高中数学导学案独立性检验的基本思想及其初步应用
高中数学《独立性检验的基本思想及初步应用》导学案
第一章 统计案例第二节 独立性检验的基本思想及初步应用(第1课时)一、学习目标1.了解两个分类变量的列联表,并用二维条形图表示,会计算K 2的观测值.2.了解独立性检验的思想,并会用独立性检验思想对两个变量之间是否有关联进行检验.3.通过实例说明独立性检验的方法和步骤,会根据22⨯列联表求统计量2K ,体会独立性检验的作用.【重点、难点】用独立性检验思想对两个变量之间是否有关联进行检验;根据22⨯列联表求统计量2K .二、学习过程复习引入:经常上网会影响学习吗?下表为教育部对1000名中学生进行调查的结果.经常上网影响学习吗?如何判断?经常上网 不经常上网总计 不及格 80 120 200及格 120 680 800总计 200 800 1000问题1:(1)通过上述数据经常上网的人成绩及格的比例为 ,不经常上网的人成绩及格的比例为 ,这个数据可以初步判断经常上网对学习成绩是有影响的,但这种说法的把握性有多大,还需要进行独立性检验才知道.(2)独立性检验的概念用统计量K 2的大小来研究两个变量是否有关系的方法,称为独立性检验.问题2:两个分类变量A 和B 的2×2列联表一般地,假设有两个分类变量A 和B ,它们的可能取值分别为{A 1,A 2}和{B 1,B 2}, 其样本频数列联表(称为2×2列联表)为:B AB 1 B 2 总计 A 1 a bA 2 c d总计问题3:统计量K 2的计算公式是怎样的?若有如下列联表所示的抽样数据:类1 类2 总计类 A a b a+b类 B c d c+d总计 a+cb+d a+b+c+d则K 2= (其中n=a+b+c+d ).问题4:根据K 2判断两变量是否有关联当K 2≤2.706时, 充分的证据判定变量A 、B 有关联,可以认为变量A 、B 是 关联的;当K 2>2.706时,有 的把握判定变量A 、B 有关联;当K 2>3.841时,有 的把握判定变量A 、B 有关联;当K 2>6.635时,有 的把握判定变量A 、B 有关联.答案:问题1:(1)60% 85% ;问题2:a+b c+d a+c b+d a+b+c+d问题3:错误!未找到引用源。
独立性检验的基本思想及其初步应用学案
3.2.1 《独立性检验的基本思想及其初步应用》学案【学习目标】1.了解利用列联表、等高条形图来判断两个分类变量之间是否有关系。
2.了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
【学习重点】了解独立性检验的基本思想及实施步骤。
【学习难点】K的含义。
独立性检验的基本思想;随机变量2【教学过程】一、情境引入,提出问题请看视频:问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?二、阅读教材,探究新知1.分类变量2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。
得出结论:还有其它方法来判断吸烟和患肺癌有关呢? 3.等高条形图等高条形图能说明什么呢?三、小组讨论,合作交流问题2、你有多大程度判断吸烟与患肺癌有关?用什么方法进行检验呢? 探究:bc ad -的大小能说明了什么?探究:2K 的大小能说明什么?探究:632.5691987421487817)209942497775(99652≈⨯⨯⨯⨯-⨯⨯=k 这个值到底能告诉我们什么呢?四、形成概念,重点精讲独立性检验“独立性检验”的具体做法步骤为:第一步:;第二步:;第三步:。
k:在实际应用中,要在获取样本数据之前通过下表确定临界值表3-11 临界值表五、新知运用,归纳展示为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取500名学生,得到如下列联表:单位:人能够有95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?六、课堂检测,节节达标1.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )A.若635.62K ,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有 99个患肺病。
人教版高一数学教案-独立性检验的基本思想及其初步应用
1. 2 獨立性檢驗的基本思想及其初步應用課前預習學案一、預習目標:能用所學的知識對實際問題進行回歸分析,體會回歸分析的實際價值與基本思想;瞭解判斷刻畫回歸模型擬合好壞的方法――相關指數和殘差分析。
二、預習內容1. 給出例3:一隻紅鈴蟲的產卵數y 和溫度x 有關,現收集了7組觀測資料列於下表中,試建立y 與x 之間的回歸方程.溫度/x C21 23 25 27 29 3235 產卵數/y 個 7 1121 24 66 115325(學生描述步驟,教師演示)2. 討論:觀察右圖中的散點圖,發現樣本點並沒有分佈在某個帶狀區域內,即兩個變數不呈線性相關關係,所以不能直接用線性回歸方程來建立兩個變數之間的關係. 課內探究學案一、學習要求:通過對典型案例的探究,瞭解獨立性檢驗的基本思想、方法及初步應用學習重點:對獨立性檢驗的基本思想的理解.學習難點:獨立性檢驗的基本思想的應用.二、學習過程:知識點詳解知識點一:分類變數對於性別變數,其取值為男和女兩種.這種變數的不同“值”表示個體所屬的不同類別,像這樣的變數稱為分類變數.知識點二:列聯表 為調查吸煙是否對患肺癌有影響,某腫瘤研究所隨機調查了9965人,得到如下結果(單位:人):吸煙與患肺癌列聯表不患肺癌 患肺癌 總計 不吸煙 7775 42 7817 吸煙 2099492148 總計9874 919965像上表這樣列出的兩個分類變數的頻數表,稱為列聯表. 知識點三:獨立性檢驗這種利用隨機變數K 2來確定在多大程度上可以認為“兩個分類變數有關係”的方法稱為兩個分類變數的獨立性檢驗.知識點四:判斷結論成立的可能性的步驟一般地,假設有兩個分類變數X 和Y ,它們的值域分別為{x 1,x 2}和{y 1,y 2},其樣5010015020025030035010203040温度产卵数本頻數列聯表(稱為2×2列聯表)為:2×2列聯表H1:“X與Y有關係”,可以按如下步驟判斷結論H1成立的可能性:(1)通過立體直條圖和二維橫條圖,可以粗略地判斷兩個分類變數是否有關係,但是這種判斷無法精確地給出所得結論的可靠程度.①在立體直條圖中,主對角線上兩個柱形高度的乘積xd與副對角線上的兩個柱形高度的乘積bc相差越大,H1成立的可能性就越大.②在二維橫條圖中,可以估計滿足條件X=x1的個體中具有Y=y1的個體所占的比例a a+b ,也可以估計滿足條件X=x2的個體中具有Y=y1的個體所占的比例cc+d.兩個比例的值相差越大,H1成立的可能性就越大.(2)可以利用獨立性檢驗來考察兩個分類變數是否有關係,並且能較精確地給出這種判斷的可靠程度.具體做法是:根據觀測資料計算由K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)給出的檢驗隨機變數K2的值k,其值越大,說明“X 與Y有關係”成立的可能性越大.當得到的觀測資料x,b,c,d都不小於5時,可以通過查說明:當觀測資料,,,中有小於5時,需採用很複雜的精確的檢驗方法.五、幾個典型例題:例1立體直條圖中柱的高度表示的是(A)A.各分類變數的頻數B.分類變數的百分比C.分類變數的樣本數D.分類變數的具體值例2則下列說法正確的是()X.xd-bc越小,說明X和Y關係越弱B.xd-bc越大,說明X和Y關係越強C.(xd-bc)2越大,說明X和Y關係越強D.(xd-bc)2越接近於0 ,說明X和Y關係越強例3研究人員選取170名青年男女大學生的樣本,對他們進行一種心理測驗,發現有60名女生對該心理測驗中的最後一個題目的反應是:作肯定的18名,不定的42名;男生110名在相同的項目上作肯定的有22名,否定的有88名.問:性別與態度之間是否存在某種關係?分別用圖形和獨立性檢驗的方法判斷.解:根據題目所給資料建立如下列聯表根據列聯表中的資料得到K 2=170×(22×42-18×88)110×60×40×130≈2.158<2.706因此沒有充分的證據顯示“性別與態度有關”.例4 打鼾不僅影響別人休息,而且可能與患某種病症有關.下表是一次調查所得的資K 2=1633×(30×1355-224×24)21379×254×54×1579=68.033.因為68.033>6.635,所以有99%的把握說,每一晚都打鼾與患心臟病有關課後練習與提高(1(2)試求出預報變數對解釋變數的回歸方程.(答案:所求非線性回歸方程為0.69 1.112ˆy =e x .)。
1.2独立性检验的基本思想及其初步应用
试用图形判断服用药和患病之间是否有关系?
解析:相应的等高条形图如下:
从图形可以看出,服用药的样本中患病的比例明显低于 没有服用药的样本中患病的比例,因此可以认为:服用药和 患病之间有关系.
独立性检验方法——K2公式
在调查的480名男士中有38名患有色盲,520名女 士中有6名患有色盲,能否在犯错误的概率不超过0.001的前 提下认为性别与患色盲有关系? 分析:
4.下面是一个2×2列联表: x1 x2 总计 y1 a 2 b y2 21 25 46 总计 73 27 100
则表中a、b的值分别为( C ) A.94、96 C.52、54 B.52、50 D.54、52
5.性别与身高列联表如下: 男 女 总计 高(165 cm以上) 37 6 43 矮(165 cm以下) 4 13 17 总计 41 19 60
作出2×2列联表 → 计算随机变量K2的值 → 对照临界值作出结论 解析:根据题目所给的数据作出如下的列联表:
色盲 不色盲 总计
男
女 总计
38
6 44
442
514 956
480
520 1 000
根据列联表中所给的数据可以得: a=38,b=442,c=6,d=514,a+b=480,c+d= 520,a+c=44,b+d=956,n=1 000.
3.独立性检验. 利用随机变量K2来判断“两个分类变量有关系”的方法 定义 称为独立性检验.
nad-bc2 公式 K2=_____________________ a+bc+da+cb+d ,其中n=______________. a+b+c+d
①根据实际问题的需要确定容许推断“两个分类变量有 临界值 k0 .② 关系”犯错误概率的上界α,然后查表确定 ________ k________ ≥k0 利用公式计算随机变量K2的 ________ , 观测值 k .③如果 具体 就推断“X与Y有关系”,这种推断犯错误的概率不超过 步骤 α;否则,就认为在犯错误的概率不超过α的前提下不能 推断“X与Y有关系”,或者在样本数据中没有发现足够 证据支持结论“X与Y有关系”.
高中数学《独立性检验的基本思想及其初步应用》导学案
第三章 统计案例3.2独立性检验的基本思想及其初步应用一、学习目标1、了解独立性检验的基本思想、方法及初步应用。
了解独立性检验的常用方法:等高条形图及2k 统计量法。
2、了解实际推断原理和假设检验的基本思想、方法及初步应用。
3、能运用自己所学知识对具体案例进行检验。
【重点、难点】重点:1、了解独立性检验的基本思想、方法及初步应用。
了解独立性检验的常用方法:等高条形图及2k 统计量法。
2、了解实际推断原理和假设检验的基本思想、方法及初步应用。
3、能运用自己所学知识对具体案例进行检验。
难点:1、实际推断原理和假设检验的基本思想、方法及初步应用。
2、解决独立性检验与其它知识(如概率)等的综合应用题。
二、学习过程 【导入新课】1.与列联表相关的概念(1)分类变量:变量的不同“___”表示个体所属的_________,像这样的变量称为分类变量. (2)列联表:①列出的_____分类变量的_______,称为列联表.②一般地,假设有两个分类变量X 和Y ,它们的取值分别为 {}{}2121,,y y x x 和其样本频数列联表(称为2×2列联表)为:2.等高条形图等高条形图与表格相比,图形更能直观地反映出两个分类变量间是否 _________,常用等高条形图展示列表数据的_________. 3.独立性检验的基本思想(1)定义:利用随机变量__来判断“两个分类变量_______”的方法称为独立性检验.(2)公式:=2k ____________________,其中=n ________.(3)独立性检验的具体做法:①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后k.查表确定_______k的_______k.②利用公式计算随机变量2③如果_____,就推断“X与Y有关系”,这种推断犯错误的概率不超过α;否则,就认为在_____________不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中_________________支持结论“X与Y有关系”.典型例题类型一利用等高条形图判断两个分类变量是否相关例1.下列关于等高条形图的叙述正确的是( )A.从等高条形图中可以精确地判断两个分类变量是否有关系B.从等高条形图中可以看出两个变量频数的相对大小C.从等高条形图可以粗略地看出两个分类变量是否有关系D.以上说法都不对例2、为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:病人与尿棕色素为阳性是否有关系?类型二独立性检验的基本思想例3、为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.能否在犯错误的概率不超过0.1的前提下,认为“学生选报文、理科与对外语的兴趣有关”?类型三独立性检验的综合应用例4、某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:变式拓展1、在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效?2、在一次重要会议上,为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.根据以上数据完成以下2×2列联表:会俄语不会俄语总计男女总计30并回答能否在犯错误的概率不超过0.10的前提下认为性别与会俄语有关?3、某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.三、学习反思1.判断两个分类变量是否有关系的两种常用方法(1)利用数形结合思想,借助等高条形图来判断两个分类变量是否相关是判断变量相关的常见方法.(2)一般地,在等高条形图中,b a a + 与 dc c+ 相差越大,两个分类变量有关系的可能性就越大.2、独立性检验的步骤:第一步,确定分类变量,获取样本频数,得到列联表.第二步,根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值0k .第三步,利用公式()()()()d b c a d c b a bc ad n k ++++-=22)( 计算随机变量2k 的观测值k .第四步,作出判断.如果0k k >,就推断“X 与Y 有关系”这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 的关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”.四、随堂检测1、某地区甲校高二年级有1 100人,乙校高二年级有900人,为了统计两个学校高二年级在学业水平考试中的数学学科成绩,采用分层抽样的方法在两校共抽取了200名学生的数学成绩,如下表:(已知本次测试合格线是50分,两校合格率均为100%) 甲校高二年级数学成绩:(1)计算x,y的值,并分别估计以上两所学校数学成绩的平均分(精确到1分).(2)若数学成绩不低于80分为优秀,低于80分为非优秀,根据以上统计数据写下面2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异?”。
独立性检验基本思想及应用
独立性检验基本思想及应用独立性检验是一种用于确定两个变量之间是否存在关联的统计方法。
其基本思想是通过比较观察到的数据与预期的数据之间的差异来推断这两个变量之间的关系。
独立性检验的应用非常广泛。
在社会科学中,独立性检验常被用于研究两个分类变量之间是否存在关联,例如性别和职业、教育水平和政治倾向等。
在医学研究中,独立性检验也可以用来检查某种治疗方法是否与疾病的发展有关,以及风险因素和某种疾病之间的关系。
此外,独立性检验还被广泛应用于市场调查、品牌定位以及质量控制等领域。
独立性检验的基本思想是建立一个零假设(H0)和一个备择假设(H1)。
零假设认为两个变量是独立的,即它们之间没有关联;备择假设则认为两个变量之间存在关联。
独立性检验的步骤可以分为以下几步:1. 收集数据:需要收集两个分类变量的数据,例如通过问卷调查或观察获得数据。
2. 建立列联表:将数据整理成列联表形式,列联表是一种用于描述两个或多个分类变量之间关系的矩阵。
表格的行表示一个变量的不同类别,列表示另一个变量的不同类别,表格中的每个单元格表示两个类别的交叉数量。
3. 计算期望频数:在独立性检验中,我们假设两个变量是独立的,因此可以基于各类别的边际总数以及样本总数来计算期望频数。
期望频数是在两个变量独立情况下,各个类别的交叉数量。
4. 计算卡方统计量:卡方统计量用于衡量观察到的数据与期望数据之间的差异程度。
计算公式为:χ2 = Σ((观察频数- 期望频数)^2 / 期望频数)。
其中,Σ表示对所有单元格进行求和。
5. 设定显著性水平:显著性水平α为决策的临界点,用于决定是否拒绝零假设。
通常,α的常见选择为0.05或0.01。
6. 判断和解释结果:根据计算出的卡方统计量与临界值进行比较,如果计算出的卡方值大于临界值,拒绝零假设,认为两个变量之间存在关联;反之,接受零假设,认为两个变量是独立的。
独立性检验的结果常常以卡方统计量和p值的形式呈现。
p值是在零假设成立的条件下,观察到的数据与期望数据之间差异的概率。
独立性检验的基本思想及其初步应用
§3.2独立性检验的基本思想及其初步应用学习目标 1.了解独立性检验的基本思想、方法及其简单应用.2.理解判断两个分类变量是否有关系的常用方法、独立性检验中K2的含义及其实施步骤(重、难点).知识点1两个分类变量之间关联关系的定性分析1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.这里的“变量”和“值”都应作为“广义”的变量和值进行理解,它们取的不一定是具体的数值.2.列联表列出的两个分类变量的频数表,称为列联表.假设两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(也称为2×2列联表)为:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+d3.两个分类变量之间关联关系的定性分析的方法(1)频率分析法:通过对样本的每个分类变量的不同类别事件发生的频率大小进行比较来分析分类变量之间是否有关联关系.通常通过列联表列出两个分类变量的频数表来进行分析.(2)图形分析法:与表格相比,图形更能直观地反映出两个分类变量间是否互相影响,常用等高条形图展示列联表数据的频率特征.【预习评价】(1)下面是一个2×2列联表:y1y2总计x1 a 2173x282533总计 b 46则表中a,b处的值分别为()A.94,96B.52,50C.52,60D.54,52(2)根据如图所示的等高条形图可知吸烟与患肺病关系(填“有”或“没有”).知识点2独立性检验1.定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.2.K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.3.独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.(2)利用公式计算随机变量K2的观测值k.(3)如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.【预习评价】(1)在吸烟与患肺病这两个分类变量是否相关的判断中,下列说法中正确的是()①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在在犯错误的概率不超过0.01前提下,认为吸烟与患肺病有关系时,我们说若某人吸烟,则他有99%的可能患有肺病;③从统计量中得知在犯错误的概率不超过0.05的前提下认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.A.①B.①③C.③D.②(2)某班主任对全班50名学生进行了作业量的调查,数据如下表:认为作业量大认为作业量不大总计男生18927女生81523总计262450则推断“学生的性别与认为作业量大有关”这种推断犯错误的概率不超过()A.0.01B.0.005C.0.025D.0.001题型一利用等高条形图判断两个分类变量是否有关系【例1】为考察某种药物预防疾病的效果进行动物试验,得到如下列联表:患病未患病总计服用药104555未服用药203050总计3075105试用等高条形图分析服用药和患病之间是否有关系.规律方法(1)本题采用数形结合法通过条形图直观地看出差异,得出结论. (2)应用等高条形图判断两变量是否相关的方法在等高条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例aa+b,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例cc+d.“两个比例的值相差越大,H1成立的可能性就越大.”【训练1】网络对现代人的生活影响较大,尤其是对青少年,为了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了1 000人调查,发现其中经常上网的有200人,这200人中有80人期末考试不及格,而另外800人中有120人不及格.利用图形判断学生经常上网与学习成绩有关吗?方向1 有关“相关的检验”【例2-1】某校对学生课外活动进行调查,结果整理成下表:用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?方向2有关“无关的检验”【例2-2】为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.分析学生选报文、理科与对外语的兴趣是否有关?规律方法(1)独立性检验的关注点在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0,因此|ad -bc|越小,关系越弱;|ad-bc|越大,关系越强.(2)独立性检验的具体做法①根据实际问题的需要确定允许推断“两个分类变量有关系”犯错误的概率的上界α,然后查表确定临界值k0.②利用公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)计算随机变量K2的观测值k.③如果k>k0,推断“X与Y有关系”这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够的证据支持结论“X与Y有关系”.【训练2】打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据:根据独立性检验,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系?题型三独立性检验的综合应用【例3】某高校共有学生15 000人,其中男生10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间(单位:时)的样本数据.(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图),其中样本数据的分组区间为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否认为“该校学生的每周平均体育运动时间与性别有关”.附:P(K2≥k0)0.1000.0500.0100.005k0 2.706 3.841 6.6357.879K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).规律方法(1)解答此类题目的关键在于正确利用K2=n(ad-bc)2计算k的值,再用它与临界值k0的大小作比(a+b)(c+d)(a+c)(b+d)较来判断假设检验是否成立,从而使问题得到解决.(2)此类题目规律性强,解题比较格式化,填表计算分析比较即可,要熟悉其计算流程,不难理解掌握.【训练3】某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分成绩优秀的人数如下表所示,能否在犯错误的概率不超过0.001的前提下认为数学成绩优秀与物理、化学、总分成绩优秀有关系?物理优秀化学优秀总分优秀数学优秀228225267数学非优秀14315699注:该年级在此次考试中数学成绩优秀的有360人,非优秀的有880人.课堂达标1.观察下列各图,其中两个分类变量x,y之间关系最强的是()2.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:偏爱蔬菜 偏爱肉类 总计50岁以下 4 8 12 50岁以上 16 2 18 总计201030则可以说其亲属的饮食习惯与年龄有关的把握为( ) A.90%B.95%C.99%D.99.9%3.为了判断高中学生的文理科选修是否与性别有关系,随机调查了50名学生,得到如下2×2列联表:理科 文科 男 13 10 女720已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =50×(13×20-10×7)223×27×20×30≈4.844.可认为选修文理科与性别有关系的可能性不低于 . 4.根据下表计算:不看电视 看电视 男 37 85 女35143K 2的观测值k ≈ (保留3位小数).5.在109个人身上试验某种药物预防感冒的作用,得到如下列联表:感冒 未感冒 总计 服用药1146 57 未服用药 213152总计3277109则有多大把握认为该药有效?课堂小结1.列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有关联关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有关联关系.2.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法.先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2值很大,说明假设不合理.K2越大,两个分类变量有关系的可能性越大.基础过关1.对两个分类变量A,B的下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据A.0B.1C.2D.32.高二第二学期期中考试,按照甲、乙两个班学生的数学成绩优秀和及格统计人数后,得到如下列联表:优秀及格总计甲班113445乙班83745总计197190则随机变量K2的观测值约为()A.0.600B.0.828C.2.712D.6.0043.考察棉花种子经过处理跟生病之间的关系得到下表数据:种子处理种子未处理总计根据以上数据,可得出()A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的4.2013年6月11日,中国的“神舟十号”发射成功,由此许多人认为中国进入了航天强国之列,也有许多人持反对意见,为此进行了调查.在参加调查的3 648名男性公民与3 432名女性公民中,持反对意见的男性有1 843人、女性有1 672人,在运用这些数据说明中国“神十”发射成功是否与中国进入航天强国有关系时,用下列最具说服力.①回归直线方程;②平均数与方差;③独立性检验.5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是(填序号).①没有充足的理由认为课外阅读量大与作文成绩优秀有关;②有0.5%的把握认为课外阅读量大与作文成绩优秀有关;③有99.9%的把握认为课外阅读量大与作文成绩优秀有关;④有99.5%的把握认为课外阅读量大与作文成绩优秀有关.6.在研究某种药物对“H1N1”病毒的治疗效果时,进行动物试验,得到以下数据,对150只动物服用药物,其中132只动物存活,18只动物死亡,对照组150只动物进行常规治疗,其中114只动物存活,36只动物死亡.(1)根据以上数据建立一个2×2列联表;(2)试问该种药物对治疗“H1N1”病毒是否有效?7.在一次恶劣天气的飞行航程中调查男女乘客在飞机上晕机的情况如下表所示,根据此资料是否能在犯错误的概率不超过0.05的前提下认为在恶劣天气飞行中男人比女人更容易晕机?能力提升8.利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅下表来确定“X与Y有关系”的可信程度.如果K2≥5.024,那么就有把握认为“X与Y有关系”的百分比为()A.25%B.75%C.2.5%D.97.5%9.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2表3表4A.成绩B.视力C.智商D.阅读量10.下表是关于男婴与女婴出生时间调查的列联表:那么,A=,B=,C=,D=,E=.11.在研究性别与吃零食这两个分类变量是否有关系时,下列说法中正确的是(填序号).①若K2的观测值k=6.635,则我们在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系,那么在100个吃零食的人中必有99人是女性;②由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,如果某人吃零食,那么此人是女性的可能性为99%;③由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.12.随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人的休闲方式是运动,而女性中只有13的人的休闲方式是运动. (1)完成下列2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动? 13.(选做题)某学校为了解该校高三年级学生在市一练考试的数学成绩情况,随机从该校高三文科与理科各抽取50名学生的数学成绩,作出频率分布直方图如图,规定考试成绩在[120,150]内为优秀.(1)由以上频率分布直方图填写下列2×2列联表.若按是否优秀来判断,是否有99%的把握认为该校的文理科数学成绩有差异.文科理科总计优秀非优秀总计5050100(2)某高校派出2名教授对该校随机抽取的学生成绩中一练数学成绩在140分以上的学生进行自主招生面试,每位教授至少面试一人,每位学生只能被一位教授面试.若甲教授面试的学生人数为ξ,求ξ的分布列和均值.。
高中数学《1.2 独立性检验的基本思想及其初步应用》导学案2 新人教A版选修1-2
独立性检验的基本思想及其初步应用通过探究“秃顶是否与患心脏病有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示患心脏病的秃顶比例比患其它病的秃顶比例高,让学生亲身体验独立性1416 复习1:统计量2K :复习2:独立性检验的必要性:二、新课导学 ※ 学习探究新知1:独立性检验的基本思想: 1、 独立性检验的必要性:探究任务:吸烟与患肺癌的关系第一步:提出假设检验问题 H 0:第二步:根据公式求2K 观测值k =(它越小,原假设“H 0:吸烟与患肺癌没有关系”成立的可能性越 ;它越大,备择假设“H 1: ” 成立的可能性越大.)第三步:查表得出结论※典型例题例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?小结:用独立性检验的思想解决问题:第一步:第二步:第三步:例2为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽k . 在多大程度上可以认为高中生的性别与是否由表中数据计算得到K的观察值 4.513数学课程之间有关系?为什么?※动手试试练1. 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况Array与生理健康有关”?三、总结提升※学习小结1. 独立性检验的原理:2. 独立性检验的步骤:※知识拓展. Array※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A. 若k=6.635,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有99个患肺病.B. 从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,可以说某人吸烟,那么他有99%的可能性患肺病.C. 若从统计量中求出有95%的把握认为吸烟与患肺病有关,是指有5%的可能性使推断出现错误.D. 以上三种说法都不对.2. 下面是一个22⨯列联表则表中a,b 的之分别是( )D. 54,52 3.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:则认为喜欢玩游戏与认为作业量多少有关系的把握大约为( )A. 99%B. 95%C. 90%D.无充分依据4. 在独立性检验中,当统计量2K 满足时,我们有99%的把握认为这两个分类变量有关系. 5. 在22⨯列联表中,统计量2K = . 为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表 能以97.5%的把握认为药物有效吗?为什么?。
导学案:独立性检验的基本思想及其初步应用
独立性检验的基本思想及其初步应用(2)
学习目标
通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用K2进行独立性检验.
学习重点:独立性检验的应用
学习过程
一.前置测评
(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据?。
(2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:
为了判断主修统计专业是否与性别有关系,根据表中的数据,得到
K2
2
50(1320107)
4.844
23272030
⨯⨯-⨯
=≈
⨯⨯⨯
,∵K2≥,
所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为。
附:临界值表(部分):
二.典型例题
例1 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:
间有关系?为什么?
例2、为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示。
根据所选择的193个病人的数据,能否作出药的效果与给药方式有关的结论?
谈一谈:结合例1和例2你如何理解独立性检验。
三、巩固练习:
某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?。
《独立性检验的基本思想及其初步应用(第1课时)》导学案
§1.2.1 独立性检验的基本思想及其初步应用1.通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的必要性;2.会根据22K.⨯列联表求统计量2重点:理解独立性检验的基本思想及实施步骤.难点:了解独立性检验的基本思想、了解随机变量的含义.【知识链接】(预习教材,找出疑惑之处)复习1:回归分析的方法、步骤,刻画模型拟合效果的方法(相关指数、残差分析)、步骤.【学习过程】※学习探究新知一:1.分类变量:.2.22⨯列联表:.试试:你能列举出几个分类变量吗?探究任务:吸烟与患肺癌的关系1.由列联表可粗略的看出:(1)不吸烟者有患肺癌;(2)不吸烟者有患肺癌.因此,直观上课的结论:.2.用三维柱柱图和二维条形图直观反映:(1)根据列联表的数据,作出三维柱形图:由上图可以直观地看出,吸烟与患肺癌.(2) 根据列联表的数据,作出二维条形图:由上图可以直观地看出,吸烟与患肺癌.根据列联表的数据,作出等高条形图:由上图可以直观地看出,吸烟与患肺癌.反思:(独立性检验的必要性)通过数据和图形,我们得到的直观印象是患肺癌有关.那是否有一定的把握认为“吸烟与患肺癌有关”呢?新知二:统计量2K吸烟与患肺癌列联表H:吸烟与患肺癌没关系,则在吸烟者和不吸烟者中患肺癌不患肺癌者的假设相应比例.因此,越小,说明吸烟与患肺癌之间关系;反之,.2K=※ 典型例题例1 吸烟与患肺癌列联表 求2K .※ 动手试试练1. 性别与喜欢数学课程列联表:求K .【学习反思】 ※ 学习小结1. 分类变量: .2. 22 列联表: .3. 统计量2K : .。
精品导学案:独立性检验的基本思想及其初步应用
精品导学案:1. 2 独立性检验的基本思想及其初步应用课前预习学案一、预习目标:能用所学的知识对实际问题进行回归分析,体会回归分析的实际价值与基本思想;了解判断刻画回归模型拟合好坏的方法――相关指数和残差分析。
二、预习内容1. 给出例3:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.温度/x C21 23 25 27 29 32 35 产卵数/y 个 71121 24 66115325(学生描述步骤,教师演示)2. 讨论:观察右图中的散点图,发现样本点并没有分布在某个带状区域内,即两个变量不呈线性相关关系,所以不能直接用线性回归方程来建立两个变量之间的关系.课内探究学案一、学习要求:通过对典型案例的探究,了解独立性检验的基本思想、方法及初步应用学习重点:对独立性检验的基本思想的理解.学习难点:独立性检验的基本思想的应用.二、学习过程:知识点详解知识点一:分类变量对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.知识点二:列联表为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机调查了9965人,得到如下结果(单位:人):吸烟与患肺癌列联表不患肺癌 患肺癌 总计 不吸烟 7775 42 7817 吸烟 2099 49 2148 总计9874919965像上表这样列出的两个分类变量的频数表,称为列联表. 知识点三:独立性检验这种利用随机变量K 2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.知识点四:判断结论成立的可能性的步骤一般地,假设有两个分类变量X 和Y ,它们的值域分别为{x 1,x 2}和{y 1,y 2},其样50100150200250300350010203040温度产卵数本频数列联表(称为2×2列联表)为:2×2列联表y1y2总计x1x b x+bx2c d c+d总计x+c b+d x+b+c+d 若要推断的论述为H1:“X与Y有关系”,可以按如下步骤判断结论H1成立的可能性:(1)通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度.①在三维柱形图中,主对角线上两个柱形高度的乘积xd与副对角线上的两个柱形高度的乘积bc相差越大,H1成立的可能性就越大.②在二维条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例a a+b ,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例cc+d.两个比例的值相差越大,H1成立的可能性就越大.(2)可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度.具体做法是:根据观测数据计算由K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)给出的检验随机变量K2的值k,其值越大,说明“X 与Y有关系”成立的可能性越大.当得到的观测数据x,b,c,d都不小于5时,可以通过查阅下表来确定断言“X与Y有关系”的可信程度.P(K2≥k)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 说明:当观测数据x,b,c,d中有小于5时,需采用很复杂的精确的检验方法.五、几个典型例题:例1 三维柱形图中柱的高度表示的是(A)A.各分类变量的频数B.分类变量的百分比C.分类变量的样本数D.分类变量的具体值例2 分类变量X和Y的列联表如下y1y2总计x1x b x+bx2c d c+d总计x+c b+d x+b+c+d 则下列说法正确的是(C)X.xd-bc越小,说明X和Y关系越弱B.xd-bc越大,说明X和Y关系越强C.(xd-bc)2越大,说明X和Y关系越强D.(xd-bc)2越接近于0 ,说明X和Y关系越强例3 研究人员选取170名青年男女大学生的样本,对他们进行一种心理测验,发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的18名,不定的42名;男生110名在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?分别用图形和独立性检验的方法判断.解:根据题目所给数据建立如下列联表性别 肯定 否定 总计 男生 22 88 110 女生 18 42 60 总计40130170根据列联表中的数据得到K 2=170×(22×42-18×88)2110×60×40×130≈2.158<2.706因此没有充分的证据显示“性别与态度有关”.例 4 打鼾不仅影响别人休息,而且可能与患某种病症有关.下表是一次调查所得的数据,试问:每一晚都打鼾与患心脏病有关吗?患心脏病 未患心脏病总计 每一晚都打鼾 30 224 254 不打鼾 24 1355 1379 总计5415791633解:根据列联表中数据,得到,K 2=1633×(30×1355-224×24)21379×254×54×1579=68.033.因为68.033>6.635,所以有99%的把握说,每一晚都打鼾与患心脏病有关课后练习与提高为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下:天数x /天 1 2 3 4 5 6繁殖个数y /个 612254995190(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;(2)试求出预报变量对解释变量的回归方程.(答案:所求非线性回归方程为0.69 1.112ˆy =e x .)。
独立性检验的基本思想及其初步应用(含答案)
3.2 独立性检验的基本思想及其初步应用1.下面是一个2×2列联表:则表中a 、b ( D ). A .94、96 B .52、50 C .52、60 D .54、52 2.下列关于等高条形图的叙述正确的是 ( C ). A .从等高条形图中可以精确地判断两个分类变量是否有关系 B .从等高条形图中可以看出两个变量频数的相对大小 C .从等高条形图可以粗略地看出两个分类变量是否有关系 D .以上说法都不对3.关于分类变量x 与y 的随机变量K 2的观测值k ,下列说法正确的是 ( B ).A .k 的值越大,“X 和Y 有关系”可信程度越小B .k 的值越小,“X 和Y 有关系”可信程度越小C .k 的值越接近于0,“X 和Y 无关”程度越小D .k 的值越大,“X 和Y 无关”程度越大4.若由一个2×2列联表中的数据计算得k =4.013,那么在犯错误的概率不超过__0.05______的前提下认为两个变量之间有关系.5.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (K 2≥3.841)中数据,得到k =50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性约为___0.05___.6.在二维条形图中,两个比值( )相差越大,要推断的论述成立的可能性就越大。
A .b a a +与dc c + B .d c a +与b a c + C . d a a +与c b c + D . d b a +与ca c + 7.下列关于2K 的说法中正确的是( C )A .2K 在任何相互独立问题中都可以用来检验有关还是无关B .2K 的值越大,两个事件的相关性就越大C .2K 是用来判断两个分类变量是否有关系的随机变量,只对两个分类变量适合D .2K 的观测值k 的计算公式为 ))()()(()(d b c a d c b a bc ad n k ++++-=8.在吸烟与患肺癌这两个分类变量的计算中,下列说法正确的是( C )。
独立性检验的基本思想及其初步应用(导学案)
1.2 独立性检验的基本思想及其初步应用【使用说明及学法指导】1、先精读教材P 10~ P 14内容,用红色笔进行勾画,再针对导学案的问题,二次阅读教材部分内容,并回答,时间为15分钟。
2、找出自己的疑惑和需要讨论的问题准备课上讨论和质疑。
3、必须记住的内容:独立性检验的基本思想和初步应用【学习目标】(1)了解独立性检验的基本思想和初步应用,能对两个分类变量是否有关做出明确的判断。
(2)明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。
(3)高效学习,通过对典型案例的探究,激发学习数学激情。
预习案一.预习自习1、对于性别变量,其取值为男和女两种。
这种变量的不同“值”表示个体所属的不同类别像这样的变量称为2、列出的两个分类变量的频数表,称为3、一般地,假设有两个分类变量X 和Y ,它们的可能取值分别为{21,x x }和{21,y y }, 其样本频数列联表如下:计算观测值K 2=其中n= )4. 利用随机变量K 2来确定是否能以给定把握认为“两个分类变量有关系”的方法,称为两个分类量的5、利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度的具体做法是(1) (2) (3)二、预习检测示范例题1、通过下表确定的临界值:于两个分类变X 和Y ,假设求K 2的观测值为先从上表到比 4.452小且最近的数为 3.841.它对应的概率为0.05.因此可算得1-0.05=0.95即可估计有95 %的可能认为变量X 和Y 有关.问题:1、若计算得到k ≈7.514,能够估计有 的把握认为变量X 和Y 有关。
例2\为调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果(单位:人)解法一:直观法。
吸烟的患病率为 ≈ 不吸烟的患病率为 ≈ 根据统计分析的思想,用频率估计概率可知,吸烟者与不吸烟者患病的可能性存在差异。
可以认为患病与吸烟问题:2、这种“差异”有多大把握认为“患病与吸烟有关呢?能够有一个评判的标准呢?我们可以通过以下的统计分析回答这个问题。
独立性检验的基本思想及初步应用教案
独立性检验的基本思想及初步应用一、教学目标1. 让学生理解独立性检验的基本思想,掌握独立性检验的步骤和应用。
2. 培养学生运用独立性检验解决实际问题的能力,提高学生的数据分析素养。
3. 引导学生运用数学软件或计算器进行独立性检验,培养学生的操作能力。
二、教学内容1. 独立性检验的基本思想(1)理解独立性检验的定义和作用。
(2)掌握独立性检验的基本步骤:提出假设、构造检验统计量、确定显著性水平、计算临界值、做出结论。
2. 独立性检验的初步应用(1)学会运用独立性检验解决实际问题,如判断两个分类变量是否独立。
(2)学会运用数学软件或计算器进行独立性检验,提高数据分析能力。
三、教学重点与难点1. 教学重点:(1)独立性检验的基本思想及步骤。
(2)独立性检验在实际问题中的应用。
(3)运用数学软件或计算器进行独立性检验。
2. 教学难点:(1)独立性检验步骤中构造检验统计量的方法。
(2)如何正确选择显著性水平。
四、教学方法与手段1. 教学方法:(1)讲授法:讲解独立性检验的基本思想和步骤。
(2)案例教学法:分析实际问题,引导学生运用独立性检验。
(3)实践操作法:让学生运用数学软件或计算器进行独立性检验。
2. 教学手段:(1)多媒体课件:展示独立性检验的基本思想和步骤。
(2)数学软件或计算器:让学生进行实际操作。
五、教学过程1. 导入新课:通过一个实际问题引入独立性检验的概念,激发学生的兴趣。
2. 讲解独立性检验的基本思想:讲解独立性检验的定义、作用和基本步骤,让学生理解独立性检验的基本思想。
3. 案例分析:分析一个实际问题,引导学生运用独立性检验,体会独立性检验在解决实际问题中的应用。
4. 实践操作:让学生运用数学软件或计算器进行独立性检验,培养学生的操作能力。
5. 总结与反思:总结本节课的主要内容,让学生巩固所学知识,并思考如何更好地运用独立性检验解决实际问题。
六、教学拓展1. 引导学生探讨独立性检验在实际应用中的局限性,如样本量对检验结果的影响。
独立性检验的基本思想及其初步应用
【解】 根据题目所给数据得如下 2×2 列联表:
(a c)(b d) n(a b)(c d)
课堂练习
1.下列关于等高条形图的叙述正确的是( ) A.从等高条形图中可以精确地判断两个分类变量是否有关系 B.从等高条形图中可以看出两个变量频数的相对大小 C.从等高条形图可以粗略地看出两个分类变量是否有关系 D.以上说法都不对 解析:选 C.在等高条形图中仅能粗略判断两个分类变量的关 系,故 A 错.在等高条形图中仅能找出频率,无法找出频数, 故 B 错.
有关概念:分类变量
对于性别变量,其取值为男和女两种,这种变量的 不同“值”表示个体所属的不同类别,像这样的变量称 为分类变量.如是否吸烟、是否患肺癌、宗教信仰、国 籍等等
在日常生活中,主要考虑分类变量之间是否有关系: 例如,吸烟是否与患肺癌有关系?等等.
“美图”欣赏
列联表 2×2 为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机 地调查了9965人,得到如下结果(单位:人)
查对临界值表,作出判断。(如果K2值很大,就断言 H0不成立,即认为“两个分类变量有关系”;如果很 小,则说明在样本数据中没有发现足够证据拒绝H0。)
例题解析:
例1. 在某医院,因为患心脏病而住院的665名男性病人中, 有214人秃顶;而另外772名不是因为患心脏病而住院的 男性病人中,有175人秃顶. 利用图形判断秃顶与患心脏 病是否有关系。能否在犯错误的概率不超过0.010的前 提下认为秃顶与患心脏病有关系?
9965(7775 49 42 2099)2
k
56.632.
7817 2148 9874 91
在H0成立的情况下,统计学家估算出如下的概率:
P(K 2 6.635) 0.01
高中《独立性检验的基本思想及其初步应用》数学教案
高中《独立性检验的基本思想及其初步应用》数学教案高中《独立性检验的基本思想及其初步应用》数学教案通过探究吸烟是否与患肺癌有关系引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性。
下面就和一起看看有关高中《独立性检验的基本思想及其初步应用》数学教案。
教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出秃顶与患心脏病有关的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步:由学生计算出的值;第四步:解释结果的含义.② 通过第2个问题,向学生强调样本只能代表相应总体,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算得到的观察值 . 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:①使得成立的前提是假设性别与是否喜欢数学课程之间没有关系.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为性别与喜欢数学课程之间有关系的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.不健康健康总计不优秀41626667优秀37296333三、课时小结:独立性检验的方法、原理、步骤四、巩固练习:某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为高中生学习状况与生理健康有关?五、课外作业课时练习六、板书设计。
高中数学《独立性检验的基本思想及其初步应用》教案 (2)
《独立性检验的基本思想及其初步应用》教学设计【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。
2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。
3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,数据处理的过程,提高学生数学核心素养中数据分析及处理的能力。
【教学重点】了解独立性检验的基本思想及实施步骤。
【教学难点】了解独立性检验的基本思想;了解随机变量2K的含义。
【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。
【教学方式】多媒体辅助,合作探究式教学。
【教学过程】一、情境引入,提出问题情境:1.5月31日是世界无烟日;2.观看新闻;[设计意图说明]1.好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一;2.视频的引入,目的在于增强学生数学核心素养中“用数学的眼光观察现实世界”的意识。
问题1、如何用数学知识来说明吸烟与患肺癌有关呢? 二、阅读教材,探究新知1.学生阅读教材,掌握分类变量和列联表的概念并完成随堂练习1。
随堂练习1.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到爱打篮球的学生的概率为53.请将下面的列联表补充完整:[设计意图说明]随堂练习1的目的在于检测学生的自学效果,考察学生能否独立建立列联表。
为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,为了得到如下结果:表1 吸烟与患肺癌列联表 单位:人问题1、吸烟与患肺癌有关系吗?由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________; ②在吸烟者中患肺癌的比例为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 2.1独立性检验的基本思想及其初步应用教学目标(1)通过对典型案例的探究,了解独立性检验(只要求22列联表)的基本思想、方法及初步应用;(2)经历由实际问题建立数学模型的过程,体会其基本方法。
教学重点:独立性检验的基本方法教学难点:基本思想的领会及方法应用教学过程一、问题情境5月31日是世界无烟日。
有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。
这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。
调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。
问题:根据这些数据能否断定“患肺癌与吸烟有关”?二、学生活动(1)引导学生将上述数据用下表(一)来表示:(即列联表)不患肺癌患肺癌总计不吸烟7775 42 7817吸烟2099 49 2148总计9874 91 9965(2)估计吸烟者与不吸烟者患肺癌的可能性差异:在不吸烟者中,有427817≈0.54%的人患肺癌;在吸烟的人中,有492148≈2.28%的人患肺癌。
问题:由上述结论能否得出患肺癌与吸烟有关?把握有多大?三、建构数学1、从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,借助样本数据的列联表,柱形图和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。
但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。
2、独立性检验:(1)假设H:患肺癌与吸烟没有关系。
即:“吸烟与患肺癌相互独立”。
用A表示不吸烟,B表示不患肺癌,则有P(AB)=P(A)P(B)若将表中“观测值”用字母代替,则得下表(二):患肺癌未患肺癌合计吸烟 a b b a + 不吸烟 cd d c + 合计c a +d b +d c b a +++学生活动:让学生利用上述字母来表示对应概率,并化简整理。
思考交流:||ad bc -越小,说明患肺癌与吸烟之间的关系越 (强、弱)?(2)构造随机变量22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)由此若0H 成立,即患肺癌与吸烟没有关系,则K 2的值应该很小。
把表中的数据代入计算得K 2的观测值k 约为56.632,统计学中有明确的结论,在0H 成立的情况下,随机事件P(K2≥6.635)≈0.01。
由此,我们有99%的把握认为0H 不成立,即有99%的把握认为“患肺癌与吸烟有关系”。
上面这种利用随机变量K 2来确定是否能以一定把握认为“两个分类变量有关系”的方法,称为两个分类变量的独立性检验。
说明:估计吸烟者与不吸烟者患肺癌的可能性差异是用频率估计概率,利用K 2进行独立性检验,可以对推断的正确性的概率作出估计,观测数据,,,a b c d 取值越大,效果越好。
在实际应用中,当,,,a b c d 均不小于5,近似的效果才可接受。
(2)这里所说的“患肺癌与吸烟有关系”是一种统计关系,这种关系是指“抽烟的人患肺癌的可能性(风险)更大”,而不是说“抽烟的人一定患肺癌”。
(3)在假设0H 成立的情况下,统计量K 2应该很小,如果由观测数据计算得到K 2的观测值很大,则在一定程度上说明假设不合理(即统计量K 2越大,“两个分类变量有关系”的可能性就越大)。
3、对于两个分类变量A 和B ,推断“A 和B 有关系”的方法和步骤为:①利用三维柱形图和二维条形图; ②独立性检验的一般步骤:第一步,提出假设0H :两个分类变量A 和B 没有关系; 第二步,根据2×2列联表和公式计算K 2统计量; 第三步,查对课本中临界值表,作出判断。
4、独立性检验与反证法:反证法原理:在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立; 独立性检验原理:在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就推断这个假设不成立。
四、数学运用例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果;第三步:由学生计算出2K的值;第四步:解释结果的含义.②通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.变式练习:课本P97练习【板书设计】:【作业布置】:课本P97习题3.2第1题3.2.1独立性检验的基本思想及其初步应用课前预习阅读教材P91-P95,了解相关概念,如:分类变量、列联表、独立性检验。
学习目标(1)通过对典型案例的探究,了解独立性检验(只要求22列联表)的基本思想、方法及初步应用;(2)经历由实际问题建立数学模型的过程,体会其基本方法。
学习重点:独立性检验的基本方法学习难点:基本思想的领会学习过程一、情境引入5月31日是世界无烟日。
有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手。
这些疾病与吸烟有关的结论是怎样得出的呢?我们看一下问题:某医疗机构为了了解肺癌与吸烟是否有关,进行了一次抽样调查,共调查了9965个人,其中吸烟者2148人,不吸烟者7817人。
调查结果是:吸烟的2148人中有49人患肺癌,2099人未患肺癌;不吸烟的7817人中有42人患肺癌,7775人未患肺癌。
问题:根据这些数据能否断定“患肺癌与吸烟有关”?二、学生活动【自主学习】(1)将上述数据用下表(一)来表示:不患肺癌患肺癌总计不吸烟吸烟总计(2)估计吸烟者与不吸烟者患肺癌的可能性差异:在不吸烟者中患肺癌的人约占多大比例?;在吸烟的人中患肺癌的人约占多大比例? 。
问题:由上述结论能否得出患肺癌与吸烟有关?把握有多大? 【合作探究】1、观察、分析样本数据的列联表和柱形图、条形图,你能得出什么结论?2、该结论能否推广到总体呢?3、假设0H :患肺癌与吸烟没有关系。
则两事件发生的概率有何关系?不患肺癌患肺癌 总计 不吸烟 a b a+b 吸烟 c d c+d 总计 a+cb+da+b+c+d何结论?4、构造随机变量22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++),结合3中结论,若0H 成立,则K 2应该很 (大、小)根据表(一)中的数据,利用4中公式,计算出K 2的观测值,该值说明什么?(统计学中有明确的结论,在0H 成立的情况下,P(K 2≥6.635)≈0.01。
)5、结合表(二)和三维柱形图、二维条形图如何判断两个分类变量是否有关系?利用独立性检验呢?二者谁更精确? 【当堂检测】在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?学校:二中 学科:数学 编写人: 游恒涛 审稿人:马英济3.2.2独立性检验的基本思想及其初步应用教学目标通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用K 2进行独立性检验.教学重点:独立性检验的基本方法 教学难点:基本思想的领会及方法应用 教学过程 一.学生活动练习:(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据?女教授人数,男教授人数,女副教授人数,男副教授人数。
(2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:为了判断主修统计专业是否与性别有关系,根据表中的数据,得到 K 2250(1320107) 4.84423272030⨯⨯-⨯=≈⨯⨯⨯,∵K 2 3.841≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为 .(答案:5%)P (K 2≥k 0)0.10 0.05 0.025 0.010 k 02.7063.8415.0246.635二.数学运用例1 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表: 喜欢数学课程 不喜欢数学课程 总 计 男 37 85 122 女 35 143 178 总 计72228300由表中数据计算得到K 的观察值 4.514k ≈. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么? (学生自练,教师总结)强调:①使得2( 3.841)0.05P K ≥≈成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确; ②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.例2、为研究不同的给药方式(口服或注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,调查结果如表所示。
根据所选择的193个病人的数据,能否作出药的效果与给药方式有关的结论?专业性别非统计专业 统计专业男13 10 女7 20有效无效合计口服58 40 98 注射64 31 95合计122 71 193分析:在口服的病人中,有5859%98≈的人有效;在注射的病人中,有6467%95≈的人有效。
从直观上来看,口服与注射的病人的用药效果的有效率有一定的差异,能否认为用药效果与用药方式一定有关呢?下面用独立性检验的方法加以说明。
说明:如果观测值K2≤2.706,那么就认为没有充分的证据显示“A与B有关系”,但也不能作出结论“H成立”,即A与B没有关系小结:独立性检验的方法、原理、步骤三、巩固练习:某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?不健康健康总计不优秀41 626 667优秀37 296 333总计78 922 10003.2.2独立性检验的基本思想及其初步应用学习目标通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用K 2进行独立性检验.学习重点:独立性检验的应用 学习过程 一.前置测评(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据? 。