第七章分子发光荧光与磷光
合集下载
分子荧光和磷光光谱分析法讲解
分子荧光和磷光 光谱分析法讲解
2、荧光、磷光的寿命和量子产率
荧光寿命τf :荧光分子处于S1激发态的平均寿命
f
1 (kf
K)
k f :荧光发射过程的速率常数
K :各种分子的非辐射衰变过程的速率常
数的总和。
典型分子的荧光和磷i 在光 10-8~ 10-10s
光谱分析法讲解
➢ 磷光寿命τp :磷光分子处于T1激发态的平均寿命。
f kf (kf K)
➢ 荧光量子产率的大小取决于荧光发射与非辐射 跃迁过程的竞争结果。
K << k f
f 1
分子荧光和磷光 光谱分析法讲解
➢ 磷光量子产率(p)
p
S
TKp
Kp
Kj
K p :磷光发射的速率常数
ST :S1 T1系间窜越的量子产率
Kj :与磷光发射过程相竞争的从T1态发生 的所有非辐射跃迁过程的速率常数的
分子荧光和磷光 光谱分析法讲解
二、荧光、磷光与分子结构的关系
➢ 分子中的电子是依序排列在能量由低到高的 分子轨道上。
σ* π*
反键轨道
n 电子
π
键合轨道
σ
图8-2.有机分子吸光所涉及的能层
分子荧光和磷光 光谱分析法讲解
➢ 虽然很多物质能够吸收紫外和可见光,然而只 有一部分物质能发荧光或磷光,分子能否发荧光 或磷光,在很大程度上决定于它们的分子结构。
振动弛豫:分子将多余的振动能量传递给介质而 衰变到同一电子能级的最低振动能级 的过程。
内转化:相同多重态的两个电子态间的非辐射跃 迁过程。
例如: S1 S0
T2 T1
系间窜越:不同多重态的两个电子态间的非辐射 跃迁过程。
2、荧光、磷光的寿命和量子产率
荧光寿命τf :荧光分子处于S1激发态的平均寿命
f
1 (kf
K)
k f :荧光发射过程的速率常数
K :各种分子的非辐射衰变过程的速率常
数的总和。
典型分子的荧光和磷i 在光 10-8~ 10-10s
光谱分析法讲解
➢ 磷光寿命τp :磷光分子处于T1激发态的平均寿命。
f kf (kf K)
➢ 荧光量子产率的大小取决于荧光发射与非辐射 跃迁过程的竞争结果。
K << k f
f 1
分子荧光和磷光 光谱分析法讲解
➢ 磷光量子产率(p)
p
S
TKp
Kp
Kj
K p :磷光发射的速率常数
ST :S1 T1系间窜越的量子产率
Kj :与磷光发射过程相竞争的从T1态发生 的所有非辐射跃迁过程的速率常数的
分子荧光和磷光 光谱分析法讲解
二、荧光、磷光与分子结构的关系
➢ 分子中的电子是依序排列在能量由低到高的 分子轨道上。
σ* π*
反键轨道
n 电子
π
键合轨道
σ
图8-2.有机分子吸光所涉及的能层
分子荧光和磷光 光谱分析法讲解
➢ 虽然很多物质能够吸收紫外和可见光,然而只 有一部分物质能发荧光或磷光,分子能否发荧光 或磷光,在很大程度上决定于它们的分子结构。
振动弛豫:分子将多余的振动能量传递给介质而 衰变到同一电子能级的最低振动能级 的过程。
内转化:相同多重态的两个电子态间的非辐射跃 迁过程。
例如: S1 S0
T2 T1
系间窜越:不同多重态的两个电子态间的非辐射 跃迁过程。
第七章 分子发光-荧光与磷光
蒽的激发光谱
I F ∝f (λex 、λem) 固定激发波长、扫描发射波长 固定激发波长、
蒽的发射光谱
蒽的三维等高线光谱图
蒽的三维等荧光强度光谱
发光材料与器件基础
VB1和VB2的三维荧光光谱
3.三维共振光散射光谱 3.三维共振光散射光谱
ADS ATS ADS ATS TS RLS DS TS 散射片三维共振光散射光谱
荧光(磷光)均为光致发光,在光辐射的作用下, 荧光(磷光)均为光致发光,在光辐射的作用下,荧光物质发射出不 同波长的荧光。 n 同波长的荧光。 n
M + ∑hvi ⇒M * X X
i =1
M * ⇒M + ∑hv j X X
j=1
IF4800
固定λem=620nm(MAX)
A. 激发光谱
固定发射波长 扫描激发波长 荧光激发光谱与 紫外紫外-可见吸收光 谱类似
发光材料与器件基础
2. 共轭效应 产生荧光的有机物质,都含有共轭双键体系, 产生荧光的有机物质,都含有共轭双键体系,共轭体系越 离域大π键的电子越容易激发,荧光与磷光越容易产生。 大,离域大π键的电子越容易激发,荧光与磷光越容易产生。
化合物 萘 0.29 286 321
苯 0.11 205 278
It 1− = 1−T = 1−e−2.303εbC I0
I0 − It = I0 ( 1−e−2.303εbC )
荧光强度( 与相应的吸光分数成正比: 荧光强度(IF)与相应的吸光分数成正比:
IF =φ( I0 − It ) =φI0 ( 1−e−2.303εbC )
按照级数展开式: 按照级数展开式:
x x2 x3 x4 xn ex = 1+ + + + + ••• + 1! 2! 3! 4! n!
第七章 分子发光-荧光与磷光解读
激发光谱
发射光谱
l
荧光激发光谱
荧光发射光谱
200
250
300
350
400
450
蒽的激发光谱和荧光光谱
500 nm
三、荧光光谱的特征—激发光谱与发射光谱的关系
1、Stokes位移 在溶液中,分子的荧光发射波长总是比其相应的吸收(或激 发)光谱的波长长,荧光发射这种波长位移的现象称为Stokes 位移。 处于激发态的分子一方面由于振动弛豫等损失了部分能量,
T1
紫 外 可 见 吸 收 光 谱
紫 外 可 见 共 振 荧 光 S0 光 谱
S1
迟 滞 荧 光
振动弛豫: Vr 10-12sec 外 转 移:无辐射跃迁 回到基态 内 转 移:S2~S1能级 之间有重叠 系间窜跃: S2~T1能级 之间有重叠 反系间窜跃:由外部获 取能量后 T1 ~ S2
磷 光
外转移
蒽的发射光谱
蒽的三维等高线光谱图
蒽的三维等荧光强度光谱
VB1和VB2的三维荧光光谱
3.三维共振光散射光谱
ADS ATS ADS ATS RLS DS TS
RLS
DS
TS 散射片三维共振光散射光谱
固定lex=270nm
共振光散射 瑞利散射 拉曼光 二级共振光散射 三级共振光散射
500 550 600 650 700 750 800 850 900
2.电子激发态的多重度
电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1); 平行自旋比成对自旋稳定(洪特规则),三重态能级比相应单 重态能级低;
大多数有机分子的基态处于单重态;
S0→T1 禁阻跃迁;
通过其他途径进入
分子发光—荧光、磷光和化学
(L+S),(L+S0 1),…,(|L 1 -S|) 2 S 1 光 谱 项 n LJ
31 3 1 0
2, 1, 0
3.激发态→基态的能量传递途径
电子处于激发态是不稳定状态,返回基态时,通 过辐射跃迁 ( 发光 )和无辐射跃迁等方式失去能量(去 活化) 传递途径
辐射跃迁 无辐射跃迁
荧光
延迟荧光
发 射 荧 光
外转换
发 射 磷 振动弛豫 光
S0
l1
l2
l 2
l3
能量传递过程
(1)振动弛豫(Vibrational Relaxation, VR) 在液相或压力足够高的气相中,处于激发态的分子因 碰撞将能量以热的形式传递给周围的分子,从而从高振 动能层失活至低振动能层的过程,称为振动弛豫。 (2)内转换(Internal Conversion,IC) 对于具有相同多重度的分子,若较高电子能级的低振 动能层与较低电子能级的高振动能层相重叠时,则电子 可在重叠的能层之间通过振动耦合产生无辐射跃迁,如 S2-S1;T2-T1。 (3)外转换(External Conversion,EC) 受激分子与溶剂或其它分子相互作用发生能量转换而 使荧光或磷光强度减弱甚至消失的过程,也称“熄灭” 或“猝灭”。
激发态
单重态基态S0
辐吸 射收
单重态基态S0 激发后 S/T两态
泡利不相容原理 S= 1 2 1 2 1 辐吸 射收
通常自旋不变 激发态S1/ S2
自旋改变 激发态T1/T2
Hund 规 则
M=2S+1 3 三重态triplet state
平行自旋 能量更低
单重态与三重态
n
1 2
分子荧光和磷光光谱ppt
荧光分析方法与应用
1. 特点
(1)灵敏度高 比紫外-可见分光光度法高2~4个数量级;为什么? 检测下限:0.1~0.1g/cm-3 相对灵敏度:0.05mol/L 奎宁硫酸氢盐的硫酸溶液。
(2)选择性强 既可依据特征发射光谱,又可根据特征吸收光谱;
(3)试样量少 缺点:应用范围小。
定量依据与方法
吡啶硫胺荧浓度
42
荧光分析法的应用
(1)无机化合物的分析
与有机试剂配合物后测量;可测量约60多种元素。 铍、铝、硼、镓、硒、镁、稀土常采用荧光分析法; 氟、硫、铁、银、钴、镍采用荧光熄灭法测定; 铜、铍、铁、钴、锇及过氧化氢采用催化荧光法测定; 铬、铌、铀、碲采用低温荧光法测定; 铈、铕、锑、钒、铀采用固体荧光法测定
维生素B2
• ——又称核黄素,是一种生 长促进剂,常存在于动物肝 脏、肉类、蛋黄、豆类、花 生、蘑菇和海藻中, VB2易 溶于强酸或强碱性溶液。
§-R、-SO3H、-NH3+→对f 无影响
影响荧光的外部效应
1.溶剂的影响
除一般溶剂效应外,溶剂的极性、氢键、配位键的形 成都将使化合物的荧光发生变化;
§极性↑→f↑→F↑→l↑ §粘度↓→分子间碰撞几率↑→F↓ §含重原子(CBr4、CH3CH2I)→F↓ §形成氢键→S1*(V=0) 分子↓→F↓
lex =385nm
吡啶硫胺荧CP lex =410nm
lem=435nm lem=480nm
n在385nm下激发,在435和 480nm下分别测荧光强度,
n或410nm下激发在435和 480nm下分别测荧光强度,
相互干扰荧 光光谱重叠
n 在385nm下激发,在435和480nm下分别测荧光强度 If 435/385=26339104cT+210 104cP
分子发光(荧光,磷光)原理分析
16
第一节 分子荧光和磷光分析
两个能层之间的能量差越小,荧光峰的波长越长。 另外,也可以从位能曲线解释镜像规则。由于光吸
收在大约10-15的短时间内发生,原子核没有发生明显的位 移,即电子与核之间的位移没有发生变化。假如在吸收 过程中,基态的零振动能层与激发态的第二振动能层之 间的跃迁几率最大,那么,在荧光发射过程中,其相反 跃迁的几率也应该最大。也就是说,吸收和发射的能量 都最大。
S0 吸光1
吸光2
只发射出波长λ3为的荧光。荧 光的产生在10-7-10-9s内完成。
荧光
荧光3
荧光、磷光 能级图
8
第一节 分子荧光和磷光分析
系间窜跃
指不同多重态间的无
辐射跃迁,例如S1→T1就是 一种系间窜跃。通常,发
生系间窜跃时,电子由S1
的较低振动能级转移至T1
的较高振动能级处。有时,
通过热激发,有可能发生
25
第一节 分子荧光和磷光分析
(1)螯合物中配位体的发光 不少有机化合物虽然具有共轭双键,但由于不是刚
性结构,分子处于非同一平面,因而不发生荧光。若这 些化合物和金属离子形成螯合物,随着分子的刚性增强, 平面结构的增大,常会发生荧光。
如8-羟基喹啉本身有很弱的荧光,但其金属螯合物 具有很强的荧光。 (2)螯合物中金属离子的特征荧光
11
第一节 分子荧光和磷光分析
(二)激发光谱曲线和荧光、磷光光谱曲线 荧光和磷光均为光致发光,因此必须选择合适的激
发光波长,可根据它们的激发光谱曲线来确定。绘制激 发光谱曲线时,固定测量波长为荧光(或磷光)最大发 射波长,然后改变激发波长,根据所测得的荧光(磷光) 强度与激发光波长的关系,即可绘制 激发光谱曲线。
第一节 分子荧光和磷光分析
两个能层之间的能量差越小,荧光峰的波长越长。 另外,也可以从位能曲线解释镜像规则。由于光吸
收在大约10-15的短时间内发生,原子核没有发生明显的位 移,即电子与核之间的位移没有发生变化。假如在吸收 过程中,基态的零振动能层与激发态的第二振动能层之 间的跃迁几率最大,那么,在荧光发射过程中,其相反 跃迁的几率也应该最大。也就是说,吸收和发射的能量 都最大。
S0 吸光1
吸光2
只发射出波长λ3为的荧光。荧 光的产生在10-7-10-9s内完成。
荧光
荧光3
荧光、磷光 能级图
8
第一节 分子荧光和磷光分析
系间窜跃
指不同多重态间的无
辐射跃迁,例如S1→T1就是 一种系间窜跃。通常,发
生系间窜跃时,电子由S1
的较低振动能级转移至T1
的较高振动能级处。有时,
通过热激发,有可能发生
25
第一节 分子荧光和磷光分析
(1)螯合物中配位体的发光 不少有机化合物虽然具有共轭双键,但由于不是刚
性结构,分子处于非同一平面,因而不发生荧光。若这 些化合物和金属离子形成螯合物,随着分子的刚性增强, 平面结构的增大,常会发生荧光。
如8-羟基喹啉本身有很弱的荧光,但其金属螯合物 具有很强的荧光。 (2)螯合物中金属离子的特征荧光
11
第一节 分子荧光和磷光分析
(二)激发光谱曲线和荧光、磷光光谱曲线 荧光和磷光均为光致发光,因此必须选择合适的激
发光波长,可根据它们的激发光谱曲线来确定。绘制激 发光谱曲线时,固定测量波长为荧光(或磷光)最大发 射波长,然后改变激发波长,根据所测得的荧光(磷光) 强度与激发光波长的关系,即可绘制 激发光谱曲线。
医学:分子荧光与分子磷光分析法
在疾病诊断和治疗中的应用
肿瘤诊断
荧光与磷光分析法可用于肿瘤的早期 诊断和监测,通过检测肿瘤标志物或 特定基因的表达水平,为肿瘤治疗提 供依据。
感染性疾病诊断
药物疗效评估
荧光与磷光分析法可用于评估药物治 疗的效果,通过监测疾病标志物的变 化,了解药物治疗对疾病的影响。
荧光与磷光分析法可用于检测病原体 和抗体,快速准确地诊断感染性疾病, 如细菌、病毒和寄生虫感染。
06
未来展望
分析技术的发展趋势
智能化
01
随着人工智能和机器学习技术的快速发展,分析方法将更加智
能化,提高检测的准确性和效率。
高灵敏度
02
通过改进荧光和磷光的发光机制,提高检测的灵敏度,实现对
低浓度生物分子的快速检测。
多组分同时检测
03
发展多组分同时检测技术,实现对复杂生物样本中多种生物分
子的快速、准确检测。
在医学领域的应用前景
01
02
03
疾病诊断
利用荧光和磷光分析法对 生物分子进行高灵敏度检 测,为疾病诊断提供准确 依据。
药物研发
通过荧光和磷光分析法对 药物与生物分子相互作用 进行研究,为新药研发提 供有力支持。
个体化医疗
根据个体基因组、蛋白质 组等信息的检测结果,制 定针对性的治疗方案,实 现个体化医疗。
在生物分子检测中的应用
蛋白质检测
荧光与磷光分析法可用于检测蛋白质的含量和性质,有助于研究蛋 白质的功能和相互作用。
核酸检测
通过荧光与磷光分析法,可以检测DNA和RNA的含量和序列,用 于基因诊断、基因表达研究和疾病诊断。
生物标记物检测
荧光与磷光分析法可用于检测生物体内的生物标记物,如肿瘤标志物、 炎症标志物等,有助于疾病的早期发现和治疗监测。
分子荧光和磷光光谱讲解ppt课件
GFP
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
Generation of Molecular Fluorescence and Phosphorescence
原理
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
荧光和磷光的产生过程
• 分子能级和跃迁
– 电子能级、振动能级和转动能级 – 基态(S0)→激发态(S1、S2、激发态振动能
级):吸收特定频率的辐射;量子化;跃迁一 次到位; – 激发态→基态:多种途径和方式(见能级图); 速度最快、激发态寿命最短的途径占优势;
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
500
nm
蒽的激发光谱和荧光光谱
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
分子产生荧光的条件
• 分子产生荧光必须具备的条件
– 具有合适的结构(强的紫外可见吸收) – 具有一定的荧光量子产率
荧光量子产率()
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
内容(contents)
• 原理
– 分子荧光与磷光产生过程 – 激发光谱与荧光光谱 – 荧光的产生与分子结构关系 – 影响荧光强度的因素
分子发光
(三)荧光的产生与分子结构的关系
1.分子产生荧光必须具备的条件 (1)合适的结构(芳环/多个共轭双键) (2)一定的荧光量子产率 发射的光量子数
吸收的光量子数
一般在0.1-1之间;凡是使荧光增加,使 其它去活化常数降低的因素均可增加荧光量子产 率;荧光强度由分子结构(内因)和所处化学环 境(外因)共同决定
(二)激发光谱与荧光光谱
1 激发光谱 改变激发波长,测量在最强荧(磷)光发射 波长处的强度变化,以激发波长对荧光强度作 图可得到激发光谱 激发光谱形状与吸收光谱形状完全相似,经 校正后二者完全相同!这是因为分子吸收光能 的过程就是分子的激发过程。激发光谱可用于 鉴别荧光物质;在定量时,用于选择最适宜的 激发波长
(二) 磷光的特点 • 磷光波长比荧光的长(T1<S1)������ • 磷光寿命比荧光的长(磷光为禁阻跃迁产生, 速率常数小) • 磷光寿命和强度对重原子和氧敏感
(三)荧光分析法的应用 1 无机化合物的分析 铍、铝、硼、镓、硒、 镁、稀土常采用荧光分 析法
荧光试 剂/探 针
2
生物与有机化合物的分析
3. 室温磷光 低温荧光需低温实验装臵且受到溶剂选择的限制 1)固体基质:在室温下以固体基质(如纤维素等) 吸附磷光体,增加分子刚性、减少三重态猝灭等 非辐射跃迁,从而提高磷光量子效率 2)胶束增稳:利用表面活性剂在临界浓度形成具 多相性的胶束,改变磷光体的微环境、增加定向 约束力,从而减小内转换和碰撞等去活化的几率, 提高三重态的稳定性。利用胶束增稳、重原子效 应和溶液除氧是该法的三要素
2.化合物的结构与荧光
(1)跃迁类型: *→n和*→,后者的荧光效率高 ,系间跨越过程的速率常数小,利于产生荧光 (2)共轭效应:共轭利于增加荧光效率产生红移 (3)刚性平面结构:可降低分子振动,减少与溶剂的 相互碰撞作用,共轭分子共平面性增强,故具有很强 的荧光
荧光和磷光的产生原理
荧光和磷光的产生原理
荧光是一种不发光的物质在受到紫外光、可见光或者其他射
线照射后,其内部的化学键会断裂,产生自由电子和空穴,在重
新结合时就会发出光。
荧光是一种很容易发光的物质,在一些适
当的条件下,这种物质可以发出很强的光。
所以磷光的强度远比
荧光强。
这种现象叫做磷光效应。
我们用荧光粉来做实验,就会看到荧光粉发出一束很强的绿光。
在磷光粉中加入适量的荧光粉就会产生荧光。
人们利用磷光光谱可以进行能量转换,用磷光粉来做光源时,发出的是绿光。
当把磷光粉和其他物质混合时就会产生出红光。
人们还利用磷光光谱可以检测到生物分子内电子转移及离子
对之间的交换等过程,如DNA分子中含有的电子转移、DNA复制
时的离子交换等过程都可以用磷光光谱来检测。
同时利用磷光粉
还可以用来做激光材料,例如用它做激光器时,就可以发出很强
的绿光和红光。
—— 1 —1 —。
第七章 分子发光-荧光与磷光
x x2 x3 x4 xn ex 1 1! 2! 3! 4! n!
( 2.30 ε bC )2 ( 2.30 ε bC )3 ( 2.30 ε bC )4 I F I 0 ( 2.30 ε bC ) 2! 3! 4!
荧光
斯托克斯荧光(Stokes): λex < λem 反斯托克斯荧光 (Antistokes):λex > λem 共振荧光(Resonance): λex = λem
分子的活化与去活化
振动弛豫
S2
内转移 荧光
反系间 窜跃
系间 窜跃
1. 辐射跃迁的类型 共振荧光:10-12 sec 荧 光:10-8 sec 磷 光:1~10-4 sec 迟滞荧光:102~10-4 sec 2. 无辐射跃迁的类型
电子处于激发态是不稳定状态,返回基态时,通过辐射 跃迁(发光)和无辐射跃迁等方式失去能量; 传递途径 辐射跃迁 无辐射跃迁
荧光
延迟荧光
磷光
系间跨越 内转移
外转移
振动弛预
激发态停留时间短、返回速度快的途径,发生的几率大, 发光强度相对大; 荧光:10-7~10 -9 s,第一激发单重态的最低振动能级→基态; 磷光:10-4~10s;第一激发三重态的最低振动能级→基态;
1. 分子能级与跃迁
分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级; 基态(S0)→激发态(S1、S2、激发态振动能级):吸收特定频率 的辐射;量子化;跃迁一次到位; 激发态→基态:多种途径和方式(见能级图);速度最快、激 发态寿命最短的途径占优势;
第一、第二、…电子激发单重态 S1 、S2… ; 第一、第二、…电子激发三重态 T1 、 T2 … ;
第七章分子发光荧光与磷光
共振光散射
瑞利散射
二级共振光散射
拉曼光
三级共振光散射
0 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
l
三. 分子荧光(磷光)强度与荧光物质浓度的关系
1. 荧光强度(磷光)与浓度的关系
光吸收定律(Lambert – Beer Law)
电子由第一激发单重态的最低振动能级→基态( 多为 S1→ S0
跃迁),发射波长为 l’2的荧光; 10-7~10 -9 s 。
由图可见,发射荧光的能量比分子吸收的能量小,波长
长; l’2 > l 2 > l 1 ;
磷光发射:激发态分子经过系间跨跃达到激发三重态后,并经 过迅速的振动弛豫达到第一激发三重态(T1)的最低振动能级上, 从T1态分子经发射光子返回基态。此过程称为磷光发射。
❖ 19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由 Jette和West提出了第一台荧光计。
一、荧光与磷光的产生过程
luminescence process of molecular fluorescence phosphorescence
由分子结构理论,主要讨论荧光及磷光的产生机理。
如S1到T1跃迁就是系间跃迁的例子,即单重态到三重态的 跃迁。即较低单重态振动能级与较高的三重态振动能级重叠。 这种跃迁是“禁阻”的。
改变电子自旋,禁阻跃迁,通过自旋—轨道耦合进行。
辐射能量传递过程
荧光发射:当分子处于第一激发单重态S1的最低能级时,分 子返回基态的过程比振动弛豫和内转化过程慢得多。分子可 能通过发射光子跃迁回到基态S0的各振动能级上,这个过程 称为荧光发射。
分子荧光和磷光光谱PPT课件
光照停止后,可持续一段时间。
2021/3/12
15
激发光谱
荧光(磷光):光致发光,照射光波长如何 选择? 荧光(磷光)的激发光谱曲线
固定测量波长(选最大发射波长),化合物发射的 荧光(磷光)强度与照射光波长的关系曲线(图 中曲线I) 激发光谱曲线的最高处,处于激发态的分子最 多,荧光强度最大;
2021/3/12
分子荧光和磷光光谱
2021/3/12
1
内容(contents)
原理
分子荧光与磷光产生过程 激发光谱与荧光光谱 荧光的产生与分子结构关系 影响荧光强度的因素
仪器 应用
2021/3/12
2
发光现象
起因
是吸收了外在提供的能量引起的
外在的能量
热 电 光 化学能
2021/3/12
3
荧光
1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光 计观察到其荧光的波长比入射光的波长稍为长些,才判明这 种现象是这些物质在吸收光能后重新发射不同波长的光。他 还由发荧光的矿物“萤石”推演而提出“荧光”这一术语.
入射光
荧光
2021/3/12
4
萤石
纯净的萤石为无色,但因含有较多Y、Ce 等元素,造成萤石结构空位,
产生色心而致色,常见的颜色有浅绿色至深绿色,蓝、绿蓝、黄、酒黄、
20紫21/3、/12紫罗兰色、灰、褐、玫瑰红、ห้องสมุดไป่ตู้红等。
5
2001年美国遭受911袭击时,美国世贸大厦内一共 有2万5千多人,人们惊讶地发现了一个世界都为之惊 叹的纪录:两座大楼里,1万8千多人在上百层的大楼 完全断电的情况下,在一个半小时之内成功逃生。
14
辐射能量传递过程
2021/3/12
15
激发光谱
荧光(磷光):光致发光,照射光波长如何 选择? 荧光(磷光)的激发光谱曲线
固定测量波长(选最大发射波长),化合物发射的 荧光(磷光)强度与照射光波长的关系曲线(图 中曲线I) 激发光谱曲线的最高处,处于激发态的分子最 多,荧光强度最大;
2021/3/12
分子荧光和磷光光谱
2021/3/12
1
内容(contents)
原理
分子荧光与磷光产生过程 激发光谱与荧光光谱 荧光的产生与分子结构关系 影响荧光强度的因素
仪器 应用
2021/3/12
2
发光现象
起因
是吸收了外在提供的能量引起的
外在的能量
热 电 光 化学能
2021/3/12
3
荧光
1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光 计观察到其荧光的波长比入射光的波长稍为长些,才判明这 种现象是这些物质在吸收光能后重新发射不同波长的光。他 还由发荧光的矿物“萤石”推演而提出“荧光”这一术语.
入射光
荧光
2021/3/12
4
萤石
纯净的萤石为无色,但因含有较多Y、Ce 等元素,造成萤石结构空位,
产生色心而致色,常见的颜色有浅绿色至深绿色,蓝、绿蓝、黄、酒黄、
20紫21/3、/12紫罗兰色、灰、褐、玫瑰红、ห้องสมุดไป่ตู้红等。
5
2001年美国遭受911袭击时,美国世贸大厦内一共 有2万5千多人,人们惊讶地发现了一个世界都为之惊 叹的纪录:两座大楼里,1万8千多人在上百层的大楼 完全断电的情况下,在一个半小时之内成功逃生。
14
辐射能量传递过程
分子发光—荧光、磷光和化学56页PPT
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
分子发光—荧光、磷光和化学
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
分子发光—荧光、磷光和化学
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按分子激发态的类型分类: 分子发光
按光子能量分类:
光致发光
化学发光/生物发光
热致发光
场致发光
摩擦发光
荧光 磷光
瞬时荧光 迟滞荧光
荧光
斯托克斯荧光(Stokes):
λex < λem
反斯托克斯荧光 (Antistokes):λex > λem
共振荧光(Resona活化与去活化
❖ 1867年,Goppelsroder进行了历史上首次的荧光分析工作, 应用铝—桑色素配合物的荧光进行铝的测定。
❖ 19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由 Jette和West提出了第一台荧光计。
一、荧光与磷光的产生过程
luminescence process of molecular fluorescence phosphorescence
第七章分子发光荧光与磷光
§7.1 分子发光的基本原理
❖ 第一次记录荧光现象的是16世纪西班牙的内科医生和植物学家 N.Monardes,1575年他提到在含有一种称为“Lignum Nephriticum”的木头切片的水溶液中,呈现了极为可爱的天蓝 色。
❖ 直到1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光光 度计观察到其荧光的波长比入射光的波长稍微长些,才判断这 种现象是这些物质在吸收光能后重新发射不同波长的光,而不 是由光的漫射作用所引起的,从而导入了荧光是光发射的概念 ,他还由发荧光的矿石“萤石”推演而提出“荧光”这一术语。
由于振动弛豫和内转换过程极为迅速(10 -12 s),因此,激发后的 分子很快回到电子第一激发单重态S1的最低振动能级。所以高于第一 激发态的荧光发射十分少见。
外转换:激发分子与溶剂或其他分子之间产生相互作用而转移 能量的非辐射跃迁;外转换过程是荧光或磷光的竞争过程,因 此,该过程使荧光或磷光减弱或“猝灭”。 系间跨越:是不同多重态之间的一种无辐射跃迁。该过程是激 发电子改变其自旋态,分子的多重性发生变化的结果。当两种 能态的振动能级重叠时,这种跃迁的概率增大。
振动弛豫
内转移
S2
紫 外 可 见 吸 收 光 谱
紫 外 可 见 共 振 荧 光 S0 光 谱
S1
外转移
反系间 1. 辐射跃迁的类型 窜跃 共振荧光:10-12 sec
荧光
荧 光:10-8 sec
系间 窜跃
磷 光:1~10-4 sec 迟滞荧光:102~10-4 sec
2. 无辐射跃迁的类型
振动弛豫: Vr 10-12sec T1 外 转 移:无辐射跃迁
电子处于激发态是不稳定状态,返回基态时,通过辐射 跃迁(发光)和无辐射跃迁等方式失去能量;
传递途径
辐射跃迁
无辐射跃迁
荧光 延迟荧光 磷光
系间跨越 内转移 外转移 振动弛预
激发态停留时间短、返回速度快的途径,发生的几率大, 发光强度相对大; 荧光:10-7~10 -9 s,第一激发单重态的最低振动能级→基态; 磷光:10-4~10s;第一激发三重态的最低振动能级→基态;
如S1到T1跃迁就是系间跃迁的例子,即单重态到三重态的 跃迁。即较低单重态振动能级与较高的三重态振动能级重叠。 这种跃迁是“禁阻”的。
改变电子自旋,禁阻跃迁,通过自旋—轨道耦合进行。
辐射能量传递过程
荧光发射:当分子处于第一激发单重态S1的最低能级时,分 子返回基态的过程比振动弛豫和内转化过程慢得多。分子可 能通过发射光子跃迁回到基态S0的各振动能级上,这个过程 称为荧光发射。
迟
回到基态
滞 荧
磷 内 转 移:S2~S1能级
光
光
之间有重叠
系间窜跃: S2~T1能级 之间有重叠
由分子结构理论,主要讨论荧光及磷光的产生机理。
1. 分子能级与跃迁
分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级; 基态(S0)→激发态(S1、S2、激发态振动能级):吸收特定频率 的辐射;量子化;跃迁一次到位; 激发态→基态:多种途径和方式(见能级图);速度最快、激 发态寿命最短的途径占优势; 第一、第二、…电子激发单重态 S1 、S2… ; 第一、第二、…电子激发三重态 T1 、 T2 … ;
内转换
振动弛豫 内转换
S2
系间跨越
S1
能
T1 T2
量
吸 收
发
射
外转换
荧
光
发
射
磷 振动弛豫 光
S0
l3 l 1 分子吸收l 2和发射l 过2 程的Jablonski能级图
非辐射能量传递过程
振动弛豫:在凝聚相体系中,被激发到激发态(如S1和S2)的分子能通 过与溶剂分子的碰撞迅速以热的形式把多余的振动能量传递给周围的 分子,而自身返回该电子能级的最低振动能级,这个过程称为振动弛 豫。发生振动弛豫的时间10 -12 s。 内转换:当S2的较低振动能级与S1的较高振动能级的能量相当或重叠 时,分子有可能从S2的振动能级以无辐射方式过渡到S1的能量相等的 振动能级上。这个过程称为内转换。内转换发生的时间约为10 -12 s。 内转换过程同样也发生在激发态三重态的电子能级间。
电子由第一激发单重态的最低振动能级→基态( 多为 S1→ S0
跃迁),发射波长为 l’2的荧光; 10-7~10 -9 s 。
由图可见,发射荧光的能量比分子吸收的能量小,波长
长; l’2 > l 2 > l 1 ;
磷光发射:激发态分子经过系间跨跃达到激发三重态后,并经 过迅速的振动弛豫达到第一激发三重态(T1)的最低振动能级上 ,从T1态分子经发射光子返回基态。此过程称为磷光发射。
2.电子激发态的多重度
电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1); 平行自旋比成对自旋稳定(洪特规则),三重态能级比相应单 重态能级低; 大多数有机分子的基态处于单重态;
S0→T1 禁阻跃迁; 通过其他途径进入 (见能级图);进入的 几率小;
2.激发态→基态的能量传递途径(分子的去激过程)
磷光发射是不同多重态之间的跃迁(即T1 →S0),故属于“禁阻” 跃迁。因此磷光的寿命比荧光要长很多,约为10-3到10s。所以 ,将激发光从磷光样品移走后,还常可以观察到发光现象,而 荧光发射却观察不到该现象。
一. 分子荧光与磷光的产生 1. 单重态与三重态 2. 分子的活化与去活化 3.分子发光的类型 按激发的模式分类:分子发光
按光子能量分类:
光致发光
化学发光/生物发光
热致发光
场致发光
摩擦发光
荧光 磷光
瞬时荧光 迟滞荧光
荧光
斯托克斯荧光(Stokes):
λex < λem
反斯托克斯荧光 (Antistokes):λex > λem
共振荧光(Resona活化与去活化
❖ 1867年,Goppelsroder进行了历史上首次的荧光分析工作, 应用铝—桑色素配合物的荧光进行铝的测定。
❖ 19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由 Jette和West提出了第一台荧光计。
一、荧光与磷光的产生过程
luminescence process of molecular fluorescence phosphorescence
第七章分子发光荧光与磷光
§7.1 分子发光的基本原理
❖ 第一次记录荧光现象的是16世纪西班牙的内科医生和植物学家 N.Monardes,1575年他提到在含有一种称为“Lignum Nephriticum”的木头切片的水溶液中,呈现了极为可爱的天蓝 色。
❖ 直到1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光光 度计观察到其荧光的波长比入射光的波长稍微长些,才判断这 种现象是这些物质在吸收光能后重新发射不同波长的光,而不 是由光的漫射作用所引起的,从而导入了荧光是光发射的概念 ,他还由发荧光的矿石“萤石”推演而提出“荧光”这一术语。
由于振动弛豫和内转换过程极为迅速(10 -12 s),因此,激发后的 分子很快回到电子第一激发单重态S1的最低振动能级。所以高于第一 激发态的荧光发射十分少见。
外转换:激发分子与溶剂或其他分子之间产生相互作用而转移 能量的非辐射跃迁;外转换过程是荧光或磷光的竞争过程,因 此,该过程使荧光或磷光减弱或“猝灭”。 系间跨越:是不同多重态之间的一种无辐射跃迁。该过程是激 发电子改变其自旋态,分子的多重性发生变化的结果。当两种 能态的振动能级重叠时,这种跃迁的概率增大。
振动弛豫
内转移
S2
紫 外 可 见 吸 收 光 谱
紫 外 可 见 共 振 荧 光 S0 光 谱
S1
外转移
反系间 1. 辐射跃迁的类型 窜跃 共振荧光:10-12 sec
荧光
荧 光:10-8 sec
系间 窜跃
磷 光:1~10-4 sec 迟滞荧光:102~10-4 sec
2. 无辐射跃迁的类型
振动弛豫: Vr 10-12sec T1 外 转 移:无辐射跃迁
电子处于激发态是不稳定状态,返回基态时,通过辐射 跃迁(发光)和无辐射跃迁等方式失去能量;
传递途径
辐射跃迁
无辐射跃迁
荧光 延迟荧光 磷光
系间跨越 内转移 外转移 振动弛预
激发态停留时间短、返回速度快的途径,发生的几率大, 发光强度相对大; 荧光:10-7~10 -9 s,第一激发单重态的最低振动能级→基态; 磷光:10-4~10s;第一激发三重态的最低振动能级→基态;
如S1到T1跃迁就是系间跃迁的例子,即单重态到三重态的 跃迁。即较低单重态振动能级与较高的三重态振动能级重叠。 这种跃迁是“禁阻”的。
改变电子自旋,禁阻跃迁,通过自旋—轨道耦合进行。
辐射能量传递过程
荧光发射:当分子处于第一激发单重态S1的最低能级时,分 子返回基态的过程比振动弛豫和内转化过程慢得多。分子可 能通过发射光子跃迁回到基态S0的各振动能级上,这个过程 称为荧光发射。
迟
回到基态
滞 荧
磷 内 转 移:S2~S1能级
光
光
之间有重叠
系间窜跃: S2~T1能级 之间有重叠
由分子结构理论,主要讨论荧光及磷光的产生机理。
1. 分子能级与跃迁
分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级; 基态(S0)→激发态(S1、S2、激发态振动能级):吸收特定频率 的辐射;量子化;跃迁一次到位; 激发态→基态:多种途径和方式(见能级图);速度最快、激 发态寿命最短的途径占优势; 第一、第二、…电子激发单重态 S1 、S2… ; 第一、第二、…电子激发三重态 T1 、 T2 … ;
内转换
振动弛豫 内转换
S2
系间跨越
S1
能
T1 T2
量
吸 收
发
射
外转换
荧
光
发
射
磷 振动弛豫 光
S0
l3 l 1 分子吸收l 2和发射l 过2 程的Jablonski能级图
非辐射能量传递过程
振动弛豫:在凝聚相体系中,被激发到激发态(如S1和S2)的分子能通 过与溶剂分子的碰撞迅速以热的形式把多余的振动能量传递给周围的 分子,而自身返回该电子能级的最低振动能级,这个过程称为振动弛 豫。发生振动弛豫的时间10 -12 s。 内转换:当S2的较低振动能级与S1的较高振动能级的能量相当或重叠 时,分子有可能从S2的振动能级以无辐射方式过渡到S1的能量相等的 振动能级上。这个过程称为内转换。内转换发生的时间约为10 -12 s。 内转换过程同样也发生在激发态三重态的电子能级间。
电子由第一激发单重态的最低振动能级→基态( 多为 S1→ S0
跃迁),发射波长为 l’2的荧光; 10-7~10 -9 s 。
由图可见,发射荧光的能量比分子吸收的能量小,波长
长; l’2 > l 2 > l 1 ;
磷光发射:激发态分子经过系间跨跃达到激发三重态后,并经 过迅速的振动弛豫达到第一激发三重态(T1)的最低振动能级上 ,从T1态分子经发射光子返回基态。此过程称为磷光发射。
2.电子激发态的多重度
电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1); 平行自旋比成对自旋稳定(洪特规则),三重态能级比相应单 重态能级低; 大多数有机分子的基态处于单重态;
S0→T1 禁阻跃迁; 通过其他途径进入 (见能级图);进入的 几率小;
2.激发态→基态的能量传递途径(分子的去激过程)
磷光发射是不同多重态之间的跃迁(即T1 →S0),故属于“禁阻” 跃迁。因此磷光的寿命比荧光要长很多,约为10-3到10s。所以 ,将激发光从磷光样品移走后,还常可以观察到发光现象,而 荧光发射却观察不到该现象。
一. 分子荧光与磷光的产生 1. 单重态与三重态 2. 分子的活化与去活化 3.分子发光的类型 按激发的模式分类:分子发光