(精华)指数函数经典题型-练习题-(不含答案)

合集下载

指数函数练习题

指数函数练习题

指数函数练习题1. 某公司A股股票价格的年度涨幅可以用指数函数来描述。

假设2018年初该公司A股的价格为100元,且每年涨幅为8%(即每年增长8%)。

求该公司A股股价在2022年年底的预估值。

解析:设年份为x,股价为y。

根据题意可得指数函数的表达式为y = 100 * (1+0.08)^x。

将x取值为2022,代入函数中计算股价y的值即可。

经过计算,该公司A股在2022年年底的预估值为100 * (1+0.08)^4 ≈ 128.68元。

2. 某房地产项目的销售价格按指数函数递增。

2019年初,该项目的售价为200万元,每年涨幅为5%。

问:如果按照这个增长速度,到2025年年底,该房地产项目的售价会达到多少万元?解析:设年份为x,售价为y。

根据题意可得指数函数的表达式为y = 200 * (1+0.05)^x。

将x取值为2025,代入函数中计算售价y的值即可。

经过计算,到2025年年底,该房地产项目的售价预计会达到200 * (1+0.05)^6 ≈ 267.03万元。

3. 某农田的耕地面积按指数函数递减。

2017年初,该农田的耕地面积为1000亩,每年减少3%。

问:如果按照这个减少速度,到2021年年底,该农田的耕地面积会缩小到多少亩?解析:设年份为x,耕地面积为y。

根据题意可得指数函数的表达式为y = 1000 * (1-0.03)^x。

将x取值为2021,代入函数中计算耕地面积y的值即可。

经过计算,到2021年年底,该农田的耕地面积预计会缩小到1000* (1-0.03)^4 ≈ 837.34亩。

4. 某存款账户的余额按指数函数递增。

2010年初,该账户的余额为10万元,每年增长2%。

问:如果按照这个增长速度,到2030年年底,该存款账户的余额会增长到多少万元?解析:设年份为x,余额为y。

根据题意可得指数函数的表达式为y = 10 * (1+0.02)^x。

将x取值为2030,代入函数中计算余额y的值即可。

指数函数习题(经典 含答案 及详细解析)

指数函数习题(经典 含答案    及详细解析)

指数函数习题一、选择题1.定义运算,则函数的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( )A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞) B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y =2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=的定义域、值域和单调区间.11.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a⊗b=得f(x)=1⊗2x=答案:A2. 解析:∵f(1+x)=f(1-x),∴f(x)的对称轴为直线x=1,由此得b =2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).答案:A3.解析:由于函数y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k-1,k+1)内不单调,所以有k-1<0<k+1,解得-1<k<1.答案:C4. 解析:由题意得:A=(1,2),a x-2x>1且a>2,由A⊆B知a x-2x>1在(1,2)上恒成立,即a x-2x-1>0在(1,2)上恒成立,令u(x)=a x-2x-1,则u′(x)=a x lna-2x ln2>0,所以函数u(x)在(1,2)上单调递增,则u(x)>u(1)=a-3,即a≥3.答案:B5. 解析:数列{a n}满足a n=f(n)(n∈N*),则函数f(n)为增函数,注意a8-6>(3-a)×7-3,所以,解得2<a<3.答案:C6. 解析:f(x)<⇔x2-a x<⇔x2-<a x,考查函数y=a x与y=x2-的图象,当a>1时,必有a-1≥,即1<a≤2,当0<a<1时,必有a≥,即≤a<1,综上,≤a<1或1<a≤2.答案:C7. 解析:当a>1时,y=a x在[1,2]上单调递增,故a2-a=,得a=.当0<a<1时,y=a x在[1,2]上单调递减,故a-a2=,得a=.故a=或.答案:或8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a,b],当a=-1,b=0或a=0,b=1时区间长度最小,最小值为1,当a=-1,b=1时区间长度最大,最大值为2,故其差为1.答案:110. 解:要使函数有意义,则只需-x2-3x+4≥0,即x2+3x-4≤0,解得-4≤x≤1.∴函数的定义域为{x|-4≤x≤1}.令t=-x2-3x+4,则t=-x2-3x+4=-(x+)2+,∴当-4≤x≤1时,t max=,此时x=-,t min=0,此时x=-4或x=1.∴0≤t≤.∴0≤≤.∴函数y=的值域为[,1].由t=-x2-3x+4=-(x+)2+(-4≤x≤1)可知,当-4≤x≤-时,t是增函数,当-≤x≤1时,t是减函数.根据复合函数的单调性知:y=在[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11. 解:令a x=t,∴t>0,则y=t2+2t-1=(t+1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a>1,∵x∈[-1,1],∴t=a x∈[,a],故当t=a,即x=1时,y max =a2+2a-1=14,解得a=3(a=-5舍去).②若0<a<1,∵x∈[-1,1],∴t=a x∈[a,],故当t=,即x=-1时,y max=(+1)2-2=14.∴a=或-(舍去).综上可得a=3或.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.(2)此时g(x)=λ·2x-4x,设0≤x1<x2≤1,因为g(x)在区间[0,1]上是单调减函数,所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)>0恒成立,即λ<2x2+2x1恒成立.由于2x2+2x1>20+20=2,所以实数λ的取值范围是λ≤2.法二:(1)同法一.(2)此时g(x)=λ·2x-4x,因为g(x)在区间[0,1]上是单调减函数,所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.因为u∈[1,2],只需λ≤2u恒成立,所以实数λ的取值范围是λ≤2.。

(完整版)指数函数经典习题大全

(完整版)指数函数经典习题大全

指数函数习题新泰一中闫辉一、选择题1.下列函数中指数函数的个数是 ( ).①②③④A.0个 B.1个 C.2个 D.3个2.若,,则函数的图象一定在()A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限3.已知,当其值域为时,的取值范围是()A. B.C. D.4.若,,下列不等式成立的是()A. B. C. D.5.已知且,,则是()A.奇函数 B.偶函数C.非奇非偶函数 D.奇偶性与有关6.函数()的图象是()7.函数与的图象大致是( ).8.当时,函数与的图象只可能是()9.在下列图象中,二次函数与指数函数的图象只可能是()10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ).A.2400元 B.900元 C.300元 D.3600元二、填空题1.比较大小:(1);(2) ______ 1;(3) ______2.若,则的取值范围为_________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________ .6.已知的定义域为 ,则的定义域为__________.7.当时, ,则的取值范围是__________.8.时,的图象过定点________ .9.若 ,则函数的图象一定不在第_____象限.10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________.11.函数的最小值为____________.12.函数的单调递增区间是____________.13.已知关于的方程有两个实数解,则实数的取值范围是_________.14.若函数(且)在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列下列各数:,,,,,,,2.设有两个函数与,要使(1);(2),求、的取值范围.3.已知 ,试比较的大小.4.若函数是奇函数,求的值.5.已知,求函数的值域.6.解方程:(1);(2).7.已知函数(且)(1)求的最小值;(2)若,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的成本共下降了19%,若每年下降的百分率相等,求每年下降的百分率10.某工厂今年1月、2月、3月生产某产品分别为1万件、1.2件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以选用二次函数或函数(其中、、为常数),已知四月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?请说明理由.11.设,求出的值.12.解方程.参考答案:一、1.B 2.A 3.D 4.B 5.A 6.B 7.D 8.A 9.A 10.A二、1.(1)(2)(3)2. 3. 4.(0,1) 5.6. 7.8.恒过点(1,3) 9.四 10.11. 12. 13. 14.或三、1.解:除以外,将其余的数分为三类:(1)负数:(2)小于1的正数:,,(3)大于1的正数:,,在(2)中,;在(3)中,;综上可知说明:对几个数比较大小的具体方法是:(1)与0比,与1比,将所有数分成三类:,,,(2)在各类中两两比2.解:(1)要使由条件是,解之得(2)要使,必须分两种情况:当时,只要,解之得;当时,只要,解之得或说明:若是与比较大小,通常要分和两种情况考虑.3.4.解:为奇函数,,即,则,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:(1)两边同除可得,令,有,解之得或,即或,于是或(2)原方程化为,即,由求根公式可得到,故7.解:(1),当即时,有最小值为(2),解得当时,;当时,.8.当时, > ,当时, > .9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与1.37的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令 ,则原方程化为 解得 或 ,即 或 (舍去),习题二1. 求不等式2741(0x x aa a -->>,1)a ≠且中x 的取值范围.2. . 指数函数xb y a ⎛⎫= ⎪⎝⎭的图象如图所示,求二次函数2y ax bx =+的顶点的横坐标的取值范围.3. 函数()xf x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( ) A.()()()f xy f x f y =B.()()()f xy f x f y =+ C.()()()f x y f x f y +=D.()()()f x y f x f y +=+oyx14. 若11()()23x x <,则x 满足( )A.0x > B.0x < C.0x ≤D.0x ≥5. (1)已知12()3a a -+=,求33a a -+;(2)已知21xa=,求33x xx xa a a a--++; (3)已知31xa -+=,求2362a ax x ---+的值.6. 已知函数()xf x a =(0a >,1a ≠)在[]22-,上函数值总小于2,求实数a 的取值范围. 7 已知函数()xxf x a a -=+(0a >,1a ≠),且(1)3f =,则(0)(1)(2)f f f ++的值是 . 8. 若关于x 的方程22210xx a a +++=g 有实根,试求a 的取值范围.9. 当0a >且1a ≠时,函数2()3x f x a-=-必过定点 .10. 设311x y a +=,22x y a -=其中0a >,且1a ≠.确定x 为何值时,有:(1)12y y =; (2)12y y >.11 当0a ≠时,函数y ax b =+和axy b =的图象是( )12. 函数()y f x =的图象与2xy =的图象关于x 轴对称,则()f x 的表达式为 . 13. 若函数()()()21021x F x f x x ⎛⎫=+≠ ⎪-⎝⎭g 是偶函数,且()f x 不恒等于0,则()f x 为( ) A.奇函数 B.偶函数C.可能是奇函数,也可能是偶函数 D.非奇非偶函数14. 已知函数()()2211xf xg x x =-=-,,构造函数()F x 定义如下:当()()f x g x ≥时,()()F x f x =;当()()f x g x <时,()()F x g x =-,那么()F x ( )A.有最大值1,无最小值 B.有最小值0,无最大值 C.有最小值1-,无最大值D.无最小值,也无最大值15. 当0x >时,函数()()21xf x a =-的值总大于1,则实数a 的取值范围是 .16. 已知函数()f x 满足对任意实数12x x <有()()12f x f x <且()()()1212f x x f x f x +=g 若写出一个满足这些条件的函数则这个函数可以写为 .习题三一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn = B .3339= C .43433)(y x y x +=+ D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为 .12:不用计算器计算48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=___________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 . 三、解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.t/月20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?参考答案题号 1 2 3 4 5 6 7 8 9 10 答案BADDCCADAC二、填空题(4*7=28分)11.b a >; 12.100; 13.}24|{-<>x x x 或; 14.-1或2 15.(-2, 2) ; 16.]1,0( 17.①②⑤ 三、解答题:(10+10+12=32分) 18.解: (1)原式=11113312222111112222()()()(1)1718a a a a a a a a a aa a--------++==++=+=--。

指数函数的性质及常考题型(含解析)

指数函数的性质及常考题型(含解析)
故选:A.
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个

B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于




如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)

(1)底数相同,指数不同:利用指数函数的单调性来判断;




【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).

(1)求()的解析式;

(2)解不等式( + 3) > (4).







【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1

C.0 < < 1, > 1
D. > 1,0 < < 1


【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

4.2 指数函数(精练)(解析版) -人教版高中数学精讲精练(必修一)

x
2
1 ,故值域为 y
|
0
y
1
.
8.(2021·黑龙江·绥化市第一中学高一期中)已知函数 f x 4x a 2x 3 , a R .
(1)当 a 4 ,且 x 0, 2 时,求函数 f x 的值域;
(2)若函数 f x 在0, 2 的最小值为1,求实数 a 的值;
【答案】(1)1,3 (2) a 2 2

y
2
x
是指数函数;
④ y xx 的底数是 x 不是常数,不是指数函数;

y
3
1 x
的指数不是自变量
x
,不是指数函数;
1
⑥ y x3 是幂函数.
故答案为:③
9.(2021·全国·高一专题练习)函数 y a2 5a 5 ax 是指数函数,则 a 的值为________.
【答案】 4
f
x
ax2 2x ,
a
1 x
x 1
3a,
x
1 的最小值为
2,则实数
a 的取值范围是______.
【答案】1,
【解析】由题意,函数
f
x
ax2 2x ,
a 1 x
x 1
3a, x
1 的最小值为
2

因为函数 f x 在[1, ) 上为增函数,可得 x 1时,函数 f x 有最小值为 2 ,
则当 x (,1) 时,函数 f x 2 , min

A. c a b
B. c b a
【答案】A
1
2
【解析】
b
1 4
3
1 2
3

C. b c a

指数函数常考题型归纳含详解

指数函数常考题型归纳含详解

A. a b 1 c b B. b a 1 d c C.1 a b c d D. a b 1 d c 3、已知函数 f (x) (x a)(x b) (其中 a b) 的图象如图所示,则函数 g(x) ax b 的图象是( )
A.
B.
C.
D.
4、画出下列函数的图像
D.
0,
1 2
A. ab aa
B. ba bb
C. ab bb
D. ab ba
2、设 a , b , c R ,且 a b ,则( )
A. a2 b2
B.
1 2
a
1 2
b
C. a3 b3
D. 1 1 ab
3、已知集合 A {x | x2 3x 2 0}, B {x |1 2 x 4} ,则 A B ( )
题型九:复合函数的单调性
C. f x x 1
x
1、函数
y
1 2
82 xx2
的单调递增区间为_________.
D. f x 3 x
2、求下列函数的定义域和值域,并写出其单调区间.
(1) f ( x) 1 3x2 ;
1
(2)
f
(x)
1 2x 3

(3) f ( x) 2x22x3 ;
A.{x |1 x 2} B.{x |1 x 2} C.{x |1 x 2} D.{x | 0 x 2}
4、已知 a 0.20.3 , b 0.30.3 , c 0.20.2 ,则( )
A. a b c
B. b a c
题型八:指数函数的单调性
C. b c a
D. a c b
A.函数 f x 在 R 上既是奇函数,也是增函数 B.函数 f x 在 R 上既是奇函数,也是减函数

指数函数的练习题

指数函数的练习题

指数函数的练习题指数函数是高中数学中的重要内容,它在数学和实际生活中都有广泛的应用。

通过练习题的形式,我们可以更好地理解和掌握指数函数的相关概念和性质。

下面,我将给大家提供一些指数函数的练习题,希望能够对大家的学习有所帮助。

练习题一:简单指数函数计算1. 计算 $2^3$ 和 $(-3)^2$ 的值。

2. 计算 $10^{-2}$ 和 $\left(\frac{1}{2}\right)^{-3}$ 的值。

练习题二:指数函数的性质1. 如果 $a > 1$,那么 $a^x$ 是否是递增函数?为什么?2. 如果 $0 < a < 1$,那么 $a^x$ 是否是递增函数?为什么?3. 如果 $a > 1$,那么 $a^x$ 是否有上界?为什么?练习题三:指数函数的图像1. 画出函数 $y = 2^x$ 和 $y = \left(\frac{1}{2}\right)^x$ 的图像。

2. 画出函数 $y = 3^x$ 和 $y = \left(\frac{1}{3}\right)^x$ 的图像。

练习题四:指数函数的应用1. 假设某种细菌的数量每小时增加50%,现在有1000个细菌,经过多少小时后细菌的数量会达到5000个?2. 一笔投资每年以5%的利率复利计算,如果初始投资为10000元,经过多少年后投资会翻倍?练习题五:指数函数的方程1. 解方程 $2^x = 8$。

2. 解方程 $3^{2x-1} = \frac{1}{9}$。

通过以上的练习题,我们可以加深对指数函数的理解和运用。

在计算指数函数的值时,我们需要注意底数的正负以及指数的大小。

指数函数的性质也是我们需要掌握的重要内容,它们对于理解函数的增减性和图像的变化有着重要的影响。

通过绘制指数函数的图像,我们可以更直观地观察函数的特点和变化趋势。

指数函数在实际生活中也有广泛的应用。

在金融领域中,复利计算常常使用指数函数的概念。

高中数学 21指数函数基础练习(无答案)新人教版必修1 试题

高中数学 21指数函数基础练习(无答案)新人教版必修1 试题

指数函数一,选择题1.下列函数是指数函数的是( ) A .y =-2xB .y =2x +1C .y =2-xD .y =1x2.函数y =(a -2)x在R 上为增函数,则a 的取值X 围是( ) A .a>0且a≠1 B.a>3 C .a<3 D .2<a<3 3.函数y =ax -2+1(a>0,a≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,0)D .(2,2)4.f(x)=⎝ ⎛⎭⎪⎫12|x|,x∈R ,那么f(x)是( )A .奇函数且在(0,+∞)上是增函数B .偶函数且在(0,+∞)上是增函数C .奇函数且在(0,+∞)上是减函数D .偶函数且在(0,+∞)上是减函数 5. 方程4x -1=116的解为( ) A .2 B .-2 C .-1 D .1 6. 方程4x -1=116的解为( ) A .2 B .-2 C .-1 D .17.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)。

经过3个小时,这种细菌由1个可繁殖成( )511.A 个 512.B 个 1023.C 个 1024.D 个8.在统一平面直角坐标系中,函数ax x f =)(与xa x g =)(的图像可能是( )8.设d c b a ,,,都是不等于1的正数,xxxxd y c y b y a y ====,,,在同一坐标系中的图像如图所示,则d c b a ,,,的大小顺序是( )d c b a A <<<.c d b a B <<<. c d a b C <<<.d c a b D <<<.x a x f )1()(2-=在R 上是减函数,则a 的取值X 围是( )1.>a A2.<a B 2.<a C 21.<<a D10. y=13.0-x 的值域是( )()[)(](]1,.1,0.,1.0,.∞-+∞∞-D C B A11. 当[]1,1-∈x 时函数23)(-=xx f 的值域是( )[][]1,0.35,1.1,1.1,35.D C B A ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-12. 化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a13. 设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈= D .)()]([·)]([)(+∈=N n y f x f xy f nn n14.函数21)2()5(--+-=x x y ( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或15.函数||2)(x x f -=的值域是 ( )A .]1,0(B .)1,0(C .),0(+∞D .R16. 若指数函数y a x=+()1在()-∞+∞,上是减函数,那么( )A 、 01<<aB 、 -<<10aC 、 a =-1D 、 a <-117. 函数f x x()=-21,使f x ()≤0成立的x 的值的集合是( )A 、 {}x x <0 B 、 {}x x <1 C 、 {}x x =0 D 、 {}x x =118. 函数f x g x x x()()==+22,,使f x g x ()()=成立的x 的值的集合( )A 、 是φB 、 有且只有一个元素C 、 有两个元素D 、 有无数个元素19. 下列关系式中正确的是 ( )1123331.52111A.2 B.3222-⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C.211233331.5 1.511112 D.22222--⎛⎫⎛⎫⎛⎫⎛⎫<<<<⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭二,填空题1.函数y =a x-1的定义域是(-∞,0],则实数a 的取值X 围为________.2. 函数f(x)=⎝ ⎛⎭⎪⎫13x-1,x∈[-1,2]的值域为________.3. 函数()101)(1≠>+=+a a ax f x 且的图象一定通过点4. 已知函数f (x )的定义域是(1,2),则函数)2(xf 的定义域是 . 5. 当a >0且a ≠1时,函数f (x )=a x -2-3必过定点.6. 计算⎪⎪⎭⎫ ⎝⎛-÷++-33433233421428a b a ab a aba =. 7. 已知-1<a <0,则三个数331,,3a a a由小到大的顺序是. 8. 函数y x =-322的定义域是_________。

(完整版)指数函数经典习题大全

(完整版)指数函数经典习题大全

指数函数习题新泰一中闫辉一、选择题1.以下函数中指数函数的个数是( ).①②③④A.0 个B.1 个C.2 个D.3 个2.假设,,那么函数的图象必然在〔〕A.第一、二、三象限 B .第一、三、四象限C.第二、三、四象限D.第一、二、四象限3.,当其值域为时,的取值范围是〔〕A. B .C.D.4.假设,,以下不等式成立的是〔〕A. B . C . D .5.且,,那么是〔〕A.奇函数 B .偶函数C.非奇非偶函数 D .奇偶性与有关6.函数〔〕的图象是〔〕7.函数与的图象大体是().8.当时,函数与的图象只可能是〔〕9.在以以下图象中,二次函数与指数函数的图象只可能是〔〕10.计算机本钱不断降低 , 假设每隔 3 年计算机价格降低 , 现在价格为 8100 元的计算机 , 那么 9 年后的价格为 ( ).A.2400 元 B.900 元C.300 元D.3600 元二、填空题1.比较大小:〔1〕;〔2〕______ 1 ;〔3〕______2.假设,那么的取值范围为 _________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________.6.的定义域为, 那么的定义域为 __________.7.当时,, 那么的取值范围是 __________. 8.时,的图象过定点 ________ .9.假设, 那么函数的图象必然不在第 _____象限 .10.函数的图象过点, 又其反函数的图象过点 (2,0),那么函数的剖析式为 ____________.11.函数的最小值为 ____________.12.函数的单调递加区间是 ____________.13.关于的方程有两个实数解 , 那么实数的取值范围是 _________.14.假设函数〔且〕在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列以下各数:,,,,,,,2.设有两个函数与,要使〔 1〕;〔 2〕,求、的取值范围.3., 试比较的大小.4.假设函数是奇函数,求的值.5.,求函数的值域.6.解方程:〔1〕;〔2〕.7.函数〔且〕〔1〕求的最小值;〔2〕假设,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的本钱共下降了19%,假设每年下降的百分率相等,求每年下降的百分率10.某工厂今年 1 月、 2 月、 3 月生产某产品分别为 1 万件、 1.2 件、 1.3 万件,为了估测今后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以采纳二次函数或函数〔其中、、为常数〕,四月份该产品的产量为 1.37 万件,请问用以上哪个函数作为模拟函数较好?请说明原由.11.设,求出的值.12.解方程.参照答案:一、1.B 2.A 3.D4.B5.A 6.B 7.D8.A 9.A 10.A二、 1.〔 1〕〔2〕〔3〕2.3.4.〔0,1〕5.6.7 .8.恒过点〔 1,3〕 9 .四 10 .11.12.13.14.或三、 1.解:除以外,将其余的数分为三类:〔1〕负数:〔2〕小于 1 的正数:,,〔3〕大于 1 的正数:,,在〔 2〕中,;在〔 3〕中,;综上可知说明:对几个数比较大小的详尽方法是:〔1〕与 0 比,与 1 比,将所有数分成三类:,,,〔2〕在各样中两两比2.解:〔 1〕要使由条件是,解之得〔2〕要使,必定分两种情况:当时,只要,解之得;当时,只要,解之得或说明:假设是与比较大小,平时要分和两种情况考虑.3.4.解:为奇函数,,即,那么,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:〔 1〕两边同除可得,令,有,解之得或,即或,于是或〔2〕原方程化为,即,由求根公式可获取,故7.解:〔 1〕,当即时,有最小值为〔2〕,解得当时,;当时,.8.当时,>,当时,>.9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为 10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令,那么原方程化为解得或,即或〔舍去〕,习题二1.求不等式 a2 x 7a4x1( a 0 ,且 a1) 中 x 的取值范围.x2.. 指数函数y b的图象以以下图,求二次函数 y ax2bx 的极点的横坐标的取值范围.ay1o x3. 函数f ( x)a x〔a0 ,且 a 1〕关于任意的实数x ,y都有〔〕A. f (xy) f ( x) f ( y)B. f (xy ) f ( x) f ( y)C. f ( x y) f (x) f ( y)D. f (x y) f (x) f ( y)4. 假设(1)x(1) x,那么 x 满足〔〕23A. x 0B. x0 C. x≤ 0D. x ≥ 0 5. (1) (a a 1) 23,求 a3 a 3;(2) a2 x 2 1,求 a3x aa x a 3xx;(3) x31 a ,求 a22ax 3x 6的值.6.函数 f (x) a x〔a0 ,a1〕在2,2 上函数值总小于 2,求实数 a 的取值范围.7 函数 f ( x)a x a x〔 a0, a1〕,且 f (1)3,那么 f(0) f (1) f (2)的值是.8. 假设关于x的方程22x2x ga a10 有实根,试求 a 的取值范围.9.当 a0 且 a 1 时,函数 f ( x)a x2 3 必过定点.10.设 y1a3x1, y2a2x其中 a0 ,且 a 1 .确定x为何值时,有:〔1〕 y1y2;〔2〕 y1y2.11 当a0时,函数 y ax b 和 y b ax的图象是〔〕y y11x xO OABy y11O xOxCD12.函数 y f x的图象与 y2x的图象关于 x 轴对称,那么f x 的表达式为.13.假设函数 Fx12gf x x0是偶函数,且f x 不恒等于 0,那么f x 为〔〕2x1A.奇函数B.偶函数C.可能是奇函数,也可能是偶函数D.非奇非偶函数14. 函数 f x 2x1,g x 1 x2,构造函数 F x 定义以下:当 f x ≥ g x 时, F x f x ;当f xg x 时, F xg x ,那么 F x 〔〕A.有最大值 1,无最小值 B.有最小值 0,无最大值C.有最小值 1,无最大值D.无最小值,也无最大值15. 当 x 0 时,函数 f xa 2x1,那么实数 a 的取值范围是1 的值总大于 .16. 函数f x 满足对任意实数x 1x 2 有 f x 1f x 2 且 f x 1 x 2f x 1 gf x 2 假设写出一个满足这些条件的函数那么这个函数可以写为.习题三一、选择题〔每题4 分,共计 40 分〕1.以下各式中成立的一项为哪一项〔〕A . ( n) 713n 7 m 7 B .3933 C .4 x 3 y 3( x y) 4 D .12( 3)4 33m211 11 52.化简 (a 3 b 2 )( 3a 2 b 3) (1a 6b 6 ) 的结果3A . 9aB .aC . 6aD . 9a 2 3.设指数函数f ( x) a x ( a 0, a1) ,那么以低等式中不正确 的是...A . f ( x +y )= f(x ) · f ( y )B . f 〔 xy 〕 f ( x)f ( y)C . f ( nx)[ f ( x)] n (nQ )D . [ f (xy)] n[ f ( x)] n ·[f ( y)] n5)01 4.函数 y(x( x 2)2〔〕〔〕( n N )〔〕A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}5.假设指数函数ya x 在 [ -1,1] 上的最大值与最小值的差是 1,那么底数 a 等于〔〕A .5 1 B .5 1 C .5 1 D .1522226.方程 a |x| x 2 (0a 1) 的解的个数为〔〕A. 0 个个C. 2个D. 0个或 1个7.函数 f (x) 2|x|的值域是〔〕A . (0,1]B . (0,1)C . (0, )D . R2 x1, x 08.函数 f (x)1,满足 f ( x)1的 x 的取值范围〔〕x 2 , x 0A . ( 1,1)B . ( 1, )C . { x | x 0或 x 2}D. { x | x 1或 x1}9. f (x)e x e x〔〕,那么以下正确的选项是2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数 D.偶函数,在 R 上为减函数10.函数 y( 1) x 2 x 2得单调递加区间是〔 〕2C .[ 1,2]D . [ 1,1]A .( , 1]B .[2,)22二、填空题〔每题 4 分,共计 28 分〕11. a2 ,b 2 ,那么实数 a 、b 的大小关系为 .12:不用计算器计算272 100.12927233 037=___________.481x 2813.不等式3 2 x 的解集是 __________________________ .314. n2, 1,0,1,2,3 ,假设 ( 1)n( 1)n,那么 n ___________ .251 x 2ax2 x a 215.不等式1恒成立,那么 a 的取值范围是.2216.定义运算:aa (a b)2 x的值域为 _________________b(a,那么函数 f x 2xb b)17. 以以下图的是某池塘中的浮萍延长的面积( m 2 ) 与时间 t ( 月 ) 的关系 : y a t , 有以下表达 :① 这个指数函数的底数是 2;y/m 2 ② 第 5 个月时 , 浮萍的面积就会高出30m 2 ;8③ 浮萍从 4m 2 延长到 12m 2需要经过1.5 个月;④ 浮萍每个月增加的面积都相等;⑤ 假设浮萍延长到2m 2、 3m 2 、 6m 24所经过的时间分别为 t 1 、 t 2 、 t 3 ,那么t 1t 2t 3 .21其中正确的选项是.0 1 2 3t/ 月三、解答题:〔 10+10+12=32 分〕18. aa 17 ,求以下各式的值:3 31122〔 1〕a1 a1 ; 〔 2〕 a 2a 2 ; 〔 3〕 a 2 a 2 ( a 1) .a2a 219. 函数y a 2 x2a x1(a1)在区间[-1,1]上的最大值是14,求a的值.20. 〔 1〕 f ( x)2m 是奇函数,求常数 m 的值;3x1〔 2〕画出函数 y | 3x 1 | 的图象,并利用图象答复:k 为何值时,方程 | 3x 1| k 无解?有一解?有两解?参照答案一、选择题〔 4*10=40 分〕题号 1 2 3 4 5 6 7 8 9 10答案BADDCCADAC二、填空题〔 4*7=28 分〕11. a b ;; 13. { x | x 4或 x2} ; 14.-1或 215.(-2, 2); 16.(0,1]17.①②⑤三、解答题:〔 10+10+12=32 分〕111118.解 : 〔1〕原式 (a2)3(a 2 )3( a2a 2 )(a a 11)a a18 。

超详细指数函数习题及答案(经典)

超详细指数函数习题及答案(经典)

指数函数习题一、选择题a ≤ba>bab ,则函数 f(x)= 1? 2x的图象大致为 ()1.定义运算 a? b =2-bx + c 满足 f(1+ x)= f(1- x)且 f(0) = 3,则 f(b xx2.函数 f(x)=x )与 f(c )的大小关系是 ()x x) ≤f (c ) A . f(b xxB . f (b ) ≥f ( c )C . f(b )>f( c )D .大小关系随 xxx 的不同而不同x- 1|在区间 (k - 1, k + 1)内不单调,则 B . (-∞,1) D .(0,2)k 的取值范围是 ( )3.函数 y =|2 A . (- 1,+ ∞ ) C . (- 1,1)x-2x-1)的定义域是 B ,若 4.设函数 f(x)= ln[( x - 1)(2- x)] 的定义域是 A ,函数 g(x)= lg( a A? B ,则正数 A . a>3 a 的取值范围 ( ) B . a ≥3 D . a ≥ 5 C . a> 5- a x - 3, x ≤7, *若数列 a n = f(n)(n ∈ N { a n } 满足 5.已知函数 f( x)=) ,且 { a n } 是递增x - 6, x>7.a数列,则实数 a 的取值范围是 ( )99 , 3) B . ( , 3)4 D . (1,3)A . [ 4C . (2,3)x ∈ (- 1,1)时,均有 f(x)<1,则实数 a 的取值范围是 ( 2 a ≠1,f (x)= x 2- a x,当 )6.已知 a>0 且 1] ∪[2 ,+∞ ) 1 , 1) ∪(1,4] A . (0, 2 B . [41 1, 1)∪ (1,2] D .(0,C . [ 24)∪ [4 ,+ ∞) 二、填空题ax,则 a 的值是 . 7.函数 y =a (a>0,且 a ≠1在) [1,2] 上的最大值比最小值大2x+1 与直线 y = b 没有公共点,则 b 的取值范围是 . 8.若曲线 |y|=2 |x|的定义域为 9. (2011 滨·州模拟 )定义:区间 [x 1,x 2]( x 1<x 2)的长度为 x 2-x 1.已知函数 [ a , y = 2 b],值域为 [1,2] ,则区间 [a , b] 的长度的最大值与最小值的差为 .三、解答题 x23 x 42的定义域、值域和单调区间.10.求函数 y =2 x +2a x- 1(a>0 且 a ≠1x ∈ [- 1,1] 上的最大值为 14,求 a11. (2011 银·川模拟 )若函数 y =a 的值.x , f (a + 2)= 18, g(x)= λ·3ax -4x的定义域为 [0,1] . 12.已知函数 f(x)= 3 (1) 求 a 的值;(2) 若函数 g(x)在区间 [0,1] 上是单调递减函数,求实数λ的取值范围.指数函数答案 xa b a ≤ba >bx x,2 1x1. 解析:由 a ?b = 得 f ( x ) = 1?2 =答案: A解析:∵ f (1 + x ) = f (1 -x ) ,∴ f ( x ) 的对称轴为直线 x = 1,由此得 b = 2. 2. 又 若 若f (0) = 3,∴ c = 3. ∴ f ( x ) 在( -∞, 1) 上递减,在 (1 ,+∞ ) 上递增. xxxxx ≥0,则 3 ≥2≥1,∴ x <0,则 3 <2 <1,∴ f (3 f (3 ) ≥f (2 ) .)> f (2 ) . x x x xx x∴f (3 ) ≥ f (2 ) . 答案: A3. 解析:由于函数 xy = |2 -1| 在 ( -∞, 0) 内单调递减,在 (0 ,+∞ ) 内单调递增,而函数在区间 ( k - 1, k + 1) 内不单调,所以有 答案: Ck -1<0<k + 1,解得- 1<k <1. xxxx解析:由题意得: A =(1,2) ,a - 2 >1 且 a >2,由 A ? B 知 a - 2 >1 在 (1,2) 上恒成立,即4. x x x x x xa -2 - 1>0 在 (1,2) 上恒成立,令 u ( x ) =a - 2 - 1,则 u ′(x ) = a ln a - 2 ln2>0 ,所以函数u ( x ) 在 (1,2) 上单调递增,则 答案: Bu ( x )> u (1) = a - 3,即 a ≥3. *5. 解析:数列 { a n } 满足 a n = f ( n )( n ∈N ) ,则函数 f ( n ) 为增函数, a >18-63-a >0 注意 a >(3 - a ) ×7- 3,所以 ,解得 2<a <3.8- 6a- a ×7-3 答案: C1 2 1 21 12 x 2 x x 2 6. 解析: f ( x )< - a < - <a ,考查函数 y = a 与 y =x - 的图象,? x ? x 2 21- 1当 a >1 时,必有 a ≥ 2,即 1<a ≤2,1 1当 0<a <1 时,必有 a ≥ ,即 ≤a <1,2 21综上, ≤ a <1 或 1<a ≤2.2 答案: Ca3 x2x7. 解析:当 a >1 时, y = a 在 [1,2] 上单调递增,故 a - a = 2 ,得 a = 2. 当 0<a <1 时, y = aa 1 1 3 2在[1,2] 上单调递减,故 a - a = ,得 a = . 故 a = 或 .2 2 2 21 3答案: 或2 28. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.xx曲线 | y | = 2 +1 没有公共点,则 答案: [ - 1,1]与直线 y = b 的图象如图所示,由图象可得:如果 | y | = 2 + 1 与直线 y = bb 应满足的条件是 b ∈ [ - 1,1] . 9. 解析:如图满足条件的区间[ a , b ] ,当 a =- 1, b =0 或 a =0, b = 1 时区间长度最小,最小值为 答案: 11,当 a =- 1,b = 1 时区间长度最大,最大值为 2,故其差为 1.2210. 解:要使函数有意义,则只需- -3x +4≥0,即 +3x -4≤0,解得- 4≤ x ≤1. x x ∴函数的定义域为 { x | -4≤ x ≤1} .3 25 222 令 t =- x - 3x + 4,则 t =- x - 3x + 4=- ( x + ) + ,2 425 4 ,此时 3x =- 2∴当- 4≤ x ≤ 1 时, t max = ,t min = 0,此时 x =- 4 或 x = 1. 25 5 2∴0≤ t ≤ . ∴0≤ - x - 3x +4≤ .4 2122x 2 3 x 4∴函数 y = ( 的值域为 [ ,1] .)83 2522 由 t =- x - 3x + 4=- ( x + ) + ( -4≤ x ≤1) 可知,2 43当- 4≤ x ≤- 时, t 是增函数,2 3 当- ≤ x ≤1 时, t 是减函数.2 根据复合函数的单调性知:1 23 23x 2 3 x 4y = ( 在 [ - 4,- ] 上是减函数,在 [ - ,1] 上是增函数.)2 3 3 ∴函数的单调增区间是 [ - ,1] ,单调减区间是 2 [ -4,- ] . 2x2211. 解:令 a = t ,∴ t >0,则 y =t + 2t - 1= ( t + 1) -2,其对称轴为 在[ - 1,+∞ ) 上是增函数.t =- 1. 该二次函数 1 x2①若 a >1,∵ x ∈ [ - 1,1] ,∴ t = a ∈ [ ,a ] ,故当 t =a ,即 x = 1 时, y max =a + 2a - 1=14,a解得 a = 3( a =- 5 舍去 ) .②若 0<a <1,∵ x ∈ [ - 1,1] ,1 1 x∴t = a ∈ [ a ,a ] ,故当 t = a,即 x =- 1 时,ymax= ( a+ 1) - 2= 14. 1 21 1∴a = 或- ( 舍去 ) .3 5 1 综上可得 a = 3 或 .3a +2a12. 解:法一: (1) 由已知得 3 = 18? 3 = 2? a = log 32.(2) 此时 g ( x ) = λ ·2-4 , 设 0≤ x 1<x 2≤1,xx因为 所以 由于 g ( x ) 在区间 [0,1] 上是单调减函数,g ( x 1) - g ( x 2) = (2 x 1- 2x 2)( λ - 2x 2- 2x 1)>0 恒成立,即 2x 2+2x 1>2 + 2 = 2, λ <2x 2+2x 1 恒成立.0 0所以实数 λ 的取值范围是 法二: (1) 同法一.λ≤2. xx(2) 此时 g ( x ) = λ ·2-4 ,因为 g ( x ) 在区间 [0,1] 上是单调减函数, xxx 2x所以有 g ′(x ) = λ ln2 ·2-ln4 ·4= ln2[ -2·(2) + λ ·2] ≤0成立.x2设 2 = u ∈ [1,2] ,上式成立等价于- 2u + λu ≤0恒成立. 因为 u ∈ [1,2] ,只需 λ ≤2u 恒成立, 所以实数 λ 的取值范围是 λ≤2.。

指数函数精典习题

指数函数精典习题

指数函数精典习题姓名函数图象:作出以下函数图象(1)2xy=(2)1()2xy=(3)12xy+=(4)21xy=+(5)2xy-=(6)||2xy=(7)||2xy-=(8)221xy-=+解析式、定义域、值域、识图问题1、若集合{}{}23,,2,xA y y x RB y y x x R==∈==-+∈,A B⋂=________.2、若3()(),012xf x x=<<,则有()A、()1f x> B、0()1f x<< C、1() 1.5f x<< D、0() 1.5f x<<3、函数12xy+=的图象是下图中的()、4、函数y=)A、(,0]-∞ B、(,1]-∞ C、[0,)+∞ D、[1,)+∞5、函数2xy-=的值域是()A、(0,1)B、(0,1]C、(0,)+∞ D、(,)-∞+∞6、01,1a b<<<-,则函数()xf x a b=+的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限7、若13()273x<<,则()A、13x-<< B、1x<-或3x> C、31x-<<- D、13x<<8.函数⎪⎩⎪⎨⎧>≤-=-,,12)(21xxxxfx,满足1)(>xf的x的取值范围()A.)1,1(-B.),1(+∞- C.}2|{-<>xxx或 D.}11|{-<>xxx或9、已知0a>_________________.10、已知指数函数()y f x=,且3()225f-=()y f x=的解析式是()A、32y x= B、5xy-= C、5y x= D、5xy=11、求函数11()()()1,[3,2]42x xf x x=-+∈-的值域画出函数|13|-=xy的图象,并利用图象回答:k为何值时,方程|3x-1|=k无解?有一解?有两解?比较大小问题1、比较下列各组数的大小:(1)0.2_______25 ; (2)0.63()4-_______343()4-;(3)134()5-_______0.35()4;(4)0.53()2_______2、设1.50.90.4812314,8,2y y y-⎛⎫=== ⎪⎝⎭,则()A、312y y y>> B、213y y y>> C、132y y y>> D、123y y y>>3、设.)32(,)32(2.15.1-==ba那么实数a、b与1的大小关系正确的是 ( )A. 1<<ab B. 1<<ba C. ab<<1 D. ba<<14、311213,32,2-⎪⎭⎫⎝⎛的大小顺序有小到大依次为_____________。

指数函数练习题

指数函数练习题

指数函数练习题一、简介指数函数是数学中的一种常见函数,其表达式为:y=y y其中,y为底数,y为指数,y为函数值。

指数函数在自然科学、工程技术以及金融经济等领域都有广泛的应用。

在本文档中,将给出一些指数函数的练习题,旨在帮助读者更好地理解指数函数以及其应用。

二、练习题1. 指数函数的图像绘制试绘制以下指数函数的图像,并回答相应问题:a)y=2yb)y=0.5yc)y=3yd)y=y y问题:a)当y为何值时,函数y=2y的值等于1?b)当y逐渐增大时,函数y=0.5y的值会趋近于哪个数?c)当y逐渐增大时,函数y=3y的值会趋近于正无穷大还是负无穷大?d)函数y=y y的图像是否通过点(0,1)?2. 指数函数的性质以下函数是指数函数的一种特殊形式,观察其性质并回答相关问题:a)y=2−yb)$y = \\left(\\frac{1}{3}\\right)^{-x}$问题:a)函数y=2−y的图像是否关于y轴对称?b)函数 $y = \\left(\\frac{1}{3}\\right)^{-x}$ 的值是否在区间(0,1)内?c)当y逐渐增大时,函数 $y =\\left(\\frac{1}{3}\\right)^{-x}$ 的值会趋近于正无穷大还是负无穷大?3. 指数函数的应用指数函数在许多实际问题中都有重要应用,下面是一些应用题:a)在投资中,如果每年的投资回报率为20%,那么在t 年后,投资额会增长到多少倍?b)某种放射性物质的衰变速率是原来的 80%(即每小时减少 20%),经过多少小时后,剩余量将降至原来的10%?c)假设某种细菌每小时增长 50%,如果初始细菌数量为 100 个,经过多少小时后,细菌数量将达到 1000 个?请根据所学知识,解答以上问题。

三、答案与解析1. 指数函数的图像绘制a)y=2yimport matplotlib.pyplot as plt import numpy as npx = np.linspace(-5, 5, 100)y = 2 ** xplt.plot(x, y)plt.xlabel('x')plt.ylabel('y')plt.title('Graph of y = 2^x') plt.grid(True)plt.show()b)y=0.5yimport matplotlib.pyplot as plt import numpy as npx = np.linspace(-5, 5, 100)y = (0.5) ** xplt.plot(x, y)plt.xlabel('x')plt.ylabel('y')plt.title('Graph of y = 0.5^x') plt.grid(True)plt.show()c)y=3yimport matplotlib.pyplot as plt import numpy as npx = np.linspace(-5, 5, 100)y = 3 ** xplt.plot(x, y)plt.xlabel('x')plt.ylabel('y')plt.title('Graph of y = 3^x')plt.grid(True)plt.show()d)y=y yimport matplotlib.pyplot as pltimport numpy as npx = np.linspace(-5, 5, 100)y = np.exp(x)plt.plot(x, y)plt.xlabel('x')plt.ylabel('y')plt.title('Graph of y = e^x')plt.grid(True)plt.show()问题:a)函数y=2y的值等于1时,y=0。

指数函数练习题

指数函数练习题

指数函数练习题1. 计算下列指数函数的值:- \( f(x) = 2^x \) 当 \( x = 3 \)- \( g(x) = 3^x \) 当 \( x = -2 \)- \( h(x) = 5^x \) 当 \( x = 0.5 \)2. 确定下列指数函数的单调性:- \( f(x) = 4^x \)- \( g(x) = (1/2)^x \)3. 给定函数 \( y = a^x \),其中 \( a > 0 \) 且 \( a \neq 1 \),求当 \( x \) 增加时,函数值 \( y \) 的变化趋势。

4. 用指数函数表示下列数列的通项公式:- \( 2, 4, 8, 16, \ldots \)- \( 1/8, 1/4, 1/2, 1, \ldots \)5. 已知 \( f(x) = 2^x \),求 \( f(-2) \) 和 \( f(2) \) 的值。

6. 给定 \( y = 3^x \),求 \( x \) 使得 \( y = 27 \)。

7. 证明指数函数 \( y = a^x \)(其中 \( a > 0 \) 且 \( a \neq1 \))在其定义域内是连续的。

8. 一个细菌种群每分钟翻倍,初始时有 100 个细菌。

使用指数函数描述 30 分钟后细菌的数量。

9. 一个投资账户的本金为 \( P \),年利率为 \( r \)(以小数形式表示),假设每年复利一次,求该账户 \( t \) 年后的金额。

10. 已知 \( f(x) = 10^x \),求 \( f(-1) \),\( f(0) \),和\( f(1) \) 的值。

11. 给定 \( y = 2^x \),求 \( x \) 使得 \( y = 32 \)。

12. 证明对于所有 \( x > 0 \),指数函数 \( y = e^x \) 总是大于\( y = x \)。

13. 一个物体从高度 \( h \) 落下,忽略空气阻力,其下落距离\( s \) 可以用 \( s = 0.5gt^2 \) 表示,其中 \( g \) 是重力加速度,\( t \) 是时间。

指数函数(经典题、易错题)

指数函数(经典题、易错题)

指数函数(经典题、易错题)指数函数(经典题、易错题)一.选择题(共22小题)1.若函数,且0≤x≤1,则有()A.f(x)≥1B.C.D.2.函数y=()x2+2x﹣1的值域是()A.(﹣∞,4)B.(0,+∞)C.(0,4]D.[4,+∞)3.函数的值域为()A.(0,1]B.(0,+∞)C.(1,+∞)D.(﹣∞,+∞)4.函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.315.函数y=3|x|﹣1的定义域为[﹣1,2],则函数的值域为()A.[2,8]B.[0,8]C.[1,8]D.[﹣1,8]6.函数的值域是()A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)7.(2011?山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.B.C.1D.8.设a、b、c、d都是大于零且不等于1的实数,y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图(1)所示,则a、b、c、d的大小关系是()A.a>b>c>dB.a>b>d>cC.a>d>c>bD.a>c>b>d9.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d10.(2012?四川)函数y=ax﹣a(a>0,a≠1)的图象可能是()A.B.C.D.11.把函数y=2x﹣2+3的图象按向量平移,得到函数y=2x+1﹣1的图象,则向量=()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(3,﹣4)12.函数y=3x﹣1的图象大致是()A.B.C.D.13.函数f(x)=4x+5×2x﹣1+1的值域是()A.(0,1)B.[1,+∞)C.(1,+∞)D.[0,1]14.已知a=,b=,c=,则下列关系中正确的是()A.a<b<cB.c<a<bC.a<c<bD.b<a<c15.若a>0,a≠1,则函数y=ax﹣1的图象一定过点()A.(0,1)B.(1,1)C.(1,0)D.(0,﹣1)16.已知a,b∈R,且a>b,则下列不等式中恒成立的是()A.a2>b2B.()a<()bC.lg(a﹣b)>0D.>117.函数的单调增区间为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.(﹣∞,+∞)D.(﹣∞,0]18.函数y=ax﹣1+1(0<a≠1)的图象必经过点()A.(0,1)B.(1,1)C.(1,2)D.19.已知a=30.2,b=0.2﹣3,c=3﹣0.2,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.c>a>bD.b>c>a20.(2005?山东)下列大小关系正确的是()A.0.43<30.4<log40.3B.0.43<log40.3<30.4C.log40.3<0.43<30.4D.log40.3<30.4<0.4321.设,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.b>c>aD.c>b>a22.比较a,b,c的大小,其中a=0.22,b=20.2,c=log0.22()A.B.c>a>bC.a>b>cD.b>a>c二.填空题(共2小题)23.函数的单调递增区间是_________ .24.(2005?上海)方程4x+2x﹣2=0的解是_________ .指数函数(经典题、易错题)参考答案与试题解析一.选择题(共22小题)1.若函数,且0≤x≤1,则有()A.f(x)≥1B.C.D.考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:结合指数函数数在[0,1]上的单调性可求.解答:解:∵0≤x≤1且函数单调递减∴故选D点评:本题主要考查了指数函数的单调性的应用,属于基础试题.2.函数y=()x2+2x﹣1的值域是()A.(﹣∞,4)B.(0,+∞)C.(0,4]D.[4,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.解答:解:由题意令t=x2+2x﹣1=(x+1)2﹣2≥﹣2∴y=≤=4∴0<y≤4故选C点评:本题考查指数函数的定义域和值域、定义及解析式,解题的关键是掌握住复合函数求值域的规律,由内而外逐层求解.以及二次函数的性质,指数函数的性质.3.函数的值域为()A.(0,1]B.(0,+∞)C.(1,+∞)D.(﹣∞,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:画出f(x)的图象,由f(x)图象f(x)可得的值域.解答:解:函数的图象如图:由f(x)的图象可得:f(x)的值域为(0,+∞).故选B.点评:本题考查指数函数的值域,用到了指数函数的图象.4.函数y=4x+2x+1+5,x∈[1,2]的最大值为()A.20B.25C.29D.31考点:指数函数的定义、解析式、定义域和值域;函数的最值及其几何意义.1091931专题:计算题.分析:由x∈[1,2],知2≤2x≤4,把y=4x+2x+1+5转化为y=(2x+1)2+4,当2x=4时,ymax=(4+1)2+4=29.解答:解:∵x∈[1,2],∴2≤2x≤4,∴y=4x+2x+1+5=(2x)2+2×2x+5=(2x+1)2+4,当2x=4时,ymax=(4+1)2+4=29.故选C.点评:本题考查指数函数的性质和应用,解题时要认真审题,注意配方法的合理运用.5.函数y=3|x|﹣1的定义域为[﹣1,2],则函数的值域为()A.[2,8]B.[0,8]C.[1,8]D.[﹣1,8]考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:设t=|x|可得出t∈[0,2],根据指数函数的单调性求出值域即可.解答:解:设t=|x|∵函数y=3|x|﹣1的定义域为[﹣1,2],∴t∈[0,2]∴y=3t﹣1∴y=3t﹣1在t∈[0,2]的值域为[0,8]故选B.点评:本题考查了指数函数的定义域和值域,求出函数y=3t﹣1的定义域是解题的关键,属于基础题.6.函数的值域是()A.(0,+∞)B.(0,1)C.(0,1]D.[1,+∞)考点:指数函数的定义、解析式、定义域和值域.1091931专题:计算题.分析:本题是一个复合函数,求其值域可以分为两步来求,先求内层函数的值域,再求函数的值域,内层的函数是一个二次型的函数,用二次函数的性质求值域,外层的函数是一个指数函数,和指数的性质求其值域即可.解答:解:由题意令t=x2≥0∴y=≤=1∴0<y≤1故选C点评:本题考查指数函数的定义域和值域、定义及解析式,解题的关键是掌握住复合函数求值域的规律,由内而外逐层求解.以及二次函数的性质,指数函数的性质.7.(2011?山东)若点(a,9)在函数y=3x的图象上,则tan的值为()A.B.C.1D.考点:指数函数的图像与性质.1091931专题:计算题.分析:先将点代入到解析式中,解出a的值,再根据特殊三角函数值进行解答.解答:解:将(a,9)代入到y=3x中,得3a=9,解得a=2.∴=.故选D.点评:对于基本初等函数的考查,历年来多数以选择填空的形式出现.在解答这些知识点时,多数要结合着图象,利用数形结合的方式研究,一般的问题往往都可以迎刃而解.8.设a、b、c、d都是大于零且不等于1的实数,y=ax、y=bx、y=cx、y=dx在同一坐标系中的图象如图(1)所示,则a、b、c、d的大小关系是()A.a>b>c>dB.a>b>d>cC.a>d>c>bD.a>c>b>d考点:指数函数的图像与性质.1091931专题:综合题.分析:通过作直线x=1与图象交于四点,利用这几个点的位置关系,从而确定a,b,c,d的大小关系.解答:解:∵a1=a,∴作直线x=1与图象分别交于A,B,C,D点,则它们纵坐标分别为:a,b,c,d由图a>b>c>d故选A.点评:本题考查了指数函数的图象与性质,同时考查了数形结合的思想方法,是个基础题.9.如图,设a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d考点:指数函数的图像与性质.1091931专题:数形结合.分析:要比较a、b、c、d的大小,根据函数结构的特征,作直线x=1,与y=ax,y=bx,y=cx,y=dx 交点的纵坐标就是a、b、c、d,观察图形即可得到结论.解答:解:作辅助直线x=1,当x=1时,y=ax,y=bx,y=cx,y=dx的函数值正好是底数a、b、c、d直线x=1与y=ax,y=bx,y=cx,y=dx交点的纵坐标就是a、b、c、d观察图形即可判定大小:b<a<d<c故选:C.点评:本题主要考查了指数函数的图象与性质,同时考查了数形结合的数学思想,分析问题解决问题的能力,属于基础题.10.(2012?四川)函数y=ax﹣a(a>0,a≠1)的图象可能是()A.B.C.D.考点:指数函数的图像变换.1091931专题:计算题.分析:a>1时,函数y=ax﹣a在R上是增函数,且图象过点(1,0),故排除A,B.当1>a>0时,函数y=ax﹣a在R上是减函数,且图象过点(1,0),故排除D,由此得出结论.解答:解:函数y=ax﹣a(a>0,a≠1)的图象可以看成把函数y=ax的图象向下平移a个单位得到的.当a>1时,函数y=ax﹣a在R上是增函数,且图象过点(1,0),故排除A,B.当1>a>0时,函数y=ax﹣a在R上是减函数,且图象过点(1,0),故排除D,故选C.点评:本题主要考查指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于中档题.11.把函数y=2x﹣2+3的图象按向量平移,得到函数y=2x+1﹣1的图象,则向量=()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(3,﹣4)考点:指数函数的图像变换.1091931专题:计算题.分析:我们可以用待定系数法解答本题,先设出平移向量的坐标,根据函数图象的平移法则,我们可以求出平移后函数的解析式,根据已知我们可构造出一个关于h,k的二元一次方程组,解方程组即可求出平移向量的坐标.解答:解:设平移向量=(h,k)则函数y=2x﹣2+3的图象平移后得到的函数解析式为:y=2x﹣h﹣2+3+k即x﹣h﹣2=x+1且3+k=﹣1解得h=﹣3,k=﹣4故向量=(﹣3,﹣4)故选A点评:本题考查的知识点是函数图象的平移变换,其中根据平移法则“左加右减,上加下减”构造关于h,k的二元一次方程组,是解答本题的关键.12.函数y=3x﹣1的图象大致是()A.B.C.D.考点:指数函数的图像变换.1091931专题:作图题.分析:可利用排除法解此选择题,由特殊点(0,0)在函数图象上可排除A、B;由特殊性质函数的值域为(﹣1,+∞),排除C,即可得正确选项解答:解:由函数y=3x﹣1的图象过(0,0)点,排除A、B,由函数y=3x﹣1的值域为(﹣1,+∞),排除C故选 D点评:本题考查了指数函数的图象变换,排除法解选择题13.函数f(x)=4x+5×2x﹣1+1的值域是()A.(0,1)B.[1,+∞)C.(1,+∞)D.[0,1]考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:令2x=t,t>0,则函数f(x)=t2+t+1,利利用二次函数的性质求出值域.解答:解:令2x=t,t>0,则函数f(x)=t2+t+1=﹣>﹣=1,且由二次函数的性质知,函数f(x)=﹣无最大值,故值域为(1,+∞).故选 C.点评:本题考查指数函数的单调性和值域,二次函数的值域的求法,体现了换元的思想.14.已知a=,b=,c=,则下列关系中正确的是()A.a<b<cB.c<a<bC.a<c<bD.b<a<c考点:指数函数的单调性与特殊点.1091931专题:常规题型.分析:利用幂的运算性质将a化简;由于三个数同底;研究指数函数的单调性,判断出三个数的大小.解答:解:∵∵是同底数的幂考查指数函数是减函数故选D点评:本题考查指数函数的单调性取决于底数的范围、考查利用指数函数的单调性比较幂的大小.15.若a>0,a≠1,则函数y=ax﹣1的图象一定过点()A.(0,1)B.(1,1)C.(1,0)D.(0,﹣1)考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:令令x﹣1=0求出x的值,代入解析式求出定点的坐标.解答:解:令x﹣1=0得,x=1,代入数y=ax﹣1=1,∴函数y=ax﹣1的图象一定过点(1,1),故选B.点评:本题考查了指数函数的图象过定点(0,1)的应用,令指数为零求解即可,是基础题.16.已知a,b∈R,且a>b,则下列不等式中恒成立的是()A.a2>b2B.()a<()bC.lg(a﹣b)>0D.>1考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:不妨设 a=﹣1,b=﹣2,代入各个选项进行检验可得 A、C、D 都不正确,只有B正确,从而得到结论.解答:解:令 a=﹣1,b=﹣2,代入各个选项进行检验可得 A、C、D 都不正确,只有B正确,故选B.点评:本题考查不等式的性质,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.17.函数的单调增区间为()A.[﹣1,+∞)B.(﹣∞,﹣1]C.(﹣∞,+∞)D.(﹣∞,0]考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:分别判断出各段函数在其定义区间的单调性,根据同增异减口诀,先判断内层函数的单调性,再判断外层函数单调性,若两函数单调性相同,则此复合函数在此定义域上为增函数,反之则为减函数.解答:解:外层函数是,内层函数是y=x2+2x由题意可得外层函数是减函数∵根据复合函数同增异减的性质∴只要找到y=x2+2x的减区间即可∵y=x2+2x的对称轴是x=﹣1∴它的减区间为(﹣∞,﹣1)∴函数的增区间为(﹣∞,﹣1).点评:复合函数的单调性一般是看函数包含的两个函数的单调性(1)如果两个都是增的,那么函数就是增函数(2)一个是减一个是增,那就是减函数(3)两个都是减,那就是增函数.18.函数y=ax﹣1+1(0<a≠1)的图象必经过点()A.(0,1)B.(1,1)C.(1,2)D.(0,2)考点:指数函数的单调性与特殊点.1091931专题:计算题.分析:由a0=1,可得当x=1时,函数y=ax﹣1+1=a0+1=2,从得到函数y=ax﹣1+1(0<a≠1)的图象必经过的定点坐标.解答:解:由a0=1,可得当x=1时,函数y=ax﹣1+1=a0+1=2,故函数y=ax﹣1+1(0<a≠1)的图象必经过点(1,2),故选C.点评:本题主要考查指数函数的单调性及特殊点,属于基础题.19.已知a=30.2,b=0.2﹣3,c=3﹣0.2,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.c>a>bD.b>c>a考点:指数函数单调性的应用.1091931专题:计算题.分析:先取中间量1,利用指数函数的图象性质,判断c最小,排除C、D;再将a、b两数变形比较,即可得正确选项解答:解:利用指数函数的图象性质知a>1,b>1,而c<1,故c最小,排除C、D∵a=<31=3,b==53=125∴b>a故选B点评:本题主要考查了幂的大小的比较,利用指数函数图象和幂的运算性质比较大小的技巧20.(2005?山东)下列大小关系正确的是()A.0.43<30.4<log40.3B.0.43<log40.3<30.4C.log40.3<0.43<30.4D.log40.3<30.4<0.43考点:指数函数单调性的应用.1091931专题:常规题型.分析:结合函数y=0.4x,y=3x,y=log4x的单调性判断各函数值与0和1的大小,从而比较大小.解答:解:∵0<0.43<0.40=1,30.4>30=1,log40.3<log0.41=0∴log40.3<0.43<30.4故选C点评:本题是指数函数与对数函数的单调性的简单应用,在比较指数(对数)式的大小时,若是同底的,一般直接借助于指数(对数)函数的单调性,若不同底数,也不同指(真)数,一般与1(0)比较大小.21.设,则a,b,c的大小关系是()A.a>b>cB.b>a>cC.b>c>aD.c>b>a考点:指数函数单调性的应用.1091931专题:证明题.分析:先利用指数函数y=为R上的单调减函数,比较a、b的大小,排除A、B,再利用幂函数y=x3在R上为增函数,比较b、c的大小,即可得正确选项解答:解:考察函数y=为R上的单调减函数,∴,即a<b,排除A、B;∵b3=,c3==,∴b3>c3,考察幂函数y=x3在R上为增函数,∴b>c,排除D;故选 C点评:本题主要考查了指数函数、幂函数的图象和性质,利用函数的单调性比较大小的方法和技巧,属基础题22.比较a,b,c的大小,其中a=0.22,b=20.2,c=log0.22()A.b>c>aB.c>a>bC.a>b>cD.b>a>c考点:指数函数单调性的应用;不等式比较大小.1091931专题:计算题.分析:将log0.22看作函数y=log0.2x当x=2时所对应的函数值小于零,将a=0.22看作函数y=0.2x 当x=2时所对应的函数值小于1,将b=20.2看作函数y=2x当x=0.2时所对应的函数值大于1.解答:解:根据对数函数的性质可知c=log0.22<0根据指数函数的性质可知0<0.22<1,20.2>1∴b>a>c故选D点评:本题主要考查在数的比较中,我们要注意函数思想的应用.二.填空题(共2小题)23.函数的单调递增区间是(﹣1,+∞).考点:指数函数综合题.1091931专题:计算题.分析:令t=x2+2x﹣3,则y=3t,本题即求函数t=x2+2x﹣3的增区间,由二次函数的性质可得函数t=x2+2x﹣3的增区间为(﹣1,+∞).解答:解:函数=,令t=x2+2x﹣3,则y=3t.故本题即求函数t=x2+2x﹣3的增区间.由二次函数的性质可得函数t=x2+2x﹣3的增区间为(﹣1,+∞),故答案为(﹣1,+∞).点评:本题主要考查指数型复合函数的单调性的应用,二次函数的性质,属于中档题.24.(2005?上海)方程4x+2x﹣2=0的解是0 .考点:指数函数综合题.1091931专题:计算题;转化思想.分析:先换元,转化成一元二次方程求解,进而求出x的值.解答:解:令t=2x,则t>0,∴t2+t﹣2=0,解得t=1或t=﹣2(舍)即2x=1;即x=0;故答案为0.点评:考查了指数运算,对于不是同底的指数问题,首先换成同一底数,体现了换元的思想,在换元中注意新变量的取值范围.属容易题.。

指数函数的概念-练习题

指数函数的概念-练习题
且a≠1.
3.答案:a(1+n%)12
解析:2007年的产值为a(1+n%),
2008年的产值为a(1+n%)2,…,
2018年的产值为a(1+n%)12.
4.答案:6倍
解析:设x天后变为原来的f(x)倍,则f(x)=1.0625x(x≥0),利用计算工具可得f(30)=1.062530≈6.16.所以经过30天,该湖泊的蓝藻会变为原来的6倍.

4.在某个时期,某湖泊中的蓝藻每天以6.25%的增长率呈指数增长,那么经过30天,该湖泊的蓝藻会变为原来的多少倍?
【答案】
1.答案:C
解析:A为y=3×3x,不是指数函数;B为y=-1×3x,故不是指数函数;D中底数中含自变量x,故不是指数函数,答案选C.
2.答案:a> 且a≠1
解析:函数y=(2a-1)x为指数函数,则
指数函数的概念
课后练习
1.下列以x为自变量的函数中是指数函数的是()
A.y=3x+1B.y=-3x
C.y=3-xD.y=(2x+1)x

2.若函数y=(2a-1)x为指数函数,则实数a的取值范围是_____.
3.某厂2006年的产值为a万元,预计产值每年以n%递增,则该厂到2018年的产值(单位:万元)是________.

指数函数经典例题和课后习题

指数函数经典例题和课后习题

指数函数及其基本性质指数函数的定义一般地,函数()10≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域是R .问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如21,2=-=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,xa 无意义)(3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a .指数函数的图像及性质 函数值的分布情况如下:指数函数平移问题(引导学生作图理解)用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x2的图象的关系(作图略),⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .f (x )的图象向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.指数函数·经典例题解析(重在解题方法)【例1】求下列函数的定义域与值域:解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, 及时演练求下列函数的定义域与值域 (1)412-=x y ; (2)||2()3x y =;(3)1241++=+x x y ;【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是[ ]A .a <b <1<c <dB .a <b <1<d <cC . b <a <1<d <cD .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c .及时演练指数函数①②满足不等式,则它们的图象是 ( ).【例3】比较大小: (3)4.54.1________3.73.6解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6∴ 4.54.1>3.73.6.说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).及时演练(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3与 0.93.1(4)5.31.2和7.20.2【例5】已知函数f(x)=a -12x+1,若f(x)为奇函数,则a =________. 【解析】 解法1:∵f(x)的定义域为R ,又∵f(x)为奇函数, ∴f(0)=0,即a -120+1=0.∴a =12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x), 即a -12-x+1=12x +1-a ,解得a =12.【答案】 12及时演练当x =0时,函数y 有最大值为1.(1)判断f(x)的奇偶性; (2)求f(x)的值域;(3)证明f(x)在区间(-∞,+∞)上是增函数. 解 (1)定义域是R . ∴函数f(x)为奇函数. 即f(x)的值域为(-1,1).(3)设任意取两个值x 1、x 2∈(-∞,+∞)且x 1<x 2.f(x 1)-f(x 2)备选例题1.比较下列各组数的大小:(1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与;(4)若 ,且 ,比较a 与b ; (5)若,且,比较a 与b .解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .(2)由 ,故 .又 ,故 .从而 .(3)由 ,因 ,故 .又 ,故 .从而 .(4)应有 .因若 ,则 .又 ,故 ,这样 .又因 ,故.从而,这与已知矛盾.(5)应有 .因若 ,则 .又 ,故 ,这样有 .又因 ,且,故 .从而 ,这与已知 矛盾.小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.,2.已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围.解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 3. 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程的解是2x =. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 4. 为了得到函数935x y =⨯+的图象,可以把函数3x y =的图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象的平移规律进行判断.解:∵293535x x y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+ 的图象,故选(C ).评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等.5. 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x的最大值和最小值 解:设t=3x,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。

指数函数练习题

指数函数练习题

指数函数练习题1.指数函数的基本概念指数函数是数学中一类重要的函数,常用于描述指数增长或指数衰减的情况。

其一般形式为:$y = a \cdot b^x$,其中 $a$ 和$b$ 是常数,$b。

0$ 且 $b \neq 1$。

指数函数的特点包括:当 $b。

1$ 时,函数呈指数增长趋势;当 $0 < b < 1$ 时,函数呈指数衰减趋势;当 $b = 1$ 时,函数退化为常数函数。

2.指数函数的求解与应用指数函数的求解主要涉及确定常数 $a$ 和 $b$ 的值,以及利用函数的性质进行计算。

示例1.已知函数 $y = 3 \cdot 2^x$,求当 $x = 2$ 时的函数值。

示例1.已知函数 $y = 3 \cdot 2^x$,求当 $x = 2$ 时的函数值。

解答:将 $x = 2$ 代入函数表达式中,得到 $y = 3 \cdot 2^2 = 12$。

因此,当 $x = 2$ 时,函数值为 12.示例2.某车辆的初始价格为 10 万元,每年贬值 5%,求经过 5 年后车辆的价格。

示例2.某车辆的初始价格为 10 万元,每年贬值5%,求经过 5 年后车辆的价格。

解答:设经过 $x$ 年后车辆的价格为 $y$,则满足指数衰减的函数关系为 $y = 10 \times (1-0.05)^x$。

代入 $x = 5$,得到 $y = 10 \times (1-0.05)^5 \approx 7.788$ 万元。

因此,经过 5 年后车辆的价格约为 7.788 万元。

指数函数在实际生活中有广泛的应用,例如金融领域的复利计算、生物学中的指数增长模型、电子电路中的放大器响应曲线等。

3.指数函数的练习题练习题1.若指数函数 $y = a \cdot b^x$ 过点 $(1,4)$,并且在$x = 2$ 处的斜率为 1,求函数的表达式。

练习题1.若指数函数 $y = a \cdot b^x$ 过点 $(1,4)$,并且在 $x = 2$ 处的斜率为 1,求函数的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本节知识点
1、
(一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)

55n n n ⎧=⎪⎨=-⎪⎩正数的次方根是正数当是奇数时,负数的次方根是负数

20,n a n n ⎧>⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根
◆ 0的任何次方根都是0
2

n a =当

,0,0a a n a a a ≥⎧==⎨-≤⎩当 3、 分数指数幂

**0,,,1)1(0,,,1)m n m n m n a a m n N n a a a m n N n a -⎧=>∈>⎪⎪⎨=>∈>⎪⎪⎩
正分数指数幂的意义且当为正数时,负分数指数幂的意义且 ◆ 0
0⎧⎨⎩0的正分数指数幂等于当a 为时,0的负分数指数幂无意义
4、 有理指数幂运算性质

(0,,)r s r s a a a a r s Q +=>∈ ②()(0,,)r s rs a a a r s Q =>∈
③()(0,0,)r r r ab a b a b r Q =>>∈
5、 指数函数的概念 一般的,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .
6、指数函数x y a =在底数及这两种情况下的图象和性质:
1a > 01a <<



质 (1)定义域: R (2)值域: (0)+∞, (3)过点 ,即0x =时1y =
(4)单调递增 (4) 指数与指数函数试题归纳精编
(一)指数
1、化简[32)5(-]4
3的结果为 ( )
A.5 B .5 C.-5ﻩ D.-5 2、将322-化为分数指数幂的形式为( )
A.212- B .312- C.212
-- D .6
52- 3、化简
4
216132332)b (a b b a ab ⋅⋅(a, b 为正数)的结果是( ) A .a b ﻩﻩﻩ B.ab ﻩ C.b a D .a 2b
4、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝
⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )
A、11321122--⎛⎫- ⎪⎝⎭ B、1
13212--⎛⎫- ⎪⎝⎭ C、13212-- D 、1321122-⎛⎫- ⎪⎝⎭ 5、13256)7
1(027.0143
231
+-+-----=__________.
6、32
11321
32)(----÷a b b a b a b a
=__________. 7、21203271037(2)0.1(2)392748
π-++-+—=__________。

8、)31()3)((65
6131212132b a b a b a ÷-=__________。

9
、41
60.2503
21648200549-+---)()() =__________。

10、若32121
=+-x x ,求23222
323-+-+--x x x x 的值。

11、已知1
1
22
a a -+=3,求(1)1a a -+; (2)22a a -+;
(二)指数函数
题型一:与指数有关的复合函数的定义域和值域
1、 含指数函数的复合函数的定义域
(1) 由于指数函数()1,0≠>=a a a y x
且的定义域是R ,所以函数()x f a y =的定义域与()x f 的定义域相同. (2) 对于函数()()1,0≠>=a a a f y x 且的定义域,关键是找出x a t =的值域哪些部分()t f y =的定义域中.
2、 含指数函数的复合函数的值域
(1) 在求形如()x f a y =()1,0≠>a a 且的函数值域时,先求得()x f 的值域(即()x f t =中t 的范围),再根据
t a y =的单调性列出指数不等式,得出t a 的范围,即()x f a y =的值域.
(2) 在求形如()x a f y =()1,0≠>a a 且的函数值域时,易知0>x a (或根据()x a f y =对x 限定的更加具体
的范围列指数不等式,得出x
a 的具体范围),然后再()+∞∈,0t 上,求()t f y =的值域即可. 【例】求下列函数的定义域和值域.
(1)114
.0-=x y ; (2)153-=x y ; (3)x a y -=1.
题型二:利用指数函数的单调性解指数不等式
解题步骤:(1)利用指数函数的单调性解不等式,首先要将不等式两端都凑成底数相同的指数式.
(2)()()()()()(),1,01
f x
g x f x g x a a a f x g x a >>⎧⎪>⇔⎨<<<⎪⎩ 【例】(1)解不等式22113≤⎪⎭
⎫ ⎝⎛-x ; (2)已知()1,06132≠><++-a a a a x x x ,求x 的取值范围.
例2.比较大小 15
1
34(1)2与 2-1122(2)()与
3.6
4.5
3.6(3)
4.5与
题型三:指数函数的最值问题
解题思路:指数函数在定义域R 上是单调函数,因此在R 的某一闭区间子集上也是单调函数,因此在区间的两个端点处分别取到最大值和最小值.需要注意的是,当底数未知时,要对底数分情况讨论.
【例】函数()()1,0≠>=a a a x f x 在[]2,1上的最大值比最小值大2
a ,求a 的值.
题型四:与指数函数有关复合函数的单调性(同增异减)
1、研究形如()x f a y =()1,0≠>a a 且的函数的单调性时,有如下结论:
(1)当1>a 时,函数()x f a y =的单调性与()x f 的单调性相同;
(2)当10<<a 时,函数()x f a
y =的单调性与()x f 的单调性相反. 2、研究形如()x a y ϕ=()1,0≠>a a 且的函数的单调性时,有如下结论:
(1)当1>a 时,函数()x a
y ϕ=的单调性与()t y ϕ=的单调性相同; (2)当10<<a 时,函数()x
a y ϕ=的单调性与()t y ϕ=的单调性相反. 注意:做此类题时,一定要考虑复合函数的定义域. 【例】1.已知1,0≠>a a 且,讨论()232++-=x x a x f 的单调性.
2.求下列函数的单调区间.
(1)322-+=x x
a y ; (2)1
2.01-=x y
题型五:指数函数与函数奇偶性的综合应用
虽然指数函数不具有奇偶性,但一些指数型函数可能具有奇偶性,对于此类问题可利用定义进行判断或证明.
【例】1. 已知函数()a x f x ++=
1
31为奇函数,则a 的值为 . 2. 已知函数()()R x a x f x ∈+-=2
11是奇函数,则实数a 的值为 . 3. 已知函数()()1,02111≠>+-=a a a x f x ,判断函数()x f 的奇偶性.
题型六:图像变换的应用
1、平移变换:若已知x a y =的图像,(左加右减在x ,上加下减在y )
(1)把x a y =的图像向左平移b 个单位,则得到b x a y +=的图像;
(2)把x a y =的图像向右平移b 个单位,则得到b x a y -=的图像;
(3)把x a y =的图像向上平移b 个单位,可得到b a y x +=的图像;
(4)把x a y =的图像向下平移b 个单位,则得到b a y x -=的图像.
2、对称变换:若已知x a y =的图像,
(1)函数x a y =的图像与x a y -=的图像关于y 轴对称;
(2)函数x a y =的图像与x a y -=的图像关于x 轴对称;
(3)函数x a y =的图像与x a y --=的图像关于坐标原点对称.
【例】1. 画出下列函数的图象,并说明它们是由函数x y 2=的图像经过怎样的变换得到的.
①12-=x y ;②12+=x y ;③x y 2=;④12-=x y ;⑤x y 2-=;⑥x y --=2
2. 函数a x y +=与x a y =()1,0≠>a a 且的图像可能是( )
A B
C D。

相关文档
最新文档