多地用玻璃钢替代金属材料,以达到节能的目的。
2.碳纤维增强塑料(CFRP)
碳纤维增强塑料是以树脂为基体材料, 常用树脂有环氧树脂、酚醛树脂和聚 四氟乙烯等。
这种复合材料具有质轻、强度高、导 热系数大、摩擦系数小、抗冲击性能 好、疲劳强度高等优点。
复合材料概论
1、复合材料的定义由两种或两种以上的物理和化学性质不同的物质组合而成的一种多相固体材料。
2、同质复合材料和异质材料增强材料和基体材料属于同种物质的复合材料为同质材料。
异质材料则是不同物质。
3、金属基复合材料的性能在金属基体中加入了适量的高强度、高模量、低密度的纤维、晶须、颗粒等增强物,明显提高了复合材料的比强度和比模量。
4、树脂基复合材料、金属基复合材料和陶瓷基复合材料性能区别树脂基复合材料的使用温度一般为60℃~250℃,其导热性能为0.35~0.45W/m·K金属基复合材料为400~600℃,其导热性能为50~65W/m·K和陶瓷基复合材料性能为1000~1500℃,0.7~3.5W/m·K。
陶瓷基复合材料大于金属基复合材料的硬度,金属基复合材料大于树脂基复合材料的硬度。
5、复合材料结构的分类从固体力学角度,分为三个“结构层次”:一次结构、二次结构、三次结构。
一次结构:由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能;二次结构:由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何;三次结构:通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。
6、复合材料选择基体的原则①金属基复合材料的使用要求:高性能发动机要求有高强度比、比模量性能,要求具有优良的耐高温性能,能在高温、氧化性气氛中正常工作。
在汽车发动机中要求其零件耐热、耐磨、导热,一定的高温强度等,又要求成本低廉,适合批量生产。
②金属基复合材料组成特点:对于连续纤维增强金属基复合材料,纤维是主要承载物体,纤维本身具有很高的强度和模量。
对于非连续增强金属基复合材料,基体是主要承载物,基体的强度对非连续增强基复合材料具有决定性的影响。
③基体金属与增强物的相容性。
7、与树脂相比水泥基体的特征①水泥基体为多孔体系;②纤维与水泥的弹性模量比不大;③水泥基材的断裂延伸率较低,仅是树脂基体的1/10~1/20;④水泥基材中含有粉末或颗粒状的物料,与纤维呈点接触,故纤维的掺量受到很大限制;⑤水泥基材呈碱性,对金属纤维可起保护作用,但对大多数矿物纤维是不利的。
《复合材料》PPT课件
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
03
良好的减震性能
复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
良好的电绝缘性能
模压成型
缠绕成型
将预浸料或预混料放入模具中,在加热和加 压的条件下使其固化成型。
将浸渍过树脂的连续纤维或布带按照一定规 律缠绕到芯模上,然后固化脱模。
后处理与加工技术
热处理
通过加热或冷却的方式改善复合 材料的性能,如消除内应力、提
高强度等。
表面处理
对复合材料表面进行打磨、喷涂 等处理,以提高其外观质量和耐 腐蚀性。
原材料的预处理
对增强材料和基体材料进行清洗、干燥、筛分等 预处理,以确保原材料的质量和性能。
成型工艺方法
手糊成型
喷射成型
在模具上涂刷脱模剂,然后铺贴一层基体材 料,再涂刷一层树脂,如此反复直至达到所 需厚度,最后固化脱模。
将树脂和增强材料分别通过喷嘴喷射到模具 上,通过调整喷射参数控制复合材料的厚度 和性能。
大多数复合材料具有优异的电绝缘性能,可用于电气设备和电子器 件的绝缘材料。
多样化的热性能
通过调整复合材料的组分和结构设计,可以实现不同的热性能要求, 如耐热性、隔热性或导热性等。
化学性能
耐腐蚀性
复合材料能够抵抗多种化学物质 的侵蚀,包括酸、碱、盐等,适 用于腐蚀性环境下的应用。
耐候性
复合材料能够抵抗紫外线、氧化、 潮湿等自然环境因素的影响,长 期保持稳定的性能。
复合材料有哪些
复合材料有哪些复合材料是由两种或两种以上的成分组成的材料,其性能优于单一成分的材料。
它们可以根据其组成和性能分为多个类别。
以下是一些常见的复合材料。
1. 纤维增强复合材料:这种复合材料由纤维和基体组成。
纤维通常是高强度材料,如玻璃纤维、碳纤维或芳纶纤维,而基体可以是塑料、金属或陶瓷。
纤维增强复合材料具有良好的强度和刚度,重量轻,抗腐蚀性能好,广泛应用于航空航天、汽车、船舶和建筑等领域。
2. 钢筋混凝土:钢筋混凝土是由钢筋和混凝土组成的复合材料。
钢筋提供了材料的强度和刚度,而混凝土则提供了压缩性能。
钢筋混凝土广泛应用于建筑、桥梁和基础结构等领域,具有较高的承载能力和耐久性。
3. 多层板:多层板是由多层薄木片通过胶合剂粘合而成的复合材料。
它具有较高的强度和稳定性,广泛应用于家具、地板和建筑结构等领域。
4. 陶瓷基复合材料:陶瓷基复合材料由陶瓷基体和增强相(如纤维或颗粒)组成。
它们具有较高的硬度、耐磨性和耐高温性能,适用于高温、高压和耐磨领域,如发动机部件和刀具。
5. 金属基复合材料:金属基复合材料由金属基体和强化相(如纤维或颗粒)组成。
它们具有较高的强度和韧性,同时保持金属的导电性和导热性。
金属基复合材料广泛应用于航空航天和汽车等领域。
6. 高分子基复合材料:高分子基复合材料由高分子基体和增强相(如纤维、颗粒或填充剂)组成。
它们具有较高的可塑性和耐腐蚀性,广泛应用于塑料制品、包装材料和纤维制品等领域。
7. 碳纳米管增强复合材料:碳纳米管增强复合材料由碳纳米管和基体材料组成。
碳纳米管具有很高的强度和弹性模量,可以显著提高复合材料的力学性能。
碳纳米管增强复合材料在航空航天、汽车和电子等高性能领域有广泛的应用。
总体来说,复合材料在各个领域中都有广泛的应用。
其优越的性能使得复合材料能够满足不同领域对材料性能的要求,推动了相关产业的发展。
常见复合材料
常见复合材料复合材料是由两种或两种以上不同性质的材料组合而成的新型材料,具有优良的综合性能,广泛应用于航空航天、汽车、船舶、建筑等领域。
常见的复合材料包括玻璃钢、碳纤维复合材料、夹芯复合材料等,它们在工程结构中发挥着重要作用。
玻璃钢是一种以玻璃纤维为增强材料,树脂为基体的复合材料。
它具有重量轻、强度高、耐腐蚀、绝缘等优点,被广泛应用于化工设备、储罐、管道、建筑材料等领域。
玻璃钢制品表面光滑,易于清洗,具有良好的装饰性能,同时具有较好的抗老化性能,使用寿命长。
碳纤维复合材料是以碳纤维为增强材料,树脂为基体的复合材料。
碳纤维具有高强度、高模量、低密度等优点,因此碳纤维复合材料具有重量轻、强度高、刚度大、耐腐蚀等特点,被广泛应用于航空航天、汽车、体育器材等领域。
碳纤维复合材料制品具有良好的抗疲劳性能和抗冲击性能,适用于复杂受力状态下的工程结构。
夹芯复合材料是在两层面材料之间夹有一层蜂窝状或泡沫状芯材料的复合材料。
夹芯复合材料具有重量轻、强度高、刚度大、吸能性能好等特点,被广泛应用于船舶、飞机、汽车、建筑等领域。
夹芯复合材料在结构设计中能够实现轻量化和高强度的要求,同时具有良好的隔热、隔音性能,能够满足不同工程结构的需求。
在实际应用中,常见的复合材料制造工艺包括手工层叠工艺、预浸料工艺、自动化层叠工艺等。
手工层叠工艺简单易行,适用于小批量生产;预浸料工艺能够实现材料的自动化生产,提高生产效率;自动化层叠工艺能够实现复杂结构的生产,适用于大规模生产。
不同的制造工艺能够满足不同复合材料制品的生产需求。
总的来说,常见的复合材料在工程领域中发挥着重要作用,它们具有重量轻、强度高、耐腐蚀、绝缘、隔热、隔音等优点,能够满足不同工程结构的需求。
随着科学技术的不断发展,复合材料的应用领域将会更加广泛,同时制造工艺也将会更加先进,为工程结构的设计和制造提供更多可能性。
什么叫复合材料
什么叫复合材料
复合材料是指由两种或两种以上的材料组合而成的新型材料,它具有各种原材
料的优点,同时又能弥补各种原材料的缺点。
复合材料广泛应用于航空航天、汽车制造、建筑工程、体育器材等领域,因其轻质、高强度、耐腐蚀等特点而备受青睐。
首先,复合材料的组成通常包括增强材料和基体材料。
增强材料通常是指具有
较高强度和刚度的材料,如玻璃纤维、碳纤维、芳纶纤维等;而基体材料则是起粘合作用的材料,如树脂、金属、陶瓷等。
这两种材料的结合,使得复合材料具有了高强度、高刚度、低密度等特点。
其次,复合材料的制备工艺多样,常见的有手工层叠、预浸料成型、压缩成型、注塑成型等。
这些工艺在保证复合材料性能的同时,也能够满足不同形状、尺寸的需求,使得复合材料在各个领域都有着广泛的应用。
另外,复合材料的优点还包括耐腐蚀、耐磨损、抗冲击等特性,这些使得复合
材料在航空航天领域得到了广泛的应用。
例如,飞机的机身、机翼、螺旋桨等部件都广泛采用了复合材料,因为它们能够减轻飞机重量,提高飞行性能,同时还能够延长使用寿命。
此外,复合材料还在汽车制造领域有着重要的应用。
汽车的车身、发动机罩、
座椅等部件都可以采用复合材料,以减轻汽车重量,提高燃油效率,降低尾气排放,满足环保要求。
总的来说,复合材料以其独特的性能优势,在各个领域都有着广泛的应用前景。
随着科技的不断进步,复合材料的制备工艺和性能将会得到进一步提升,相信它将会在未来的发展中扮演着越来越重要的角色。
复合材料
第一章绪论1、复合材料的定义、组成及分类①定义复合材料→是指将两种或两种以上的不同材料,用适当的方法复合成的一种新材料,其性能比单一材料性能优越。
②组成基体、增强材料、界面基体:起黏结作用,将增强材料黏合,起到均匀应力和传递应力的作用。
增强材料:承受力的组分界面:界面粘结力充分发挥其材料的性能使其大大优于单一材料的性能。
③分类A 按基体类型分类:⑴树脂基复合材料⑵金属基复合材料⑶无机非金属基复合材料B 按增强材料类型分类:⑴玻璃纤维复合材料(玻璃纤维增强的树脂基复合材料俗称玻璃钢)⑵碳纤维复合材料⑶有机纤维复合材料⑷陶瓷纤维复合材料C 按用途不同分类:⑴结构复合材料⑵功能复合材料2、复合材料的特性优点:㈠轻质高强㈡可设计性好㈢电性能好㈣耐腐蚀性好㈤热性能良好㈥工艺性能优良缺点:㈦弹性模量较低(易变形)㈧长期耐热性不足(不能高温下长期使用)㈨老化现象3、复合材料的应用及发展应用:⒈在航天航空方面的应用:轻质高强,使飞机的质量减轻,连接减少,速度提升,耗能减少。
⒉在交通运输方面的应用:汽车质量减轻,相同的条件下耗油量只是钢铁汽车的四分之一,而且受到撞击时复合材料能大幅度的吸收冲击能量,保护人员安全。
⒊在化学工业方面的应用:复合材料主要被用来制造防腐制品,因为聚合物复合基材料具有优良的耐腐性能,可用于制造各种管道,烟囱,地坪,风机,泵等。
⒋在电气工业方面的应用:因为复合基材料是一种优异的电绝缘材料,广泛的用于电机、电工器材制造。
例如:绝缘板、绝缘管、电机护环等。
⒌在建筑方面的应用:玻璃钢具有优异的力学性能、良好的隔热,隔音性能,吸水率低,耐腐蚀性好和很好的装饰性,因此是一种理想的建筑材料,建筑上玻璃钢被用作承重结构、围护结构、冷却塔、水箱、卫生洁具、门窗等。
耐海水性能,并能极大的减少金属钢筋对电磁波的屏蔽作用。
建筑物损坏修补材料等⒍在机械工业方面的应用:用于制造各种叶片、风机、各种机械部件、齿轮、皮带轮和防护罩等。
复合材料的定义和分类
复合材料的定义和分类复合材料是指由两种或两种以上的不同物质组合而成的材料。
它的主要特点是各种组成材料保持一定的独立性,在组合中能够发挥各自的特点和优势,以达到综合性能的提升。
复合材料在材料科学与工程领域中得到广泛应用,为各个行业的发展提供了良好的支持。
根据复合材料的组分以及结构,可以将其分为三类:混合型复合材料、增强型复合材料和复杂结构复合材料。
1.混合型复合材料:混合型复合材料是由两种或两种以上物质在宏观上均匀的混合而成的。
这些物质在复合材料中没有形成明显的界面,且没有化学反应发生。
混合型复合材料中的相互作用主要是物理性质的相互作用。
例如,橡胶填料混合物、混凝土等都属于混合型复合材料。
2.增强型复合材料:增强型复合材料是由增强体和基体组成的。
增强体通常是纤维材料,如玻璃纤维、碳纤维等,它们具有很高的强度和刚度。
而基体则起到固定和支撑作用,常用的基体材料有树脂、金属等。
增强型复合材料的优点是具有重量轻、强度高、刚度大等特点,可以广泛应用于航空、汽车、建筑等领域。
3.复杂结构复合材料:复杂结构复合材料是由多种不同的材料通过复杂的结构组合而成的。
它们通常包含了两类或两类以上的复合材料,并通过各种连接方式将它们组合在一起。
复杂结构复合材料广泛应用于航空航天、船舶、建筑等领域,能够满足各个行业对材料性能的要求。
除了以上的分类方式外,根据增强体的形态,复合材料还可以分为颗粒增强复合材料、纤维增强复合材料和薄片增强复合材料。
1.颗粒增强复合材料:颗粒增强复合材料是以颗粒形式的增强材料为主体,并将其分散均匀地分布在基体中。
典型的颗粒增强复合材料有金属基复合材料和陶瓷基复合材料等。
这种类型的复合材料具有较高的韧性、良好的耐磨性和较低的成本,适用于一些特殊工况下的使用。
2.纤维增强复合材料:纤维增强复合材料是通过将纤维型的增强材料以一定的方式组合起来得到的。
纤维可以是玻璃纤维、碳纤维、有机纤维等。
纤维增强复合材料具有重量轻、强度高、耐腐蚀等优点,广泛应用于航空、航天、汽车、体育器材等领域。
复合材料是什么意思
复合材料是什么意思
复合材料是一种由两种或两种以上的材料组合而成的新型材料,这些材料在组合后能够充分发挥各自的优点,形成一种具有特定性能的新材料。
复合材料通常由增强材料和基体材料组成,增强材料可以是玻璃纤维、碳纤维、芳纶纤维等,而基体材料则通常是树脂、金属或陶瓷等。
复合材料的优点在于其具有轻质、高强度、耐腐蚀、耐磨损等特点,因此在航空航天、汽车制造、建筑材料、体育器材等领域得到了广泛的应用。
在航空航天领域,复合材料可以替代传统的金属材料,减轻飞机的重量,提高燃油效率,同时还能提供更好的机械性能和耐腐蚀性能。
在汽车制造领域,复合材料的使用可以减轻汽车的重量,提高燃油经济性,同时还可以提高车辆的安全性能和舒适性能。
除此之外,复合材料还具有设计自由度高、成型工艺灵活、易于加工成型等优点,因此在产品设计和制造过程中得到了广泛的应用。
在建筑材料领域,复合材料可以制成各种形状和结构的构件,满足建筑设计的多样化需求,同时还能提供更好的耐候性能和耐久性能。
总的来说,复合材料是一种具有很高综合性能的新型材料,它的应用领域非常广泛,可以满足不同行业的需求,为各种产品的设计和制造提供了更多的可能性。
随着科技的不断发展和进步,相信复合材料在未来会有更广阔的发展空间,为人类创造出更多的奇迹。
复合材料
第一章1复合材料有哪些优点?存在的主要问题是什么?(P6)2简述复合材料的组成?界面为什么也是一个重要组成?答:组成:基体,增强材料3谈谈复合材料的发展?答:复合材料是新材料领域的重要组成部分,与传统材料相比,复合材料具有:可设计性强、比强度比模量高、抗疲劳断裂性能好、结构功能一体化等一系列优越性能,是其他材料难以替代的功能材料和结构材料,是发展现代工业、国防和科学技术不可缺少的基础材料,也是新技术革命赖以发展的重要物质基础,复合材料已成为新材料领域的重要主导材料。
第二章2为什么玻璃纤维与块状玻璃性能不同?纤维的粗细对其强度有什么影响?为什么?答:玻璃纤维的结构与玻璃的结构本质上没有什么区别,都是一种具有短距离网络结构的非晶结构。
玻璃纤维的强度和模量主要取决于组成氧化物的三维结构。
玻璃是由二氧化硅的四面体组成的三维网络结构,网络间的空隙由钠离子填充,每一个四面体均由一个硅原子与其周围的氧原子形成离子键,而不是直接联到网络结构上。
网络结构和各化学键的强度可以通过添加其它金属氧化物来改变,由此可生产出具有不同化学性能和物理性能的玻璃纤维。
填充的Na或ca等阳离子称为网络改性物。
(P276. 玻璃纤维性能的主要特点是什么?..力学特性-脆性材料,拉伸强度高,但模量较低;纤维强度分散性较大,强度受湿度影响;..热性能-高温热处理后强度下降,导热系数低..耐介质性能-除HF外,对其他介质具有较好的耐腐蚀能力,受水侵蚀强度下降..电性能-与组分尤其是含碱量有关,具有良好的高频介电性能8什么是原纱、单丝、捻度、合股数、支数、特、旦?8. 什么是原纱、单丝、捻度、合股数、支数、特、旦?见p2910为什么玻璃布的强度比单丝强度要低的多?答:玻璃纤维的细度的影响因素:原料的熔融温度、漏板孔径、拉丝温度、拉丝速度等。
从理论上讲,玻璃纤维直径越细,其强度越高。
但实际生产中,单丝在拉丝过程中表面形成了很多微裂纹,使其强度远低于理论值。
复合材料(百度百科)
复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。
复合材料的基体材料分为金属和非金属两大类。
金属基体常用的有铝、镁、铜、钛及其合金。
非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。
增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。
橡塑复合材料复合材料使用的历史可以追溯到古代。
从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。
20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。
50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。
70年代出现了芳纶纤维和碳化硅纤维。
这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。
[编辑本段]分类复合材料是一种混合物。
复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。
按其结构特点又分为:①纤维复合材料。
将各种纤维增强体置于基体材料内复合而成。
如纤维增强塑料、纤维增强金属等。
②夹层复合材料。
由性质不同的表面材料和芯材组合而成。
通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。
分为实心夹层和蜂窝夹层两种。
③细粒复合材料。
将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。
④混杂复合材料。
由两种或两种以上增强相材料混杂于一种基体相材料中构成。
与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。
分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。
60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。
什么是复合材料
什么是复合材料复合材料是由两种或更多种不同性质的材料经过结合制备而成的新型材料。
复合材料具有多个材料的优点,能够实现不同材料之间的协同作用,以获得更好的性能和功能。
复合材料由两个基本组成部分组成:增强材料和基体材料。
增强材料通常是纤维或颗粒,如碳纤维、玻璃纤维、陶瓷颗粒等,用于提供强度和刚度。
基体材料则是支撑和固定增强材料的介质,通常是聚合物、金属或陶瓷等,用于提供保护和连接。
复合材料的制备过程通常分为两个步骤:增强材料预处理和制备。
在增强材料预处理阶段,增强材料通常需要进行表面处理,以提高与基体材料的粘附性和连接性。
在制备阶段,通过层层堆积或浸渍法将增强材料与基体材料结合在一起,然后通过热固化或化学固化将其固化成为一体。
复合材料具有许多优点。
首先,复合材料具有优异的强度和刚度,远远超过传统的材料。
其次,复合材料具有较低的密度,重量轻,有助于减小结构的自重,提高运载效率。
此外,复合材料还具有良好的磨损性能、耐腐蚀性能和热稳定性能等。
复合材料在许多领域都有广泛的应用。
在航空航天领域,复合材料可以制作轻量化的飞机、导弹和航天器,以提高载荷能力和飞行性能。
在汽车工业中,复合材料可以制作汽车车身和零部件,以减轻重量和提高燃油效率。
在建筑领域,复合材料可以制作高强度、耐久性和绝缘性能优良的建筑材料。
尽管复合材料具有诸多优点,但也存在一些挑战。
首先,复合材料的制备过程较为复杂,需要严格的工艺控制和设备要求。
其次,复合材料的成本较高,只能用于一些对性能要求较高的特殊领域。
此外,复合材料的可回收性和环境友好性也需要进一步研究和改进。
总之,复合材料是一种具有优越性能和广泛应用前景的材料。
随着科技的不断发展,复合材料将在更多领域展示其独特的优势,为人们创造更加美好的生活。
复合材料
1.复合材料的定义和组成复合材料:将两种或两种以上的不同材料用适当的方法复合成的一种新材料,其性能比单一材料的性能优越。
复合材料由基体和增强材料组成。
2.基体的作用:将增强材料粘合成一个整体,起到均衡应力和传递应力的作用,是增强材料的性能得到充分的发挥,从而产生一种复合效应,是复合材料的性能大大优于单一材料的性能。
增强材料的作用:复合材料的主要承力组分,特别是拉伸强度、弯曲强度和冲击强度等力学性能主要有增强材料承担。
3.举一个复合材料的例子,说明其组成、结构与应用之间的关系。
玻璃纤维增强环氧树脂,承载载荷,传递载荷。
玻璃纤维是增强材料,环氧树脂是基体玻璃纤维是无机增强材料,是熔融物过冷时因黏度增加而具有固体物理机械性能的无定形物体,是各向同性的均相材料。
其化学组成主要是二氧化硅、三氧化硼。
玻璃纤维的拉伸强度很高,耐热性较高。
环氧树脂是分子中含有两个或两个环氧基基团的有机高分子化合物,其分子结构是以分子链中含有活泼的环氧基团为特征,环氧基团可以位于分子链的末端、中间或成环状结构。
环氧树脂粘附力强,优良的力学性能,良好的电性能等。
玻璃纤维增强环氧树脂具有优良的的电绝缘性能,在高频下仍保持良好的介电性能,因此可作为高性能的电机、电器的绝缘材料,具有良好的透波性能,被广泛用于制造机载、地面雷达罩。
4.玻璃纤维的力学性能和和影响化学稳定性的因素有哪些?影响玻璃纤维力学性能的因素:①纤维的直径和长度②化学组成③存放时间④负荷时间影响玻璃纤维化学稳定性的因素:①玻璃纤维直径②化学组成5.玻璃纤维的生产方法有哪几种?主要区别是什么?玻璃纤维的生产方法有坩埚法和窑池法两种区别:坩埚法生产玻璃纤维主要由制球和拉丝两部分组成。
而池窑法省掉了制球工艺,且拉丝操作有稳定性好,断头飞丝少,单位能耗低等特点。
6.玻璃纤维的组成和作用?首先,玻璃纤维是以SiO2,,B2O3为骨架,对玻璃纤维的性质和工艺特点起决定作用。
加入碱金属氧化物如Na2O,K2O 等能降低玻璃的熔化温度和熔融粘度使玻璃溶液中的气泡易排除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)纤维脱粘:复合材料中纤维脱粘产生了新的表面,因此需要能量。尽管单位面积的表面能很小,但所有脱粘纤维总的表面能很大。若想通过纤维脱粘达到最大增韧效果,须使高强度纤维的体积分数要大、临界纤维长度增加,而纤维与基体的界面强度要弱。
⑵晶须增韧
陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体。
晶须增韧陶瓷基复合材料的主要增韧机制包括晶须拔出、裂纹偏转、晶须桥联、其增韧机理与纤维增韧陶瓷基复合材料相似。晶须增韧效果不随温度而变化,因此,晶须增韧被认为是高温结构陶瓷复合材料的主要增韧方式。晶须增韧陶瓷复合材料主要有2种方法:(1)外加晶须法:即通过晶须分散、晶须与基体混合、成形、再经煅烧制得增韧陶瓷。如加入到氧化物、碳化物、氮化物等基体中得到增韧陶瓷复合材料,此法目前较为普遍;(2)原位生长晶须法:将陶瓷晶体粉末和晶须生长助剂等直接混合成形,在一定的条件下原位合成晶须,同时制备出含有该晶须的陶瓷复合材料,这种方法尚未成熟,有待进一步探索。
1)裂纹偏转:由于纤维周围沿纤维/基体(F /M)界面存在因弹性模量或热膨胀系数不匹配而引起的应力场,从而使在基体中扩展的裂纹遇到纤维时发生偏转。由于纤维周围存在应力场,陶瓷基体中的裂纹一般难以穿过纤维,而更易绕过纤维并尽量贴近纤维表面扩展,即裂纹发生偏转,致使裂纹面不再垂直于外加应力。只有增加外加应力,提高裂纹尖端应力强度因子,才能使裂纹进一步扩展,因此,裂纹偏转可以产生明显的增韧作用;且随纤维长径比的增大和纤维体积分数的增加,裂纹偏转的增韧效果增强。
❶陶瓷基复合材料的增韧机理
陶瓷材料的脆性本质是在陶瓷材料断裂过程中,除用增加新表面来增加表面能外,几乎没有其它可以吸收外来能量的机制。因此,为了提高陶瓷基复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。FRCMC断裂时纤维拔出、桥联、脱粘和断裂,以及基体中裂纹的微化、弯曲、偏转等都是其新的能量吸收机制,也都能使其韧性得到很大提高。下面介绍5种主要的增韧机制:
⑸纳米复合陶瓷增韧
纳米技术在改善传统材料性能方面显示出极大的优势,纳米陶瓷由于晶粒的细化,晶界数量会极大增加,同时纳米陶瓷的气孔和缺陷尺寸减小到一定尺寸就不会影响到材料的宏观强度,结果可使材料的强度、韧性显著增加。
⑹自增韧陶瓷
如果在陶瓷基体中引入第二相材料,该相不是事先单独制备的,而是在原料中加入可以生成第二相的原料,控制生成条件和反应过程,直接通过高温化学反应或者相变过程,在主晶相基体中生长出均匀分布的晶须、高长径比的晶粒或晶片的增强体,形成陶瓷复合材料,则称为自增韧。这样可以避免两相不相容、分布不均匀问题,强度和韧性都比外来第二相增韧的同种材料高。自增韧陶瓷的增韧机理类似于晶须对材料的增韧机理,有裂纹的桥接增韧、裂纹的偏转和晶粒的拔出,其中桥接增韧是主要的增韧机理
5)纤维拔出:纤维拔出是指靠近裂纹尖端的纤维在外应力作用下沿着它和基体的界面滑出的现象,它要求纤维相对于界面断裂韧性具有高的横向断裂韧性。纤维拔出需要消耗额外的应变能以促使裂纹扩展,促使复合材料断裂韧性增加,同时促使裂纹尖端应力松弛,从而减缓裂纹的扩展。纤维的拔出需要外力和纤维拔出,因为它们很少受温度的限制,尤其是裂纹偏转时,其增韧效果仅取决于分散相的体积分数和形状,而与粒子尺寸和温度无关,这样对高温增韧无疑是十分有利的,这一点在玻璃陶瓷基体中得到了证实。但在实际增韧过程中往往是几种增韧机理同时起作用。
❷陶瓷基复合材料增韧技术
⑴纤维增强
纤维增强陶瓷基复合材料的增韧剂之包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、纤维基体界面解离等。
纤维拔出是纤维复合材料的主要增韧机制,通过纤维拔出过程的摩擦耗能,使复合材料的断裂功增大,纤维拔出过程的耗能取决于纤维拔出长度和脱粘面的滑移阻力,滑移阻力过大,纤维拔出长度较短,增韧效果不好,如果滑移阻力过小,尽管纤维拔出长度较长,但摩擦做功较小,增韧效果也不好,反而强度较低。因此,在构组纤维增韧陶瓷基复合材料时,应该考虑:纤维的强度和模量高于基体,同时要求纤维强度具有一定的Weibull分布;纤维与基体之间具有良好的化学相容性和物理性能匹配;界面结合强度适中,既能保证载荷传递,又能在裂纹扩展中适当解离,又能有较长的纤维拔出,达到理想的增韧效果。
经过人们的科研努力,取得了不错的进展,本文简要介绍陶瓷基复合材料的增韧机理和增韧方式。增韧机理包括:裂纹偏转,微裂纹增韧,纤维脱粘,纤维桥接,和纤维拔出。增韧技术包括:纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。这些增韧技术的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出强劲的竞争潜力。
复合材料读书报告
题目:陶瓷基复合材料的增韧机理
学号:2011221113100282
姓名:林沙
班级:11级高材二班
陶瓷基复合材料的增韧机理
摘要:
现代陶瓷材料具有耐高温、硬度高、耐磨损、而腐蚀及相对密度轻等许多优良的性能。但它同时也具有致命的弱点—脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。由于任何固体材料在载荷作用下(静态或冲击),吸收能量的方式有两种:材料变形和形成新的表面。但陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其它吸收能量的机制,这同时也是陶瓷脆性的本质原因。为了提高这类材料的吸能,只能是增加断裂表面,即增加裂纹的扩展路径。
4)纤维桥接:纤维/基体界面的解离使裂纹扩展通过基体而在裂纹尖端后面存在一个纤维保持完整无损的区域成为可能。纤维与基体的弹性模量差别越大,纤维与裂纹面夹角越小,界面解离越容易发生。在此区域内,纤维把裂纹桥接起来,导致在裂纹表面产生一个压应力,以抵消外加拉应力的作用,使裂纹难以进一步扩展,从而起到增韧作用。
⑶相变增韧
相变增韧ZrO2陶瓷是一种极有发展前途的新型结构陶瓷,其主要是利用ZrO2相变特性来提高陶瓷材料的断裂韧性和抗弯强度,使其具有优良的力学性能,低的导热系数和良好的抗热震性。它还可以用来显著提高脆性材料的韧性和强度,是复合材料和复合陶瓷中重要的增韧剂。ZrO2的增韧机制一般认为有应力诱导相变增韧、微裂纹增韧、压缩表面韧化。
⑷颗粒增韧
用颗粒作为增韧剂,制备颗粒增韧陶瓷基复合材料,其原料的均匀分散及烧结致密化都比短纤维及晶须复合材料简便易行。因此,尽管颗粒的增效果不如晶须与纤维,但如颗粒种类、粒径、含量及基体材料选择得当,仍有一定的韧化效果,同时会带来高温强度、高温蠕变性能的改善。从增韧机理上分,颗粒增韧分为非相变第二相颗粒增韧、延性颗粒增韧、纳米颗粒增韧。非相变第二相颗粒增韧主要是通过添加颗粒使基体和颗粒间产生弹性模量和热膨胀失配来达到强化和增韧的目的,此外,基体和第二相颗粒的界面在很大程度上决定了增韧机制和强化效果,目前使用的较多的是氮化物和碳化物等颗粒。延性颗粒增韧是在脆性陶瓷基体中加入第二相延性颗粒来提高陶瓷的韧性,一般加入金属粒子。金属粒子作为延性第二相引入陶瓷基体内,不仅改善了陶瓷的烧结性能,而且可以以多种方式阻碍陶瓷中裂纹的扩展,如裂纹的钝化、偏转、钉扎及金属粒子的拔出等,使得复合材料的抗弯强度和断裂韧性得以提高。