分子轨道理论概述
分子轨道理论
2 轨道数守恒定律 n个AO 线性组合 → n个MO 成键轨道:能级低于原子轨道的分子轨道 反键轨道:能级高于原子轨道的分子轨道 非键轨道:能级等于原子轨道的分子轨道
成键与反键轨道成对出现 ,其余为非键轨道。
3.3.5 分子轨道理论的要点:
1. 采用轨道近似,分子中的每一个电子可以 用一个单电子波函数来描述: i(i)(i) i(i):分子轨道 2. 由LCAO-MO得到,变分系数由变分法 得到 3. LCAO-MO时,AO应满足对称性匹配、 能量相近和最大重叠原则
*2pz *2px *2py 2px 2py 2pz *2s 2s
O 2 F2
2 u 1 g 1 u
2 g
1 u 1 g
KK
Li2, Be2, B2 , C2, N2 (2s-2p轨道能级差小,sp混杂显著)
1 g 1 u 2 g道:KK
O2, F2, Ne2
1 g 1 u
KK 1g 1u 2g 1u 1g 2u
Li2, Be2, B2 , C2, N2
KK 1g 1u 1u 2g 1g 2u
3.3.4 分子中电子的排布
1 排布遵守的原则: Pauli 原理 能量最低 Hund规则
a a
1 1 EH S ab S ab a b d EH S ab K R ra
Sab
E1
键合后体系能 量降低更多
影响Sab的因素:
核间距要小;
在核间距一定时,两原子轨道按合适 的方向重叠(化学键的方向性)
3.3.2 分子体系的S方程
1. 分子体系:m个核,n个电子
4. i-Ei,电子填充按能量最低、Pauli原理和 Hund规则
c. 单电子近似
第四章(2) 分子轨道理论
第三节分子轨道理论(MOT)一、概述要点:A、配体原子轨道通过线性组合,构筑与中心原子轨道对称性匹配的配体群轨道。
B、中心原子轨道与配体群轨道组成分子轨道。
形成LCAO-MO的三原则:二、金属与配体间σ分子轨道(d轨道能级分裂)1.可形成σ分子轨道的中心原子轨(n-1)d x2-y2, (n-1)d z2, ns, np x, np y, np z (可形成σ分子轨道)三、ABn型分子构筑分子轨道的方法1、步骤1)列出中心原子A及配位原子B中参与形成分子轨道的原子轨道;2)将中心原子轨道按照以它们为基的不可约表示分类;3)将B原子轨道按等价轨道集合分类(由对称操作可彼此交换的轨道称为等价轨道);4)将每一等价轨道集合作为表示的基,给出表示;再将其分解为不可约表示;5)用每一组等价轨道集合构筑出对应于上一步所求出的不可约表示的配体群轨道;6)将对称性相同的配体群轨道与中心原子轨道组合得分子轨道。
2、以AB6(O h群)为例1)A原子用ns、np、(n-1)d 9个轨道,每个B原子用3个p(p x、p y、p z)轨道,共27个轨道形成分子轨道。
C、规定p z向量指向中心原子,则p x、p y向量应存在于垂直于p z向量的平面内;D、规定第一个B原子的p x向量与y 轴平行(* 方向相同),则该B原子的p y向量应与z轴平行(* 方向相同);E、其余(6-1)个B原子的p x和p y 向量的方向由O h群对称性决定。
2)A原子价轨道在O h群对称下,属于下列表示:A1g: sE g: d x2-y2,d z2T1u: p x,p y,p zT2g: d xy,d xz,dyz3)O h群将B原子的18个轨道分为如下等价轨道的集合:I、6个p z轨道(可用于形成σ分子轨道)II、12个p x或p y轨道4)以上述轨道集合I为基,得出在O h群中的表示,并进行约化:Гσ = A1g + E g + T1u5)求出与中心原子价轨道相关的配体群轨道(用投影算符):中心原子轨道ψ(A1g) = (1/6)1/2(p z1+p z2+p z3+p z4+p z5+p z6) 匹配sψ(E g) = (1/12)1/2(2p z5+2p z6-p z1-p z2-p z3-p z4) d z21/2(p z1-p z2+p z3-p z4) 匹配d x2-y2ψ(T1u) = (1/2)1/2(p z1-p z3) p x(1/2)1/2(p z2-p z4) 匹配p y(1/2)1/2(p z5-p z6) p z6)按照上述对应关系,构成分子轨道。
分子轨道理论解释
分子轨道理论1 分子轨道理论分子轨道是由2个或多个原子核构成的多中心轨道。
分子轨道的波函数也是Schrödinger方程的解。
分子轨道分为成键分子轨道与反键分子轨道,前者是原子轨道同号重叠(波函数相加)形成,核间区域概率密度大,其能量比原子轨道低;后者是原子轨道异号重叠(波函数相减)形成的,核间区域概率密度小,两核间斥力大,系统能量提高,如图所示:2 同核双原子分子1).氢分子氢分子是最简单的同核双原子分子。
两个氢原子靠近时,两个1s原子轨道(AO),组成两个分子轨道(MO):一个叫成键轨道,另一个叫反键轨道。
氢分子的两个电子进入成键轨道电子构型或电子排布式为。
电子进入成键轨道,使系统能量降低,进入反键轨道将削弱或抵消成键作用。
2).分子轨道能级图与分子轨道形状第二周期元素原子组成分子时,用2s,2p 原子轨道组成的分子轨道,示于图9-3-2由图可见,分子轨道的数目等于用于组合原子轨道数目。
两个2s原子轨道组成两个分子轨道和,6个2p原子轨道组成6个分子轨道,其中两个是σ分子轨道(和)4个是π分子轨道(两个和两个)。
相应的原子轨道及分子轨道的形状如图下所示。
由图可见:●成键轨道中核间的概率密度大,而在反键轨道中,则核间的概率密度小。
●一对2p z 原子轨道以“头碰头”方式组合形成分子轨道,时,电子沿核间联线方向的周围集中;一对2p x(2p y)原子轨道以“肩并肩”方式组合形成分子轨道,时,电子分布在核间垂直联线的方向上。
3).氧分子O2共有16个电子,O2的电子构型:O2分子有两个自旋方式相同的未成对电子,这一事实成功地解释了O2的顺磁性。
O2中对成键有贡献的是(σ2p)2和(π2p)4这3 对电子,即是一个σ键和两个π键。
O2的两个π键是三电子π键,反键轨道中的一个电子削弱了键的强度,一个三电子π键相当于半个键,故O2的叁键实际上与双键差不多。
4).氮分子N2的分子轨道能级图与O2比较,只是在和的相互位置有区别。
分子轨道理论及基态与激发态
分子轨道理论及基态与激发态分子轨道理论基本概念一、分子轨道:(molecular orbital) 描述分子中电子运动的波函数,指具有特定能量的某电子在相互键合的两个或多个原子核附近空间出现的概率最大的区域。
分子轨道由原子轨道线性组合而成。
二、成键三原则:能量相近、最大重叠、对称性匹配。
只有对称性相同的两个原子轨道才能组成分子轨道。
σ对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号不变。
如S,Px,d x2-y2为σ对称。
π对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号改变。
Py,Pz,d xy是π对称。
由σ对称的原子轨道组成的键——σ键由π对称的原子轨道组成的键——π键三、成键轨道与反键轨道分子轨道与原子轨道的联系:轨道守恒——2个原子轨道线性组合,产生2个分子轨道;能量守恒——2个分子轨道的总能量等于2个原子轨道的总能量;能量变化——每个分子轨道的能量不同于原子轨道的能量组合结果—定会出现能量高低不同的两个分子轨道。
——这是原子轨道线性组合的方式不同所致。
波函数同号的原子轨道相重叠,原子核间的电子云密度增大,形成的分子轨道的能量比各原子轨道能量都低,成为成键分子轨道。
波函数异号的原子轨道相重叠,原子核间的电子云密度减小,形成的分子轨道的能量比各原子轨道能量都高,成为反键分子轨道。
四、电子填入分子轨道时服从以下原则:1、能量最低原理:电子在原子或分子中将优先占据能量最低的轨道。
2、保利不相容原理:在同一原子或分子中、同一轨道上只能有两个电子,且自旋方向必须相反。
3、洪特规则:在能量相同的轨道中(简并轨道),电子将以自旋平行的方式、分占尽可能多的轨道基态与激发态当分子中的所有电子都遵从构造原理的这三个原则时,分子所处的最低能量状态——基态。
通常情况下,分子处于基态。
激发态:当分子获取能量后,分子中的电子排布不完全遵从构造原理,分子处于能量较高的状态——激发态,是原子或分子吸收一定的能量后,电子被激发到较高能级但尚未电离的状态。
化学中的分子轨道理论
化学中的分子轨道理论化学是一门研究物质性质、组成及变化的科学,其中一个重要的方面是了解分子的构成和化学键的形成。
分子轨道理论是一个用于解释分子结构和化学键形成的重要理论。
在本文中,我们将深入探讨分子轨道理论的基本概念和应用。
分子轨道理论的基本概念分子轨道理论将分子看作是由原子轨道之间形成的新的轨道而构成。
原子轨道是一种描述电子位置的数学函数,它们描述了单个原子中电子的可能位置和能量。
但是,在两个或多个原子共同存在的分子中,原子轨道就发生了重叠,而由此形成了新的分子轨道。
有两种类型的分子轨道:成键分子轨道和反键分子轨道。
成键分子轨道是由原子轨道之间重叠形成的,这种重叠是化学键形成的原因。
反键分子轨道是由原子轨道不重叠的区域形成的,它们和成键分子轨道几乎具有相等的能量,但是它们的电子不会在化学键形成过程中参与,因此它们被称为反键分子轨道。
分子轨道理论的应用分子轨道理论可以用于解释分子的性质和化学反应。
让我们以氢分子为例,探讨分子轨道理论是如何解释氢分子的存在和相互作用的。
氢原子的电子结构是1s,其中一个s轨道中有一个电子。
当两个氢原子形成一个分子时,它们的s轨道相互重叠并形成了两个新的分子轨道:成键分子轨道和反键分子轨道。
成键分子轨道比原子轨道更稳定,因为它们的波函数符号相同,从而促进电子的互相吸引。
相反,反键分子轨道比成键分子轨道更不稳定,因为它们的波函数符号相反,在这种情况下,电子之间会互相排斥。
由于成键分子轨道比反键分子轨道更稳定,氢分子的所有电子都处于成键分子轨道中。
这样,它们就形成了共价键,并达到了更稳定的电子结构。
这就解释了为什么氢分子是存在的,而单个氢原子不会稳定存在。
分子轨道理论还可以用于预测化学反应的速率和化学键的强度。
它可以通过计算分子轨道重叠的程度来预测键的稳定性和长度。
此外,在有机化学中,分子轨道理论可以解释的许多现象,如亲电性、电子云和取代反应。
总结分子轨道理论是一个重要的化学理论。
第章前线分子轨道理论
第章前线分子轨道理论什么是分子轨道理论分子轨道理论是描述分子内电子构型的一种理论。
在化学中,原子的价电子构型决定了化学反应和化学性质,而分子的电子构型又是决定分子性质和反应的关键因素。
因此,分析和理解分子的电子构型具有重要意义。
分子轨道理论通过将原子轨道合并形成分子轨道的方式来描述分子的电子构型。
在分子轨道理论中,分子中所有原子的原子轨道合并为一系列分子轨道,每个分子轨道可以容纳一对电子。
前线分子轨道理论前线分子轨道理论是分子轨道理论的一个重要分支。
在前线分子轨道理论中,我们关注的是分子中最外层的电子。
这些电子决定了分子的化学性质和反应活性。
因此,对于化学反应和分子中的电荷转移来说,前线分子轨道理论具有重要意义。
前线分子轨道理论中,我们通常关注两个参数:能量和对称性。
在分子中,前线分子轨道由接近原子核的、能级较低的σ轨道和能级较高的π轨道组成。
由于能量较低的σ轨道电子最相互靠近原子核,因此它们的相互作用能最大。
同时,它们的能量比较低,因此对于分子中电荷转移反应最具有反应性。
分子轨道理论的应用分子轨道理论具有广泛的应用。
在设计新的材料和药物时,分子轨道理论可以帮助我们预测分子的反应性和性能。
在催化剂的设计中,分子轨道理论可以帮助我们理解催化反应的机制和选择最适合的催化剂。
分子轨道理论还可以帮助我们理解一些化学现象。
如何在实验室中制备高能量化合物、如何控制分子中重要反应的速率和选择性和如何设计更有效的催化剂,都是分子轨道理论研究领域。
此外,分子轨道理论还可以在设计新型化学反应和控制分子反应中的选择性方面发挥重要的作用。
第章前线分子轨道理论是分子轨道理论中的重要分支,它可以帮助我们理解分子中最外层电子的性质和化学反应的机理。
分子轨道理论在新材料和药物的设计、催化剂的研究、化学反应的加速和选择性控制等方面都具有广泛的应用前景。
第五章_分子轨道理论
轨道进行简单的介绍。
四 、配位化合物中的分子轨道理论
要点:
A、配体原子轨道通过线性组合,构筑与中心原子 轨道对称性匹配的配体群轨道。 B、中心原子轨道与配体群轨道组成分子轨道。
金属与配体间σ分子轨道(d轨道能级分裂)
1.可形成σ分子轨道的中心原子轨道 在八面体配合物MX6中,每个配体可提供一个Pz 轨道用于形成σ分子轨道。
(2)分子轨道由原子轨道线性组合而成的,而且
组成的分子轨道的数目同互相化合原子的原子轨道
的数目相同。 (3)分子中电子的排布遵从原子轨道电子排布三 原则,即能量最低原理、泡利不相容原理和洪特规 则。
1. 原子轨道线性组合的方式
形成LCAO-MO的三原则:
linear combination of atomic orbital-molecular orbital
分子轨道理论的作用:
1. 可以解释包括羰基配合物、 π 配合物等特殊配合物 在内的配位键的形成;
2. 可以计算出所形成配合物分子轨道能量的高低;
3. 可以定量地解释配合物的某些物理和化学性质;
不足:
计算分子轨道能量的高低需要冗长的计算,非常繁琐;
通常采用简化或某些近似的方法来得到分子轨道能量的相对 高低。这里只定性地对常见的八面体配位构型配合物得分子
分子 H2 He2 He2+
键级
磁性
1s σ
1s
σ 1s*1 1s
分子 Li2 Be2 B2 C2 N2 O2 + O2 O2 F2 Ne2 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ 1s21s2σ
出的一个序列。 N2[(σ1s)2(σ1s*)2(σ2s)2(σ2s*)2(π2py)2(π2pz)2(σ2px)2]
什么是分子轨道理论
什么是分子轨道理论
分子轨道理论(Molecular Orbital Theory,简称MO理论)是1932年由美国化学家马利肯(R.S.Mulliken)及德国物理学家洪特(F.Hund)提出的一种描述多原子分子中电子所处状态的方法。
该理论认为原子形成分子后,电子不再属于个别的原子轨道,而是属于整个分子的分子轨道,分子轨道是多中心的。
分子轨道由原子轨道组合而成,形成分子轨道时遵从能量近似原则、对称性一致(匹配)原则、最大重叠原则,即通常说的“成键三原则”。
在分子中电子填充分子轨道的原则也服从能量最低原理、泡利不相容原理和洪特规则。
以上信息仅供参考,建议查阅化学专业书籍文献或咨询化学专业人士获取更全面更准确的信息。
分子轨道理论的基本概念
分子轨道理论的基本概念分子轨道理论是描述分子内电子结构的理论框架,它是理解分子化学和化学反应的重要工具。
在分子轨道理论中,分子中的电子被认为存在于由原子核构成的分子轨道中,这些分子轨道是原子轨道的线性组合。
通过分子轨道理论,我们可以更好地理解分子的稳定性、反应性以及光谱性质。
本文将介绍分子轨道理论的基本概念,包括分子轨道的构成、分子轨道的类型以及分子轨道的能级顺序等内容。
1. 分子轨道的构成在分子轨道理论中,分子轨道是由原子轨道线性组合而成的。
原子轨道可以是原子的1s、2s、2p等轨道,它们在形成分子时会相互叠加、重叠并形成新的分子轨道。
分子轨道的构成可以通过线性组合原子轨道(Linear Combination of Atomic Orbitals,LCAO)方法来描述。
在LCAO方法中,原子轨道的波函数被线性组合,从而形成分子轨道的波函数。
通过适当的线性组合系数,可以得到不同类型的分子轨道,如σ轨道、π轨道等。
2. 分子轨道的类型根据分子轨道的对称性和能量特征,可以将分子轨道分为不同类型。
其中,σ轨道是沿着两原子核之间轴向的对称轨道,具有较高的电子密度;π轨道则是垂直于两原子核之间轴向的对称轨道,电子密度主要集中在两原子核之间的区域。
此外,还有δ轨道、φ轨道等其他类型的分子轨道,它们在不同的分子结构中扮演着重要的角色。
这些不同类型的分子轨道在分子的形成和反应中起着至关重要的作用。
3. 分子轨道的能级顺序分子轨道的能级顺序是指不同类型的分子轨道在能量上的排布顺序。
一般来说,σ轨道的能量较低,π轨道的能量次之,而δ轨道、φ轨道等能级较高。
这种能级顺序的排布对于分子的稳定性和反应性具有重要影响。
例如,在烯烃分子中,π轨道的能级较低,因此烯烃具有较高的反应活性;而在芳香烃中,芳香环中的π轨道形成了稳定的共轭体系,使得芳香烃具有较高的稳定性。
4. 分子轨道的叠加和排斥在分子轨道理论中,分子轨道之间存在叠加和排斥的相互作用。
分子轨道理
分子轨道理
分子轨道理论是一种解释分子化学性质的理论,主要应用于复杂化学物质的计算和设计。
该理论结合量子力学和分子对称性理论,通过对分子中原子轨道的组合和相互作用的分析,得出分子轨道能级和电子分布,进而预测分子性质及其反应活性。
其主要内容包括:
1. 原理:分子轨道理论的核心原理是“波函数线性组合原理”,即分子轨道是由原子轨道按照一定的线性组合方式组成的。
线性组合系数称为“分子轨道系数”。
2. 能级:分子轨道能级是由原子轨道相互作用而形成的,其数目等于参与组合的原子轨道数目。
能级顺序和大小与分子轨道系数及原子轨道能级之间的相互作用有关。
3. 分子轨道类型:根据分子轨道能级和分子轨道系数的不同,分子轨道可分为sigma(σ)轨道、pi(π)轨道、delta(δ)轨道等。
4. 分子轨道的对称性:分子对称性对分子轨道的能级和分子性质有很大影响。
相同对称性的原子轨道组合会形成对称性相同的分子轨道。
5. MO图解:MO图是分子轨道理论的重要表述方式,用于描述分子中电子的能级和分布情况。
其结构为横坐标为分子轨道能级,纵坐标为分子轨道系数的坐标轴。
6. 应用:分子轨道理论可应用于物理、化学、生物等领域,如
化学反应机理、分子光谱学、药物设计等。
7. 限制和局限:分子轨道理论适用于与原子轨道相似的分子,但对于复杂分子和高能态的描述有一定局限性。
分子轨道理论
* 2px
2px
2p ?
2py
2pz
* 2 s
2p
N2的键级=(10-4)/2=3
2s
2s
1*s
2s
1s AO
1s
1s AO
MO
同核与异核双原子的分子轨道符号的关系
1s
1
Байду номын сангаас
1*s
2
2s
3
* 2 s
2p
5
2p
1
* 2 p
* 2 p
3s
7
* * 2 py 2pz 2py 2pz
2p
* 2 s
2px
2p
O2的键级=(10-6)/2=2
2s
2s
1*s
2s
1s AO
1s
1s AO
MO
N2分子轨道能级图
* * 2 py 2pz
N2分子轨道表示式
* 2 2 * 2 2 2 2 (1s )2(1 ) ( ) ( ) ( ) ( ) ( ) s 2s 2s 2py 2pz 2 px
MO c11 c2 2 MO
*
c11 - c2 2
成键原则 能量相近原则 决定成键效率 决定能否成键
分子轨道电子排布遵循原则 能量最低原理 Pauli不相容原理 Hund法则
最大重叠原则
对称性匹配原则
处理分子轨道方法
1. 弄清分子轨道的数目和能级高低 2. 由原子价电子算出可用来填充的分子轨道的电子数 3. 按规则将电子填入分子轨道
分子轨道类型
分子轨道表示式
根据分子轨道能级高低及轨道电子数,将分子轨道从 低能级到高能级的每个能级用括号括起来,右上角注 明轨道电子数。如,H2的分子轨道表达式 (1s )2
分子轨道理论
s,px 沿y轴重迭,β= 0, LCAO无效,对称性不允许. s,px沿x轴重迭, Sab>0,|β| 增大,对称性允许.
Sab>0, 对称性匹配, 是MO形成的首要条件,决定能否成键。
其它两条件解决效率问题。
只有对称性相同的AO才能组成MO。
S ab a* bd
对称性允许 +
+ + 相长
Eb
a Ea
A
U
1
E1
AB
B
两个AO形成两个MO时,AO能级差越小,形 成的MO能级分裂越大,电子转移到低能量的成键 MO后越有利。 反之,AO能级差越大,形成的MO 能级分裂越小,电子转移到低能量的成键MO后能 量下降越不明显.
在低能量的成键MO中, 低能量的AO组份较多; 在高能量的反键MO中, 高能量的AO组份较多。
轨道重叠与共价键的方 向性有密切关系. 例如, 环丙 烷中C采取sp3杂化,应以 109.5o重叠成键, 而键角只有 60o . 所以, 杂化轨道在核连 线之外重叠成弯键. 重叠不能 达到最大, 成键效率不高.
弯键模型
以往的解释是: 沿核连线成键 时, 为适应键角所要求的60o , sp3 杂化键被迫弯曲而产生“张力”.
分子轨道理论
分子轨道理论(MO理论) 1932年美国科学家莫立根(Mulliken)洪特(Humd)等人先后 提出了分子轨道理论 (Molecular Orbital Theory)
一. 理论要点: 1、分子轨道理论的基本观点是把分子看作一个整体,其中电子
不再从属于某一个原子而是在整个分子的势场范围内运动。 分子中每个电子的运动状态也可用相应的波函数来描述。 2、分子轨道是由分子中原子的原子轨道线性组合而成,简称 LCAO。组合形成的分子轨道数目与组合前的原子轨道数目 相等。 3、原子轨道线性组合成分子轨道后,每一个分子轨道都有一相 应的能量,分子轨道中能量高于原来的原子轨道者称为反键 轨道,能量低于原来的原子轨道者称为成键轨道。 4、分子轨道中的电子的排布原则:保里不相容、能量最低、洪 特规则。 5、根据分子轨道的对称性不同,可分为σ键和π键。
12.4 分子轨道理论
电子排布三原则:保里原理,能量最低原理, 电子排布三原则:保里原理,能量最低原理, 洪特规则. 洪特规则.
* σ2p * π2p
σ2p π2p
* σ2s σ2s
分子光谱实验数据 s, p轨道相互作用问题 轨道相互作用问题
Li2 Be2 B2 C2 N2 O2 F2
第二周期同核双原子分子的分子轨道能级图
价键理论将共价键看作原子之间的定域键 价键理论将共价键看作原子之间的定域键 反映了原子间直接的相互作用 形象直观而易于与分子的几何构型相联系 分子轨道理论着眼于分子的整体性 分子轨道理论着眼于分子的整体性 说明的问题给以比较合理的解释 不如价键模型直观 在数学处理方面远比价键理论方便 目前发展较快 价键理论为基础 应用较广 分子轨道理论为补充
Combining Atomic Orbitals
轨道线性叠加: 轨道线性叠加: 同相位波增强,能量降低,形成成键轨道; 同相位波增强,能量降低,形成成键轨道; 反相位波减弱,能量升高,形成反键轨道. 反相位波减弱,能量升高,形成反键轨道.
Molecular-orbital diagrams for the diatomic molecules and ions of the first-period elements.
�
分子轨道理论
分子轨道的概念 组成分子的原子的价电子属于整个分子 在原子中电子在空间的运动状态称原子轨 道(原子波函数) 原子波函数) 分子中的电子在整个分子中的运动状态则 称为分子轨道(分子波函数) 称为分子轨道(分子波函数) 每个原子轨道能容纳2 每个原子轨道能容纳2个自旋相反的电子 每个分子轨道也能容纳2个自旋相反的电子, 每个分子轨道也能容纳2个自旋相反的电子, 并有一定的能级. 并有一定的能级. 在不违背保利原理的前提下, 在不违背保利原理的前提下,电子尽可能 地分占不同轨道. 地分占不同轨道.
(完整版)分子轨道理论及基态与激发态
分子轨道理论及基态与激发态分子轨道理论基本概念一、分子轨道:(molecular orbital) 描述分子中电子运动的波函数,指具有特定能量的某电子在相互键合的两个或多个原子核附近空间出现的概率最大的区域。
分子轨道由原子轨道线性组合而成。
二、成键三原则:能量相近、最大重叠、对称性匹配。
只有对称性相同的两个原子轨道才能组成分子轨道。
σ对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号不变。
如S,Px,d x2-y2为σ对称。
π对称:一个原子轨道,取X轴作为对称轴,旋转180°,轨道符号改变。
Py,Pz,d xy是π对称。
由σ对称的原子轨道组成的键——σ键由π对称的原子轨道组成的键——π键三、成键轨道与反键轨道分子轨道与原子轨道的联系:轨道守恒——2个原子轨道线性组合,产生2个分子轨道;能量守恒——2个分子轨道的总能量等于2个原子轨道的总能量;能量变化——每个分子轨道的能量不同于原子轨道的能量组合结果—定会出现能量高低不同的两个分子轨道。
——这是原子轨道线性组合的方式不同所致。
波函数同号的原子轨道相重叠,原子核间的电子云密度增大,形成的分子轨道的能量比各原子轨道能量都低,成为成键分子轨道。
波函数异号的原子轨道相重叠,原子核间的电子云密度减小,形成的分子轨道的能量比各原子轨道能量都高,成为反键分子轨道。
四、电子填入分子轨道时服从以下原则:1、能量最低原理:电子在原子或分子中将优先占据能量最低的轨道。
2、保利不相容原理:在同一原子或分子中、同一轨道上只能有两个电子,且自旋方向必须相反。
3、洪特规则:在能量相同的轨道中(简并轨道),电子将以自旋平行的方式、分占尽可能多的轨道基态与激发态当分子中的所有电子都遵从构造原理的这三个原则时,分子所处的最低能量状态——基态。
通常情况下,分子处于基态。
激发态:当分子获取能量后,分子中的电子排布不完全遵从构造原理,分子处于能量较高的状态——激发态,是原子或分子吸收一定的能量后,电子被激发到较高能级但尚未电离的状态。
有机化学中的分子轨道理论
有机化学中的分子轨道理论在有机化学中,分子轨道理论是一种重要的理论工具,用于解释有机分子的化学性质和反应机理。
分子轨道理论基于量子力学的原理,通过计算和描述分子中电子的运动状态,从而揭示了分子中化学键的形成和断裂、化学反应的进行等重要现象。
本文将介绍有机化学中的分子轨道理论的基本概念、应用以及研究进展。
一、分子轨道理论的基本概念分子轨道理论是基于原子轨道的概念,原子轨道是描述单个原子中电子运动状态的函数。
在一个分子中,原子之间通过共价键形成连接。
根据量子力学的原理,分子中的电子不再局限于单个原子,而是在整个分子中运动。
因此,分子的电子状态需要用一组轨道来描述,这组轨道被称为分子轨道。
分子轨道可以通过线性组合原子轨道(Linear Combination ofAtomic Orbitals,简称LCAO)的方法得到。
LCAO方法假设分子中的分子轨道是由原子轨道线性组合而成的,即每个原子轨道会形成分子轨道的一部分。
通过线性组合的过程,得到的分子轨道既保留了原子轨道的主要特征,又反映了分子中电子的运动状态。
分子轨道可以分为成键轨道和反键轨道。
成键轨道是由原子轨道线性组合形成的,对分子中的共价键的形成起着积极的作用;而反键轨道则是在原子轨道的基础上得到的,它们对共价键的形成没有帮助,反而会削弱共价键。
在分子中,成键轨道和反键轨道总是呈成对存在,它们之间通过分子中的原子核进行相互作用,形成了稳定的分子。
二、分子轨道理论的应用分子轨道理论在有机化学中有着广泛的应用。
它可以通过分析分子轨道的能级和电子分布,预测有机分子的性质和反应行为。
1. 能级结构分子轨道理论可以帮助确定分子中的能级结构。
不同的分子轨道具有不同的能级,电子会填充在低能级的轨道中。
通过计算和实验,可以确定分子中各个分子轨道的能级顺序,从而预测有机分子的稳定性、光谱性质等重要特性。
2. 共价键的形成和断裂分子轨道理论解释了共价键的形成和断裂过程。
分子轨道理论简介
对称性相同的原子轨道组成 分子轨道
三.分子轨道理论应用实例: 分子轨道理论应用实例:
1.He为什么不能形成 2? . 为什么不能形成 为什么不能形成He He有两个 电子,如形成 2,则两个 有两个1s电子 有两个 电子,如形成He 1s 轨道能形成(σ1s2),(σ*1s2),成键与反键 轨道能形成(σ ),成键与反键 相抵消,总能量没有下降,故不能形成。 相抵消,总能量没有下降,故不能形成。 2.N2分子: . 分子: 共有14个电子 原子有1s,2s, 3个 p轨 个电子, 共有 个电子 , 原子有 个 轨 可以组成5个成键轨道和 个成键轨道和5个反键轨 道,可以组成 个成键轨道和 个反键轨 道。。
小结
二. 关于轨道的对称性
1. 原子轨道与分子轨道的对称性 一个原子轨道, 轴作旋转轴, 一个原子轨道 , 取 x轴作旋转轴 , 旋转 轴作旋转轴 180度 , 如轨道不变 , 则为 对称 ; 如 对称; 度 如轨道不变, 则为σ对称 轨道的符号改变,则为π对称 对称。 轨道的符号改变,则为 对称。
1. 键级 : 在分子轨道理论中 , 用键级 . 键级: 在分子轨道理论中, 表示键的强度。键级越高, 表示键的强度。键级越高,键能越大 两个原子组成的化学键的键级= 两个原子组成的化学键的键级= 成键电子总数-反键电子总数) (成键电子总数-反键电子总数)/2 N2和O2分子的键级各是几? 分子的键级各是几? -的键级各是几? O2+、 O22-的键级各是几?
5.键矩
用来表示键的极性大小的物理量。 用来表示键的极性大小的物理量。 键矩=原子电荷乘以键长。 键矩=原子电荷乘以键长。可用实验 测定。也可用量子力学计算求出。 测定。也可用量子力学计算求出。
d q+ q-
分子轨道理
分子轨道理分子轨道理论是化学中的一个重要概念,用于描述分子中原子之间的电子运动。
它在有机化学、无机化学和物理化学等领域中广泛应用。
分子轨道理论指出,原子在分子中的电子不再是属于单个原子的轨道,而是分布在整个分子中的一组分子轨道中。
分子轨道理论主要包括以下几个方面:1. 原子轨道的组合:分子中各个原子的原子轨道将组合成一个新的轨道,用于描述整个分子中的电子运动。
原子轨道的组合方式可以是线性组合,也可以是简单的加法和减法。
2. 分子轨道的分类:分子轨道可分为成键轨道、反键轨道和非成键轨道。
成键轨道是分子中电子密度最高的轨道,由原子轨道的积极相互作用形成。
反键轨道是分子中电子密度最低的轨道,由原子轨道的消极相互作用形成。
非成键轨道则是分子中既不属于成键轨道也不与反键轨道有关联的轨道。
3. 轨道能级:分子中的分子轨道能级与原子轨道能级不同,原子轨道能级具有离散性,而分子轨道能级连续分布。
能级的顺序分别是成键轨道最低、反键轨道最高、非成键轨道在中间。
4. 轨道重叠:分子中的原子轨道之间会发生重叠,这会影响分子中的电子结构。
重叠程度越高,分子的稳定性就越高。
例如化学键就是由两个原子轨道之间的较强重叠形成的。
5. 分子轨道的描述:分子轨道可以用波函数来描述。
波函数可以用于计算分子中的能量、电子密度、电荷分布等物理性质。
在实际应用中,通常使用量子化学计算方法来获得分子轨道的波函数和参数。
总的来说,分子轨道理论为我们了解分子中的电子结构和化学反应提供了基础和框架。
在有机合成和物质设计中,分子轨道理论被广泛应用于分子的构建、反应性和化学性质的预测等方面。
分子轨道理论
分子轨道理论简介一种化学键理论,是原子轨道理论对分子的自然推广。
其基本观点是:物理上存在单个电子的自身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。
因此,分子轨道理论是一种以单电子近似为基础的化学键理论。
描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。
对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分子结构,并联系到分子性质的系统解释。
有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。
理论⒈原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。
在分子中电子的空间运动状态可用相应的分子轨道波函数ψ(称为分子轨道)来描述。
分子轨道和原子轨道的主要区别在于:⑴在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。
分子轨道理论⑵原子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用σ、π、δ…符号表示。
⒉分子轨道可以由分子中原子轨道波函数的线性组合(linearcombinationofatomicorbitals,LCAO)而得到。
有几个原子轨道就可以可组合成几个分子轨道,其中有一部分分子轨道分别由对称性匹配的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bondingmolecularorbital),如σ、π轨道(轴对称轨道);同时这些对称性匹配的两个原子轨道也会相减形成另一种分子轨道,结果是两核间电子的概率密度很小,其能量较原来的原子轨道能量高,不利于成键,称为反键分子轨道(antibondingmolecularorbital),如σ*、π*轨道(镜面对称轨道,反键轨道的符号上常加"*"以与成键轨道区别)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
σ
2p
* 2p x
π ,π
* 2p y
* 2p z
σ 2p x
π2p y , π2p z
2p
-
A
B
+
+
能 量
B
-
A
B
节面
-
+
+
A
2p x 反键
2px,A
2px,B
原子轨道
-
+
-
2px 成键
分子轨道
2py 原子轨道与分子轨道的形状
节面
+
A
+
B
+
A
-
2s
2p
σ 2s σ *1s
2s
1s
A.O M.O
σ 1s
1s
A.O
2)异核双原子分子
CO和N2的比较
分子中有同样多的电子,等电子体,分子轨道 基本相同,性质相似。CO和N2
CO与N2性质比较
O2、F2分子,分子轨道的能级 F 电子分布式
1s22s22p5 F2 分子轨道式 F2[(1s)2(*1s)2 (2s)2 (*2s)2 (2px)2 (2py)2 (2pz)2(*2py)2 (*2pz)2]
分子 键级 键能/(kJ· mol-1) He2 H2 H2 N2
2-2 =0 1-0 = 1 2 2 2
0 256
2-0 =1 2
436
10-4 =3 2
946
一般来说,键级越大,键能越大,分子越稳定。
预言分子的磁性 顺磁性——是指具有未成对电子的分子 在磁场中顺磁场方向排列的性质具有此 性质的物质——顺磁性物质 反磁性——是指无未成对电子的分子 在磁场中无顺磁场方向排列的性质具 有此性质的物质——反磁性物质
同号重叠 对称匹配 组成成健轨道
异号重叠 对称匹配 组成反健轨道
同、异号重叠完全抵消 对称 不匹配 不能组成任何分子轨道
2分子轨道能级图及其应用
1)同核双原子分子轨道能级图及分子式
分子轨道理论
应用化学:贾赵栋
导师:徐琰 LOGO
主要内容
分子轨道基本理论 分子轨道能级图及其应用 键级
价键理论的局限性
1不能解释有的分子的结构和性质
根据价键理论,氧分子中有一个键和一个键,其电子 全部成对。但经磁性实验测定,氧分子有两个不成对的 电子,自旋平行,表现出顺磁性。
节面
σ *ns σ ns
能 量
2、2、 s-p重叠:形成一个成键轨道 s-p 一个反键轨道 s-p*
2p
2s
σ
* s-p
σs-p
3、p-p重叠。两个原子的p轨道可以有两种组合 方式,其一是“头碰头”,两个原子的px轨道重 叠后,形成一个成键轨道σp和一个反键轨道σp* 。其二是两个原子的py或pz轨道垂直于键轴,以 “肩并肩”的形式发生重叠,形成的分子轨道称 为π分子轨道,成键轨道πp,反键轨道πp*。两个 原子各有3个p轨道,可形成6个分子轨道,即σpx 、σpx* 、πpy 、πpy* 、π用于第二周期元素,N以前元素的2s、 2p原子轨道能量差小,有s-p重叠,有π2py ,π2pz同2p能级交错,按b能级次序排; O,F的2s、2p原子轨道能量差大,无s-p重 叠,按a能级次序排;
带电荷的同核双原子分子按相应的分子所 对应的能级图排,如O22-,O2+,O2-按O2的 能级图排; 异核的按电子数算
E = E(2p) – E(2s)
E/eV 20.4 E/kJ•mol–-1 178 1968 Li F 1.85 Be 2.73 B 4.60
能级颠倒现象
C 5.3 N 5.8 O 14.9
263
444
511
0
560
1438
当 2s 和 2p 原子轨道能 级相差较小(一般 10 eV 左右)时,必须考虑 2s 和 2p 轨道之间的相互作用 (也可称为杂化),以致 造成 σ 2p 能级高于 π 2p 能级 的颠倒现象。
+
2py,A
±
B
2py,B
A
2p y
+
能 量
-
B
原子轨道
2p y
分子轨道
P轨道与d轨道组合
d-d轨道
原子轨道线性组合要遵循能量相近原则、对称性匹配原则 和轨道最大重叠原则。 能量最低原则:当两原子轨道能量相差悬殊时,不能组合成 有效的分子轨道。 对称性匹配原则:将原子轨道同时绕键轴旋转180度,原子 轨道的正负号都不变或同时改变则原子轨道对称性相同 轨道最大重叠原则:原子轨道重叠程度越大,形成共价键越 稳定。 在这三原则中,对称性匹配是首要的,它决定原子轨道能 否组成分子轨道,其他两原则决定组合的效率。
下图中(a)、(c) ψa为s轨道,ψb为py轨道,键轴为x。看起 来ψa和ψb可以重叠,但实际上一半区域为同号重叠,另一 半为异号重叠,两者正好抵消,净成键效应为零,因此不 能组成分子轨道,亦称两个原子轨道对称性不匹配而不能 组成分子轨道。
图(b)(d)(e),ψa和ψb同号迭加满足对称性匹 配的条件,便能组合形成分子轨道。
同核双原子分子分子轨道,元素不 同,其分子轨道能量不同,Z 大, 轨道能量 小; 能级图中,每个圆圈代表一个分子 轨道,π 2py ,π 2pz是二重简并, π *2py ,π *2pz也是二重简并;
3键级
键级——分子中净成键电子数的一半 注意:键级只能粗略估计分子稳定性的相 对大小,实际上键级相同的分子稳 定性也有差别。
2不能解释H2+的稳定存在: (H· H)+
—分子轨道理论的崛起
能成功地说明许多分子的结构和反应性能
1)分子轨道的基本要点
分子中的电子不再局限在某个原子轨道上运动,而是在 整个分子轨道中运动,运动状态用ψ表示, ψ 称为分子 轨道。 分子轨道是原子轨道的线性组合。如原子轨道ψ1, ψ2可 以组合两个分子轨道ψ, ψ’:
5
1 0 15 20 2p
25
30 35 40
Li F Be B C N O
2s
同核双原子分子分子轨道能级示意图
(a)O2和F2
(b)B2, C2和N2
N2分子
O2分子
σ *2p
能 2p 量 F2
π *2p
π 2p σ 2p σ *2s
例 O2 O 电子式 1s22s22p4 O2 分子轨道式 O2[KK(2s)2 (*2s)2(2px)2 (2py)2(2pz)2 (*2py)1(*2pz)1] 价键结构式 ׃O-O׃
· · · · · ·
1个σ键 2个三电子键
、
O2为顺磁性物质
¨ 分子结构式 ¨ ׃F— F׃ ¨ ¨
第一、二周期同核双 原子分子(除O2、F2外) 的分子轨道能级 N 电子分布式 1s22s22p3 N2 分子轨道式 N2[(1s)2 (*1s)2 · · 价键结构式 ׃N—N׃ 2 2 (2s) (*2s) · · 2 2 (2py) (2pz) 分子结构式 ׃N≡ N׃ (2px)2 ]
c1 1 c2 2 c1 1 c2 2
其中C1,C2由量子化学计算确定
按原子轨道组合方式不同,可将分子轨道分为轨道与π 轨道。
1、s-s重叠。两个轨道相加成为成键轨道σ, 两者相减则成为反键轨道σ*。若是1s轨道, 则分子轨道分别为σ1s、σ1s*,若是2s轨道, 则写为 σ2s、σ2s*。