六年级数学毕业复习-比和比例知识点
六年级下数学 比和比例专题复习
比和比例1、两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
2、分数的基本性质:分数的分子和分母同时乘以或者除以相同的数(0除外),分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
3、商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。
4、比的基本性质:比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
5、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
6、公因数只有1的两个数叫做互质数。
最简整数比:比的前项和后项是互质数。
7、比的化简:用商不变的性质、分数的基本性质或比的基本性质来化简。
8、比例:①表示两个比相等的式子叫做比例。
如:(3:4=9:12)。
比例有四个项,分别是两个内项和两个外项。
在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例的四个数均不能为0。
9、比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
10、比、比例、比例尺、百分数的后面不能带单位。
一.填空1、0.6=3:()=()÷15=()成=()%2、112: 0.75的比值是(),把它化为最简的整数比是()3、比例4:9=20:45写成分数形式是(),根据比例的基本性质写成乘法形式是()4、18的约数有(),选出其中四个数组成一个比例是()5、在比例尺1:2000000的地图上,图上1厘米表示实际距离()千米。
6、在一个比例中,两个内项互为倒数,一个外项是25,另一个外项是()7.甲数除以乙数的商是4,甲数与乙数的最简整数比是()8、我国<<国旗法>>规定,国旗的长和宽的比是3:2,学校的国旗宽是128厘米,长应该是( )厘米。
9、三角形底一定,它的高和面积成()比例。
10、用0.2 、 6、 30、 1这四个数组成两个比例式是()和()11、某厂男职工人数是女职工的23,女职工与男职工的人数比是()12、两个正方体的棱长比是3:4,它们的体积比是()13、如果3a=2b ,那么a :b=( ):( )14、从A 地到B 地,甲用12分钟,乙用8分钟,甲乙的速度比是( )15、小圆的半径是2厘米,大圆的半径是3厘米,小圆和大圆的周长比是( ),面积比是( )16、甲乙两数之比是3:4,它们的和是1.4,则甲数是( ),乙数是( )17、一个比8:15,如果后项增加60,要使比值不变,比的前项应该增加( )18、在比例尺是1200的学校平面图上,量得教室的长8厘米,宽6厘米,教室实际面积是( ) 19、男生人数比女生人数少20%,男生人数与女生人数的比是( ):( )20、甲数的13 等于乙数的25 ,甲数与乙数的比是( )二、判断1、圆柱的底面积一定,它的高与体积成正比例 。
小学六年级_比和比例知识点梳理(最新整理)
复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
基本性质化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
(一定)k xy =反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
小学六年级比和比例知识点
八.比和比例239.“比”和“比值”这两个概念有什么联系和区别?在除法中,两个数相除时,就叫做两个数的比。
一般分为两种情况:(1)比较同类量的倍数关系,表示其中一个数是另一个数的几倍或几分之几。
例如:红光小学有女教师40人,男教师12人。
表示女教师与男教师人数的比是40∶12(或化简为10∶3),这也表示女教师人数是男教师人数(2)两个不同类量相比,是表示一个新的量。
例如:总价∶数量,表示单价。
路程∶时间,表示速度。
总产量∶亩数,表示亩产量。
“比”是由前项∶后项组成的,而“比值”是前项除以后项所得的商。
如:由此可以看出:“比”和“比值”这两个概念是有区别的。
但两者之间也是有联系的,因为没有前面的“比”,就不会有后面的“比值”。
就一般而言,“比”和“比值”都是一个完整比的组成部分。
除此之外,还要看到“比”和“比值”也有着一致性。
从广义上解释,两个数的比是两个数的商,这个商也是比值。
如:由于比中的比号相当于分数中的分数线,所以用比的形式表示,就是7∶240.比、除法、分数这三者之间,有什么联系和区别?在小学数学教材中,从除法到分数,又到比,这不仅是一个发展过程,三者之间也存在着内在的必然联系。
在比的教与学中,揭示它们之间的联系,是极其必要的。
比的前项相当于除法中的被除数,分数中的他子;后项相当于除法中的除数,分数中的分母;比号柑当于除法中的除号,分数中的分数线;比值相当于除法中的商,分数的分数值。
例如:在比中,前项÷后项=比值 a∶b=c在除法中,被除数÷除数=商 a÷b=c如上所述,比、除法、分数三者之间有着如此密切的联系,目的在于:有关比的运算,可以转化为除法运算或分数形式,而又需要重新建立比的运算法则。
它们之间的区别,从意义上区分有:“比”是表示两个数的倍数;“除法”表示的是一种运算;“分数”则是一个数。
241.“求比值”和“化简比”有区别吗?在比和比例中,求比值是常用的,但也需要把较复杂的整数比(不包括含有分数、小数的比),化成简单的整数比,这两者是有区别的。
六年级数学必考知识点
六年级数学必考知识点六年级数学必考知识点1.比和比例的意义比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
因此,比和比例的意义也有所不同。
而且,比号没有括号的含义而另一种形式,分数有括号的含义!2.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。
比值不变。
用于化简比。
3.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。
比例的性质用于解比例。
4.比和比例的联系:比和比例有着密切联系。
比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。
比例是由比组成的,成比例的两个比的比值一定相等。
5.比和比例的区别(1)意义、项数、各部分名称不同。
比表示两个数相除;只有两个项:比的前项和后项。
如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。
联系:比例是由两个相等的比组成。
6.正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。
反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。
比例尺:图上距离与实际距离的比叫做比例尺。
六年级数学常考知识点1.百分数与分数的区别(1)意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数还可以表示两数之间的倍数关系。
(2)应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
(3)书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
(完整版)小学六年级_比和比例知识点梳理
复习课:比和比例知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:〜 k (一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量, 就不成比例4、正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量总份数=平均每份的量(归一)",再用"一份的量各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出X。
2、用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例。
(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
设未知数为X,并代入等量关系式,得正比例式或反比例式。
(4)解比例。
(5)检验并写出答语。
精讲典型题例题1填空(1)一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是(): ()(2)把2米:4厘米化成最简单的整数比是(),比值是()。
六年级下册数学知识点解析:比和比例
次火车自北京西站开往安庆西站,行驶至全程的511再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米两地相距多少千米? ?【分析与解】设北京西站、安庆西站相距多少千米?设北京西站、安庆西站相距多少千米?(511x+56)x+56)::x=60x=60::120120,即,即,即((511x+56)x+56)::x=1x=1::2,即x=1011x+112x+112,解得,解得x=1232x=1232.. 即北京西站、安庆西站两地相距即北京西站、安庆西站两地相距1232千米,千米,3.两座房屋A 和B 各被分成两个单元.若干只猫和狗住在其中.已知:各被分成两个单元.若干只猫和狗住在其中.已知:A A 房第一单元内猫的比率房第一单元内猫的比率((即住在该单元内猫的数目与住在该单元内猫狗总数之比在该单元内猫的数目与住在该单元内猫狗总数之比))大于B 房第一单元内猫的比率;并且A 房第二单元内猫的比率也大于B 房第二单元内猫的比率.试问是否整座房屋A 内猫的比率必定大于整座房屋B 内猫的比率的比率? ?【分析与解】 如下表给出的反例指出:如下表给出的反例指出:如下表给出的反例指出:对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.表中具体写出了各个表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.单元及整座房屋中的宠物情况和猫占宠物总数的比率. 小升初数学知识点解析:比和比例两个数相除又叫做两个数的比.两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c a: b=c::d ,则,则(a + c)(a + c)(a + c)::(b + d)= a (b + d)= a::b=c b=c::d ;性质2:若a: b=c a: b=c::d ,则,则(a - c)(a - c)(a - c)::(b - d)= a (b - d)= a::b=c b=c::d ;性质3:若a: b=c a: b=c::d ,则,则(a +x c)(a +x c)(a +x c)::(b +x d)=a (b +x d)=a::b=c b=c::d ;(x 为常数)性质4:若a: b=c a: b=c::d ,则a ×d ×d = = = b×b×b×c c ;(即外项积等于内项积即外项积等于内项积) )正比例:如果a ÷b=k(k 为常数为常数)),则称a 、b 成正比;成正比;反比例:如果a ×b=k(k 为常数为常数)),则称a 、b 成反比.成反比.二、比和比例在行程问题中的体现在行程问题中,因为有在行程问题中,因为有速度速度=路程时间,所以:,所以: 当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A 和B 两个数的比是8:5,每一数都减少34后,后,A A 是B 的2倍,试求这两个数.倍,试求这两个数.【分析与解】方法一:设A 为8x 8x,则,则B 为5x 5x,于是有,于是有,于是有(8x-34):(5x-34)=2(8x-34):(5x-34)=2(8x-34):(5x-34)=2::1,x=17x=17,所以,所以A 为136136,,B 为8585.. 方法二:因为减少的数相同,所以前后A A 、、B 的差不变,开始时差占3份,后来差占1份且与B 一样多,也就是说减少的3434,占开始的,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A 为17×8=136,B 为17×5=85.17×5=85.2.近年来.近年来火车火车大提速,大提速,142714274.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比..试求公鹅、母鹅的数量比.【分析与解】 公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的 =21124615:(3544)45:46:(3544)46:47.333345´´+´´=´´+´´=8118751310´=+++,母鸡占总数的310; 公鸭占总数的8338753420´=+++,母鸭占总数的420; 公鹅占总数的213332102020-+=+(),母鹅占总数的234232102020-+=+(),公鹅、母鹅数量之比【分析与解】70cm 的杆子产生影子的长度为175cm;所以影子的长度与杆子的长度比为:所以影子的长度与杆子的长度比为:175175175::70=2.5倍.为322020::3:2.5.在古巴比伦的在古巴比伦的金字塔金字塔旁,旁,其朝西下降的阶梯旁其朝西下降的阶梯旁6m 的地方树立有1根走子,其影子的其影子的前端前端正好到达阶梯的第3阶(箭头箭头)).另外,此时树立l 根长70cm 自杆子,其影子的长度为175cm 175cm,设阶梯各阶的高度,设阶梯各阶的高度与深度都是50cm 50cm,求柱子的高度为多少?,求柱子的高度为多少? 于是,影子的长度为6+1.5+1.6+1.5+1.5×25×25×2.5=11.25.5=11.25.5=11.25,所以杆子的长度为,所以杆子的长度为11.11.25÷225÷225÷2.5=4.5m .5=4.5m .5=4.5m..6.已知三种.已知三种混合物混合物由三种成分A 、B 、C 组成,第一种仅含成分A 和B ,重量比为3:5;第二种只含成分B 和C ,重量比为I :2;第三种只含成分A 和C ,重量之比为2:3.以什么.以什么比例比例取这些混合物,才能使所得的混合物中A ,B 和C ,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A 、B 重量比与最终混合物的A 、B 重量比相同,均为3:5.5.所以,所以,k=65. 标准的时钟每隔56511分钟重合一次.分钟重合一次. 假设经历了假设经历了x 分钟.分钟. 于是,甲钟每隔于是,甲钟每隔52460651124605´´´-分钟重合一次,甲钟重合了246052460´-´×x 次;次; 同理,乙钟重合了同理,乙钟重合了246052460´+´×x 次;次; 于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合 246052460´+´×x-246052460´-´×x=102460´×x=10; 所以,所以,x=24x=24x=24×60;×60;×60; 所以要经历24×60×65511分钟,则为5246065 51165246011´´=´天.于是为65天510(24)10()1111´=天.后来,由一队工人23与二队工人13组成新一队,其余的工人组成新二队.其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队结果新二队先将第二种、第三种先将第二种、第三种混合物混合物的A 、B 重量比调整到重量比调整到 3 3 3::5,再将第二种、第三种混合物中A 、B 与第一种混合物中A 、B 视为单一物质视为单一物质. .第二种混合物不含第二种混合物不含A ,第三种混合物不含B ,所以1.5倍第三种混合物含A 为3,5倍第二种混合物含B 为5,即第二种、第三种混合物的重量比为5:1.51.5..于是此时含有于是此时含有C 为5×2+15×2+1..5×3=145×3=14.5.5.5,在最终混合物中,在最终混合物中C 的含量为3A 3A//5B 含量的2倍.有14.14.5÷25÷25÷2-1=6.25-1=6.25-1=6.25,所以含有第一种混合物,所以含有第一种混合物6.256.25..即第一、二、三这三种混合物的即第一、二、三这三种混合物的比例比例为6.256.25::5:1.5=251.5=25::2020::6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样人,其中全体男工和全体女工可用同样天数天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人女工各多少人? ?【分析与解】 直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过方程方程求解,过程会比较繁琐.求解,过程会比较繁琐.设开始男工为“1”,此时女工为“设开始男工为“1”,此时女工为“k k ”,有1名男工相当k 名女工.男工、女工人数对调以后,则男工为“男工为“k k ”,相当于女工“,相当于女工“k k 2”,女工为“I”.,女工为“I”.有k 2:1=361=36::2525,所以,所以于是,开始有男工数为11k+×1100=500人,女工600人.人.8.有甲乙两个钟,甲每天比.有甲乙两个钟,甲每天比标准时间标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的日的零点零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少次,那么这个时候的标准时间是多少? ?【分析与解】 小时106(60)541111´=分钟.分钟.9.一队和二队两个.一队和二队两个施工施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工96÷147=282´´´´282×4645天.天.144:(282×:(282×4645)=(144×45):(282×46))=(144×45):(282×46)=540。
六年级比和比例知识点
六年级比和比例知识点在六年级的数学学习中,比和比例是一个重要的知识点。
它们可以帮助我们更好地理解和比较数值之间的关系,进而解决实际生活和数学问题。
本文将详细介绍六年级比和比例的相关知识点。
一、比的概念和表示方法比是用来比较两个或多个数值之间的关系的一种数学工具。
当两个数值之间的比例关系可以用分数表示时,我们就可以用比来描述它们之间的关系。
比的表示方法通常为“:”(冒号)或者“/”(斜杠),例如:1:2、3/5。
二、比的基本性质1. 相等比:当两个比的值相等时,它们之间的数值大小关系也是相等的。
例如,1:2和5:10表示的比是相等的。
2. 乘法公式:当一个比的两个数值分别乘以同一个数时,它们之间的关系仍保持不变。
例如,2:5乘以2得到4:10。
3. 除法公式:当一个比的两个数值分别除以同一个非零数时,它们之间的关系仍保持不变。
例如,4:10除以2得到2:5。
三、比的应用1. 比的比较:通过比的大小关系,我们可以判断数值的大小。
例如,比较1:2和3:4,我们可以发现3:4大于1:2,即3:4表示的数值更大。
2. 比的化简:当一个比的两个数值可以约分为最简形式时,我们可以将其化简。
例如,10:30可以化简为1:3。
3. 比的扩大和缩小:通过乘法公式,我们可以将一个比的两个数值同时乘以同一个数,将其扩大或缩小。
例如,2:3可以扩大为4:6,缩小为1:1.5。
四、比例的概念和表示方法比例是用来表示两个或更多相关数值之间的相对关系的一种数学工具。
比例通常以“:”或者“/”表示,例如:1:2或者1/2。
比例中的两个数值分别称为“比例项”。
五、比例的性质和应用1. 比例的基本性质:在一个比例中,四个比例项中的任意三个比例项之间,都可以用第四个比例项来表示它们之间的关系。
例如,在1:2=3:6中,我们可以使用等号将1:2和3:6互相替换。
2. 比例的比较:通过比例的大小关系,我们可以判断相关数值的大小关系。
例如,1:2和3:4,我们可以发现3:4大于1:2。
六年级比的知识点比值
在六年级的数学学习中,比的概念是非常重要的。
比是用两个数的比值来描述两个量的大小关系。
学习比的知识点,可以帮助我们更好地理解数与数之间的关系,从而提高解决实际问题的能力。
下面是六年级数学中涉及到的一些比的知识点:1.比的定义和表示方法:-比的定义:比是表示两个量之间大小关系的方式,比的形式为a∶b 或a/b。
-比的意义:a∶b表示一个数a是另一个数b的多少倍或几分之几。
2.比例和比例关系:-比例的定义:如果在比a∶b中,a和b的比值始终保持不变,那么a和b就成比例。
-比例关系的性质:如果一个比例中的两个比值互为倒数,则这个比例叫做倒比例。
3.比的性质:-相等比:两个比中的两个比值相等,如2∶3=4∶6-可以化简的比:在一个比中,两个比值可同时除以同一个数,得到的比相等,如4∶6=2∶3-可以扩大或缩小的比:在一个比中,两个比值同时乘以同一个数,得到的比相等,如2∶3=4∶64.比的应用:-用比解决实际问题:通过运用比的概念和性质,能够解决一些实际问题,如物品的比价、长度的比较等。
-比例尺:地图上的比例尺是表示地图上距离与实际距离之间的比值。
5.比的扩展:-百分比:百分比是一种表示数值关系的特殊比,它表示的是以100为基数的比值,如60%表示60/100。
-倍数和倍数关系:倍数是指一个数是另一个数的整倍数,倍数关系表示两个数之间的倍数关系。
这些是六年级数学中涉及到的比的知识点,通过学习这些知识点,我们可以更好地理解数与数之间的关系,提高数学解决问题的能力。
除了理论知识的学习,还需要进行大量的练习和实际应用,才能真正掌握这些知识点。
希望以上内容能对你的学习有所帮助!。
比和比例知识点六年级
比和比例知识点六年级比和比例是数学中的重要概念,它们在我们生活和学习中都有广泛的应用。
下面我们就来详细了解一下比和比例的相关知识。
一、比的概念和性质在数学中,比是用来表示两个量之间的大小关系的一种方法。
比通常采用“:”、“/”或“÷”来表示。
例如,1:2、1/2或1÷2表示1和2之间的比。
在比中,1被称为第一个比例数,2被称为第二个比例数。
比具有以下几个性质:1.相等性:如果两个比的第一个比例数与第二个比例数相等,那么这两个比相等。
例如,1:2 = 2:4,表示1与2的比等于2与4的比。
2.倒数性:如果两个比的第一个比例数与第二个比例数的倒数存在比,那么这两个比互为倒数。
例如,3:4与4:3互为倒数。
3.加法性:如果两个比存在比,那么它们可以相加。
例如,1:2 + 2:3 = 3:5。
二、比例的概念和性质比例是由两个或多个比构成的等式关系,其中的比称为比例。
比例一般用等号“=”来表示。
例如,1:2 = 2:4表示1与2的比等于2与4的比。
比例具有以下几个性质:1.可扩性:如果一个比例的两个比例数同时乘(或除)一个相同的非零数,得到的新比例与原比例相等。
例如,1:2 = 2:4,将1:2的两个比例数同时乘以2得到2:4。
2.翻转性:一个比例的两个比例数互为倒数时,将其翻转得到的新比例与原比例相等。
例如,1:2与2:1互为倒数。
3.变比性:如果一个比例中的第一个比例数与第二个比例数的比等于另一个比例中的第一个比例数与第二个比例数的比,那么这两个比例互为变比。
例如,1:2 = 3:6,表示1与2的比等于3与6的比。
三、实际应用比和比例在我们的生活中有许多实际应用,下面列举几个常见的例子:1.时间比例:例如,一部电影长3个小时,而电影院播放时间是2小时,那么这两个时间的比是3:2。
2.长度比例:例如,一张A4纸的长宽比是1:√2。
这个比例是根据纸张的特定尺寸和长宽比定义的。
3.货币兑换比例:例如,人民币对美元的兑换比例是1:6.4。
2024年六年级下册数学总复习-比和比例:第1课时比和比例的基本知识-通用版
绩
,
八
分
方
法
。
愿
全
天
下
所
有
8.如果 a= 2 b,那么 a∶b=( 2∶3 ),当 a=6 时,b=( 9 )。 3
9.判断下面生活中的实例是否成比例,如果成比例,成什 么比例?
(1)用煤的天数一定,每天用煤量与总用煤量。 ( 成正比例 )
(2)一本书的页数一定,已看的页数与未看的页数。 ( 不成比例 )
(3)把一张 100 元的人民币分别换成同一种面值的零钱,面 值和张数。 ( 成反比例 )
1 x=1 × 1 8 4 10
x =9.6×7÷4.8
x= 1 × 1 ×8 4 10
x =14
x= 1 5
7= x 11 121 11x =121×7
x=121×7÷11 x=77
x∶12= 7 ∶2.8 4
2.8x=12× 7 4
x=12× 7 × 5 4 14
x= 15 2
1.2∶7.5= 0.4 x
A.8∶3 和 16∶6
B.5∶3 和 1 ∶ 1 35
C. 1 ∶3 和 5 ∶ 3
2
84
D. 1 ∶ 1 和1 ∶ 1 2 36 9
4.根据 3×40=8×15 写比例,错误的是( C )。
A.3∶8=15∶40
B.3∶15=8∶40
C.15∶8=40∶3
D.15∶40=3∶8
5.用 x、2、6 和 12 这四个数组成比例,x 不可能是( B )。
2.4∶0.16=15 2 时∶12 分=2 5
2.把下面各比化成最简整数比。(12 分)
2 ∶ 8 =3∶4 5 15 1.4∶3.5=2∶5
(完整版)小学六年级比和比例知识点复习
比和比例知识点1、基本概念(1)两个数相除,又叫做这两个数的比,“∶”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
(2)分数的基本性质∶分数的分子和分母同时乘以或者除以相同的数(0除外), 分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
(3)商不变的规律∶在除法里,被除数和除数同时扩大或者同时缩小相同的倍(0除外),商不变。
(4)比的基本性质∶比的前项和后项同时乘以或者除以相同的数(0除外),它们的比值不变。
(5)小数的性质∶在小数的末尾添上零或者去掉零小数的大小不变。
(6)公因数只有1的两个数叫做互质数。
如(5和7,7和9)最简整数比∶比的前项和后项是互质数。
(7)比的化简∶用商不变的性质、分数的基本性质或比的基本性质来化简。
求比值:比的前项除以比的后项所得的商叫做比值。
(8)比例∶①表示两个比相等的式子叫做比例。
比例有四个项,分别是两个内项和两个外项。
在3∶4=9∶12中,其中3与12叫做比例的外项,4与9叫做比例的内项。
比例的四个数均不能为0。
(9)比例的基本性质∶在一个比例中,两个外项的积等于两个内项的积。
(10)比、比例、比例尺、百分数的后面不能带单位。
(11) “比”进行分配。
基本方法:1. 先求出总份数,先求出每份数,再求每份数分别占各部分的几分之几。
2.然后用总量乘以每份数分别占各部分的几分之几,求出各部分的数量。
2、正比例∶两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
(1)用字母表示∶xy= k (一定) (2)正比例关系两种相关联的量的变化规律∶同时扩大,同时缩小,比值不变。
3、反比例∶两种相关联的量一种量变化,另种量也随着变化,如果这两种量中,相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系。
六年级下册数学专题-比和比例
知识点一:认识比1、两个数相除又叫两个数的比,任何两个相关数量的比都可以抽象为两个数的比。
知识点二:比、除法、分数的关系2、比、除法、分数之间的联系:知识点三:比值的计算方法3、计算方法:求两个数的比的比值,就是用比的前项除以后项。
4、比和比值的区别:(1)比表示的是两个数的一种关系;比值是一个数值; (2)比可以写成bab a 或:的形式;比值可以是分数、小数或整数。
知识点四:比的基本性质5、比的前项、后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
知识点五:化简比6、如果比的前项和后项都是整数,化简时可直接把比的前项和后项同时除以它们的最大公因数。
比 前项 比号 后项 比值 除法 被除数 除号 除数 商 分数 分子分数线分母分数值比和比例知识归纳提示:在以后解决问题或计算时,求两个数或几个数的比,如果没有特殊要求,一般要求出最简单的整数比。
知识点六:比例的意义7、比例的意义:表示两个比相等的式子叫做比例。
比例中有两个内项和两个外项。
拓展:比和比例的联系:比例是由比组成的。
比和比例的区别:(1)意义不同,比表示两个数相除的关系;比例表示两个比相等的关系 (2)形式不同,比由两项组成,比例由四项组成。
知识点七:比例的基本性质8、在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
如果用字母表示比例的四个项,d c b a ::=,那么比例的基本性质可以表示成c b d a ⨯=⨯。
拓展:(1)根据比例的基本性质,可以判断两个比能否组成比例。
(2)组成比例的4个数最多可以组成8个不同的比例。
(3)根据比例的基本性质,已知比例中的任意三项,就可以求出第四项。
知识点八:解比例9、根据比例的基本性质,把两个外项和两个内项分别相乘,将比例式改写成c b d a ⨯=⨯的形式,再解方程求出x 的值。
【例1】 比的意义:一辆汽车3小时行驶了150千米,这辆汽车行驶的路程和时间的比是多少?比值是多少?比值表示什么?【练习】甲3小时走15千米,乙4小时走24千米。
比和比例知识点整理六年级
比和比例知识点整理六年级比和比例是数学中的重要概念,是数值之间的关系的一种表示方法。
在日常生活和学习中,我们常常会遇到比和比例的问题,比如购物打折、食谱的配料比例等等。
下面是比和比例的相关知识点整理。
一、比的概念及相关性质比是两个相同性质的量之间的大小关系的一种表示方法。
比的常见表示方法有: 使用冒号(:)表示,如a:b;使用分数表示,如$\dfrac{a}{b}$。
比的相关性质:1. 如果$a:b=c:d$,则可以得到$a:b::c:d$,即等比例关系。
2. 如果$a:b=c:d$,则$\dfrac{a}{c}=\dfrac{b}{d}$,即比的两个项比例相等。
3. 如果$a:b=c:d$,则有$a \times d = b \times c$,即比的两个项的乘积相等。
二、比例的概念及相关性质比例是比的推广形式,是两个或多个相同性质的量之间的大小关系的一种表示方法。
常用字母$A, B, C, D$表示,可以表示为$A:B::C:D$。
比例的相关性质:1. 如果$A:B=C:D$,则可以得到$A:B::C:D$,即等比例关系。
2. 如果$A:B=C:D$,则$\dfrac{A}{B}=\dfrac{C}{D}$,即比例的两个项比例相等。
3. 如果$A:B=C:D$,则有$A \times D = B \times C$,即比例的两个项的乘积相等。
4. 如果$A:B=C:D$,则也可以写成$\dfrac{A}{C}=\dfrac{B}{D}$,即比例的两个项的比也相等。
三、相似和全等图形中的比例在相似图形中,对应边的长度之间的比称为相似比或相似比例。
在全等图形中,对应边的长度相等,可以看作是相似比例的特殊情况。
四、比例的计算1. 已知比例中的三个量,可以通过乘法和除法来计算比例中的第四个量。
例如,已知$5:8=15:x$,可以通过等式$\dfrac{5}{8}=\dfrac{15}{x}$来计算$x$的值,得到$x=24$。
人教版六年级数学比和比例的联系与区别知识点汇总
比
与
比
例
的
区
别1、意义不同比的源自义两个数相除又叫做两个数的比。
比例的意义
表示两个比相等的式子叫做比例。
2、名称不同
比的名称
两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比例的名称
组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项。
3、性质不同
比的性质
比的前项和后项同时乘或者除以相同的数(0除外),比值不变。
比例的性质
在比例里,两个外项的积等于两个内项的积。
4、应用不同
应用比的意义
求比值。
应用比的性质
化简比。
应用比例的意义
判断两个不能否组成比例。
应用比例的性质
不但可以判断两个比能否组成比例,还可以解比例。
复习课:比和比例
1、六年级男生人数与全班人数的比是4:9 2、六年级女生人数与全班人数的比是5:9 …… (两个量之间比的关系) 3、六年级男生人数占女生人数的4/5 4、六年级女生人数占全班人数的5/9 5、六年级男生人数比女生人数少1/5 …… (两个量之间分数的关系) 6、六年级男生人数占女生人数的80% 7、六年级女生人数比男生人数多25% 8、六年级男生人数比女生人数少20% …… (两个量之间百分数关系) 此类题如:小红读一本书,读了几天后,已读页数与未读页数的比是3: 5,又读了27页后,已读页数与未读页数的比是9:7,这本书共有几页? 思路:已读页数与未读页数的比是3:5,得已读页数占总页数的3/8 读了27页后,已读页数与未读页数的比是9:7,得已读页数占总页数的9/16 这样,运用了转化的思想,即统一了单位“1”,又使题迎刃而解。
1、XY=8( 3、X-Y=3( 5、X/Y=12( ) ) ) 2、X+Y=4.2( 4、2.5X=Y( 6、X÷Y=4( ) ) )
知识点五:比例尺
一幅图的图上距离和实际距离的比,叫做 这幅图的比例尺。
图上距离 :实际距离 比例尺
或
图上距离 比例尺 实际距离
图上距离 比例尺 实际距离 实际距离 比例尺 图上距离
知识点四:正比例和反比例的对比:
正比例 相同点 反比例
都是两种相关联的量,一种量随着另一种量变化。
变化的方向相反,一种量扩大 (或缩小),另一种量反而缩 小(或扩大)。相对应的两个 数的乘积一定。
不 同 点
变化的方向相同,一种量扩 大(或缩小),另一种量也扩大 变化 (或缩小)。相对应的两个数的 规律 比值(商)一定。
小学六年级__比和比例知识点梳理
复习课:比和比例知识点一: 比和比例的联系与区别知识点二:比和分数、除法的联系知识点三:求比值和化简比知识点四:正比例和反比例的意义和判断方法1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:k xy =(一定) 3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。
(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、 正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。
2、用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例。
(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比和比例知识点
---------判断两个量是否成正比例、反比例或不成比例 一、写(写出数量关系式)
1、根据数量间的关系或公式,写出数量关系式。
如,①宽一定,长方形的面积和长是否成正比例。
根据“长方形的面积=长×宽”得到“
宽(一定)长
长方形的面积
”,因为长方形的面积和长
是相关联的量,宽一定,也就是它们的比值一定,所以“宽一定,长
方形的面积和长是成正比例”。
②圆锥的体积一定,底面积和高是否成反比例。
根据“底面积×高×1=圆锥的体积”得到“底面积×高=圆锥的体积×3”,因为底面积和3
高是相关联的量,圆锥的体积一定,“圆锥的体积×3"的结果也一定,
就是底面积和高的积一定(底面积×高=圆锥的体积×3(一定)),所以圆锥的体积一定,底面积和高是成反比例。
2、注意:写出的数量关系式,其中的一边(左边)只能有这两个相关联的量,不能有多余的量和数字。
如,“(长+宽)×2=长方形的周长”的左边就多了×2,应变为“(长
长方形的周长”
+宽)=
2
又如,梯形的上底和下底不变,面积和高。
可以这样写关系式:
(a+b)×h÷2=s→(a+b)×h÷2÷h=s÷h→(a+b)÷2 =s÷h →
s÷h=(a+b)÷2,因为上底和下底不变,(a+b)÷2的结果也是一定的,所以梯形的上底和下底不变,面积和高成正比例。
3、还有些数量之间是无法写关系式的。
如,“小明的身高和跳高的高度成正比例”是无法写出关系式的。
二、看(1、看是否相关联2、看是否能变化3、看是否商(积)一定)
1、看是否相关联:也就是一个量变化了,另一个量是否也会随着变化。
如,长方形的面积一定,长和宽就是相关联的量,因为长变化了,宽也会随着变化。
又如,圆的周长一定,π和直径就不是相关联的量。
因为不管直径怎么变,π总是等于3.14……,不会随直径而改变。
2、看是否能变化:也就是这两个量都是能变化的,不是固定的。
如,上例的π就不是能变化的量。
如,“边长×边长=正方形的面积(一定)”,因为正方形的面积(一定),所以边长也只能是固定的,不是变量。
所以,正方形的面积(一定),边长和边长不成比例。
3、看是否商(积)一定:也就是这两个量相除(或相乘)的结果是否固定不变的。
如,圆的周长和直径成正比例。
因为圆的周长和直径的比值等于π,π是固定的数,即圆的周长和直径的比值一定的。
π(一定)直径
圆的周长
三、列(列出几组数据)
列出几组数据,然后看这两个量是否相关联,比值或积是否一定。
(如果上面两种方法能够准确判断,可不必用这种方法。
不好写关系式、无法写关系式、不好判断的最好用这种方法。
)
如,“长方形的周长一定,长和宽成是否正比例。
”先任意列数字,如周长为18,
宽是1,长就是8,宽是2,长就是7……
宽 1 2 3 4 然后看长和宽是否相关联,比值是否一定。
最后得出结论:长和宽是相关联的量,但它们的比值不一定:8÷1=8,7÷2=3.5,6÷3=2,……,所以“长方形的周长一定,长和宽不成是正比例。
”
8、一个晒盐场用100克海水可以晒出3克盐,如果一块盐用一次放入585000吨海水,可以晒出多少吨盐?(试用比例解)
9、一辆汽车一次加汽油支付60元,行驶了300千米。
现在要去800
千米的某地接运一批货物回来。
需要支付多少元汽油费?(用比
例解)
10、解比例。
0.28:x=3.75:7.5
4.035
.0
5.
10
x
11、张华骑自行车从A地到B地,前齿轮共转了1200圈,后齿轮转
了多少圈?(用比例解)
12、三晨电机厂按照预约赶制一份外商订单任务,如果每天生产42
台电机,8天就能完成,开工前一天,外商与王厂长签订了合约,改为提前2天交付产品,那么每天必须增产几台?
13、有袋米,第一袋与第二袋重量的比是8:9,如果从第二袋中取出10千克放入第一袋中,两袋米的重量就相等。
两袋米共有多少千克?
14、甲乙两个图书架所放图书册数的比是2:3,现从乙书架拿出42
册图书放到甲书架,甲、乙两个书架图书的比是5:4,甲书架原有图书多少册?
15、六⑵班上学期男女生人数比为5:7,这学期转入2名男生,转出
2名女生后,男女生人数比为11:13。
这学期六⑵班有女生多少人?
1,
16、某筑路队计划四月份修完一条路,上旬修了这条路的
5中旬比上旬多修70米,这时,已修与未修的比是3:1,这条路全长多少米?
17、甲乙两人一次测验成绩是5:4,如果甲少得22.5分,乙多得22.5
分,则成绩之比是5:7。
甲、乙两人的原分数各是多少?
18、下图中三角形ABC的面积和正方形面积的比是4:9,正方形的边
长是6厘米,三角形中AB边的长是多少厘米?
A
B C
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。