上海市高一数学上学期期中考试试卷含答案
上海市徐汇区高一上学期期中考试数学试卷含答案
上海市徐汇区高一上学期期中考试数学试卷一、填空题(共12小题).1.集合M={x∈R|x≤2020},有下列四个式子:①π∈M;②{π}⊆M;③π⊆M;④{π}∈M,其中正确的是(填序号).2.将化为有理数指数幂的形式为.3.陈述句“x>1或y>1”的否定形式是.4.若0<a<1,s<0,则a s1(填符号“>,≥,<,≤,”).5.已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.6.已知集合P={x|﹣2≤x≤10},非空集合S={x|1﹣m≤x≤1+m},若x∈P是x∈S的必要条件,则实数m 的取值范围为.7.关于x的不等式|2x﹣a|+a<6的解集是(﹣1,3),则实数a=.8.如果直角三角形的周长为2,则此直角三角形面积的最大值是.9.若实数a,b,m满足2a=72b=m,且=2,则m的值为.10.已知正数x,y满足4x+9y=xy且x+y<m2﹣24m有解,则实数m的取值范围是.11.不等式(ax+3)(x2﹣b)≤0对x∈(﹣∞,0)恒成立,其中a,b∈Z,则a+b=.12.已知实数a>b>c,且满足:a+b+c=1,a2+b2+c2=3,则s=b+c的取值范围是.二、选择题13.已知a1a2b1b2≠0,陈述句P:关于x的一元一次不等式a1x+b1>0与a2x+b2>0有相同的解集;陈述句,则P是Q()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件14.设lg2=a,lg3=b,则log1225的值是()A.B.C.D.15.若a,b为非零实数,则以下不等式中恒成立的个数是()①;②;③;④.A.4B.3C.2D.116.已知,集合M={x|f(x)=0}={x1,x2,…,x7}⊆Z,且c1≤c2≤c3≤c4,则c4﹣c1不可能的值是()A.4B.9C.16D.64三、解答题17.已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2+2(m+1)x+m2﹣5=0}.(1)若A∪B=A,求实数a的值;(2)若A∩C=C,求实数m的取值范围.18.经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂商拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量P万件与促销费用x万元满足P=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品P万件还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求.(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;(Ⅱ)促销费用投入多少万元时,厂家的利润最大?19.(1)设集合P={n|n=3k+1,k∈N},集合Q={n|n=3m﹣2,m∈N},求证:P⊂Q;(2)已知a>0,b>0,c>0,当函数f(x)=|x+a|+|x﹣b|+c的最小值为6时,求证:++≥12.20.(16分)(1)关于x的不等式(a2﹣16)x2﹣(a﹣4)x﹣1≥0的解集为∅,求实数a的取值范围;(2)解关于x的不等式;(3)设(1)中a的整数值构成集合A,(2)中不等式的解集是B,若A∩B中有且只有三个元素,求实数m的取值范围.21.(18分)已知集合A={a1,a2,…,a n}(0≤a1<a2<…<a n,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),a i+a j与a j﹣a i两数中至少有一个属于A.(1)分别判断数集{0,1,3,4}与{0,2,3,6}是否具有性质P,并说明理由;(2)证明:a1=0,且na n=2(a1+a2+…+a n);(3)当n=5时,若a2=3,求集合A.参考答案一、填空题1.集合M={x∈R|x≤2020},有下列四个式子:①π∈M;②{π}⊆M;③π⊆M;④{π}∈M,其中正确的是①②(填序号).解:因为π≈3.14,所以元素π∈M,集合{π}⊆M,故①②正确,③④错误.故答案为:①②.2.将化为有理数指数幂的形式为.解:∵a>0,∴===.故答案为:.3.陈述句“x>1或y>1”的否定形式是x≤1且y≤1.解:命题为全称命题,则“x>1或y>1”的否定形式为x≤1且y≤1,故答案为:x≤1且y≤1.4.若0<a<1,s<0,则a s>1(填符号“>,≥,<,≤,”).解:∵0<a<1时,函数y=a x为减函数,∴当s<0时,a s>a0=1,故答案为:>.5.已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.解:显然x≠0,由A=B得,解得.故答案为:{,1}.6.已知集合P={x|﹣2≤x≤10},非空集合S={x|1﹣m≤x≤1+m},若x∈P是x∈S的必要条件,则实数m 的取值范围为[0,3].解:∵P={x|﹣2≤x≤10},非空集合S={x|1﹣m≤x≤1+m},若x∈P是x∈S的必要条件,则S⊆P,∴,解得0≤m≤3,∴m的取值范围是[0,3].故答案为:[0,3].7.关于x的不等式|2x﹣a|+a<6的解集是(﹣1,3),则实数a=2.解:∵|2x﹣a|+a<6,∴a﹣6<2x﹣a<6﹣a,即a﹣3<x<3,∵不等式|2x﹣a|+a<6的解集是(﹣1,3),∴a﹣3=﹣1,解得a=2.故答案为:2.8.如果直角三角形的周长为2,则此直角三角形面积的最大值是3﹣2(当且仅当时取等号).解:设直角三角形的两直角边分别为a、b,斜边为c,则直角三角形的面积S=ab.由已知,得a+b+c=2,∴a+b+=2,∴2=a+b+≥2+=(2+),∴≤=2﹣,∴ab≤(2﹣)2=6﹣4,∴S=ab≤3﹣2,当且仅当a=b=2﹣时,S取最大值3﹣2.故答案为:3﹣2(当且仅当时取等号).9.若实数a,b,m满足2a=72b=m,且=2,则m的值为7.解:∵2a=72b=m,∴a=log2m,2b=log7m,∴b===log49m,∴+=2,∴log m2+log m49=2,∴log m98=2,∴m2=98,∴m=7.故答案为:7.10.已知正数x,y满足4x+9y=xy且x+y<m2﹣24m有解,则实数m的取值范围是(﹣∞,﹣1)∪(25,+∞).解:∵正数x,y满足4x+9y=xy,∴+=1,∴x+y=(x+y)(+)=++13≥2+13=25,当且仅当=,即x=15,y=10时取等号,∴x+y的最小值为25,∵x+y<m2﹣24m有解,∴25<m2﹣24m,即m2﹣24m﹣25>0,解得m>25或m<﹣1,∴实数m的取值范围是(﹣∞,﹣1)∪(25,+∞).故答案为:(﹣∞,﹣1)∪(25,+∞).11.不等式(ax+3)(x2﹣b)≤0对x∈(﹣∞,0)恒成立,其中a,b∈Z,则a+b=10或4.解:当b≤0时,由(ax+3)(x2﹣b)≤0对x∈(﹣∞,0)恒成立,可得ax+3<0对x∈(﹣∞,0)恒成立,则a不存在;当b>0时,由(ax+3)(x2﹣b)≤0对x∈(﹣∞,0)恒成立,令f(x)=ax+3,g(x)=x2﹣b,又g(x)的大致图象如图所示,所以,又a,b∈Z,所以或,所以a+b=4或a+b=10.故答案为:4或10.12.已知实数a>b>c,且满足:a+b+c=1,a2+b2+c2=3,则s=b+c的取值范围是.解:∵a+b+c=1,a2+b2+c2=3,∴b+c=1﹣a,bc=[(b+c)2﹣(b2+c2)]=a2﹣a﹣1,∵bc<,∴a2﹣a﹣1<,∴3a2﹣2a﹣5<0,即,∴<1﹣a<2,∴<b+c<2,下面精确a的下限,假设a<1,由a>b>c,由﹣<b<a<1,﹣<c<a<1,所以a2<1,b2<1,c2<1,因此a2+b2+c2<3,矛盾,故a>1,所以b+c=1﹣a<0,综上可得<b+c<0,故答案为:.二、选择题13.已知a1a2b1b2≠0,陈述句P:关于x的一元一次不等式a1x+b1>0与a2x+b2>0有相同的解集;陈述句,则P是Q()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件解:∵若=时,如取a1=b1=1,a2=b2=﹣1,关于x的不等式a1x+b1>0与a2x+b2>0即不等式x+1>0与﹣x﹣1>0的解集不相同,∴“=”不能推出“关于x的不等式a1x+b1>0与a2x+b2>0的解集相同”,反之,“关于x的不等式a1x+b1>0与a2x+b2>0的解集相同”⇒“=”,∴P是Q的充分非必要条件.故选:A.14.设lg2=a,lg3=b,则log1225的值是()A.B.C.D.解:由lg2=a,lg3=b,得log1225==.故选:D.15.若a,b为非零实数,则以下不等式中恒成立的个数是()①;②;③;④.A.4B.3C.2D.1解:a,b为非零实数,①∵(a﹣b)2≥0,展开可得;②∵(a﹣b)2≥0,展开可得a2+b2≥2ab,∴2(a2+b2)≥(a+b)2,∴;③取a=b=﹣1,则不成立;④取ab<0,则不成立.综上可得:成立的只有①②.故选:C.16.已知,集合M={x|f(x)=0}={x1,x2,…,x7}⊆Z,且c1≤c2≤c3≤c4,则c4﹣c1不可能的值是()A.4B.9C.16D.64解:∵集合M={x|f(x)=0}={x1,x2,…,x7}⊆Z,则函数f(x)有7个解,且全是整数,又∵x2﹣4x+m=0 中两个解满足x1+x2=4,x1•x2=m,∴可知解为2和2,3和1,4和0,5和﹣1,6和﹣2,7和﹣3,8和﹣4,9和﹣5,10和﹣6,...∴m=4,3,0,﹣5,﹣12,﹣21,﹣32,﹣45,﹣60...∵c1≤c2≤c3≤c4,∴C4=4,则C1=﹣5,或﹣12,或﹣21,或﹣32,或﹣45,或﹣60,...则c4﹣c1不可能的值是4,故选:A.三、解答题17.已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2+2(m+1)x+m2﹣5=0}.(1)若A∪B=A,求实数a的值;(2)若A∩C=C,求实数m的取值范围.解:(1)由x2﹣3x+2=0得x=1或2,所以A={1,2},由x2﹣ax+a﹣1=0得x=1或a﹣1,所以1∈B,a﹣1∈B,因为A∪B=A,所以B⊆A,所以a﹣1=1或2,所以a=2或3;(2)因为A∩C=C,所以C⊆A,当C=∅时,Δ=4(m+1)2﹣4(m2﹣5)<0,解得m<﹣3,当C={1}时,,无解,当C={2}时,,解得m=﹣3,当C={1,2}时,,无解,综上,实数m的取值范围是(﹣∞,﹣3].18.经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂商拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量P万件与促销费用x万元满足P=3﹣(其中0≤x≤a,a为正常数).已知生产该批产品P万件还需投入成本10+2P万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力完全能满足市场的销售需求.(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;(Ⅱ)促销费用投入多少万元时,厂家的利润最大?解:(Ⅰ)由题意知,,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣将代入化简得:(0≤x≤a).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)当a≥1时,x∈(0,1)时y'>0,所以函数在(0,1)上单调递增x∈(1,a)时y'<0,所以函数在(1,a)上单调递减促销费用投入1万元时,厂家的利润最大;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当a<1时,因为函数在(0,1)上单调递增在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(注:当a≥1时,也可:,当且仅当时,上式取等号)19.(1)设集合P={n|n=3k+1,k∈N},集合Q={n|n=3m﹣2,m∈N},求证:P⊂Q;(2)已知a>0,b>0,c>0,当函数f(x)=|x+a|+|x﹣b|+c的最小值为6时,求证:++≥12.【解答】证明:(1)先证P⊆Q,任取n∈P,存在m=k+1∈N,使得n=3k+1=3(k+1)﹣2=3m﹣2∈Q,∵P⊆Q,又∵﹣2∈Q,﹣2∉P,∴P⊂Q,即得证.(2)证明:∵f(x)=|x+a|+|x﹣b|+c≥|(x+a)+(b﹣x)|+c=a+b+c=6,∴=,当且仅当a=b=c=2时取等号,故.20.(16分)(1)关于x的不等式(a2﹣16)x2﹣(a﹣4)x﹣1≥0的解集为∅,求实数a的取值范围;(2)解关于x的不等式;(3)设(1)中a的整数值构成集合A,(2)中不等式的解集是B,若A∩B中有且只有三个元素,求实数m的取值范围.解:(1)当a=4时,﹣1≥0无解,满足题意,当a=﹣4时,8x﹣1≥0有解,舍去,当a≠±4时,解得,综上,实数a的取值范围是;(2)由得,即(x+2)[(m﹣1)x﹣(3m+2)]≥0且x≠﹣2,当m=1时,,解集为x∈(﹣∞,﹣2),当m>1时,,且x≠﹣2,解集为,当m<1时,且x≠﹣2,当0<m<1时,解集为,当m=0时,解集为∅,当m<0时,解集为,综上,当m=1时,解集为x∈(﹣∞,﹣2),当m>1时,解集为,当0<m<1时,解集为,当m=0时,解集为∅,当m<0时,解集为;(3)由(1)得A={﹣2,﹣1,0,1,2,3,4},当A∩B中有且只有三个元素,显然0≤m≤1不可能,当m>1时,因为,不合题意,舍去,当m<0时,,因为A∩B中有且只有三个元素,所以,,解得,综上,实数m的取值范围是.21.(18分)已知集合A={a1,a2,…,a n}(0≤a1<a2<…<a n,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),a i+a j与a j﹣a i两数中至少有一个属于A.(1)分别判断数集{0,1,3,4}与{0,2,3,6}是否具有性质P,并说明理由;(2)证明:a1=0,且na n=2(a1+a2+…+a n);(3)当n=5时,若a2=3,求集合A.【解答】(1)解:因为0+1,0+3,0+4,1+3,4﹣1,4﹣3都属于数集{0,1,3,4},所以数集{0,1,3,4}具有性质P,因为2+3和3﹣2均不属于数集{0,2,3,6},所以数集{0,2,3,6}不具有性质P;(2)证明:令i=j=n,因为a i+a j与a j﹣a i两数中至少有一个属于A,所以a n+a n不属于A,所以a n﹣a n属于集合A,即0∈A,所以a1=0,令j=n,i>1,因为a i+a j,与a j﹣a i两数中至少有一个属于A,所以a i+a j不属于A,所以a j﹣a i属于集合A,令i=n﹣1,则a n﹣a n﹣1是集合A中的某一项,若a n﹣a n﹣1=a2,符合题意,若a n﹣a n﹣1=a3,则a n﹣a3=a n﹣1,所以a n﹣a2>a n﹣a3=a n﹣1,矛盾,同理a n﹣a n﹣1等于其他项均矛盾,所以a n﹣a n﹣1=a2,同理,令i=n﹣2,n﹣3,⋯,2,可得a n=a i+a n+1﹣i,倒序相加得,即na n=2(a1+a2+a+⋯+a n);(3)解:当n=5时,令j=5,当i≥2时,a i+a5>a5,因为集合A具有性质P,所以a5﹣a i∈A,所以a5﹣a i∈A,i=1,2,3,4,5,所以a5﹣a1>a5﹣a2>a5﹣a3>a5﹣a4>a5﹣a5=0,所以a5﹣a1=a5,a5﹣a2=a4,a5﹣a3=a3,所以a2+a4=a5,a5=2a3,所以a2+a4=2a3,即0<a4﹣a3=a3﹣a2<a3,又因为a3+a4>a2+a4=a5,所以a3+a4∉A,所以a4﹣a3∈A,所以a4﹣a3=a2=a2﹣a1,所以a5﹣a4=a2=a2﹣a1,所以a5﹣a4=a4﹣a3=a3﹣a2=a2﹣a1=a2,即a1,a2,a3,a4,a5是首项为0,公差为a2=3的等差数列,所以A={0,3,6,9,12}.。
上海高一数学上学期期中试卷含答案(共5套)
上海中学高一上学期期中数学卷一、填空题1.设集合{}0,2,4,6,8,10A =,{}4,8B =,则A C B =___________2.已知集合{}2A x x =<,{}1,0,1,2,3B =-,则A B =___________3“若1x =且1y =,则2x y +=”的逆否命题是____________4.若2211()f x x x x+=+,则(3)f =___________ 5.不等式9x x>的解是___________ 6.若不等式2(1)0ax a x a +++<对一切x R ∈恒成立,则a 的取值范围是___________7.不等式22(3)2(3)30x x ---<的解是____________8.已知集合{}68A x x =-≤≤,{}B x x m =≤,若AB B ≠且A B ≠∅,则m 的取值范围是_____________9.不等式1()()25a x y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为_________ 10.设0,0a b >>,且45ab a b =++,则ab 的最小值为____________11.已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数c ,使()0f c >,则实数p 的取值范围是_____________12.已知0a >,0b >,2a b +=,则2221a b a b +++的最小值为___________ 二、选择题13..不等式x x x <的解集是()(A ){}01x x <<(B ){}11x x -<<(C ){}011x x x <<<-或(D ){}101x x x -<<>或14.若A B ⊆,A C ⊆,{}0,1,2,3,4,5,6B =,{}0,2,4,6,8,10C =,则这样的A 的个数为()(A )4 (B )15 (C )16 (D )3215.不等式210ax bx ++>的解集是11(,)23-,则a b -=()(A )7-(B )7(C )5-(D )516.已知函数2()f x x bx =+,则“0b <”是“(())f f x 的最小值与()f x 的最小值相等”的()条件(A )充分不必要(B )必要不充分(C )充要(D )既不充分也不必要三、解答题17.解不等式: (1)2234x x -+-<;(2)2232x x x x x -≤--18.已知,,,a b c d R ∈,证明下列不等式:(1)22222()()()a b c d ac bd ++≥+;(2)222a b c ab bc ca ++≥++19.已知二次函数2()1,,f x ax bx a b R =++∈,当1x =-时,函数()f x 取到最小值,且最小值为0;(1)求()f x 解析式;(2)关于x 的方程()13f x x k =+-+恰有两个不相等的实数解,求实数k 的取值范围;20.设关于x 的二次方程2(1)10px p x p +-++=有两个不相等的正根,且一根大于另一根的两倍,求p 的取值范围;21.已知二次函数2()(0)f x ax bx c a =++≠,记[2]()(())f x f f x =,例:2()1f x x =+,[2]222()(())1(1)1f x f x x =+=++;(1)2()f x x x =-,解关于x 的方程[2]()f x x =;(2)记2(1)4b ac ∆=--,若[2]()f x x =有四个不相等的实数根,求∆的取值范围;参考答案一、填空题1.{}0,2,6,102.{}1,0,1-3.若2x y +≠,则1x ≠或1y ≠;4.75.(3,0)(3,)-+∞6.1(,)3-∞- 7.(0,6)8.[6,8)- 9.16 10.25 11.3(3,)2- 12.2+二、选择题13.C 14.C 15.C 16.A三、解答题17.(1)1(,3)3(2){}(1,0]1(2,)-+∞18.略19.(1)2()21f x x x =++;(2)1334k k <=或; 20.107p <<;21.(1)02x x ==或;(2)4∆>;上海市浦东新区高一(上)期中数学试卷一. 填空题1. 用∈或∉填空:0 ∅2. {|1,}A x x x R =≤∈,则R C A =3. 满足条件M {1,2}的集合M 有 个4. 不等式2(1)4x ->的解集是5. 不等式2210x mx -+≥对一切实数x 都成立,则实数m 的取值范围是6. 集合{|1}A x x =≤,{|}B x x a =≥,AB R =,则a 的取值范围是 7. 若1x >,92x x+-取到的最小值是 8. 如果0x <,01y <<,那么2y x ,y x ,1x 从小到大的顺序是 9. 一元二次不等式20x bx c ++≤的解集为[2,5]-,则bc =10. 全集为R ,已知数集A 、B 在数轴上表示如下图,那么“x B ∉”是“x A ∈”的条件11. 已知U 是全集,A 、B 是U 的两个子集,用交、并、补关系将右图中的阴影部分表示出来12. 若规定集合12{,,,}n M a a a =⋅⋅⋅*()n N ∈的子集12{,,,}m i i i a a a ⋅⋅⋅*()m N ∈为M 的第k 个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是二. 选择题13. 集合{,,}A a b c =中的三个元素是△ABC 的三边长,则△ABC 一定不是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形14. 已知0a ≠,下列各不等式恒成立的是( ) A. 12a a +> B. 12a a +≥ C. 12a a +≤- D. 1||2a a+≥ 15. 集合*1{|,}2m A x x m N ==∈,若1x A ∈,2x A ∈,则( ) A. 12()x x A +∈ B. 12()x x A -∈ C. 12()x x A ∈ D.12x A x ∈ 16. 设,,x y a R +∈,且当21x y +=时,3a x y+的最小值为121x y +=时,3x ay + 的最小值是( )A. 6 C. 12D.三. 解答题 17. 已知实数a 、b ,原命题:“如果2a <,那么24a <”,写出它的逆命题、否命题、逆否命题;并分别判断四个命题的真假性;18. 集合2{|0,}2x A x x R x +=≤∈-,{||1|2,}B x x x R =-<∈; (1)求A 、B ;(2)求()U BC A ;19. 设:127m x m α+≤≤+()m R ∈,:13x β≤≤,若α是β的必要不充分条件,求实数m 的取值范围;20. 某农户计划建造一个室内面积为2800m 的矩形蔬菜温室,在温室外,沿左、右两侧与后侧各保留1m 宽的通道,沿前侧保留3m 宽的空地(如图所示),当矩形温室的长和宽分别为多少时,总占地面积最小?并求出最小值;21. 集合{||1|4}A x x =+<,{|(1)(2)0}B x x x a =--<;(1)求A 、B ;,求实数a的取值范围;(2)若A B B上海市浦东新区高一(上)期中数学试卷参考答案与试题解析一、填空题1.(2016秋•浦东新区期中)用∈或∉填空:0∉∅.【考点】元素与集合关系的判断.【专题】转化思想;集合.【分析】根据元素与集合的关系进行判断【解答】解:∵0是一个元素,∅是一个集合,表示空集,里面没有任何元素.∴0∉∅故答案为:∉.【点评】本题主要考查元素与集合的关系,属于基础题2.(2016秋•浦东新区期中)A={x|x≤1,x∈R},则∁R A={x|x>1} .【考点】补集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】根据集合A,以及全集R,求出A的补集即可.【解答】解:∵A={x|x≤1,x∈R},∴∁R A={x|x>1}.故答案为:{x|x>1}.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.3.(2016秋•浦东新区期中)满足条件M⊊{1,2}的集合M有3个.【考点】子集与真子集.【专题】综合题;综合法;集合.【分析】根据题意判断出M是集合{1,2}的真子集,写出所有满足条件的集合M,可得答案.【解答】解:由M⊊{1,2}得,M是集合{1,2}的真子集,所以M可以是∅,{1},{2},共3个,故答案为:3.【点评】本题考查子集与真子集的定义,写子集时注意按一定的顺序,做到不重不漏,属于基础题.4.(2016秋•浦东新区期中)不等式(x﹣1)2>4的解集是{x|x<﹣1或x>3} .【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据平方数的定义,把不等式化为x﹣1<﹣2或x﹣1>2,求出解集即可.【解答】解:不等式(x﹣1)2>4可化为:x﹣1<﹣2或x﹣1>2,解得x<﹣1或x>3,所以该不等式的解集是{x|x<﹣1或x>3}.故答案为:{x|x<﹣1或x>3}.【点评】本题考查了一元二次不等式的解法与应用问题,是基础题目.5.(2016秋•浦东新区期中)不等式x2﹣2mx+1≥0对一切实数x都成立,则实数m的取值范围是﹣1≤m≤1.【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据不等式x2﹣2mx+1≥0对一切实数x都成立,△≤0,列出不等式求出解集即可.【解答】解:不等式x2﹣2mx+1≥0对一切实数x都成立,则△≤0,即4m2﹣4≤0,解得﹣1≤m≤1;所以实数m的取值范围是﹣1≤m≤1.故答案为:﹣1≤m≤1.【点评】本题考查了一元二次不等式恒成立的应用问题,是基础题目.6.(2016秋•浦东新区期中)集合A={x|x≤1},B={x|x≥a},A∪B=R,则a的取值范围是a≤1.【考点】并集及其运算;集合的包含关系判断及应用.【专题】计算题;集合思想;定义法;集合.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图,故当a≤1时,命题成立.故答案为:a≤1.【点评】本题考查集合关系中的参数问题,属于以数轴为工具,求集合的并集的基础题,本题解题的关键是借助于数轴完成题目.7.(2016秋•浦东新区期中)若x>1,x+﹣2取到的最小值是4.【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】由x>1,运用基本不等式可得最小值,注意等号成立的条件.【解答】解:由x>1,可得x+﹣2≥2﹣2=4.当且仅当x=,即x=3时,取得最小值4.故答案为:4.【点评】本题考查基本不等式的运用:求最值,注意一正二定三等的条件,考查运算能力,属于基础题.8.(2016秋•浦东新区期中)如果x<0,0<y<1,那么,,从小到大的顺序是<<.【考点】不等式的基本性质.【专题】转化思想;不等式的解法及应用.【分析】由0<y<1,可得0<y2<y<1,由x<0,即可得出大小关系.【解答】解:∵0<y<1,∴0<y2<y<1,∵x<0,∴<<.故答案为:<<.【点评】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.9.(2016秋•浦东新区期中)一元二次不等式x2+bx+c≤0的解集为[﹣2,5],则bc=30.【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据一元二次不等式与对应方程的关系,利用根与系数的关系即可求出b、c的值.【解答】解:一元二次不等式x2+bx+c≤0的解集为[﹣2,5],所以对应一元二次方程x2+bx+c=0的实数根为﹣2和5,由根与系数的关系得,解得b=﹣3,c=﹣10;所以bc=30.故答案为:30.【点评】本题考查了一元二次不等式与对应方程的关系以及根与系数的关系的应用问题,是基础题目.10.(2016秋•浦东新区期中)全集为R,已知数集A、B在数轴上表示如图所示,那么“x∉B”是“x∈A”的充分不必要条件.【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】根据数轴结合充分条件和必要条件的定义进行判断即可.【解答】解:由数轴得A={x|x≥1或x≤﹣1},B={x|﹣2≤x≤1},则∁R B={x|x>1或x<﹣2},则∁R B⊊A,即“x∉B”是“x∈A”的充分不必要条件,故答案为:充分不必要.【点评】本题主要考查充分条件和必要条件的判断,根据数轴关系求出对应的集合,根据集合关系进行判断是解决本题的关键.11.(2016秋•浦东新区期中)已知U是全集,A、B是U的两个子集,用交、并、补关系将图中的阴影部分表示出来B∩(∁U A)【考点】V enn图表达集合的关系及运算.【专题】对应思想;待定系数法;集合.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于B当不属于A的元素构成,所以用集合表示为B∩(∁U A).故答案为:B∩(∁U A).【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.12.(2016秋•浦东新区期中)若规定集合M={a1,a2,…,a n}(n∈N*)的子集{a,a,…a}(m ∈N*)为M的第k个子集,其中k=2+2+…+2,则M的第25个子集是{a1,a4,a5} .【考点】子集与真子集.【专题】新定义;综合法;集合.【分析】根据定义将25表示成2n和的形式,由新定义求出M的第25个子集.【解答】解:由题意得,M的第k个子集,且k=2+2+ (2)又25=20+23+24=21﹣1+24﹣1+25﹣1,所以M的第25个子集是{a1,a4,a5},故答案为:{a1,a4,a5}.【点评】本小题主要考查子集与真子集、新定义的应用,考查分析问题、解决问题的能力,属于基础题.二、选做题13.(2014•万州区校级模拟)若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】集合的确定性、互异性、无序性.【分析】根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,则△ABC不会是等腰三角形.【解答】解:根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,故△ABC一定不是等腰三角形;选D.【点评】本题较简单,注意到集合的元素特征即可.14.(2016秋•浦东新区期中)已知a≠0,下列各不等式恒成立的是()A.a+>2 B.a+≥2 C.a+≤﹣2 D.|a+|≥2【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】可取a<0,否定A,B;a>0,否定C;运用|a+|=|a|+,由基本不等式即可得到结论.【解答】解:取a<0,则选项A,B均不恒成立;取a>0,则选项C不恒成立;对于D,|a+|=|a|+≥2=2,当且仅当|a|=1时,等号成立.故选:D.【点评】本题考查不等式恒成立问题的解法,注意运用反例法和基本不等式,属于基础题.15.(2016秋•浦东新区期中)设集合A={x|x=,m∈N*},若x1∈A,x2∈A,则()A.(x1+x2)∈A B.(x1﹣x2)∈A C.(x1x2)∈A D.∈A【考点】元素与集合关系的判断.【专题】集合.【分析】利用元素与集合的关系的进行判定【解答】解:设x1=,x2=,x1x2=•=,p、q∈N,x1x2∈A,故选:B【点评】本题主要考查元素与集合的关系的判定,属于基础题.16.(2016秋•浦东新区期中)设x,y,a∈R*,且当x+2y=1时,+的最小值为6,则当+=1时,3x+ay的最小值是()A.6 B.6 C.12 D.12【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】由题设条件,可在+上乘以x+2y构造出积为定值的形式,由基本不等式求得+的最小值为3+2a+2,从而得到3+2a+2=6,同理可得当+=1时,3x+ay 的最小值是3+2a+2,即可求得3x+ay 的最小值是6.【解答】解:由题意x,y,a∈R+,且当x+2y=1 时,+的最小值为6,由于+=(+)(x+2y)=3+2a++≥3+2a+2,等号当=时取到.故有3+2a+2=6,∴3x+ay=(3x+ay )(+)=3+2a++≥3+2a+2=6,等号当=时取到.故选A.【点评】本题考查基本不等式在最值问题中的应用,及构造出积为定值的技巧,解题的关键是由题设条件构造出积为定值的技巧,从而得出3+2a+2=6,本题中有一疑点,即两次利用基本不等式时,等号成立的条件可能不一样,此点不影响利用3+2a+2求出3x+ay 的最小值是6,这是因为3+2a+2是一个常数,本题是一个中档题目.三、解答题17.(14分)(2016秋•浦东新区期中)已知实数a、b,原命题:“如果a<2,那么a2<4”,写出它的逆命题、否命题、逆否命题;并分别判断四个命题的真假性.【考点】四种命题.【专题】对应思想;定义法;简易逻辑.【分析】根据四种命题的形式与之间的关系,分别写出原命题的逆命题、否命题和逆否命题;并判断这四个命题的真假性即可.【解答】解:原命题:“如果a<2,那么a2<4”,是假命题;逆命题:“如果a2<4,那么a<2”,是真命题;否命题:“如果a≥2,那么a2≥4”,是真命题;逆否命题:“如果a2≥4,那么a≥2”,是假命题.【点评】本题考查了四种命题之间的关系以及命题真假性的判断问题,是基础题目.18.(14分)(2016秋•浦东新区期中)集合A={x|≤0,x∈R},B={x||x﹣1|<2,x∈R}.(1)求A、B;(2)求B∩(∁U A).【考点】交、并、补集的混合运算;集合的表示法.【专题】对应思想;定义法;集合.【分析】化简集合A、B,根据补集与交集的定义计算即可.【解答】解:(1)A={x|≤0,x∈R}={x|(x+2)(x﹣2)≤0,且x﹣2≠0}={x|﹣2≤x<2},B={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2}={x|﹣1<x<3};(2)∁U A={x|x<﹣2或x≥2},∴B∩(∁U A)={x|2≤x<3}.【点评】本题考查了集合的化简与运算问题,是基础题目.19.(14分)(2016秋•浦东新区期中)设α:m+1≤x≤2m+7(m∈R),β:1≤x≤3,若α是β的必要不充分条件,求实数m的取值范围.【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】根据必要不充分条件的定义建立不等式关系进行求解即可.【解答】解:设α对应的集合为A,β对应的集合为B,若α是β的必要不充分条件,则B⊊A,则,即,得﹣2≤m≤0.【点评】本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件的定义建立不等式关系是解决本题的关键.20.(14分)(2016秋•浦东新区期中)某农户计划建造一个室内面积为800m2的矩形蔬菜温室,在温室外,沿左、右两侧与后侧各保留1m宽的通道,沿前侧保留3m的空地(如图所示),当矩形温室的长和宽分别为多少时,总占地面积最大?并求出最大值.【考点】基本不等式在最值问题中的应用.【专题】应用题;转化思想;综合法;函数的性质及应用.【分析】设出矩形的长为a与宽b,建立蔬菜面积关于矩形边长的函数关系式S=(a﹣4)(b﹣2)=ab﹣4b ﹣2a+8=800﹣2(a+2b).利用基本不等式变形求解.【解答】解:设矩形温室的左侧边长为am,后侧边长为bm,则ab=800.蔬菜的种植面积S=(a﹣4)(b﹣2)=ab﹣4b﹣2a+8=808﹣2(a+2b).=648(m2).所以S≤808﹣4=648(m2),当且仅当a=2b,即a=40(m),b=20(m)时,S最大值答:当矩形温室的左侧边长为40m,后侧边长为20m时,蔬菜的种植面积最大,最大种植面积为648m2.【点评】本题考查函数的模型的选择与应用,基本不等式的应用,基本知识的考查.21.(14分)(2016秋•浦东新区期中)集合A={x||x+1|<4},B={x|(x﹣1)(x﹣2a)<0}.(1)求A、B;(2)若A∩B=B,求实数a的取值范围.【考点】集合的包含关系判断及应用.【专题】计算题;分类讨论;集合.【分析】(1)通过解绝对值不等式得到集合A,对于集合B,需要对a的取值进行分类讨论:(2)A∩B=B,则B是A的子集,据此求实数a的取值范围.【解答】解:(1)A={x||x+1|<4}={x|﹣5<x<3},当a>0.5时,B={x|1<x<2a}.当a=0.5时,B=∅.当a<0.5时,B={x|2a<x<1}.(2)由(1)知,A={x|﹣5<x<3},∵A∩B=B,∴B⊆A,①当a>0.5时,B={x|1<x<2a}.此时,,则<a≤1.5;②当a=0.5时,B=∅.满足题意;③当a<0.5时,B={x|2a<x<1}.此时,则﹣2.5≤a<0.5.综上所述,实数a的取值范围是[﹣2.5,1.5].【点评】本题考查集合的表示方法,两个集合的交集的定义和求法,绝对值不等式,一元二次不等式的解法,求出A和B,是解题的关键.上海市黄浦区高一(上)期中数学试卷一、填空题:(每小题3分,满分36分)1.若集合{1,2,3}={a,b,c},则a+b+c=.2.若原命题的否命题是“若x∉N,则x∉Z”,则原命题的逆否命题是.3.已知函数f(x)=,g(x)=,则f(x)•g(x)=.4.不等式≤0的解集是.5.若a2≤1,则关于x的不等式ax+4>1﹣2x的解集是.6.已知集合A,B满足,集合A={x|x<a},B={x||x﹣2|≤2,x∈R},若已知“x∈A”是“x∈B”的必要不充分条件,则a的取值范围是.7.已知函数f(x)满足:f(x﹣1)=2x2﹣x,则函数f(x)=.8.已知集合A,B满足,集合A={x|x=7k+3,k∈N},B={x|x=7k﹣4,k∈Z},则A,B两个集合的关系:A B(横线上填入⊆,⊇或=)9.已知集合A,B满足,集合A={x|x+y2=1,y∈R},B={y|y=x2﹣1,x∈R},则A∩B=.10.若函数y=f(x)的定义域是[﹣2,2],则函数y=f(x+1)+f(x﹣1)的定义域为.11.已知直角三角形两条直角边长分别为a、b,且=1,则三角形面积的最小值为.12.定义集合运算“*”:A×B={(x,y)|x∈A,y∈B},称为A,B两个集合的“卡氏积”.若A={x|x2﹣2|x|≤0,x∈N},b={1,2,3},则(a×b)∩(b×a)=.二、选择题:(每小题4分,满分16分)13.下列写法正确的是()A.∅∈{0}B.∅⊆{0}C.0⊊∅D.∅∉∁R∅14.已知函数y=f(x),则集合{(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=2}的子集可能有()A.0个B.1个C.1个或2个D.0个或1个15.以下结论正确的是()A.若a<b且c<d,则ac<bdB.若ac2>bc2,则a>bC.若a>b,c<d,则a﹣c<b﹣dD.若0<a<b,集合A={x|x=},B={x|x=},则A⊇B16.有限集合S中元素的个数记做card(S),设A,B都为有限集合,给出下列命题:①A∩B=∅的充要条件是card(A∪B)=card(A)+card(B)②A⊆B的必要不充分条件是card(A)≤card(B)+1③A⊈B的充分不必要条件是card(A)≤card(B)﹣1④A=B的充要条件是card(A)=card(B)其中,真命题有()A.①②③ B.①②C.②③D.①④三、解答题(本大题共4小题,满分48分)解答下列各题要有必要的解题步骤,并在规定处答题,否则不得分.17.已知集合A={x|a+1≤x≤2a+3},B={x|﹣x2+7x﹣10≥0}(1)已知a=3,求集合(∁R A)∩B;(2)若A⊈B,求实数a的范围.18.对于函数f(x)=ax2+2x﹣2a,若方程f(x)=0有相异的两根x1,x2(1)若a>0,且x1<1<x2,求a的取值范围;(2)若x1﹣1,x2﹣1同号,求a的取值范围.19.某地区山体大面积滑坡,政府准备调运一批赈灾物资共装26辆车,从某市出发以v(km/h)的速度匀速直达灾区,如果两地公路长400km,且为了防止山体再次坍塌,每两辆车的间距保持在()2km.(车长忽略不计)设物资全部运抵灾区的时间为y小时,请建立y关于每车平均时速v(km/h)的函数关系式,并求出车辆速度为多少千米/小时,物资能最快送到灾区?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,当且仅当x=1时,取到最小值﹣2(1)老师请你模仿例题,研究x4﹣4x,x∈[0,+∞)上的最小值;(提示:a+b+c+d≥4)(2)研究x3﹣3x,x∈[0,+∞)上的最小值;(3)求出当a>0时,x3﹣ax,x∈[0,+∞)的最小值.上海市黄浦区格致中学高一(上)期中数学试卷参考答案与试题解析一、填空题:(每小题3分,满分36分)1.若集合{1,2,3}={a,b,c},则a+b+c=6.【考点】集合的相等.【分析】利用集合相等的定义求解.【解答】解:∵{1,2,3}={a,b,c},∴a+b+c=1+2+3=6.故答案为:6.2.若原命题的否命题是“若x∉N,则x∉Z”,则原命题的逆否命题是真命题.【考点】命题的真假判断与应用;四种命题.【分析】原命题的逆否命题和原命题的否命题互为逆命题,进而得到答案.【解答】解:若原命题的否命题是“若x∉N,则x∉Z”,则原命题的逆否命题是“若x∉Z,则x∉N”,是真命题故答案为:真命题3.已知函数f(x)=,g(x)=,则f(x)•g(x)=﹣,x∈(﹣3,﹣2]∪[2,3).【考点】函数解析式的求解及常用方法.【分析】根据f(x),g(x)的解析式求出f(x)•g(x)的解析式即可.【解答】解:∵f(x)=,g(x)=,∴f(x)•g(x)=•=﹣,x∈(﹣3,﹣2]∪[2,3),故答案为:﹣,x∈(﹣3,﹣2]∪[2,3).4.不等式≤0的解集是{x|x≤或x>4} .【考点】其他不等式的解法.【分析】原不等式等价于,解不等式组可得.【解答】解:不等式≤0等价于,解得x≤或x>4,∴不等式≤0的解集为:{x|x≤或x>4}故答案为:{x|x≤或x>4}.5.若a2≤1,则关于x的不等式ax+4>1﹣2x的解集是{x|x>﹣} .【考点】其他不等式的解法.【分析】确定1≤a+2≤3,即可解关于x的不等式ax+4>1﹣2x.【解答】解:∵a2≤1,∴﹣1≤a≤1,∴1≤a+2≤3,∴不等式ax+4>1﹣2x化为(a+2)x>﹣3,∴x>﹣,∴关于x的不等式ax+4>1﹣2x的解集是{x|x>﹣}.故答案为{x|x>﹣}.6.已知集合A,B满足,集合A={x|x<a},B={x||x﹣2|≤2,x∈R},若已知“x∈A”是“x∈B”的必要不充分条件,则a的取值范围是(4,+∞).【考点】必要条件、充分条件与充要条件的判断.【分析】解出关于B的不等式,结合集合的包含关系判断即可.【解答】解:A={x|x<a},B={x||x﹣2|≤2,x∈R}={x|0≤x≤4},若已知“x∈A”是“x∈B”的必要不充分条件,即[0,4]⊆(﹣∞,a),故a>4,故答案为:(4,+∞).7.已知函数f(x)满足:f(x﹣1)=2x2﹣x,则函数f(x)=2x2+3x+1.【考点】函数解析式的求解及常用方法.【分析】令x﹣1=t,则x=t+1,将x=t+1代入f(x﹣1),整理替换即可.【解答】解:令x﹣1=t,则x=t+1,故f(x﹣1)=f(t)=2(t+1)2﹣(t+1)=2t2+3t+1,故f(x)=2x2+3x+1,故答案为:2x2+3x+1.8.已知集合A,B满足,集合A={x|x=7k+3,k∈N},B={x|x=7k﹣4,k∈Z},则A,B两个集合的关系:A⊆B(横线上填入⊆,⊇或=)【考点】集合的表示法;集合的包含关系判断及应用.【分析】根据题意,已知分析两个集合中元素的性质,可得结论.【解答】解:根据题意,集合A={x|x=7k+3,k∈N},表示所有比7的整数倍大3的整数,其最小值为3,B={x|x=7k﹣4,k∈Z},表示所有比7的整数倍小4的整数,也表示所有比7的整数倍大3的整数,故A⊆B;故答案为:⊆.9.已知集合A,B满足,集合A={x|x+y2=1,y∈R},B={y|y=x2﹣1,x∈R},则A∩B=[﹣1,1] .【考点】交集及其运算.【分析】求出集合A,B中函数的值域确定出集合A,B,求出两集合的交集即可.【解答】解:由集合A中的函数x+y2=1,得到集合A=(﹣∞,1],由集合B中的函数y=x2﹣1≥﹣1,集合A=[﹣1,+∞),则A∩B=[﹣1,1]故答案为:[﹣1,1]10.若函数y=f(x)的定义域是[﹣2,2],则函数y=f(x+1)+f(x﹣1)的定义域为[﹣1,1] .【考点】函数的定义域及其求法.【分析】利用函数的定义域的求法,使函数有意义的x的值求得函数的定义域,再求它们的交集即可.【解答】解:∵函数f(x)的定义域为[﹣2,2],∴解得﹣1≤x≤1;函数y=f(x+1)+f(x﹣1)的定义域为:[﹣1,1];故答案为:[﹣1,1]11.已知直角三角形两条直角边长分别为a、b,且=1,则三角形面积的最小值为4.【考点】基本不等式.【分析】根据=1,求出ab的最小值,从而求出三角形面积的最小值即可.【解答】解:∵a>0,b>0,=1,∴1≥2,∴≤,ab≥8,当且仅当b=2a时“=”成立,=ab≥4,故S△故答案为:4.12.定义集合运算“*”:A×B={(x,y)|x∈A,y∈B},称为A,B两个集合的“卡氏积”.若A={x|x2﹣2|x|≤0,x∈N},b={1,2,3},则(a×b)∩(b×a)={(1,1),(1,2),(2,1),(2,2)} .【考点】交、并、补集的混合运算.【分析】根据新概念的定义,写出a×b与b×a,再根据交集的定义进行计算即可.【解答】解:集合A={x|x2﹣2|x|≤0,x∈N}={x|0≤|x|≤2x∈N}={0,1,2},b={1,2,3},所以a×b={(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)},b×a={(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)};所以(a×b)∩(b×a)={(1,1),(1,2),(2,1),(2,2)}.故答案为:{(1,1),(1,2),(2,1),(2,2)}.二、选择题:(每小题4分,满分16分)13.下列写法正确的是()A.∅∈{0}B.∅⊆{0}C.0⊊∅D.∅∉∁R∅【考点】元素与集合关系的判断.【分析】根据空集的定义,空集是指不含有任何元素的集合,结合元素和集合关系、集合和集合关系的判断;由∅是任何集合的子集,知∅⊆{0}.【解答】解:元素与集合间的关系是用“∈”,“∉”表示,故选项A、D不正确;∵∅是不含任何元素的∴选项C不正确∵∅是任何集合的子集故选:B.14.已知函数y=f(x),则集合{(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=2}的子集可能有()A.0个B.1个C.1个或2个D.0个或1个【考点】子集与真子集.【分析】当2∈[a,b]时,由函数的定义可知,x=2与函数y=f(x)只有一个交点;当2∉[a,b]时,x=2与函数y=f(x)没有交点,即可求.【解答】解:当2∈[a,b]时,由函数的定义可知,对于任意的x=2都有唯一的y与之对应,故x=2与函数y=f(x)只有一个交点,即集合{(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=2}中含有元素只有一个,当2∉[a,b]时,x=2与函数y=f(x)没有交点,综上可得,集合{(x,y)|y=f(x),a≤x≤b}∩{(x,y)|x=2}中含有元素的个数为0个或1个故选:D.15.以下结论正确的是()A.若a<b且c<d,则ac<bdB.若ac2>bc2,则a>bC.若a>b,c<d,则a﹣c<b﹣dD.若0<a<b,集合A={x|x=},B={x|x=},则A⊇B【考点】命题的真假判断与应用;不等式的基本性质.【分析】根据不等式的基本性质,及集合包含有关系的定义,逐一分析给定四个答案的真假,可得结论.【解答】解:若a=﹣1,b=0,c=﹣1,d=0,则a<b且c<d,但ac>bd,故A错误;若ac2>bc2,则c2>0,则a>b,故B正确;若a>b,c<d,则a﹣c>b﹣d,故C错误;若0<a<b,集合A={x|x=},B={x|x=},则A与B不存在包含关系,故D错误;故选:B.16.有限集合S中元素的个数记做card(S),设A,B都为有限集合,给出下列命题:①A∩B=∅的充要条件是card(A∪B)=card(A)+card(B)②A⊆B的必要不充分条件是card(A)≤card(B)+1③A⊈B的充分不必要条件是card(A)≤card(B)﹣1④A=B的充要条件是card(A)=card(B)其中,真命题有()A.①②③ B.①②C.②③D.①④【考点】集合中元素个数的最值.【分析】分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,比如第四个句子元素个数相等,元素不一定相同.【解答】解:①A∩B=∅Û集合A与集合B没有公共元素,正确;②A⊆B集合A中的元素都是集合B中的元素,正确;③A⊈B集合A中至少有一个元素不是集合B中的元素,因此A中元素的个数有可能多于B中元素的个数,错误;④A=B集合A中的元素与集合B中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,错误.故选B.三、解答题(本大题共4小题,满分48分)解答下列各题要有必要的解题步骤,并在规定处答题,否则不得分.17.已知集合A={x|a+1≤x≤2a+3},B={x|﹣x2+7x﹣10≥0}(1)已知a=3,求集合(∁R A)∩B;(2)若A⊈B,求实数a的范围.【考点】交、并、补集的混合运算.【分析】化简集合B,(1)计算a=3时集合A,根据补集与交集的定义;(2)A⊈B时,得出关于a的不等式,求出实数a的取值范围.【解答】解:集合A={x|a+1≤x≤2a+3},B={x|﹣x2+7x﹣10≥0}={x|x2﹣7x+10≤0}={x|2≤x≤5};(1)当a=3时,A={x|4≤x≤9},∴∁R A={x|x<4或x>9},集合(∁R A)∩B={x|2≤x<4};(2)当A⊈B时,a+1<2或2a+3>5,解得a<1或a>1,所以实数a的取值范围是a≠1.18.对于函数f(x)=ax2+2x﹣2a,若方程f(x)=0有相异的两根x1,x2(1)若a>0,且x1<1<x2,求a的取值范围;(2)若x1﹣1,x2﹣1同号,求a的取值范围.【考点】一元二次不等式的解法.【分析】(1)a>0时,根据二次函数f(x)的图象与性质,得出f(1)<0,求出a的取值范围即可;(2)根据x1﹣1,x2﹣1同号得出(x1﹣1)(x2﹣1)>0,利用根与系数的关系列出不等式,从而求出a的取值范围.【解答】解:函数f(x)=ax2+2x﹣2a,若方程f(x)=0有相异的两根x1,x2;(1)当a>0时,二次函数f(x)的图象开口向上,且x1<1<x2,∴f(1)=a+2﹣2a<0,解得a>2,∴a的取值范围是a>2;(2)若x1﹣1,x2﹣1同号,则(x1﹣1)(x2﹣1)>0,∴x1x2﹣(x1+x2)+1>0;又x1x2=﹣2,x1+x2=﹣,∴﹣2﹣()+1>0,解得0<a<2;又△=4﹣4a×(﹣2a)>0,解得a∈R;综上,实数a的取值范围是0<a<2.19.某地区山体大面积滑坡,政府准备调运一批赈灾物资共装26辆车,从某市出发以v(km/h)的速度匀速直达灾区,如果两地公路长400km,且为了防止山体再次坍塌,每两辆车的间距保持在()2km.(车长忽略不计)设物资全部运抵灾区的时间为y小时,请建立y关于每车平均时速v(km/h)的函数关系式,并求出车辆速度为多少千米/小时,物资能最快送到灾区?【考点】函数模型的选择与应用.【分析】由题意可知,y相当于:最后一辆车行驶了25个()2km+400km所用的时间,即可得到函数的解析式,利用基本不等式,即可得出结论.【解答】解:设全部物资到达灾区所需时间为t小时,由题意可知,y相当于:最后一辆车行驶了25个()2km+400km所用的时间,因此y==+,因为y=+≥2=10,当且仅当,即v=80时取“=”.故这些汽车以80km/h的速度匀速行驶时,物资能最快送到灾区.20.某天数学课上,你突然惊醒,发现黑板上有如下内容:例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,当且仅当x=1时,取到最小值﹣2(1)老师请你模仿例题,研究x4﹣4x,x∈[0,+∞)上的最小值;(提示:a+b+c+d≥4)(2)研究x3﹣3x,x∈[0,+∞)上的最小值;(3)求出当a>0时,x3﹣ax,x∈[0,+∞)的最小值.【考点】基本不等式.【分析】(1)根据新定义可得x4﹣4x=x4+1+1+1﹣4x﹣3,解得即可,(2)根据新定义可得x3﹣3x=x3+3+3﹣3x﹣6,解得即可,(3)根据新定义可得x3﹣ax=x3++﹣ax﹣,解得即可.【解答】解:(1)x4﹣4x=x4+1+1+1﹣4x﹣3≥4x﹣4x﹣3=﹣3,当且仅当x=1时,取到最小值﹣3,(2)x3﹣3x=x3+3+3﹣3x﹣6≥3x﹣3x﹣6=﹣6,当且仅当x=3时,取到最小值﹣6,(3)x3﹣ax=x3++﹣ax﹣≥ax﹣ax﹣=﹣,当且仅当x=时,取到最小值﹣上海市华师大二附中高一上学期期中考试试题数学一、填空题:(每空3分,共42分)1、已知集合{1,1,2,4},{1,0,2},A B =-=- 则B A =2、不等式032≥+-x x 的解集为_____________(用区间表示) 3、已知集合M={(x ,y )|4x +y =6},P={(x ,y )|3x +2y =7},则M ∩P =4、已知全集U=R ,集合}065|{2≥--=x x x P ,那么U C P =5、已知集合A={1,3,2m+3},B={3, 2m },若A B ⊆,则实数m=_____6、设全集{1,2,3,4,5},{2,4},U U M N M C N ===则N =7、满足{1,2}M ⊆{1,2,3,4,5,6}的集合M 的个数是8、已知R x ∈,命题“若52<<x ,则01072<+-x x ”的否命题是9、设0>x ,则13++x x 的最小值为 10、若关于x 的不等式02>++c bx ax 的解集为{x |-1<x <2},则关于x 的不等式02>++a bx cx 的解集是11、在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则实数a 的取值范围是12、若关于x 的不等式123222--≤+-a a x x 在R 上的解集为∅,则实数a 的取值范围是 。
上海高一上学期期中考试数学试卷含答案(共3套)
上海市高一第一学期数学期中考试试卷满分:100分 考试时间:90分钟一、 填空题(每小题3分,满分36分)1.已知集合{}1,A x =,则x 的取值范围是___________________.2.命题“若0>a 且0>b ,则0ab >”的否命题为__ _ ____ . 3.已知集合M ⊂≠{4,7,8},则这样的集合M 共有 个.4.用描述法表示“平面直角坐标系内第四象限的点组成的集合”:______________ ___. 5.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,() .U A C B ⋂= 6.11 .x<不等式的解集是 7.不等式|2x -1|< 2的解集是 . 8. 已知0x >,当2x x+取到最小值时,x 的值为_____ _. 9.已知集合}1|{≤=x x M ,}|{t x x P >=,若M P ⋂=∅,则实数t 的取值范围是 .10. 关于x 的不等式22210x kx k k -++->的解集为{},x x a x R ≠∈,则实数a =___________.11. 已知24120x x +->是8x a -≤≤的必要非充分条件,则实数a 的取值范围是______________________。
12.若不等式210 kx kx k A A -+-<≠∅的解集为,且,则实数k 的范围为 .二、选择题(本大题共4小题,每小题3分,满分12分)13. 设U 为全集,()U BB C A =,则AB 为 ( )A. AB. BC. U C BD. ∅14. 若不等式b x a >的解集是()0,∞-,则必有 ( ) A 00=>b a , B 00=<b a , C 00<=b a , D 00>=b a ,15、下列结论正确的是 ( ) A. xx y 1+=有最小值2; B. 21222+++=x x y 有最小值2;C. 0<ab 时,b aa b y +=有最大值-2; D. 2>x 时,21-+=x x y 有最小值2; 16.“1a >”是“对任意的正数x ,21ax x+>”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件三、解答题(本大题共5小题,满分52分)17.(10分)设集合{}2560A x x x =-+=,{}10B x ax =-=,若B A B =,求实数a 的值。
上海市上海中学2022-2023学年高一上学期期中考试数学试卷带讲解
【分析】(1)令 ,所以 ,得 ,结合基本不等式求解最值即可;
(2)方程 可化为 , ,可知方程 有两不同的实根 , ,再由韦达定理建立 得 最值,若不等式 恒成立,可转化为 , 都成立,再求 最小值即可.
【详解】解:(1)已知 ,令 ,所以
则
因为 ,所以 ,当且仅当 ,即 时,等号成立
【分析】根据 ,得 ,讨论 中四个元素分别为1时,求 的值,判断此时集合 的元素是否符合集合与元素的关系,即可得结论.
【详解】解: , ,若 ,所以
当 时,即 ,所以 , , ,所以不符合集合中元素特点,舍去;
当 时,即 ,舍去;
当 时,即 ,此时 无意义,舍去;
当 时, , ,此时 ,不满足 ,舍去.
由于 的元素个数不超过一个,故在含 的三元数对中, ,
由m的任意性,不妨取 ,包含1的三元集合不妨取 满足 ,
去掉1,剩下6个元素为 ,分为3组:
若选 这组中的2,则 中可选一个数字4或5,则满足 至多一个元素的三元集合还有 ,故 ,
故 可取7.
由于 ,所以 至多属于三元集组 中的3个,即 至多出现在3个三元集中, 中一共有7个元素,则这7个元素故总共出现的次数至多为
【详解】 ,
故答案为:
4.不等式 的解集为______.
【答案】
【分析】将不等式变形为 ,利用数轴标根法得到不等式的解集.
【详解】解:不等式 ,即 ,
方程 的根有 (2重根), , , , (2重根),
按照数轴标根法可得不等式的解集为 .
故答案为:
5.已知 , ,则 用a,b表示的值为______.
得 (等号不同时成立),得 .
故答案为:
上海市浦东新区部分学校联考2024-2025学年高一上学期期中考试数学试卷
上海市浦东新区部分学校联考2024-2025学年高一上学期期中考试数学试卷一、填空题1.用∈或∉填空:0φ.2.已知集合A ={1,2,3,4,5},集合{0,2,4,6,8}B =,则A B =.3.用列举法表示方程组31x y x y +=⎧⎨-=⎩的解集为.4.把不等式|1|2x -<的解集用区间表示:.5.关于x 的不等式(3)m x x m +<+解集为空集,则实数m 的值为.6.当36a <<=.7.已知集合(1,)A =+∞,集合(,)B a =-∞,且A B B = ,则实数a 的取值范围是.8.已知等式2235(21)(1)x x a x x c ++=+++恒成立,则实数c =.9.已知12x >,则121x x +-的最小值为10.关于x 的方程222(1)40x m x m +-+=有两个互为倒数的实数根,则实数m 的值为.11.已知关于x 的不等式22101kx kx x -+≤+的解集为空集,则实数k 的取值范围是12.若规定由整数组成的集合0,1,2,,}{E n = ,10n ≥,N ∈n 的子集123}{,,,,m a a a a 为E 的第k 个子集,其中3122222m a a a a k =++++ ,则E 的第2024个子集是.二、单选题13.“1x >”是“2x >”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要14.命题“对任意的实数x ,都有210x x ++>”的否定形式是().A .存在实数x ,使得210x x ++≤B .对任意的实数x ,都有210x x ++≤C .存在实数x ,使得210x x ++>D .存在无数个实数x ,使得210x x ++>15.若a b c R ∈、、,则下列四个命题中,正确的是()A .若a b >,则22ac bc >B .若,a b c d >>,则a c b d ->-C .若a b >,则11a b<D .若a b >,则22a b >16.已知||||x y ≠,||||||x y a x y -=-,||||||x y b x y +=+,则,a b 之间的大小关系是().A .a b>B .a b <C .a b =D .a b≤三、解答题17.化简:113232211166(8)63a b a b a b⎛⎫⋅- ⎪⎝⎭.18.(1)对于实数x ,比较221x +与2x x +的大小;(2)对于实数x ,比较|2152|||x x --+与4的大小.19.若不等式ax 2+bx -1>0的解集是{x |1<x <2}.(1)求a ,b 的值;(2)求不等式11ax bx +-≥0的解集.20.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40km/h 的小道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两种车型的刹车距离S (m )与车速x (km/h )之间分别有如下关系:20.010.1S x x =+甲,20.0050.05S x x =+乙.问:甲、乙两车有无超速现象?21.设集合{}2320A x x x =-+=,(){}222150B x x a x a =+++-=.(1)若{}2A B = ,求实数a 的值;(2)若集合B 中有两个元素1x ,2x ,求实数a 的取值范围,并用含a 的代数式表示12x x -;(3)若全集U =R ,A B =∅ ,求实数a 的取值范围.。
2022-2023学年上海市复旦大学附属中学高一上学期期中考试数学试卷带讲解
11.对一切实数x不等式 恒成立,则a的取值范围为_________.
【答案】
【分析】首先将恒成立问题转化为求函数最小值问题,然后分类讨论求函数最小值即可.
【详解】设 ,则“对一切实数x不等式 恒成立”等价于“ ”
当 时, ,此时 ,则 ,解得 .
当 时, ,即 ,不可能恒成立,不符合题意.
当 时,解 ,得 或 ,
当 时,解 ,得 (舍去)或 (舍去),
综上,方程 的解集为
【小问2详解】
函数 的定义域为R,
当 时, ,此时 ,为偶函数;
当 时,易知 ,故不是奇函数,
若 为偶函数,则当 时, 恒成立,整理得 恒成立,故 (矛盾),所以此时 既不是奇函数也不是偶函数.
综上,当 时, 为偶函数;
故选:B.
14.若 , ,则下列不等式成立的是()
A. B.
C. D.
【答案】A
【分析】根据不等式的性质可判断A,取特值可判断B,C,D.
【详解】对于A,因 , ,所以 ,故A正确;
对于B,若 ,则 ,故B正确;
对于C,若 ,则 ,故C不正确;
对于D,若 ,则 ,故D不正确.
故选:A.
15.已知 , ,则以下结论正确的是()
【详解】由题意知 的元素中有4个奇数和4个偶数,
当子集中的奇数的个数为1个时,S的“奇子集”的个数为 个;
当子集中的奇数的个数为2个时,S的“奇子集”的个数为 个;
当子集中的奇数的个数为3个时,S的“奇子集”的个数为 个;
当子集中的奇数的个数为4个时,S的“奇子集”的个数为 个;
故S的“奇子集”的个数为 ,
【详解】因为 ,所以 , ,显然 , ,所以 ,当 ,即 时,等号成立,所以 ,所以 的最小值为 .
2022-2023上海宝山中学高一上学期期中数学试卷及答案
2022-2023宝山中学高一上期中考数学试卷本试卷共有21道试题,满分100分,考试时间90分钟一、填空题(本大题共有12题,满分36分,每题3分)只要求直接填写结果,否则一律得零分.1、英文单词“notebooks ”中的字母构成一个集合,该集合中的元素个数是____________个.2、若23x=,则实数x 的值为____________. 3、不等式11x>的解集为____________. 4、已知11a −<<,13b <<,则a b −的取值范围是____________.5、{}240A x x =−≤,{}12B x x =+≤,则AB =____________.6、已知0x >,0y >,化简:211133221566263x y x y x y ⎛⎫⎛⎫− ⎪⎪⎝⎭⎝⎭=____________.7、已知8log 9a =,2log 5b =,则lg 3=____________.8、关于x 的不等式20x ax b ++<的解集为(2,3),则不等式a x b −>的解集为____________.9、设a 是实数,集合{}260M x x x =+−=,{}20N y ay =+=,若N M ⊆,则a 的取值为____________.10、关于x 的不等式210ax ax a −++>解集为R ,则实数a 的取值范围是____________. 11、若不等式2x x a a −+−≥对所有实数x 恒成立,则实数a 的取值范围是 ____________.12、中国宋代的数学家秦九韶提出“三斜求积术”,假设在平面内有一个三角形,边长分别为a 、b 、c ,则三角形的面积S可由公式S =求得,其中p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足12a b +=,8c =,则此三角形面积的最大值为____________.二、选择题(本大题共有4题,满分16分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得4分,否则一律得零分. 13、“2x =”是“2320x x −+=”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件14、“若1x <或2y >”的否定形式为( ) A. 若1x >或2y > B.若1x ≥或2y ≥C. 若1x >且2y > D.若1x ≥且2y ≥15、下列命题中,真命题的是( ) A. 若a b >,则22ac bc > B.若a b >,c d >,则a c b d −>−C.若a b >,则22a b> D.若a b >,则11a b<16、高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,为了纪念数学家高斯,我们把取整函数[]y x =(x R ∈)称为高斯函数,其中[]x 表示不超过x 的最大整数,如[]1,11=,[]1,12−=−,则点集[][]{}22(,)1P x y x y =+=所表示的平面区域的面积是( ) A.1B.4C.π D.1π+三、解答题(本大题满分48分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17、(本题满分8分)本题共2小题,第1小题4分,第2小题4分. 已知关于x 的不等式10ax x a−≤−的解集为A . (1)当4a =时,求集合A ;(2)若3A ∈,5A ∉,求实数a 的取值范围.已知幂函数2242()(1)m m f x m x −+=−⋅在(0,)+∞上严格单调递增,函数()2x g x k =−.(1)求m 的值;(2)当[]1,2x ∈时,幂函数()f x 和函数()g x 的函数值所组成的集合分别记为集合A 和集合B ,设命题p :x A ∈,命题q :x B ∈.若p 是q 的必要条件,求实数k 的取值范围.19、(本题满分10分)本题共2小题,第1小题4分,第2小题6分.某公司一年购买某种货物400吨,每次都购买x 吨(0x >),运费为4万元/次,一年的总存储费用为4x 万元,用y 表示一年的总运费与总存储费用之和. (1)请用x 的表达式表示出y ;(2)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?关于x 的一元二次方程222(1)10x m x m +−+−=有两个不相等的实数根分别为1x 、2x . (1)求1211x x +的取值范围;(2)是否存在实数m ,使得22121216x x x x +=+成立?如果存在,求出m 的值;如果不存在,请说明理由.21、(本题满分12分)本题共3小题,第1小题3分,第2小题4分,第3小题5分. 已知M 、N 为两个非空集合,定义M 、N 的差集为{},M N x x M x N −=∈∉.(1)已知{}13A x x x =><−或,{}2B x x =≤−,求B A −;(2)已知{}A x x a =<,{}1B x x =≤−,若B A −=∅,求实数a 的取值范围; (3)若{}41A x x =−≤≤−,4322k x B k x x k ⎧−⎫==⎨⎬+⎩⎭关于的方程的解是负数,再定义()()*M N M N N M =−−,求*A B .2022-2023宝山中学高一上期中考数学试卷参考答案1、72、2log 33、(0,1)4、(4,0)−5、[]3,1−6、4x−7、322ab +8、(,11)(1,)−∞−+∞9、21,0,3⎧⎫−⎨⎬⎩⎭10、0a ≥11、1a ≤12、13-16、ADCB17、(1)1,44⎡⎫⎪⎢⎣⎭;(2)(]11,3,553⎛⎤ ⎥⎝⎦18、(1)0;(2)[]0,119、(1)16004y x x=+;(2)当20x =时,min 160y =20、(1)(,1)(0,)−∞−+∞;(2)1m =−21、(1)[]3,2−−;(2)1a >−;(3)7,2(2,0)2⎡⎫−−−⎪⎢⎣⎭。
上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)
2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。
上海市闵行区2022高一数学上学期期中试题(含解析)
上海市闵行区2022高一年级第一学期期中考试数学试卷一、填空题(本大题共11小题)1.已知集合A={-1,1,2,3},B={-1,0,2},则A∩B= ______ .2.已知集合A={1,2,a2-2a},若3∈A,则实数a=______.3.不等式>0的解集是______ .4.已知集合A={(x,y)|3x-2y=5},B={(x,y)|x+2y=-1},则A∩B=______.5.设函数,则其定义域为______.6.已知命题“在整数集中,若x+y是偶数,则x,y都是偶数”,则该命题的否命题为______.7.已知集合A={1,3,2m+3},集合B={3,m2}.若B⊆A,则实数m= ______ .8.若关于x的不等式ax2+bx+c>0的解集为{x|-1<x<2},则关于x的不等式cx2+bx+a>0的解集是______ .9.设x>1,则最小值为______.10.“对任意的正数x,结论恒成立”的充要条件为______.11.定义满足不等式|x-A|<B(A∈R,B>0)的实数x的集合叫做A的B邻域.若a+b-t(t为正常数)的a+b邻域是一个关于原点对称的区间,则a2+b2的最小值为______ .二、选择题(本大题共4小题)12.下列命题为真命题的是()A. 若,则B. 若,则C. 若,则D. 若,则13.设命题甲为|“0<x<3”,命题乙为“|x-1|<2“,那么甲是乙的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14.设全集U=R,A={x|x(x+3)<0},B={x|x<-1},则图中阴影部分表示的集合为()A. B. C. D.15.设x∈R,对于使-x2+2x≤M成立的所有常数M中,我们把M的最小值1叫做-x2+2x的上确界.若a,b∈(0,+∞),且a+b=1,则--的上确界为()A. B. C. D.三、解答题(本大题共6小题)16.关于不等式组的整数解的集合为{-2},则实数k的取值范围是______ .17.已知集合,B={x||3x+4|<5,x∈R}.求:(1)A∪B;(2)∁R A∩∁R B.18.记关于x的不等式的解集为P,不等式|x+2|<3的解集为Q(1)若a=3,求P;(2)若P∪Q=Q,求正数a的取值范围.19.某城市上年度电价为0.80元/千瓦时,年用电量为a千瓦时.本年度计划将电价降到0.55元/千瓦时~0.75元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时)经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为0.2a.试问当地电价最低为多少时,可保证电力部门的收益比上年度至少增加20%.20.已知命题α:函数的定义域是R;命题β:在R上定义运算⊗:x⊗y=x(1-y).不等式(x-a)⊗(x+a)<1对任意实数x都成立.(1)若α、β中有且只有一个真命题,求实数a的取值范围;(2)若α、β中至少有一个真命题,求实数a的取值范围;(3)若α、β中至多有一个真命题,求实数a的取值范围.21.已知一元二次函数f(x)=ax2+bx+c(a>0,c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.(1)当a=1,时,求出不等式f(x)<0的解;(2)求出不等式f(x)<0的解(用a,c表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;1 / 4答案和解析1.【答案】{-1,2}【解析】解:∵A={-1,1,2,3},B={-1,0,2},∴A∩B{-1,2}.故答案为:{-1,2}.利用交集定义求解.本题考查交集的求法,解题时要认真审题,是基础题.2.【答案】3或-1【解析】解:∵3∈A,A={1,2,a2-2a},∴a2-2a=3,解得a=-1或3.故答案为:-1或3.根据3∈A即可得出a2-2a=3,解出a即可.本题考查了列举法的定义,元素与集合的关系,考查了推理和计算能力,属于基础题.3.【答案】(-∞,-3)∪(1,+∞)【解析】解:不等式>0等价为(x-1)(x+3)>0,即x>1或x<-3,即不等式的解集为(-∞,-3)∪(1,+∞),故答案为:(-∞,-3)∪(1,+∞)将分式不等式转化为整式不等式即可得到结论.本题主要考查不等式的解法,将分式不等式转化为整式不等式是解决本题的关键.4.【答案】{(1,-1)}【解析】解:解得,,∴A∩B={(1,-1)}.故答案为:{(1,-1)}.根据交集的定义,解方程组即可得出A∩B.本题考查了描述法、列举法的定义,交集的定义及运算,考查了计算能力,属于基础题.5.【答案】[-3,0)∪(0,3]【解析】解:函数,令,解得-3≤x≤3且x≠0;所以函数f(x)的定义域是[-3,0)∪(0,3].故答案为:[-3,0)∪(0,3].根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.本题考查了求函数定义域的问题,要保证函数有意义,开偶次根时被开方的式子非负,0次幂的底数非零.6.【答案】“在整数集中,若x+y不是偶数,则x,y不都是偶数”【解析】解:命题“在整数集中,若x+y是偶数,则x,y都是偶数”,该命题的否命题为:“在整数集中,若x+y不是偶数,则x,y不都是偶数”.故答案为:“在整数集中,若x+y不是偶数,则x,y不都是偶数”.根据命题“若p,则q”的否命题为“若¬p,则¬q”,写出即可.本题考查了命题和它的否命题之间关系问题,是基础题.7.【答案】1或3【解析】解:∵B⊆A,∴1=m2或2m+3=m2,解得,m=1或m=-1或m=3,将m的值代入集合A、B验证,m=-1不符合集合的互异性,故m=1或3.故答案为:1或3.由B⊆A可知1=m2或2m+3=m2,求出m再验证.本题考查了集合的包含关系与应用,注意要验证.8.【答案】【解析】解:∵关于x的不等式ax2+bx+c>0的解集为{x|-1<x<2},∴a<0,且-1+2=-,-1×2=.∴b=-a>0,c=-2a>0,∴=-,=.故关于x的不等式cx2+bx+a>0,即x2+x->0,即(x+1)(x-)>0,故x<-1,或x>,故关于x的不等式cx2+bx+a>0的解集是,故答案为.由条件可得a<0,且-1+2=-,-1×2=.b=-a>0,c=-2a>0,可得要解得不等式即x2+x->0,由此求得它的解集.本题主要考查一元二次不等式的解法,一元二次方程根与系数的关系,属于基础题.9.【答案】【解析】解:∵x>1,∴x-1>0,∴==≥=,当且仅当,即x=1+时取等号,∴最小值为.故答案为:.由x>1,知x-1>0,然后根据=,利用基本不等式求出最小值.本题考查了利用基本不等式求最值,考查了转化思想和计算能力,属中档题.10.【答案】∪【解析】解:“对任意的正数x,结论恒成立”⇔a2≥(x-x2)max,x>0.令y=-x2+x=-+≤,当x=时,取等号.∴a2≥.解得a,或a≤-.故答案为:∪.“对任意的正数x,结论恒成立”⇔a2≥(x-x2)max,x>0.令y=-x2+x,x>0,利用二次函数的单调性即可得出.本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.11.【答案】【解析】解:因为:A的B邻域在数轴上表示以A为中心,B为半径的区域,∴|x-(a+b-t)|<a+b⇒-t<x<2(a+b)-t,而邻域是一个关于原点对称的区间,所以可得a+b-t=0⇒a+b=t.又因为:a2+b2≥2ab⇒2(a2+b2)≥a2+2ab+b2=(a+b)2=t2.2 / 4所以:a2+b2≥.故答案为:.先根据条件求出-t<x<2(a+b)-t;再结合邻域是一个关于原点对称的区间得到a+b=t,最后结合基本不等式即可求出a2+b2的最小值.本小题主要考查绝对值不等式的解法、基本不等式等基础知识,考查运算求解能力与化归与转化思想.属于基础题.12.【答案】D【解析】解:由ac>bc,当c<0时,有a<b,选项A错误;若a2>b2,不一定有a>b,如(-3)2>(-2)2,但-3<-2,选项B错误;若,不一定有a<b,如,当2>-3,选项C错误;若,则,即a<b,选项D正确.故选:D.分别举例说明选项A,B,C错误;利用基本不等式的性质说明D正确.本题考查了命题的真假判断与应用,考查了不等式的性质,是基础题.13.【答案】A【解析】解:命题乙为“|x-1|<2“,解得:-1<x<3.又命题甲为|“0<x<3”,那么甲是乙的充分不必要条件.故选:A.化简命题乙,即可判断出甲乙的关系.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.14.【答案】C【解析】解:全集U=R,A={x|x(x+3)<0}={x|-3<x<0},B={x|x<-1},∴C U B={x|x≥-1}.∴图中阴影部分表示的集合为:A∩(C U B)={x|-1≤x<0}=[-1,0).故选:C.求出C U B,图中阴影部分表示的集合为A∩(C U B),由此能求出结果.本题考查集合的求法,考查补集、交集、维恩图的性质等基础知识,考查运算求解能力,是基础题.15.【答案】D【解析】解:若a,b∈(0,+∞),且a+b=1,则--=-(a+b)(+)=-(+2++)≤-(+2)=-,当且仅当b=2a=时,上式取得等号,则--的上确界为-.故选:D.由题意可得--=-(a+b)(+)=-(+2++),展开后,运用基本不等式可得所求值.本题考查新定义的理解和运用,考查基本不等式的运用:求最值,注意乘1法和等号成立的条件,考查运算能力,属于中档题.16.【答案】[-3,2)【解析】解:由不等式组可化为.(1)当时,上述不等式组可化为,解集为{x|},不满足原不等式组的整数解的集合为{-2},故应舍去;(2)当时,上述不等式组可化为,作出数轴:可知必须且只需当-2<-k≤3时,即-3≤k<2,原不等式组的整数解的集合为{-2}.故k的取值范围是[-3,2).先分别解出一元二次不等式,再对k分类讨论并画出数轴即可得出答案.熟练掌握一元二次不等式的解法、分类讨论和数形结合的思想方法是解题的关键.17.【答案】解:(1)∵集合={x|x2+x-2≥0}={x|x≥1或x≤-2},B={x||3x+4|<5,x∈R}={x|-3}.∴A∪B={x|x≥1或x<}.(2)∁R A={x|-2<x<1},∁R B={x|x≤-3或x≥},∴∁R A∩∁R B={x|}.【解析】(1)先分别求出集合A和B,由此能求出A∪B.(2)分别求出∁R A,∁R B,由此能求出∁R A∩∁R B.本题考查交集、并集、补集的求法,考查交集、并集、补集的定义等基础知识,考查运算求解能力,是基础题.18.【答案】解:(1)a=3时,即,化简得∴集合,根据分式不等式的解法,解得-1<x<3由此可得,集合P=(-1,3).(2)Q={x||x+2|<3}={x|-3<x+2<3}={x|-5<x<1}可得Q=(-5,1)∵a>0,∴P={}=(-1,a),又∵P∪Q=Q,得P⊆Q,∴(-1,a)⊆(-5,1),由此可得0<a≤1即正数a的取值范围是(0,1].【解析】(1)当a=3时,分式不等式可化为,结合分式不等式解法的结论,即可得到解集P;(2)由含有绝对值不等式的解法,得Q=(-5,1).根据a是正数,得集合P═(-1,a),并且集合P 是Q的子集,由此建立不等式关系,即可得到正数a的取值范围.本题给出分式不等式和含有绝对值的不等式,求两个解集并讨论它们的包含关系,着重考查了分式不等式的解法、含有绝对值的不等式的解法和集合包含关系的运算等知识,属于基础题.3 / 419.【答案】解:设新电价为x元/千瓦时(0.55≤x≤0.75),则新增用电量为千瓦时.依题意,有,即(x-0.2)(x-0.3)≥0.6(x-0.4),整理,得x2-1.1x+0.3≥0,解此不等式,得x≥0.6或x≤0.5,又0.55≤x≤0.75,所以,0.6≤x≤0.75,因此,x min=0.6,即电价最低为0.6元/千瓦时,可保证电力部门的收益比上一年度至少增加20%.【解析】设新电价为x元/千瓦时(0.55≤x≤0.75),则新增用电量为千瓦时.依题意,有,由此能求出电价最低为0.6元/千瓦时,可保证电力部门的收益比上一年度至少增加20%.本题考查函数模型的选择与应用,解题时要认真审题,仔细解答,注意公式的合理运算.20.【答案】解:函数的定义域是R,则ax2-ax+1>0恒成立,a=0时,满足条件;a≠0时,则,解得0<a<4;所以命题α为真命题时,a∈[0,4);又在R上定义运算⊗:x⊗y=x(1-y),不等式(x-a)⊗(x+a)<1可化为(x-a)(1-x-a)<1,即x2-x-a2+a+1>0对任意的x∈R都成立;令△=1-4(-a2+a+1)<0,解得-<a<,所以命题β为真时a的取值范围是a∈(-,).(1)若α为真、β为假时,有,即≤a<4;若α为假、β为真时,有,即-<a<0;综上,实数a的取值范围是(-,0)∪[,4);(2)若α为假且β为假时,有,即a≤-或a≥4;所以α、β中至少有一个真命题时,实数a的取值范围是(-,4);(3)若α为真且β为真时,有,即0≤a<;所以α、β中至多有一个真命题时,实数a的取值范围是(-∞,0)∪[,+∞).【解析】分别求出命题α为真时和命题β为真时a的取值范围,再求:(1)若α为真、β为假时和α为假、β为真时对应a的取值范围,求并集即可;(2)求出α为假且β为假时a的取值范围,再求补集即可;(3)求出α为真且β为真时a的取值范围,再求补集即可.本题利用命题真假的判断,考查了复合命题的真假性判断问题,是基础题.21.【答案】解:(1)当a=1,时,,f(x)的图象与x轴有两个不同交点,∵,设另一个根为x2,则,∴x2=1,则f(x)<0的解集为.(2)f(x)的图象与x轴有两个交点,∵f(c)=0,设另一个根为x2,则,又当0<x<c时,恒有f(x)>0,则,∴f(x)<0的解集为;(3)由(2)的f(x)的图象与坐标轴的交点分别为,这三交点为顶点的三角形的面积为,∴,当且仅当c=4时,等号成立,故.【解析】(1)由韦达定理和题中所给条件可解得函数的两个零点,进而可解得不等式f(x)<0的解;(2)由韦达定理及函数过(c,0),可解不等式;(3)表示出以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积,利用基本不等式求得a的取值范围.本题主要考查二次函数的图象与性质及一元二次不等式的解法,属于中档题.4 / 4。
2024-2025学年华东师大二附中高一数学上学期期中考试卷及答案解析
上海市华东师范大学第二附属中学2024-2025学年高一上学期期中考试数学试卷1. 用Î或Ï填空:0______f .【答案】Ï【解析】【分析】空集中没有任何元素.【详解】由于空集不含任何元素,∴0ÏÆ.故答案为Ï.【点睛】本题考查元素与集合的关系,关键是掌握空集的概念.2. 实数a ,b 满足31a -££,13b -££,则3a b -的取值范围是________.【答案】[]12,4-【解析】【分析】根据题意利用不等式的性质运算求解.【详解】因为31a -££,13b -££,则933a -££,31b -£-£,可得1234a b -£-£,所以3a b -的取值范围是[]12,4-.故答案为:[]12,4-.3. 若全集{}2,3,5U =,{}2,5A a =-,{}5A =,则a 的值是______.【答案】2或8【解析】【分析】由53a -=即可求解.【详解】因为{}2,3,5U =,{}2,5A a =-,且{}5A =,所以53a -=,解得2a =或8a =.故答案为:2或8.4. 命题“1x >”是命题“11x<”的______条件.【答案】充分不必要【解析】【分析】解出不等式11x<,根据真子集关系即可【详解】11x <,即10x x -<,即()10x x -<,即()10x x -<,解得1x >或0x <,则“1x >”能推出“1x >或0x <”,而“1x >或0x <”不能推出 “1x >”,故命题“1x >”是命题“11x<”的充分不必要条件.故答案为:充分不必要.5. 已知0x >,则812x x --的最大值为_____________.【答案】7-【解析】【分析】利用基本不等式求解即可.【详解】因为0x >,所以828x x +³=,当82x x=,即2x =时等号成立,所以881212187x x x x æö--=-+£-=-ç÷èø,即812x x--的最大值为7-,故答案为:7-.6. 已知(21)y f x =+定义域为(1,3],则(1)y f x =+的定义域为__________.【答案】(2,6]【解析】【分析】根据3217x <+£可得317x <+£,即可求解.【详解】由于(21)y f x =+定义域为(1,3],故3217x <+£,因此(1)y f x =+的定义域需满足317x <+£,解得26x <£,故(1)y f x =+的定义域为(2,6],故答案为:(2,6]7. 已知关于x 的不等式210ax bx ++<的解集为11,43æöç÷èø,则a b +=______.【答案】5【解析】【分析】由题意得11,43是方程210ax bx ++=的两个根,由根与系数的关系求出,a b 即可.【详解】由题意可知,11,43是方程210ax bx ++=的两个根,且0a >,由根与系数的关系得1134b a +=-且11134a´=,解得12,7a b ==-,则5a b +=.故答案为:58. 设1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,则2212x x +的最小值为______.【答案】89【解析】【分析】根据1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,由Δ≥0,解得 23m £,然后由()2212121222x x x x x x ++×=- ,将韦达定理代入,利用二次函数的性质就.【详解】因为1x 、2x 是关于x 的方程22242320x mx m m -++-=的两个实数根,所以()()22482320m m m D =-+-³,解得 23m £,所以112222322,2x x x x m m m +=×-=+,则 ()2212121222x x x x x x ++×=- ,()22232222m m m +-=-´, 2232m m =-+, 237248m æö=-+ç÷èø,所以2212x x +的最小值为2237823489æö-+=ç÷èø,故答案为:899. 若函数()f x 满足R x "Î,()()11f x f x +=-,且1x ",[)21,x Î+¥,()()()1212120f x f x x x x x ->¹-,若()()1f m f >-,则m 的取值范围是______.【答案】()(),13,-¥-È+¥【解析】【分析】由题意,()f x 在[)1,+¥上单调递增,函数图像关于1x =对称,利用单调性和对称性解不等式.【详解】因为1x ",[)21,x Î+¥,()()()1212120f x f x x x x x ->¹-,所以()f x 在[)1,+¥上单调递增,R x "Î,()()11f x f x +=-,则函数图像关于1x =对称,若()()1f m f >-,则111m ->--,解得3m >或1m <-.所以m 的取值范围是()(),13,-¥-È+¥.故答案为:()(),13,-¥-È+¥.10. 已知{}{}22230,210,0A x x x B x x ax a =+->=--£>,若A B Ç中恰含有一个整数,则实数a 的取值范围是______.【答案】【解析】【详解】试题分析:由题意,得{}{}223013A x x x x x x =+-=<-或,{}{2210,0=|B x x ax a x a x a =--£££+;因为,所以若A B Ç中恰含有一个整数,则{}2A B Ç=,则,即,两边平方,得,解得,即实数的取值范围为;故填.考点:1.集合的运算;2.一元二次不等式的解法.11. 已知函数()3(1)1f x x =-+,且()()22(1,0)f a f b a b +=>->,则121a b ++的最小值是________.【答案】2【解析】【分析】利用()3(1)1f x x =-+,单调性与对称性,可知,若有()()2f m f n +=,则必有2m n +=成立.再利用基本不等式求121a b ++的最小值即可.【详解】∵3y x =在R 为单调递增奇函数,∴3y x =有且仅有一个对称中心()0,0,∴()3(1)1f x x =-+单调递增,有且仅有一个对称中心()1,1,又∵()()22(1,0)f a f b a b +=>->,∴22a b +=,则()214a b ++=,∴()1211221141a b a b a b æö+=+++éùç÷ëû++èø()411441a b a b +éù=++êú+ë1424é³+=êêë,当且仅当()411a b a b+=+即0,2a b ==时,等号成立,∴121a b++的最小值是2.故答案为:2.12. 如图,线段,AD BC 相交于O ,且,,,AB AD BC CD 长度构成集合{}1,5,9,x,90ABO DCO Ð=Ð=°,则x 的取值个数为________.【答案】6【解析】【分析】画出等效图形,分9AD =和x 两种情况由勾股定理求出对应x 值即可;的【详解】如图,因为90ABO DCO Ð=Ð=°,且,,,AB AD BC CD 长度构成集合{}1,5,9,x ,因为直角三角形ADE 中,斜边AD 一定大于直角边AE 和DE ,所以9AD =或x ,当9AD =时,可分为AE x =,此时由勾股定理可得()222159x ++=,解得x =CE x =,此时由勾股定理可得()222159x ++=,解得5x =;CD x =,此时由勾股定理可得()222519x ++=,解得1x =;当AD x =,可分为()222915x ++=,解得x =()222195x ++=,解得x =;()222519x ++=,解得x =所以x 的取值个数为6,故答案为:6.【点睛】关键点点睛:本题的关键是能够画出等效图形再结合勾股定理解答.13. 下列各组函数中,表示同一个函数的是( )A. 2(),()x f x x g x x== B. ()(),()()f x x x R g x x x Z =Î=ÎC. ,0(),(),0x x f x x g x x x ³ì==í-<î D. 2(),()f x x g x ==【答案】C【解析】【分析】分别求得函数的定义域和对应法则,结合同一函数的判定方法,逐项判定,即可求解.【详解】对于A 中,函数()f x x =的定义域为R ,函数2()x g x x=的定义域为(,0)(0,)-¥+¥U ,两函数的定义域不同,不是同一函数;对于B 中,函数()()f x x x R =Î和()()g x x x Z =Î的定义域不同,不是同一函数;对于C 中,函数,0(),0x x f x x x x ³ì==í-<î与,0(),0x x g x x x ³ì=í-<î定义域相同,对应法则也相同,所以是同一函数;对于D 中,函数()f x x =定义域为R,2()g x =的定义域为[0,)+¥,两函数的定义域不同,不是同一函数.故选:C.【点睛】本题主要考查了同一函数的判定,其中解答中熟记两函数是同一函数的判定方法是解答的关键,着重考查推理与运算能力,属于基础题.14. 设集合A ={x |x =12m ,m ∈N *},若x 1∈A ,x 2∈A ,则( )A. (x 1+x 2)∈AB. (x 1﹣x 2)∈AC. (x 1x 2)∈AD. 12x x ∈A 【答案】C【解析】【分析】利用元素与集合的关系的进行判定.【详解】设112p x =,212q x =, 则12111222p q p qx x +=×=,因为p 、*N q Î,所以*N p q +Î,则x 1x 2∈A ,故选:C .15. 如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚在这个过程中,小球的运动速度v (m /s )与运动时间t (s )的函数图象如图②,则该小球的运动路程y (m )与运动时间t (s )之间的函数图象大致是( )的的A. B.C. D.【答案】C【解析】【分析】根据题意结合图象分析即可.【详解】由题意,小球是匀变速运动,所以图象是先缓后陡,在右侧上升时,先陡后缓.故选:C.16. 设集合A 是集合*N 的子集,对于*i ÎN ,定义1,()0,i i A A i A j Îì=íÏî,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ÎN 都满足()0i A B j =I 且()1i A B j =U ;②任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i A B j =I ()i A j g ()i B j ;③任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i A B j =U ()+i A j ()i B j ;其中,所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】A【解析】【分析】根据题目中给的新定义,对于*,0i i N A j Î=()或1,可逐一对命题进行判断,举实例例证明存在性命题是真命题,举反例可证明全称命题是假命题.【详解】∵对于*i ÎN ,定义1,()0,i i A A i A j Îì=íÏî,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*A B A B N \=Æ=I U ,()()01i i A B A B j j \==I U ;,故①正确;对于②,若()0i A B j =I ,则()i A B ÏI ,则i A Î且i B Ï,或i B Î且i A Ï,或i A Ï且i B Ï;()()0i i A B j j \×=;若()1i A B j =I ,则()i A B ÎI ,则i A Î且i B Î; ()()1i i A B j j \×=;∴任取*N 的两个不同子集,A B ,对任意*i ÎN 都有()i i A B A i B j j j =×I ()();正确,故②正确;对于③,例如:{}{}{}1232341234A B A B ===U ,,,,,,,,,,当2i =时,1i A B j =U ();()()1,1i i A B j j ==;()()()i i i A B A B j j j \¹+U ; 故③错误;∴所有正确结论的序号是:①②; 故选:A .【点睛】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.17. 已知关于x 的不等式122x a -£的解集为集合A ,40x B x x ìü-=£íýîþ.(1)若x A Î是x B Î的必要不充分条件,求a 的取值范围.(2)若A B =ÆI ,求a 的取值范围.【答案】(1)[]0,2(2)(](),24,-¥-+¥U 【解析】分析】(1)首先解不等式求出集合A 、B ,依题意B 真包含于A ,即可得到不等式组,解得即可;(2)首先判断A ¹Æ,即可得到240a +£或244a ->,解得即可.【小问1详解】由122x a -£,即1222x a -£-£,解得2424a x a -££+,所以{}2424|A x x a a -=££+,由40x x -£,等价于()400x x x ì-£í¹î,解得04x <£,所以{}40|04x B x x x x ìü-=£=<£íýîþ,【因为x A Î是x B Î的必要不充分条件,所以B 真包含于A ,所以244240a a +³ìí-£î,解得02a ££,即a 的取值范围为[]0,2;【小问2详解】因为A B =ÆI ,显然A ¹Æ,所以240a +£或244a ->,解得2a £-或4a >,即a 的取值范围为(](),24,-¥-+¥U .18. 已知函数()211y m x mx =+-+.(1)当5m =时,求不等式0y >的解集;(2)若不等式0y >的解集为R ,求实数m 的取值范围.【答案】(1){13x x <或x >(2)(22-+【解析】【分析】(1)根据题意易得26510x x -+>,因式分解后利用口诀“大于取两边,小于取中间”即可得解;(2)由题意易得()2110m x mx +-+>的解集为R ,分类讨论1m =-与1m ¹-两种情况,结合二次函数的图像性质即可得解.【小问1详解】根据题意,得2651y x x =-+,由0y >得26510x x -+>,即()()31210x x -->,解得:13x <或12x >,故不等式0y >的解集为{13x x <或x >【小问2详解】由题意得,()2110m x mx +-+>的解集为R ,当1m =-时,不等式可化为10x +>,解得1x >-,即()2110m x mx +-+>的解集为()1,-+¥,不符合题意,舍去;当1m ¹-时,在()211y m x mx =+-+开口向上,且与x 轴没有交点时,()2110m x mx +-+>的解集为R ,所以()210Δ410m m m +>ìí=-+<î,解得22m m >ìïí-<<+ïî22m -<<+,综上:22m -<<+,故实数m的取值范围为(22-+.19. 某化工企业生产过程中不慎污水泄漏,污染了附近水源,政府责成环保部门迅速开展治污行动,根据有关部门试验分析,建议向水源投放治污试剂,已知每投放a 个单位(04a <£且R a Î)的治污试剂,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()y af x =,其中()[](]1,0,5711,5,112xx xf x x x +ìÎïï-=í-ïÎïî,若多次投放,则某一时刻水中的治污试剂浓度为每次投放的治污试剂在相应时刻所释放的浓度之和,根据试验,当水中治污试剂的浓度不低于4(克/升)时,它才能治污有效.(1)若只投放一次4个单位的治污试剂,则有效时间最多可能持续几天?(2)若先投放2个单位的治污试剂,6天后再投放m 个单位的治污试剂,要使接下来的5天中,治污试剂能够持续有效,试求m 的最小值.【答案】(1)7天; (2)min 2m =.【解析】【分析】(1)根据给定的函数模型求投放一次4个单位的治污试剂的有效时间即可;(2)由题设()5=11413x g x x m x --+׳-,将问题化为()()1375x x m x --³-在[6,11]x Î上恒成立,利用基本不等式求右侧最大值,即可得求参数最小值.【小问1详解】因为一次投放4个单位的治污试剂,所以水中释放的治污试剂浓度为()44,0547222,511xx y f x x x x +죣ï==-íï-<£î,当05x ££时,()4147x x+³-,解得35x ££;当511x ££时,2224x -³,解得59x ££;综上,39x ££,故一次投放4个单位的治污试剂,则有效时间可持续7天.【小问2详解】设从第一次投放起,经过()611x x ££天后浓度为()()()16511[]117613x x g x x m x m x x+--=-+=-+×---.因为611x ££,则130x ->,50x ->,所以511413x x m x --+׳-,即()()1375x x m x --³-,令5x t -=,[]1,6t Î,所以()()281610t t m t tt --æö³-=-+ç÷èø,因为168t t+³=,所以2m ≥,当且仅当16t t =,4t =即9x =时等号成立,故为使接下来的5天中能够持续有效m 的最小值为2.20. 对于函数()f x ,若存在0R x Î,使()00f x x =成立,则称0x 为()f x 的不动点.(1)求函数23y x x =--不动点;(2)若函数()221y x a x =-++有两个不相等的不动点1x 、2x ,求1221x x x x +的取值范围;(3)若函数()()211g x mx m x m =-+++在区间(0,2)上有唯一的不动点,求实数m 的取值范围.【答案】(1)1-和3. (2)()2,+¥(3)(]1,1-U .【解析】【分析】(1)解方程23x x x --=,即可求出不动点;(2)由题意,方程()2310x a x -++=有两个不相等的实数根1x 、2x ,由0D >即可求出a 的范围,结合韦达定理和二次函数图象性质即可求出1221x x x x +的范围;的(3)由题意,()2210mx m x m -+++=在(0,2)上有且只有一个解,令()()221h x mx m x m =-+++,分()()020h h ×<,()00h =,()20h =和0D =四种情况进行讨论即可.【小问1详解】由题意知23x x x --=,即2230x x --=,则()()310x x -+=,解得11x =-,23x =,所以不动点为1-和3.【小问2详解】依题意,()221x a x x -++=有两个不相等的实1x 数根1x 、2x ,即方程()2310x a x -++=有两个不相等的实数根1x 、2x ,所以()22Δ34650a a a =+-=++>,解得5a <-,或1>-a ,且123x x a +=+,121x x =,所以()()2222121212122112232x x x x x x x x a x x x x ++==+-=+-,因为函数()232y x =+-对称轴为3x =-当3x <-时,y 随x 的增大而减小,若5x <-,则2y >;当3x >-时,y 随x 的增大而增大,若1x >-,则2y >;故()()2322,a ¥+-Î+,所以1221x x x x +的取值范围为()2,¥+.【小问3详解】由()()211g x mx m x m x =-+++=,得()2210mx m x m -+++=,由于函数()g x 在(0,2)上有且只有一个不动点,即()2210mx m x m -+++=在(0,2)上有且只有一个解,令()()221h x mx m x m =-+++,①()()020h h ×<,则()()110m m +-<,解得11m -<<;②()00h =,即1m =-时,方程可化为20x x --=,另一个根为1-,不符合题意,舍去;③()20h =,即1m =时,方程可化为2320x x -+=,另一个根为1,满足;④0D =,即()()22410m m m +-+=,解得m =(ⅰ)当m =时,方程的根为()2222m m x m m -++=-==(ⅱ)当m =()2222m m x m m -++=-==,不符合题意,舍去;综上,m 的取值范围是(]1,1-È.21. 对任意正整数n ,记集合(){1212,,,,,,n nnA a a a a a a=××××××均为非负整数,且}12n a a a n ++×××+=,集合(){1212,,,,,,n nnB b b b b b b =××××××均为非负整数,且}122n b b b n ++×××+=.设()12,,,n n a a a A a =×××Î,()12,,,n n b b b B b =×××Î,若对任意{}1,2,,i n Î×××都有i i a b £,则记a b p .(1)写出集合2A 和2B ;(2)证明:对任意n A a Î,存在n B b Î,使得a b p ;(3)设集合(){},,,n nnS A B a b a b a b =ÎÎp 求证:nS中的元素个数是完全平方数.【答案】(1)()()(){}20,2,1,1,2,0A =,()()()()(){}20,4,1,3,2,2,3,1,4,0B =(2)证明见解析 (3)证明见解析【解析】【分析】(1)根据集合n A 与n B 的公式,写出集合和即可;(2)任取()12,,,n n a a a A a =×××Î,设()11,2,3,,i i b a i n =+=×××,令()12,,,n b b b b =×××,只需证明n B b Î,即可证明结论成立;(3)任取()12,,,n n a a a A a =×××Î,()12,,,n n a a a A a =×עע΢¢,可证明n B a a +¢Î,且a a a +¢p ,a a a ¢+¢p ,再设集合n A 中的元素个数为t ,设{}12,,,n t A a a a =×××,设集合(){},1,2,,,1,2,,n i i j T i t j t a a a =+=×××=×××,通过证明n n T S Í,n n S T Í,推出n n S T =,即可完成证明.【小问1详解】()()(){}20,2,1,1,2,0A =,()()()()(){}20,4,1,3,2,2,3,1,4,0B =.【小问2详解】对任意()12,,,n n a a a A a =×××Î,设()11,2,3,,i i b a i n =+=×××,则12,,,n b b b ×××均为非负整数,且()1,2,3,,i i a b i n £=×××.令()12,,,n b b b b =×××,则12n b b b ++×××+()()()12111n a a a =++++×××++()12n a a a n=++×××++2n =,所以n B b Î,且a b p .【小问3详解】对任意()12,,,n n a a a A a =×××Î,()12,,,n n a a a A a =×עע΢¢,记()1122,,,n n a a a a a a a a +=++×××¢+¢¢¢,则11a a ¢+,22a a ¢+,…,n n a a ¢+均为非负整数,且()()()1122n n a a a a a a ++++×××++¢¢¢()()1212n n a a a a a a ¢=++×××++++××+¢×¢n n =+2n =,所以n B a a +¢Î,且a a a +¢p ,a a a ¢+¢p .设集合n A 中的元素个数为t ,设{}12,,,n t A a a a =×××.设集合(){},1,2,,,1,2,,n iijT i t j t a a a =+=×××=×××.对任意i n A a Î(1,2,,)i t =×××,都有1i a a +,2i a a +,…,i t n B a a +Î,且i i j a a a +p ,1,2,,j t =×××.所以n n T S Í.若(),n S a b Î,其中()12,,,n n a a a A a =×××Î,()12,,,n n b b b B b =×××Î,设i i i c b a =-()1,2,,i n =×××,因为i i a b £,所以0i i i c b a =-³,记()12,,,n c c c a =×××¢,则12n c c c +++L ()()()1122n n b a b a b a =-+-+-L ()()1212n n b b b a a a =++×××+-++×××+2n n n =-=,所以n A a ¢Î,并且有b a a =+¢,所以(),n T a b Î,所以n n S T Í.所以n n S T =.因为集合n T 中的元素个数为2t ,所以n S 中的元素个数为2t ,是完全平方数.【点睛】关键点点睛:集合元素的个数转换为证明两个集合相等.。
上海市黄浦区大同中学2023-2024学年高一上学期期中考试数学试卷
(1)判断 f ( x) = x2 +1是否为区间[0,3] 上的“2 阶自伴函数”?并说明理由:
(2)若函数 f ( x) = 3x -1 为区间[1 ,b] 上的“1 阶自伴函数”,求 b 的值;
2
(3)若
f
(x)
=
x
4 +
2
是
g
(x)
=
x2
-
2ax
+ a2
-1在区间[0, 2]
上的“2
= 1,则
x
+
y
的最小值为
.
7.已知
f
æ çè
1 2
x
-1ö÷ø
=
2x
+
3
,若
f
(t)
=
4
t ,则
=
.
8.已知 y = f (x) + x2 是奇函数,且 f (1) = 1,若 g(x) = f (x) + 2 ,则 g(-1) = .
9.已知函数 f ( x) = x - a ( a 为常数).若 f ( x) 在区间[1, +¥) 上是严格增函数,则 a
6. 4 + 2 3 【分析】根据给定条件,利用基本不等式“1”的妙用求解即得.
【详解】
x
>
0,
y
>
0
,且
3 x
+
1 y
= 1,则
x
+
y
=
(
3 x
+
1 y
)(
x
+
y)
=
4
+
3y x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市高一上学期期中考试试卷数 学考试注意:试卷分第Ⅰ卷、第Ⅱ卷两部分。
请在答题卡上作答,答在试卷上一律无效。
第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项符合要求)1、已知{}{}2lg 0,(1)4,A x x B x x =>=-< 则A B =( ) {}.11A x x x <-≥或 {}.13B x x << {}.1C x x >- {}.3D x x >2、若函数23,12()3,25x x f x x x ⎧--≤≤=⎨-<≤⎩则方程()1f x =的解是( )A .4B 3C . 2D .43、方程43x e x =-+的根所在区间是( )A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C . 13,24⎛⎫ ⎪⎝⎭D . 11,42⎛⎫ ⎪⎝⎭4、下列函数中,与y x =是同一函数的是( )()1y = ()2log ;x a y a = ()log 3;a x y a = ()4y = ())5.y n N =∈*()().24A()().23B ()().12C ()().35D 5、若432a =,254b =,3log 0.2c =,则,,a b c 的大小关系是( ).Aa b c << .B c b a << .C b a c << .D c a b <<6、函数()2101x b y a a a +=+>≠且恒过定点()1,2,则b =( ).3A .3B - .2C - .1D7.已知函数()2221()1mm f x m m x --=--是幂函数,则m =( ) .0A .2B - .1C .2D8、函数2()23f x x ax =--在区间[]1,2上是单调函数,则( ).A (),1a ∈-∞ .B ()2,a ∈+∞ .C (][),12,a ∈-∞+∞ .D [)()1,22,a ∈+∞9、函数()21,x f x =-使()0f x ≤成立的x 的集合是( ).A {}0x x < .B {}=0x x .C {}1x x < .D {}1x x =10、函数lg x y x=的图像大致是( )11、若函数()212x x f x a+=-是奇函数,则使()3f x >成立的x 的取值范围是( ) .A ()1,1- .B (]1,1- .C [)0,1 .D ()0,112、某同学在研究函数()||1x f x x =+()x ∈R 时,分别给出下面几个结论: ①函数()f x 是奇函数; ②函数()f x 的值域为()1 1-,; ③函数()f x 在R 上是增函数; 其中正确结论的序号是( ).A ①②③ .B ①③ .C ②③ .D ①②第Ⅱ卷 非选择题(共90分)二、填空题(本大题共4小题,每小题5分)13、设,,a b R ∈集合{}1,,=0,,,b a b a b b a a ⎧⎫+-=⎨⎬⎩⎭则___________. 14、定义在R 上的函数()f x 是奇函数且每隔2个单位的函数值都相等,则()()()147f f f ++=_____________.15、已知集合{{}=,1,,,A B m A B A m ===则_____________.16、已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()2f x x x =-,如果函数()()g x f x m =-恰有4个零点,则实数m 的取值范围是 .三、解答题(本大题6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17、(本小题10分)(1)已知函数()2(2)2x f x log =-,求()f x 的定义域;(2)解不等式2122x +⎛⎫> ⎪⎝⎭18、(本小题12分) 已知集合{}{}{}37,210,5.A x x B x x C x a x a =≤<=<<=-<<(1) 求A B 与()R A B .(2) 若(),A B C ⊆求实数a 的取值范围.19、(本小题12分)已知函数()()(10)x x f x ln a b a b >>>=-.(1)求函数()f x 的定义域;(2)判断函数()f x 在定义域上的单调性,并说明理由;(3)当,a b 满足什么关系时,()f x 在[)2,+∞上恒取正值.20、(本小题12分)已知:函数()()()log 1log 1a a f x x x =+--(0a >且1a ≠).(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并加以证明;(3)设3a =,解不等式()0f x >.21、(本小题12分)求函数()()212log 43g x x x =++的单调区间(写出解答过程)22、(本小题12分)已知函数()f x 对一切实数,x y 都满足()()2)1(f x y f y x y x +=+++,且()10f =.(1)求()0f 的值;(2)求()f x 的解析式;(3)当10,2x ⎡⎤∈⎢⎥⎣⎦时,()32f x x a <++恒成立,求a 的范围.高一上学期期中考试答案一、选择题二、填空题三、解答题17、(本小题满分10分)解析:(1)由条件可知220,22x x ->∴<,······································2分 函数2x y =在R 上单调递增·····················································3分()1,,1x ∴<-∞即定义域为.···························································5分(2)2211112,222x x ++-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>∴> ··················································7分 又函数12x y ⎛⎫ ⎪⎝⎭=在R 上单调递减,21 3.x x ∴+<-∴<-,·····················9分 {}2123.2x x x +⎛⎫ ⎪⎝⎭∴><-不等式的解集为 ········································10分18.(本小题满分12分)解析:(1)由条件可知{}210x x A B B <<==································3分 又{}=37R A x x x <≥或.····························································4分(){}23710R A B x x x ∴=<<≤<或·············································6分(2) {}210x x C A B B <<⊆==··············································8分∴分析可知 10525a a a a ⎧⎪⎨⎪⎩≤-<-< ,解得10.a ≥ ········································10分 )10,.a ⎡⎣∴∈+∞ ·····································································12分19.(本小题满分12分)解析:(1)0,1x x x a a b b ⎛⎫ ⎪⎝⎭->∴>, ················································1分 又1a b>,0x ∴>·····································································2分∴定义域为()0,+∞.··································································3分 (2)函数在定义域上是单调递增函数.证明:1212,0x x x x ∀<<且,121210,,.x x x x a b a a b b >>>∴<> ················4分 1122x x x x a b a b ∴-<- ··································································6分()()1122ln ln x x x x a b a b ∴-<- ·························································7分()()12f x f x ∴<所以函数()f x 在定义域上是单调递增函数. ···································8分(3)要使得()f x 在)2,⎡⎣+∞上恒为正值,则()f x 在)2,⎡⎣+∞上的最小值必须大于0, 由(2)知()()22min 2ln()f x f a b ==- ················································9分22ln()0,a b ∴->22 1.a b ∴-> ··········································································11分∴()f x 在)2,⎡⎣+∞上恒为正值时,22 1.a b ->····································12分20.(本小题满分12分)解析:(1)由题意可知x 满足10,10x x ⎧⎨⎩+>-> 解得11x -<<,····································2分 ∴函数()f x 的定义域为()1,1- ··································································3分(2)()f x 是奇函数.证明:函数的定义域为()1,1-,关于原点对称,对于任意的()1,1x ∈-·················4分 ()log (1)log (1)a a f x x x -=-+++()log 1log (1)a a x x ⎡⎤⎣⎦=-+-- ······································································6分()f x =-所以函数()f x 是奇函数. ········································································8分(3)当3a =时,()330,log (1)log (1)f x x x >∴+>-3log y t =在定义域上是单调递增函数·····················································10分x ∴满足11,11x x x ⎧⎨⎩+>--<< 解得0 1.x << 所以不等式()0f x >的解集为{}01.x x << ················································12分21.(本小题满分12分)解析:由题意,2430,x x ++>解得3 1.x x <->-或()g x ∴的定义域为()(),31,.-∞--+∞ ·······················································3分 又243y x x =++在(),3-∞-上是单调递减函数,···········································5分 在()1,-+∞上是单调递增函数··································································7分 12log y x =在()0,+∞上是减函数·····························································9分 ∴由复合函数单调性可知:函数()()212log 43g x x x =++的单调递增区间是(),3-∞-,单调递减区间是()1,-+∞.······································································································12分22. (本小题满分12分)解析:(1)令()()()()()1,0,10111,012 2.x y f f f f ===++⨯∴=-=-则····························4分(2)()()0()01y f x f x x 令=,则=++()2 2.f x x x ∴=+-···············································································6分(3)()232,1f x x a a x x +<+>-+由得; 设2211,1,2y x x y x x ⎛⎤ ⎥⎝⎦=-+=-+-∞则在上是减函数;·······································8分 所以2110,2y x x ⎡⎤⎢⎥⎣⎦=-+在上的范围为314y ≤≤;··········································10分1a ∴>.····························································································12分。