误差理论与测量平差基础习题1
误差理论和测量平差5道经典习题
误差理论和测量平差5道经典习题1、以下对于随机变量的描述,正确的是:A. 其数值的符号和大小均是偶然的B. 其数值的符号和大小均是随机的C. 数值的符号和大小均是无规律的D. 随机变量就其总体来说具有一定的统计规律2、以下关于偶然误差的描述正确的是:A. 在一定的观测条件下,误差的绝对值有一定的限值;B. 绝对值较小的误差比绝对值较大的误差出现的概率大;C. 绝对值相等的正负误差出现概率相同;D. 偶然误差的数学期望为零3、下列关于偶然误差的特性描述正确的是:A 绝对值小的误差比绝对值大的误差出现的概率小B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度D 误差的符号只与观测条件有关4、下列观测中,哪些是具有“多余观测”的观测活动A 对平面三角形的三个内角各观测一测回,以确定三角形形状B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状C 对两边长各测量一次D 三角高程测量中对水平边和垂直角都进行一次观测第四次作业:1、求随机变量σμ-=x t 的期望和方差2、设随机变量X~N (0,9),求随机变量函数Y=5X 2的均值3、为了鉴定经纬仪的精度,对已知精确测定的水平角α=45°00′00″作12次观测,结果为:45°00′06″ 44°59′55″ 44°59′58″ 45°00′04″ 45°00′03″ 45°00′04″ 45°00′00″ 44°59′58″ 44°59′59″ 44°59′59″ 45°00′06″ 45°00′03″设α没有误差,试求观测值的中误差。
1、对真值为L ~=100.010m 的一段距离以相同的方法进行了10次独立的观测,得到的观测值见下表,试求该组观测值的系统误差、中误差、均方误差。
误差理论与测量平差基础试题
误差理论与测量平差基础试题平差练习题及题解第一章1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)尺不水平;系统误差,符号为“-”。
(3)估读小数不准确;偶然误差,符号为“+”或“-”。
(4)尺垂曲;系统误差,符号为“-”。
(5)尺端偏离直线方向。
系统误差,符号为“-”。
第二章2.6.17 设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差?1、?2^^^^^和中^?1、?2,并比较两组观测值的精度。
^^解:?1=2.4,?2=2.4,?1=2.7,?2=3.6。
两组观测值的平均误差相同,而中误差不同。
由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。
本题中?1<?2,因此,第一组观测值的精度高。
^^第三章3.2.14 已知观测值向量L1、L2和L3及其协方差阵为n1n2n3D11 D12 D13 D21 D22 D23 D31D32 D ,现组成函数:X=AL1+A0,Y=BL2+B0,Z=CL3+C0,式中A、B、C为系数阵,A0、B0、C0为常数阵。
令W=[X Y Z],试求协方差阵DWW 解答:XX DXY DXZ 11A AD12B AD13CDWW = DYX DYY DYZ = BD21A BD22B BD23CZX DZY D 31A CD32B CD33C3.2.19 由已知点A(无误差)引出支点P,如图3-3所示。
其中误差为?0,?0为起算方位角,观测角β和边长S的中误差分别为??和?S,试求P点坐标X、Y的协方差阵。
TTTTTTTTTT图3-1解答:令P点坐标X、Y的协方差阵为2 ?xyx2xy ?2???XAP2222?02 式中:?x=()?S+?YAP-2+?YAP2 ?S?22???YAP2222?02)?S+?XAP-2+?XAP2 ?y=(?S?2???XAP?YAP?022)?S-?XAP?YAP2-?XAPYAP2 ?xy=(2?S?2?xy=?yx3.5.62 设有函数F=f1x+f2y,其中x??1L1??2L2????nLn,y??1L1??2L2????nLn,?i,?i(i?1,2,?n)为无误差的常数,而L1,L2?Ln的权分别为P1,P2?Pn,试求函数F的权倒数1。
误差理论与测量平差基础试卷一及答案
误差理论与测量平差基础 试卷一及答案一、填空题(30分)1、测量误差定义为 ,按其性质可分为 、 和 。
经典测量平差主要研究的是 误差。
2、偶然误差服从 分布,它的概率特性为 、 和 。
仅含偶然误差的观测值线性函数服从 分布。
3、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C4、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。
5、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2σ= mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XX D6、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数进行平差,应该利用的平差模型是 ,则方程个数为 , 二、判断题(10分)1、通过平差可以消除误差,从而消除观测值之间的矛盾。
( × )2、观测值iL 与其偶然真误差i∆必定等精度。
(√)3、测量条件相同,观测值的精度相同,它们的中误差、真误差也相同。
( × )4、或然误差为最或然值与观测值之差。
( × )5、若X 、Y 向量的维数相同,则YX XY Q Q =。
( × ) 三 选择题(10分)1、已知)180(3ˆ -++=-=C B A W W A A ,m m m m C B A ===,m m W3=,则A m ˆ=A。
A 、m 32B 、m 32C 、m 32 D 、m 23 2、已知观测值L 的中误差为L m ,L x 2=,2L y =,则xy m = A 。
A 、24L LmB 、L Lm 4C 、22L Lm D 、L Lm 23、条件平差中,已知⎥⎦⎤⎢⎣⎡=8224W Q ,2±=μ,则±=1k m A 。
误差理论与测量平差基础习题集
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差基础习题
《误差理论与测量平差基础》课程试卷《误差理论与测量平差基础》课程试卷答案武 汉 大 学2007年攻读硕士学位研究生入学考试试题考试科目:测量平差 科目代码: 844注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
可使用计算器。
一、填空题(本题共40分,共8个空格,每个空格5分)1.在图1所示水准路线中,A 、B 为已知点,为求C 点高程,观测了高差1h 、2h ,其观测中误差分别为1σ、2σ。
已知1212σσ=,取单位权中误差02σσ=。
要求平差后P 点高程中误差2C mm σ≤, 则应要求1σ≤ ① 、2σ≤ ② 。
2.已知观测值向量1,13,12,1X Z Y ⎡⎤⎢⎥=⎢⎥⎣⎦的协方差阵310121013ZZD -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,12,12Y Y Y ⎡⎤=⎢⎥⎣⎦,若设权11Y P =,则权阵XX P = ③ ,YY P = ④ ,协因数阵12Y Y Q = ⑤ ,1Y X Q = ⑥ 。
3.已知平差后某待定点P 的坐标的协因数和互协因数为PX Q ˆ、PY Q ˆ和PP Y X Q ˆˆ,则当PPY X Q Q ˆˆ=,0ˆˆ<PP Y X Q 时,P 点位差的极大方向值=E ϕ ⑦ ,极小方向值=F ϕ ⑧ 。
二、问答题(本题共45分,共3小题,每小题15分)1.在图2所示三角形中,A 、B 为已知点,C 为待定点,同精度观测了1234,,,L L L L测量平差 共3页 第1页共4个方位角,1S 和2S 为边长观测值,若按条件平差法平差:(1)应列多少个条件方程;(2)试列出全部条件方程(不必线性化)。
2.在上题中,若设BAC ∠、ABC ∠和ACB ∠为 参数1X 、2X 、3X ,(1)应采用何种函数模型平差;(2)列出平差所需的全部方程(不必线性化)。
3. 对某控制网进行了两期观测。
由第一期观测值得到的法方程为111111ˆT T B PB X B PL =,由第二期观测值得到的法方程为222222ˆT T B P B X B P L =。
误差理论与测量平差习题01
误差理论与测量平差习题编写葛永慧付培义胡海峰太原理工大学测绘科学与技术系第一章 绪论习题..................................................... 2 第二章 平差数学模型与最小二乘原理习题............................... 3 第三章 条件平差习题................................................. 4 第四章 间接平差习题................................................. 7 第五章附有限制条件的条件平差习题.................................... 2 第六章 误差椭圆习题................................................. 4 第七章 误差分布与平差参数的统计假设检验习题......................... 6 第八章 近代平差理论习题 (7)第一章 绪论习题1.1 举出系统误差和偶然误差的例子各5个。
1.2 已知独立观测值1L 、2L 的中误差分别为1m 、2m ,求下列函数的中误差:(1) 2132L L x -=; (2)212132L L L x -=; (3))cos(sin 211L L L x +=1.3 已知观测值L 及其协方差阵LL D ,组成函数AL X =和BX Y =,A 、B 为常数阵,求协方差阵XL D 、YL D 和XY D 。
1.4 若要在两坚强点间布设一条附合水准路线,已知每公里观测中误差等于mm 0.5±,欲使平差后线路中点高程中误差不大于mm 0.10±,问该路线长度最多可达几公里? 1.5 有一角度测20测回,得中误差24.0''±,问再增加多少测回,其中误差为82.0''±? 1.6 设对某量进行了n 次独立观测,得观测值i L ,权为),,2,1(n i p i =,试求加权平均值[][]p pL x =的权x p 。
误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年
误差理论与测量平差基础_河南理工大学中国大学mooc课后章节答案期末考试题库2023年1.参数平差中,当观测值之间相互独立时,若某一误差方程式中不含有未知参数,但自由项不为0,则此误差方程式对组成法方程不起作用。
( )参考答案:正确2.某测角网的网形为中点多边形,其中共有5个三角形,实测水平角15个进行间接平差,则下列选项正确的是( )。
参考答案:误差方程的个数为15个_待求量的个数为5个3.间接平差中测方向三角网函数模型中,网中所有测站均存在一个定向角平差值参数,其系数为( )。
参考答案:-14.某平差问题有12个同精度观测值,必要观测数为t=6,现选取2个独立的参数参与平差,应列出( )个条件方程。
参考答案:85.在附有参数的条件平差中,法方程的个数为C个。
参考答案:错误6.观测值与最佳估值之差为观测值的真误差。
参考答案:错误7.通过平差可以消除误差,从而消除观测值之间的矛盾。
参考答案:错误8.在附有参数的条件平差法中,任何一个量的平差值都可以表达成( )的函数。
参考答案:观测量平差值和参数平差值9.单位权方差估值与具体采用的平差方法相关。
参考答案:错误10.测量成果精度主要包括观测值的实际精度、观测值经平差得到的观测值函数的精度两个方面。
参考答案:正确11.条件方程类型包括图形条件、极条件、边条件、方位角条件、基线条件等。
参考答案:正确12.极条件方程是以某点为极,列出各图形边长比的和为1。
参考答案:错误13.水准网的条件方程式为符合水准路线。
参考答案:错误14.为了确定一个几何模型,并不需要知道该模型中所有元素的大小,而只需要知道其中部分元素的大小就行了。
参考答案:正确15.必要元素的个数t与几何模型和实际观测量有关。
参考答案:错误16.平差的最终目的都是对参数和观测量作出某种估计,并评定其精度。
参考答案:正确17.间接平差的函数模型中的未知量是t个独立参数,多余观测数会随平差方法不同而异。
太原理工大学矿业工程学院误差理论与测量平差基础练习题讲解
误差理论与测量平差》课程自测题(1) 一、 正误判断。
正确“ T ”,错误“ F ”。
( 30分)1. 在测角中正倒镜观测是为了消除偶然误差()。
2. 在水准测量中估读尾数不准确产生的误差是系统误差()。
( )。
4. 观测值与最佳估值之差为真误差( )。
5.系统误差可用平差的方法进行减弱或消除( )。
6.权一定与中误差的平方成反比( )。
7.间接平差与条件平差一定可以相互转换( )。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差( )。
9. 对同一量的 N 次不等精度观测值的加权平均值与用条件平差所得的结果一定相同)。
10. 无论是用间接平差还是条件平差, 对于特定的平差问题法方程阶数一定等于必要观测数( )。
11. 对于特定的平面控制网, 如果按条件平差法解算, 则条件式的个数是一定的, 形式是多 样的( )。
12•观测值L 的协因数阵 Q L 的主对角线元素 Q 不一定表示观测值 L 的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14•定权时(T 0可任意给定,它仅起比例常数的作用( )。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
用“相等”或“相同”或“不等”填空( 8分)。
300.158m ± 3.5cm;)。
25 分)。
1, 则长为D 的直线之丈量结果的权 f=( )。
22 2/d 23. 如果随机变量 X 和Y 服从联合正态分布,且X 与Y 的协方差为0,则X 与Y 相互独立 已知两段距离的长度及其中误差为600.686m ±3.5cm 。
则:1 •这两段距离的中误差()。
2.这两段距离的误差的最大限差(3 •它们的精度()。
4 •它们的相对精度( )。
三、 选择填空。
只选择一个正确答案(1 •取一长为 d 的直线之丈量结果的权为a ) d/Db ) D/d 22c )d 2/D 2 d ) D2.有一角度测20测回,得中误差土0.42秒,如果要使其中误差为土0.28秒,则还需增加的测回数N= ( )oa) 25b) 20c) 45d) 53.某平面控制网中一点P,其协因数阵为:Q Q xy] ■ 0.5 —0.25]Q XX = =[Q yx Q yy_ >0.25 0.5 一2单位权方差Co =± 2.0。
误差理论与测量平差习题集
误差理论与测量平差习题集第一章思考题1.1观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2观测误差分成哪几类?它们各自就是怎样定义的?对观测结果存有什么影响?先行举例说明。
1.3用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不水平;(3)估读小数不精确;(4)尺垂曲;(5)尺端偏离直线方向。
1.4在水准了中,存有以下几种情况并使水准尺读书存有误差,先行推论误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下陷;(3)读数不精确;(4)水准尺下陷。
1.5何谓多余观测?测量中为什么要进行多余观测?答案:1.3(1)系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4(1)系统误差,当i角为正时,符号为“-”;当i角为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”第二章思考题2.1为了鉴别经纬仪的精度,对未知准确测量的水平角??450000作12次同精度观测,'\结果为:4500'06\4500'03\'\455959'\4559554500'04\'\455959'\4559584500'00\4500'06\4500'04\'\4559584500'03\设a没误差,试求观测值的中误差。
2.2已知两段距离的长度及中误差分别为300.465m±4.5cm及660.894m±4.5cm,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3设立对某量展开了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1、??和中误差??2,并比较两组观测值的精度。
误差理论与测量平差基础习题1
为边长观测值,若按条件图27BC α654321D CBA 武汉大学 测绘学院误差理论与测量平差基础 课程试卷(A 卷)出题者:黄加纳 审核人:邱卫宁一.已知观测值向量的协方差阵为,又知协因数,试求观测值的权阵及观测值的权和。
(10分)二.在相同观测条件下观测A 、B 两个角度,设对观测4测回的权为1,则对观测9个测回的权为多少?(10分)三.在图一所示测角网中,A 、B 为已知点,为已知方位角,C 、D 为待定点,为同精度独立观测值。
若按条件平差法对该网进行平差:(1).共有多少个条件方程?各类条件方程各有多少个?(2).试列出全部条件方程(非线性条件方程要求线性化)。
(15分)图一四.某平差问题有以下函数模型21L ⎥⎦⎤⎢⎣⎡--=3112LL D 5112-=Q LL P 1L P 2L P A ∠B ∠BC α721,,,L L L )(I Q =⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0ˆ03060515443121x v v v v v v v v57624312P 2(1.732,3.000P 1(1.732,1.000A(0,0)B(0,2)Ah 5h 4h 1h 3h 2C DB 试问:(1).以上函数模型为何种平差方法的模型?(2).本题中, , , , , , 。
(10分)五.在图二所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标值(见图二,以“km ”为单位),以及,,,,为同精度观测值,其中。
若按坐标平差法对该网进行平差,试列出观测角的误差方程(设,、图二 以dm 为单位)。
(10分)六.有水准网如图三所示,网中A 、B 为已知点,C 、D 为待定点,为高差观测值,设各线路等长。
已知平差后算得,试求平差后C 、D两点间高差的权及中误差。
(10分)=n =t =r =c =u =s 0000330001'''=BP α000030002'''=BP αkm S BP 0.201=km S BP 0.202=721,,,L L L 65955906'''=L 6L 5102⨯=ρxˆyˆ51~h h )(482mm V V T =5ˆhABP 2h 5h 4h 1h 3h 2P 17654321PCBA图三七.在间接平差中,参数与平差值是否相关?试证明之。
误差理论与测量平差基础习题集1
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论和测量平差试卷及答案6套 试题+答案
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
误差理论和测量平差习题集(含答案)
误差理论和测量平差习题集(含答案)1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪⼏类?它们各⾃是怎样定义的?对观测结果有什么影响?试举例说明。
1.3⽤钢尺丈量距离,有下列⼏种情况使得结果产⽣误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不⽔平;(3)估读⼩数不准确;(4)尺垂曲;(5)尺端偏离直线⽅向。
1.4 在⽔准了中,有下列⼏种情况使⽔准尺读书有误差,试判断误差的性质及符号:(1)视准轴与⽔准轴不平⾏;(2)仪器下沉;(3)读数不准确;(4)⽔准尺下沉。
1.5 何谓多余观测?测量中为什么要进⾏多余观测?答案:1.3 (1)系统误差。
当尺长⼤于标准尺长时,观测值⼩,符号为“+”;当尺长⼩于标准尺长时,观测值⼤,符号为“-”。
(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i⾓为正时,符号为“-”;当i⾓为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的⽔平⾓'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。
2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进⾏了两组观测,他们的真误差分别为:第⼀组:3,-3,2,4,-2,-1,0,-4,3,-2 第⼆组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1?θ、2θ和中误差1?σ、2?σ,并⽐较两组观测值的精度。
《误差理论与测量平差基础》考试试卷(含参考答案)
《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。
2.偶然误差服从分布,其图形越陡峭,则方差越。
3.独立观测值L1和L2的协方差为。
4.条件平差的多余观测数为减去。
5.间接平差的未知参数协因数阵由计算得到。
6.观测值的权与精度成关系,权越大,则中误差越。
7. 中点多边形有 个极条件和 个圆周条件。
8. 列立测边网的条件式时,需要确定与边长改正数的关系式。
9. 秩亏水准网的秩亏数为个。
三、问答题1.写出协方差传播律的应用步骤。
2.由最小二乘原理估计的参数具有哪些性质?3.条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4.如何利用误差椭圆求待定点与已知点之间的边长中误差?5.为什么在方向观测值的误差方程式里面有测站定向角参数?6.秩亏测角网的秩亏数是多少?为什么?7.什么是测量的双观测值?举2个例子说明。
8.方向观测值的误差方程式有何特点?四、综合题1.下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为,试求X 的中误差:(1) ,(2) 。
2.如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求:(1)全部条件式;σ321)(21L L L X ++=321L L L X =(2)平差后P2点高程的权函数式。
3.如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标、为参数,按间接平差方法,试求:(1)列出误差方程式;(2)按矩阵符号写出法方程及求解参数平差值的公式;(3)平差后AP 边长的权函数式。
4.在条件平差中,,试证明估计量为其真值的无偏估计。
(提示:,须证明)5. 在某测边网中,设待定点P 的坐标为未知参数,即 ,平差后得到的协因数阵为 ,且单位权中误差为,求: (1)P 点的纵横坐标中误差和点位中误差;(2)P 点误差椭圆三要素 、、。
误差理论与测量平差试题+答案
《误差理论与测量平差》(1)1.正误判断。
正确“T”,错误“F”。
(30分)2.在测角中正倒镜观测是为了消除偶然误差()。
3.在水准测量中估读尾数不准确产生的误差是系统误差()。
4.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
5.观测值与最佳估值之差为真误差()。
6.系统误差可用平差的方法进行减弱或消除()。
7.权一定与中误差的平方成反比()。
8.间接平差与条件平差一定可以相互转换()。
9.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
10.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
11.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
12.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
13.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
14.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
15.定权时σ0可任意给定,它仅起比例常数的作用()。
16.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
17.用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
18. 选择填空。
只选择一个正确答案(25分)。
1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
误差理论与测量平差期末试卷及答案(1)
《误差理论与测量平差》期末试卷(1)班级____________学号____________________姓名____________题号一二三四五六总分成绩一、填空题(每题3分,共计30分)1.观测误差的来源主要有测量仪器、观测者、外界环境三个方面。
2.根据观测误差对观测结果的影响性质,可将观测误差分为系统误差、偶然误差和粗差。
3.在测量平差中,常用的衡量精度的指标主要有中误差、相对误差和限差。
4.在1:1000的地形图上,量得a、b 两点间的距离d=40.6mm,量测中误差为d σ=0.2mm,则该两点间的实际距离中误差为200mm 。
5.在测量中权为1的观测值称为单位权观测值,与之对应的中误差称为单位权中误差。
6.间接平差中,未知参数X 的选取要求满足相互独立和参数个数等于必要观测个数。
7.在条件平差中,已知观测总量n=7,其中t=3,r=4,则条件方程的个数为4。
8.已知观测值L 的方差D LL =4,单位权中误差为2,则该观测值的权为P L =1。
9.不论在条件平差还是间接平差中,单位权中误差的计算公式都为0ˆσ=t n PV V T -=0σ。
10.若某待定点P 两个相互垂直方向上的坐标方差为2x σ、2y σ,则该点的点位中误差P σ=22y x P σσσ+=。
二、简答题:(每题5分,共25分)1、什么叫测量误差?产生测量误差的原因有哪些?答:(1)对某量进行多次观测,所得的各次观测结果都存在差异,通常将每次测量所得的观测值与该量的真值之间的差值称为测量误差,即测量误差=真值-观测值。
(2)产生测量误差的原因主要有:观测仪器,观测者和外界环境。
2、系统误差、偶然误差各自的特性?并举例说明。
答:系统误差指在相同的观测条件下作一系列的观测时,大小和符号表现出系统性,或按一定规律变化,或者为某一常数的误差,其具有累积性,如水准尺的刻画不准确、水准仪的视准轴误差、温度对钢尺量距的误差、尺长误差等;偶然误差指在相同的观测条件下作一系列的观测时,从单个误差看,该列误差的大小和符号表现出偶然性,无规律,但就大量误差的总体而言,具有一定的统计规律,主要表现为有界性、对称性,单峰性和抵偿性,如对中整平误差、照准目标误差、读数时估读误差等。
误差理论与测量平差习题课
误差理论与测量平差习题课⼀.填空题1、有⼀段距离,其观测值及其中误差为mm m 25400± ,该观测值的相对中误差K 为。
2、已知独⽴观测值[]T L L L 211,2=的⽅差阵??=8004LL D ,单位权⽅差420=σ,则其权阵LL P 为。
3、测量平差的任务:求观测值的及其评定观测值及平差值的精度。
4、设有某个物理量同精度观测了n 次,得),,2,1(n i L i =,若每次观测的精度为σ,权为p ,则其算术平均值L 的权为。
5、已知某三⾓⽹中P 点坐标的协因数阵为))/((60.125.025.010.222??"?=cm Q X X ,单位权⽅差的估值为220)(0.1?"=σ,位差的极⼤值⽅向E ?为。
6、观测误差按其性质可分为、和粗差。
经典测量平差主要研究的是。
7、已知某平差问题,观测值个数为30个,必要观测量个数为20个,若选20个独⽴参数进⾏平差,应该利⽤的平差模型是,则⽅程个数为8、有⼀段距离,其观测值及其中误差为,该观测值的相对中误差为。
9、已知独⽴观测值[]TL L L 211,2=的⽅差阵160064LL D ??=,单位权⽅差1620=σ,则其权阵LL P 为。
10、某⾓以每测回中误差为"±1的精度测量了9次,其平均值的权为1,则单位权中误差为。
11、设有观测向量[]TL L L X 321=,其协⽅差阵为----=1630302024XXD 。
则观测值3L 关于2L 协⽅差32σ是。
12、已知某三⾓⽹中P 点坐标的协因数阵为))/((60.125.025.010.222??"?--=cm Q X X ,单位权⽅差的估值为220)(0.1?"=σ,位差的极⼩值⽅向F ?为。
13、某平差问题的必要观测数为t ,多余观测数为r ,独⽴的参数个数为u 。
若u=t ,则平差的函数模型为。
若,则平差的函数模型为附有参数的条件平差。
误差理论与测量平差基础习题集1
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差(专升本)阶段性作业1
误差理论与测量平差(专升本)阶段性作业1试卷总分:100分单选题1. 有一角度测了18个测回,测得中误差为,若要使中误差为,还需增加的测回数为_______(4分)(A) 18(B) 30(C) 42(D) 36参考答案:B2. 若确定一个三角形的形状和大小,必须观测的边数为_____(4分)(A) 2(B) 3(C) 4(D) 5参考答案:B3. 设;,又设函数,则为_____(4分)(A) 9(B) 16(C) 36(D) 144参考答案:C4. 某三角形中,角AB的中误差分别为,,则C角的中误差为_____(4分)(A)(B)(C)(D)参考答案:C5. 在水准测量中,设每站观测高差的中误差均为1cm,今要求从已知点上推算待定点的高程中误差不大于5cm,问最多可以设_____站?(4分)(A) 5(B) 15(C) 25(D) 125参考答案:C6. 若观测向量的权阵为,则观测值的权为_____(4分)(A) 4(B) 5(C)(D)参考答案:A7. 设在一个三角网中,同精度独立观测得到三个内角L 1、L2、L3,其中误差为,则平差值和的协方差为_____(4分)(A)(B)(C)(D)参考答案:B8. 有一方位角,观测了4个测回,其平均值的中误差为,则一个测回的中误差为___(4分)(A) 6(B) 12(C) 3(D) 24参考答案:B9. 在1:500的地图上,量得某两点间的距离,的量测中误差,则两点实地距离为S及其中误差分别为_____(4分)(A) 11.7m,0.75m(B) 117m,75mm(C) 11.7m,75mm(D) 117m,0.75m参考答案:A10. 设有观测向量,其协方差阵为,则函数的方差为_ ____(4分)(A) 17(B) 39(C) 21(D) 51参考答案:B11. 已知独立观测值L 1、L2的中误差为,则的中误差为_____。
(4分)(A)(B)(C)(D)参考答案:C12. 从性质上看,下列属于偶然误差的是_____(4分)(A) 中误差(B) 真误差(C) 极限误差(D) 或然误差参考答案:B多选题13. 已知,,则下列说法正确的有_____(5分)(A) 中误差相等(B) 极限误差相等(C) 观测精度相等(D) 相对误差相等(E) 真误差相等参考答案:A,B14. 在相同的观测条件下,大量的偶然误差呈现一定的规律,下列说法正确的是_____(5分)(A) 在一定的观测条件下,偶然误差的绝对值有一定的限值(B) 偶然误差的数学期望不为0(C) 在一定的观测条件下,超出一定限制的误差其出现概率为0(D) 绝对值相等的正负误差出现的概率不相同(E) 绝对值较小的误差比绝对值较大的误差出现的概率大参考答案:A,C,E15. 衡量精度的指标有很多种,常用的精度指标有_____(5分)(A) 中误差(B) 平均误差(C) 或然误差(D) 权(E) 协因数参考答案:A,B,C,D,E16. 在水准测量中,有下列几种情况使水准尺读数带有误差,其中属于系统误差的是_____(5分)(A) 视准轴与水准轴不平行(B) 仪器下沉(C) 读数不准确(D) 水准尺下沉(E) i角误差参考答案:A,B,D,E17. 对某一角度进行了n次同精度观测,对于该组观测值,下列说法正确的有_____(5分)(A) 相对误差相同(B) 权相同(C) 中误差相同(D) 平差值相同(E) 观测值相同参考答案:B,C判断题18. 偶然误差符合统计规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《误差理论与测量平差基础》课程试卷
《误差理论与测量平差基础》课程试卷答案
武 汉 大 学
2007年攻读硕士学位研究生入学考试试题
考试科目:测量平差 科目代码: 844
注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。
可使用计算器。
一、填空题(本题共40分,共8个空格,每个空格5分)
1.在图1所示水准路线中,A 、B 为已知点,为求C 点高程,观测了高差
、,其观测中误差分别为、。
已知,取单位权中误差。
要求平差后P 点高程中误差2C mm σ≤, 则应要求1σ≤ ① 、2σ≤ ② 。
2.已知观测值向量1,1
3,12,1X Z Y ⎡⎤⎢⎥=⎢⎥
⎣⎦
的协方差阵
310121013ZZ
D -⎡⎤
⎢⎥=-⎢⎥⎢⎥⎣⎦
,12,1
2Y Y Y ⎡⎤=⎢⎥⎣⎦,若设权11Y P =,则权阵XX P = ③ ,YY P = ④ ,协因数阵12Y Y Q = ⑤ ,1Y X Q = ⑥ 。
3.已知平差后某待定点P 的坐标的协因数和互协因数为P
X Q ˆ、P
Y Q ˆ和P
P Y X Q ˆ
ˆ
,则
当
P
P
Y X Q Q ˆˆ=,0ˆ
ˆ
<P
P Y X Q 时,P 点位差的极大方向值=E ϕ ⑦ ,极小方向值
=F ϕ ⑧ 。
二、问答题(本题共45分,共3小题,每小题15分)
1.在图2所示三角形中,A 、B 为已知点,C 为待定点,同精度观测了1234,,,L L L L
测量平差 共3页 第1页
共4个方位角,和为边长观测值,若按条件
平差法平差:
(1)应列多少个条件方程;
(2)试列出全部条件方程(不必线性化)。
2.在上题中,若设、和为
参数、、,
图2 (1)应采用何种函数模型平差;
(2)列出平差所需的全部方程(不必线性化)。
3. 对某控制网进行了两期观测。
由第一期观测值得到的法方程为
,
由第二期观测值得到的法方程为。
有人认为将两期观测值一起
平差得到的参数估值为
这样作对吗?为什么?
三.计算题(本题共45分,共3小题,每小题15分)
1.有一长方形如图3所示,为独立同
精度观测值,,,
,。
试计算矩形面积的
平差值及其中误差。
2.如图4所示水准网中,A、B、C为已知点,、
为
待定点。
已知点高程为,,。
测量平差共3页第2页
准路线长度相等。
试按间接平差法求: (1)1P 、2P 两点高程的平差值; (2)平差后1P 与2P 两点间高差的权。
3.在三角网(见图5)中。
独立等精度 观测角度621,,,L L L ,角度值见下表,已 知一测回测角中误差为"6, AB 边长为0S 。
试计算每个角度应观测多少测回才能使CD 边的边长中误差不超过50000
1
(取5102"⨯=ρ)。
四.证明题(本题共20分,共2小题,每小题10分)
1.试证明在单一水准路线中,平差后高程最弱点位于水准路线中间。
2.试证明在误差椭圆中,任意两垂直方向上的位差相互独立。
测量平差 共3页 第3页
武汉大学 测绘学院
误差理论与测量平差基础 课程试卷(A 卷)
出题者:黄加纳 审核人:邱卫宁
一. 已知观测值向量21L 的协方差阵为⎥⎦
⎤⎢⎣⎡--=3112LL D ,又知协因数51
12-=Q ,试求观测值的权阵LL P 及观测值的权1L P 和2L P 。
(10分)
二. 在相同观测条件下观测A 、B 两个角度,设对A ∠观测4测回的权为1,则对
B ∠观测9个测回的权为多少?(10分) 三. 在图一所示测角网中,A 、B 为已知点,B
C α为已知方位角,C 、
D 为待定点,
721,,,L L L 为同精度独立观测值。
若按条件平差法对该网进行平差:
共有多少个条件方程?各类条件方程各有多
少个?
(2).试列出全部条件方程(非线性条件方程要求
线性化)。
(15分)
图一
四. 某平差问题有以下函数模型)(I Q =
⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0
ˆ03060
51
5
4
43
12
1x v v v v v v v v
试问:
(1). 以上函数模型为何种平差方法的模型?
(2). 本题中,=n ,=t ,=r ,=c ,=u ,=s 。
(10分) 五. 在图二所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标
值(见图二,以“km ”为单位),以及0000330001'''=BP α,00003000
2'''=BP α,
km S BP 0.201=,km S BP 0.20
2=,721,,,L L L 为同精度观测值,其中65955906'''=L 。
若
按坐标平差法对该网进行平差,试列出观
测角6L 的误差方程(设5102⨯=ρ,x
ˆ、 图二 y
ˆ以dm 为单位)。
(10分)
六. 有水准网如图三所示,网中A 、B 为已知点,C 、D 为待定点,51~h h 为高差
观测值,设各线路等长。
已知平差后算得)(482mm V V T =,试求平差后C 、D
两点间高差5
ˆh 的权及中误差。
(10分)
图三
七. 在间接平差中,参数1
ˆt X
与平差值1
ˆn L 是否相关?试证明之。
(10分) 八. 在图四所示水准网中,A 、B 为已知点,已知m H A 00.1=,m H B 00.10=,P 1、
P 2为待定点,设各线路等长。
观测高差值
m h 58.31=,m h 40.52=,m h 11.43=,m h 85.44=,
m h 50.05=,现设11ˆP H X =,2
2ˆP H X =,53ˆˆh X =,试问:(1).应按何种平差方法进行平差?(2).试列出其函数模型。
(10分)
九. 已求得某控制网中P 点误差椭圆参数031570'=E ϕ、dm E 57.1=和
dm F 02.1=,已知PA 边坐标方位角032170'=PA α,km S PA 5=,A 为已知点,
试求方位角中误差PA ασ
ˆ和边长相对中误差PA
S S PA
σ
ˆ。
(15分)
一. 已知观测值向量21L 的协方差阵为⎥⎦
⎤⎢⎣⎡--=3114LL D ,又知协因数11411=Q ,试求观测值的权阵LL P 及观测值的权1L P 和2L P 。
(10分)
二. 在相同观测条件下观测A 、B 两个角度,设对A ∠观测4测回的权为1,则对
B ∠观测7个测回的权为多少?(10分) 三. 在图一所示测角网中,A 、B 、
C 为已知点,P 为待定点,721,,,L L L 为同精
度观测角值。
若按条件平差法对该网进行平差:
有多少个条件方程?各类条件方程各有多少
个?
(2).试列出全部条件方程(非线性条件方程不必
线性化)。
(15分)
一. 在图三所示测角网中,已知A 、B 两点的坐标和P 1、P 2两待定点的近似坐标
值(见图三,以“km ”为单位),以及0000225001'''=B P α,000018000
21'''=P P α,
3201=B P S km ,km S P P 0.40
21=,
821,,,L L L 为同精度观测值,其中
20004504'''=L 。
若按坐标平差法对该网进
行平差,试列出观测角4L 的误差方程
图三 (设5102⨯=ρ,x
ˆ、y ˆ以dm 为单位)。
(10分)
一〇. 在间接平差中,参数1
ˆt X 与改正数1
n V 是否相关?试证明之。
(10分)
一一. 某平差问题有以下函数模型)(I Q =
⎪⎪⎩⎪⎪⎨⎧++=+=--=-=2
ˆˆ1ˆ2
ˆˆ1ˆ214
2331211
x
x
v x
v x
x v x
v 03ˆˆˆ321=++-x x x
试问:
(3). 以上函数模型为何种平差方法的模型?
(4). 本题中,=n ,=t ,=r ,=c ,=u ,=s 。
(10分)。