高中数学平面向量知识点总结82641

合集下载

平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结

平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。

平面向量有两个重要的基本运算:向量的加法和数乘。

1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。

-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。

-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。

-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。

-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。

4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。

5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。

-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。

6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。

-方向角:向量与x轴的夹角称为它的方向角,用θ表示。

以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。

为了更好地理解和应用平面向量,需要进行大量的练习和实践。

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结

高中数学平面向量知识点归纳总结
1. 平面向量的定义
平面向量是具有大小和方向的有序数对,可以用箭头表示。


用字母表示向量,如a、b等。

向量的大小可以用模表示,记作|a|。

2. 平面向量的运算
2.1 向量的加法
向量的加法是指将两个向量按照相同的方向连接起来,得到一
个新的向量。

加法满足交换律和结合律。

2.2 向量的减法
向量的减法是指将两个向量相加的相反向量相加,得到一个新
的向量。

2.3 向量的数量积
向量的数量积(点积)是指两个向量相乘后的数量,用点表示,记作a · b。

数量积满足交换律和分配律。

2.4 向量的向量积
向量的向量积(叉积)是指两个向量相乘后的向量,用叉表示,记作a × b。

3. 平面向量的性质
3.1 平行向量
如果两个向量的方向相同或相反,则它们是平行向量。

平行向
量的数量积等于两个向量的模的乘积。

3.2 垂直向量
如果两个向量的数量积为0,则它们是垂直向量。

垂直向量的
点积为0。

3.3 向量的模
向量的模表示向量的大小,可以使用勾股定理求解。

4. 平面向量的应用
平面向量在几何中有广泛的应用,可以用来表示平移、旋转和
线段的位置关系等。

在物理学中,平面向量可以用来表示力的大小
和方向。

以上是关于高中数学平面向量的基本知识点归纳总结。

希望能够对你的学习和理解有所帮助!。

(完整版)平面向量知识点总结(精华)

(完整版)平面向量知识点总结(精华)

平面向量基础知识复习必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示.注意:不能说向量就是有向线段,为什么? 提示:向量可以平移.举例1 已知(1,2)A ,(4,2)B ,则把向量AB u u u r按向量(1,3)a =-r 平移后得到的向量是_____. 结果:(3,0)2.零向量:长度为0的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量是||AB AB ±u u u ru u u r );4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r、b r 叫做平行向量,记作:a r∥b r ,规定:零向量和任何向量平行.注:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线 AB AC ⇔u u u r u u u r、共线.6.相反向量:长度相等方向相反的向量叫做相反向量.a r的相反向量记作a -r.举例2 如下列命题:(1)若||||a b =r r ,则a b =rr .(2)两个向量相等的充要条件是它们的起点相同,终点相同.(3)若AB DC =u u u r u u u u r,则ABCD 是平行四边形.(4)若ABCD 是平行四边形,则AB DC =u u u r u u u u r.(5)若a b =rr ,b c =r r ,则a c =r r .(6)若//a b r r ,//b c r r 则//a c r r.其中正确的是 . 结果:(4)(5) 二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB u u u r,注意起点在前,终点在后;平面向量基础知识复习2.符号表示:用一个小写的英文字母来表示,如a r ,b r ,c r等;3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j r r 为基底,则平面内的任一向量a r可表示为(,)a xi yj x y =+=r r r ,称(,)x y 为向量a r 的坐标,(,)a x y =r 叫做向量a r的坐标表示.结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同.三、平面向量的基本定理定理 设12,e e r r 同一平面内的一组基底向量,a r是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122a e e λλ=+r r r.(1)定理核心:1122a λe λe =+r r r;(2)从左向右看,是对向量a r 的分解,且表达式唯一;反之,是对向量a r 的合成.(3)向量的正交分解:当12,e e r r 时,就说1122a λe λe =+r r r为对向量a r 的正交分解.举例3 (1)若(1,1)a =r ,(1,1)b =-r ,(1,2)c =-r ,则c =r . 结果:1322a b -rr . (2)下列向量组中,能作为平面内所有向量基底的是 BA.1(0,0)e =r ,2(1,2)e =-r B.1(1,2)e =-r ,2(5,7)e =r C.1(3,5)e =r ,2(6,10)e =r D.1(2,3)e =-r,213,24e ⎛⎫=- ⎪⎝⎭r (3)已知,AD BE u u u r u u u r 分别是ABC △的边BC ,AC 上的中线,且AD a =u u u r r ,BE b =u u u r r ,则BCu u u r可用向量,a b r r 表示为 . 结果:2433a b +rr . (4)已知ABC △中,点D 在BC 边上,且2CD DB =u u u r u u u r ,CD rAB sAC =+u u u r u u u r u u u r,则r s +=的值是 . 结果:0. 四、实数与向量的积实数λ与向量a r 的积是一个向量,记作a λr,它的长度和方向规定如下:(1)模:||||||a a λλ=⋅r r;(2)方向:当0λ>时,a λr 的方向与a r 的方向相同,当0λ<时,a λr的方向与a r的方向相反,当0λ=时,0a λ=r r ,注意:0a λ≠r .五、平面向量的数量积1.两个向量的夹角:对于非零向量a r,b r ,作OA a =u u u r r ,OB b =u u u r r ,则把(0)AOB θθπ∠=≤≤称为向量a r,b r 的夹角.当0θ=时,a r ,b 同向;当θπ=时,a r ,b 反向;当2πθ=时,a r,b 垂直.2.平面向量的数量积:如果两个非零向量a r,b r ,它们的夹角为θ,我们把数量||||cos a b θr r 叫做a r与b r 的数量积(或内积或点积),记作:a b ⋅r r ,即||||cos a b a b θ⋅=⋅r r r r.规定:零向量与任一向量的数量积是0.注:数量积是一个实数,不再是一个向量.举例4 (1)ABC △中,||3AB =u u u r ,||4AC =u u u r ,||5BC =u u u r ,则AB BC ⋅=u u u r u u u r_________. 结果:9-.(2)已知11,2a ⎛⎫= ⎪⎝⎭r ,10,2b ⎛⎫=- ⎪⎝⎭r ,c a kb =+r r r ,d a b =-r r r ,c r 与d r 的夹角为4π,则k = ____. 结果:1.(3)已知||2a =r ,||5b =r ,3a b ⋅=-rr ,则||a b +=r r ____. (4)已知,a b r r 是两个非零向量,且||||||a b a b ==-r r r r ,则a r 与a b +rr 的夹角为____. 结果:30o.3.向量b r 在向量a r上的投影:||cos b θr ,它是一个实数,但不一定大于0.举例 5 已知||3a =r ,||5b =r ,且12a b ⋅=rr ,则向量a r 在向量b r 上的投影为______. 结果:125. 4.a b ⋅r r 的几何意义:数量积a b ⋅r r 等于a r 的模||a r 与b r在a r上的投影的积.5.向量数量积的性质:设两个非零向量a r,b r ,其夹角为θ,则:(1)0a b a b ⊥⇔⋅=r rr r ;(2)当a r、b r 同向时,||||a b a b ⋅=⋅r r r r ,特别地,22||||aa a a a =⋅=⇔=r r r r r ||||ab a b ⋅=⋅r r r r 是a r、b r 同向的充要分条件;当a r 、b r 反向时,||||ab a b ⋅=-⋅r r r r ,||||a b a b ⋅=-⋅r r r r 是a r、b r 反向的充要分条件;当θ为锐角时,0a b ⋅>r r ,且a r、b r 不同向,0a b ⋅>r r 是θ为锐角的必要不充分条件;当θ为钝角时,0a b ⋅<r r ,且a r、b r 不反向;0a b ⋅<r r 是θ为钝角的必要不充分条件.(3)非零向量a r,b r 夹角θ的计算公式:cos ||||a b a b θ⋅=r r r r ;④||||a b a b ⋅≤r r r r . 举例6 (1)已知(,2)aλλ=r ,(3,2)b λ=r ,如果a r与b r 的夹角为锐角,则λ的取值范围是______. 结果:43λ<-或0λ>且13λ≠;(2)已知OFQ △的面积为S ,且1OF FQ ⋅=u u u r u u u r ,若12S <,则OF u u u r ,FQ u u u r 夹角θ的取值范围是_________. 结果:,43ππ⎛⎫⎪⎝⎭; (3)已知(cos ,sin )a x x =r ,(cos ,sin )b y y =r ,且满足|||ka b a kb +-r r r r(其中0k >).①用k 表示a b ⋅r r ;②求a b ⋅rr 的最小值,并求此时a r 与b r 的夹角θ的大小.结果:①21(0)4k a b k k +⋅=>r r ;②最小值为12,60θ=o. 六、向量的运算1.几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则.运算形式:若AB a =u u u r r ,BC b =u u u r r ,则向量AC u u u r 叫做a r与b r 的和,即a b AB BC AC +=+=u u ur u u u r u u u r r r ;作图:略.注:平行四边形法则只适用于不共线的向量. (2)向量的减法运算法则:三角形法则.运算形式:若AB a =u u u r r ,AC b =u u u r r ,则a b AB AC CA -=-=u u ur u u u r u u u r r r ,即由减向量的终点指向被减向量的终点.作图:略.注:减向量与被减向量的起点相同.举例7 (1)化简:①AB BC CD ++=u u u r u u u r u u u r ;②AB AD DC --=u u u r u u u r u u u u r;③()()AB CD AC BD ---=u u u r u u u r u u u r u u u r . 结果:①AD u u u r ;②CB u u u r ;③0r;(2)若正方形ABCD 的边长为1,AB a =u u u r r ,BC b =u u u r r ,AC c =u u u r r ,则||a b c ++=r r r. 结果:(3)若O 是ABC △所在平面内一点,且满足2OB OC OB OC OA -=+-u u u r u u u r u u u r u u u r u u u r,则ABC △的形状为. 结果:直角三角形;(4)若D 为ABC △的边BC 的中点,ABC △所在平面内有一点P ,满足0PA BP CP ++=u u u r u u u r u u u r r ,设||||AP PD λ=u u u ru u u r ,则λ的值为 . 结果:2; (5)若点O 是ABC △的外心,且0OA OB CO ++=u u u r u u u r u u u r r,则ABC △的内角C 为 . 结果:120o.2.坐标运算:设11(,)a x y =r,22(,)b x y =r ,则(1)向量的加减法运算:1212(,)a b x x y y +=++r r ,1212(,)a b x x y y -=--r r . 举例8 (1)已知点(2,3)A ,(5,4)B ,(7,10)C ,若()AP AB AC λλ=+∈R u u u r u u u r u u u r,则当λ=____时,点P 在第一、三象限的角平分线上. 结果:12;(2)已知(2,3)A ,(1,4)B ,且1(sin ,cos )2AB x y =u u u r ,,(,)22x y ππ∈-,则x y += .结果:6π或2π-; (3)已知作用在点(1,1)A 的三个力1(3,4)F =u u r ,2(2,5)F =-u u r ,3(3,1)F =u u r,则合力123F F F F =++u u r u u r u u r u u r的终点坐标是 . 结果:(9,1).(2)实数与向量的积:1111(,)(,)a x y x y λλλλ==r.(3)若11(,)A x y ,22(,)B x y ,则2121(,)AB x x y y =--u u u r,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标.举例9 设(2,3)A ,(1,5)B -,且13AC AB =u u u r u u u r,3AD AB =u u u r u u u r ,则,C D 的坐标分别是__________. 结果:11(1,),(7,9)3-. (4)平面向量数量积:1212a b x x y y ⋅=+rr .举例10 已知向量(sin ,cos )a x x =r ,(sin ,sin )b x x =r ,(1,0)c =-r.(1)若3x π=,求向量a r 、c r的夹角; (2)若3[,]84x ππ∈-,函数()f x a b λ=⋅r r 的最大值为12,求λ的值.结果:(1)150o;(2)12或1.(5)向量的模:2222||||aa x y a ==+⇔=r r r举例11 已知,a b rr 均为单位向量,它们的夹角为60o,那么|3|a b +=r r = .结果:(6)两点间的距离:若11(,)A x y ,22(,)B x y,则||AB =举例12 如图,在平面斜坐标系xOy 中,xOy ∠=P 关于斜坐标系的斜坐标是这样定义的:若12OP xe ye =+u u u r r r ,其中12,e e r ry 轴同方向的单位向量,则P 点斜坐标为(,)x y .(1)若点P 的斜坐标为(2,2)-,求P 到O 的距离||PO ;(2)求以O 为圆心,1为半径的圆在斜坐标系xOy 中的方程. 结果:(1)2;(2)2210x y xy ++-=. 七、向量的运算律1.交换律:a b b a +=+r r r r ,()()a a λμλμ=r r,a b b a ⋅=⋅r r r r ;2.结合律:()ab c a b c ++=++r r r r r r ,()a b c a b c --=-+r r r r r r ,()()()a b a b a b λλλ=⋅=⋅r r r r r r; 3.分配律:()a a a λμλμ+=+r r r,()a b a b λλλ+=+r r r r ,()a b c a c b c +⋅=⋅+⋅r r r r r r r .举例13 给出下列命题:① ()a b c a b a c ⋅-=⋅-⋅r r r r r r r ;② ()()a b c a b c ⋅⋅=⋅⋅r r r r r r;③222()||2||||||a b a a b b -=-+r rr r r r ;④ 若0a b ⋅=rr ,则0a =r r 或0b =r r ;⑤若a b c b ⋅=⋅r r r r 则a c=r r ;⑥22||a a =r r ;⑦2a b b a a⋅=r r r r r ;⑧222()a b a b ⋅=⋅r r r r ;⑨222()2a b a a b b -=-⋅+r r rr r r .其中正确的是 . 结果:①⑥⑨. 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即()()a b c a b c ⋅⋅≠⋅⋅r r r r r r,为什么? 八、向量平行(共线)的充要条件221212//()(||||)0a b a b a b a b x y y x λ⇔⇔⋅=⇔-=r r r rr r r r .举例14 (1)若向量(,1)a x =r ,(4,)b x =r ,当x =_____时,a r 与b r 共线且方向相同. 结果:2.(2)已知(1,1)a =r ,(4,)b x =r ,2u a b =+r r r ,2v a b =+rr r ,且//u v r r ,则x = . 结果:4.(3)设(,12)PA k =u u u r ,(4,5)PB =u u u r ,(10,)PC k =u u u r,则k = _____时,,,A B C 共线. 结果:2-或11.九、向量垂直的充要条件12120||||0a b a b a b a b x x y y ⊥⇔⋅=⇔+=-⇔+=r r r rr r r r .特别地||||||||AB AC AB AC AB AC AB AC ⎛⎫⎛⎫+⊥- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 举例15 (1)已知(1,2)OA =-u u u r ,(3,)OB m =u u u r ,若OA OB ⊥u u u r u u u r,则m = .结果:32m =; (2)以原点O 和(4,2)A 为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 .结果:(1,3)或(3,-1));(3)已知(,)n a b =r 向量n m ⊥r r ,且||||n m =r r ,则m=r 的坐标是 .结果:(,)b a -或(,)b a -.十、线段的定比分点1.定义:设点P 是直线12PP 上异于1P 、2P 的任意一点,若存在一个实数λ ,使12PP PP λ=u u u r u u u r,则实数λ叫做点P 分有向线段12P P u u u u r 所成的比λ,P 点叫做有向线段12P P u u u u r 的以定比为λ的定比分点.2.λ的符号与分点P 的位置之间的关系(1)P 内分线段12P P u u u u r,即点P 在线段12PP 上0λ⇔>;(2)P 外分线段12P P u u u u r时,①点P 在线段12PP 的延长线上1λ⇔<-,②点P 在线段12PP 的反向延长线上10λ⇔-<<.注:若点P 分有向线段12PP u u u u r 所成的比为λ,则点P 分有向线段21P P u u u u r所成的比为1λ.举例16 若点P 分AB u u u r 所成的比为34,则A 分BP u u u r所成的比为 . 结果:73-. 3.线段的定比分点坐标公式:设111(,)P x y ,222(,)P x y ,点(,)P x y 分有向线段12P P u u u u r所成的比为λ,则定比分点坐标公式为1212,1(1).1x x x y y y λλλλλ+⎧=⎪⎪+≠-⎨+⎪=⎪+⎩. 特别地,当1λ=时,就得到线段12PP 的中点坐标公式1212,2.2x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ 说明:(1)在使用定比分点的坐标公式时,应明确(,)x y ,11(,)x y 、22(,)x y 的意义,即分别为分点,起点,终点的坐标.(2)在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比λ.举例17 (1)若(3,2)M --,(6,1)N -,且13MP MN =-u u u u r u u u ur ,则点P 的坐标为 . 结果:7(6,)3--; (2)已知(,0)A a ,(3,2)B a +,直线12y ax =与线段AB 交于M ,且2AM MB =u u u u r u u u u r,则a =r. 结果:2或4-. 十一、平移公式如果点(,)P x y 按向量(,)a h k =r 平移至(,)P x y '',则,.x x h y y k '=+⎧⎨'=+⎩;曲线(,)0f x y =按向量(,)a h k =r平移得曲线(,)0f x h y k --=.说明:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!举例18 (1)按向量a r 把(2,3)-平移到(1,2)-,则按向量a r 把点(7,2)-平移到点______. 结果:(8,3)-;(2)函数sin 2y x =的图象按向量a r 平移后,所得函数的解析式是cos21y x =+,则a =r ________. 结果:(,1)4π-. 十二、向量中一些常用的结论1.一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:||||||||||a b a b a b -≤+≤+r r r r r r.平面向量基础知识复习(1)右边等号成立条件: a b r r 、同向或 a b r r 、中有0r ||||||a b a b ⇔+=+r r ;(2)左边等号成立条件: a b r r 、反向或 a b r r 、中有0r ||||||a b a b ⇔-=+r r r r;(3)当 a b r r 、不共线||||||||||a b a b a b ⇔-<+<+r r r r r r.3.三角形重心公式 在ABC △中,若11(,)A x y ,22(,)B x y ,33(,)C x y ,则其重心的坐标为123123(,)33x x x y y y G ++++. 举例19 若ABC △的三边的中点分别为(2,1)A 、(3,4)B -、(1,1)C --,则ABC △的重心的坐标为 .结果:24,33⎛⎫- ⎪⎝⎭. 5.三角形“三心”的向量表示(1)1()3PG PA PB PC G =++⇔u u u r u u u r u u u r u u u r为△ABC 的重心,特别地0PA PB PC G++=⇔u u u r u u u r u u u r r 为△ABC 的重心.(2)PA PB PB PC PC PA P ⋅=⋅=⋅⇔u u u r u u u ru u u r u u u ru u u r u u u r为△ABC 的垂心.(3)||||||0AB PC BC PA CA PB P ++=⇔u u u u r u u u r u u u u r u u u r u u u u r u u u r为△ABC 的内心;向量(0)||||AB AC AB AC λλ⎛⎫+≠ ⎪ ⎪⎝⎭u u u r u u u ru u u u r u u u u r 所在直线过△ABC 的内心. 6.点P 分有向线段12P P u u u u r所成的比λ向量形式设点P 分有向线段12P P u u u u r所成的比为λ,若M 为平面内的任一点,则121MP MPMP λλ+=+u u u u r u u u u r u u u r ,特别地P 为有向线段12P P u u u u r 的中点122MP MPMP +⇔=u u u u r u u u u ru u u r .7. 向量,,PA PB PC u u u r u u u r u u u r中三终点,,A B C 共线⇔存在实数,αβ,使得PA PB PC αβ=+u u u r u u u r u u u r且1αβ+=.举例20 平面直角坐标系中,O 为坐标原点,已知两点(3,1)A ,(1,3)B -,若点C 满足12OC OA OB λλ=+u u u r u u u r u u u r,其中12,λλ∈R 且121λλ+=,则点C 的轨迹是 . 结果:直线AB .。

(完整版)高中数学平面向量知识点总结

(完整版)高中数学平面向量知识点总结

高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。

2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。

平面向量复习基本知识点及经典结论总结

平面向量复习基本知识点及经典结论总结

平面向量复习基本知识点及经典结论总结平面向量是数学中常见的概念,它是一种具有大小和方向的量。

本文将对平面向量的基本知识点及经典结论进行总结,以帮助读者复习和理解。

一、基本知识点1.定义:平面向量是具有大小和方向的量,可用有向线段来表示。

通常用字母a、b、c等表示向量,用小写字母表示有向线段的长度,用大写字母表示向量的大小。

2.向量的表示方法:在平面直角坐标系中,可以用坐标表示一个向量。

设平面向量a的起点为原点O(0,0),终点为点A(x,y),则向量a的表示为a=(x,y)。

3.向量的加法:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a+b可以表示为(a,b)=(x1+x2,y1+y2)。

4.向量的数量积:设有两个向量a=(x1,y1)和b=(x2,y2),则向量a和b的数量积为a·b=x1×x2+y1×y25.向量的模长:向量a的模长表示为,a,可通过勾股定理求得,即,a,=√(x^2+y^2)。

二、经典结论1.平面向量共线:如果有两个向量a和b,且b与a同方向或反方向,那么向量a和b共线;如果b与a不同方向,那么向量a和b不共线。

2. 平面向量定比分点:如果有两个向量a = (x1,y1)和b = (x2,y2),且存在一个实数k,使得x2 = kx1,y2 = ky1,则向量a和b的终点共线,并且b在a的延长线上(如k>1)或b在a的连线上(如0<k<1)。

3.向量共线定理:如果有三个向量a,b,c,且c=λa+μb,则向量c与向量a和b共线。

4.平面向量的线性运算:设有三个向量a,b,c,和两个实数λ、μ,那么有以下性质成立:(1)a+b=b+a(交换律)(2)(a+b)+c=a+(b+c)(结合律)(3)λ(μa)=(λμ)a=μ(λa)=λ(μa)(乘法结合律)(4)λ(a+b)=λa+λb(分配律)(5)(λ+μ)a=λa+μa(分配律)5.向量共线的判定方法:(1)数量积:如果两个向量a和b的数量积a·b=0,则向量a和b垂直;如果a·b>0,则向量a和b夹角小于90°;如果a·b<0,则向量a和b夹角大于90°。

高中数学平面向量知识点总结

高中数学平面向量知识点总结

高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。

2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。

3. 相等:两个向量大小相等且方向相同时,这两个向量相等。

4. 零向量:大小为零的向量,没有特定方向。

二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。

- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。

- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。

2. 减法:- 规则:与加法类似,但方向相反。

- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。

3. 数乘:- 定义:向量与实数相乘。

- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。

- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。

- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。

三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。

2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。

3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。

- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。

- 数乘:$k(x, y) = (kx, ky)$。

四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。

(完整版)平面向量重要基础知识点

(完整版)平面向量重要基础知识点

平面向量重要知识点1、向量有关概念:(1)向量的概念:既有大小又有方向的量,向量是可以平移的,(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是||AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:∥,规定零向量和任何向量平行。

提醒平行向量无传递性!(因为有0r )2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

3、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa :当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反4、平面向量的数量积:(1)两个向量的夹角:(2)平面向量的数量积:规定:零向量与任一向量的数量积是0注意数量积是一个实数,不再是一个向量。

(3)b 在a 上的投影为||cos b θr ,它是一个实数,但不一定大于0。

(4)a •b 的几何意义:数量积•等于的模||a r 与在上的投影的积。

(5)向量数量积的性质:设两个非零向量,,其夹角为θ,则:①0a b a b ⊥⇔•=r r r r ;②当a ,b 同向时,a •b =a b r r ,特别地,22,a a a a a =•==r r r r r ;当a 与b 反向时,•=-a b r r ;当θ为锐角时,•>0,且 a b r r 、不同向,0a b ⋅>r r 是θ为锐角的必要非充分条件;当θ为钝角时,•<0,且 a b r r 、不反向,0a b ⋅<r r 是θ为钝角的必要非充分条件; ③非零向量,夹角θ的计算公式:cos a b a bθ•=r r r r ;④||||||a b a b •≤r r r r 。

(完整版)高中平面向量知识点总结.doc

(完整版)高中平面向量知识点总结.doc
r
r
uuur
r
uuur
r
,则∠AOB=
(0
0
180
0
)叫做向
29、已知两个非零向量a与b,作OA=a,
OB=b
r
r
量a与b的夹角
rr
r
?
r
x x
y y
b
2
2
cos =cos a,b
a
=
1
1
r
r
2
2
x2
22
(可用此公式求两向量夹角)
a ? b
x1
y1
y2
当x1x2
y1y2< 0,?(
??
2
,π];
当x1x2
则把有序数对(x,y)叫做向量a的坐标。
(2)坐标表示
在向量a的直角坐标中,x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,a=(x,y)
叫做向量的坐标表示。
(3)在向量的直角坐标中,
i=(1,0)j=(0,1)
0=(0,0)
r
r
x2, y2
20、若a
x1, y1,b
和实数 λ
rr
x2, y1
y2
(1)a bx1
L1:A1x+B1y+C1=0
与直线L2:A2x+B2y+C2=0
的夹角,则只要求与两直线平
行的向量的夹角, 再取这两个向量的夹角或补角,
即与直线L1

2
分别平行的向量
1

L
m=(A
??·??
??·??+??·??
1
2
2
=︱??︱·︱??︱

平面向量知识点归纳

平面向量知识点归纳

平面向量知识点归纳一、平面向量的基本概念1、向量的定义既有大小又有方向的量叫做向量。

物理学中又叫做矢量。

2、向量的表示(1)几何表示:用有向线段表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

(2)字母表示:通常在印刷时用黑体小写字母 a、b、c 等来表示向量,手写时可写成带箭头的小写字母。

3、向量的模向量的大小叫做向量的模,记作或。

4、零向量长度为 0 的向量叫做零向量,记作。

零向量的方向是任意的。

5、单位向量长度等于 1 个单位长度的向量叫做单位向量。

6、平行向量(共线向量)方向相同或相反的非零向量叫做平行向量,也叫共线向量。

规定:零向量与任意向量平行。

7、相等向量长度相等且方向相同的向量叫做相等向量。

8、相反向量长度相等且方向相反的向量叫做相反向量。

二、平面向量的线性运算1、向量的加法(1)三角形法则:已知非零向量、,在平面内任取一点 A,作,,则向量叫做与的和,记作,即。

(2)平行四边形法则:已知两个不共线的向量、,作,,以、为邻边作平行四边形 ABCD,则对角线上的向量就是与的和。

(3)运算性质:交换律;结合律。

2、向量的减法(1)三角形法则:已知非零向量、,在平面内任取一点 O,作,,则向量叫做与的差,记作,即。

(2)几何意义:可以表示为从向量的终点指向向量的终点的向量。

3、向量的数乘(1)定义:实数与向量的积是一个向量,记作,它的长度与方向规定如下:①;②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,。

(2)运算律:结合律;分配律,。

三、平面向量的基本定理及坐标表示1、平面向量基本定理如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使。

2、平面向量的坐标表示在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个单位向量、作为基底,对于平面内的一个向量,有且只有一对实数 x、y,使得,则有序数对叫做向量的坐标,记作,其中 x 叫做在 x 轴上的坐标,y 叫做在 y 轴上的坐标。

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型

高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。

向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。

向量的大小即向量的模(长度),记作|AB|或|a|。

向量不能比较大小,但向量的模可以比较大小。

②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。

③单位向量:模为1个单位长度的向量。

向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上。

方向相同或相反的向量,称为平行向量,记作a∥b。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

⑤相等向量:长度相等且方向相同的向量。

相等向量经过平移后总可以重合,记为a b。

大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。

设AB a,BC b,则a+b=AB BC=AC。

1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。

2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。

当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。

向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。

3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。

零向量的相反向量仍是零向量。

关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。

平面向量知识点总结(精华)

平面向量知识点总结(精华)

平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。

例如,物理学中的力、位移等都是向量。

我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。

字母表示:用小写字母a、b、c等表示。

2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。

模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。

3. 零向量长度为\(0的向量称为零向量,记作0。

零向量的方向是任意的。

4. 单位向量模等于\(1的向量称为单位向量。

对于非零向量a,与它同方向的单位向量记作e=aa。

例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。

5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。

规定:零向量与任意向量平行。

若向量a与b平行,记作a。

例如,a=(1,2),b=(2,4),因为b = 2a,所以a。

6. 相等向量长度相等且方向相同的向量称为相等向量。

若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。

二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。

平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。

向量加法的运算律:交换律:a+b=b+a。

结合律:\((a+b)+c=a+(b+c)。

2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。

向量减法的定义:ab=a+(b)。

其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。

3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。

平面向量知识点汇总

平面向量知识点汇总

平面向量知识点汇总平面向量是高中数学中的重要内容,它不仅在数学领域有着广泛的应用,还为解决物理等其他学科的问题提供了有力的工具。

下面我们来详细汇总一下平面向量的相关知识点。

一、平面向量的基本概念1、向量的定义既有大小又有方向的量叫做向量。

向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

2、向量的模向量的大小叫做向量的模,记作\(\vert \overrightarrow{a}\vert\)。

3、零向量长度为\(0\)的向量叫做零向量,记作\(\overrightarrow{0}\)。

零向量的方向是任意的。

4、单位向量长度等于\(1\)个单位的向量叫做单位向量。

5、平行向量(共线向量)方向相同或相反的非零向量叫做平行向量,也称为共线向量。

规定零向量与任意向量平行。

6、相等向量长度相等且方向相同的向量叫做相等向量。

二、平面向量的线性运算1、向量的加法(1)三角形法则已知向量\(\overrightarrow{a}\),\(\overrightarrow{b}\),在平面内任取一点\(A\),作\(\overrightarrow{AB}=\overrightarrow{a}\),\(\overrightarrow{BC}=\overrightarrow{b}\),则向量\(\overrightarrow{AC}\)叫做\(\overrightarrow{a}\)与\(\overrightarrow{b}\)的和,记作\(\overrightarrow{a}+\overrightarrow{b}\),即\(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{a}+\overrightarrow{b}\)。

(2)平行四边形法则已知向量\(\overrightarrow{a}\),\(\overrightarrow{b}\),在平面内任取一点\(O\),作\(\overrightarrow{OA}=\overrightarrow{a}\),\(\overrightarrow{OB}=\overrightarrow{b}\),以\(OA\),\(OB\)为邻边作平行四边形\(OACB\),则对角线\(\overrightarrow{OC}\)就是\(\overrightarrow{a}\)与\(\overrightarrow{b}\)的和,记作\(\overrightarrow{a}+\overrightarrow{b}\)。

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结一、平面向量的定义与性质1. 平面向量的定义平面向量是具有大小和方向的几何对象,通常用有向线段来表示,记作AB→,其中A、B 为起点和终点。

2. 平面向量的性质(1)平面向量相等的充分必要条件是它们的大小相等,方向相同。

(2)平面向量相加的几何意义:平面向量A+B的几何意义是以B为起点,在A的方向上作另一有向线段,则A+B的终点是以A、B的起点为起点、终点的有向线段。

(3)平面向量乘以实数的几何意义:实数k是负数时,它对平面向量的作用是对此向量作方向相反或绝对值为|k|倍的拉伸;k为正数时,它对平面向量的作用是对此向量作方向相同或绝对值为k倍的拉伸;k=0时,作用是得到一个零向量。

二、平面向量的基本运算1. 平面向量的加法平面向量A(a1, a2)、B(b1, b2)相加的结果是C(c1, c2),其中c1=a1+b1,c2=a2+b2。

2. 平面向量的减法平面向量A(a1, a2)、B(b1, b2)相减的结果是C(c1, c2),其中c1=a1-b1,c2=a2-b2。

3. 平面向量的数量积平面向量A(a1, a2)、B(b1, b2)的数量积是a1b1+a2b2,它是一个标量(实数)。

4. 平面向量的数量积的性质(1)交换律:A·B = B·A(2)分配律:A·(B+C) = A·B + A·C(3)A·A = |A|^2,其中|A|为向量A的模。

(4)若向量A与向量B夹角为θ,则A·B = |A||B|cosθ5. 平面向量的夹角若向量A、B夹角为θ,则A·B = |A||B|cosθ三、平面向量的应用1. 向量的共线性与共面性两个向量共线的充分必要条件是它们的方向相同或相反;三个向量共面的充分必要条件是它们的线性相关。

2. 向量的投影向量A在向量B上的投影是A在B方向上的长度,记作proj_BA = |A|cosθ,其中θ为A 与B的夹角。

高中平面向量知识点总结

高中平面向量知识点总结

高中平面向量知识点总结一、向量的基本概念1. 定义:- 平面向量:具有大小和方向的量,可以在平面上表示。

- 向量的表示:通常用粗体字母或上方带箭头的字母表示,如$\vec{a}$。

2. 相等的向量:- 两个向量如果大小和方向完全相同,则它们是相等的。

3. 零向量:- 大小为零的向量,通常表示为 $\vec{0}$。

二、向量的运算1. 加法:- 向量加法遵循平行四边形法则或三角形法则。

- 向量加法满足交换律和结合律。

2. 减法:- 向量减法同样遵循平行四边形法则。

- 向量减法满足交换律和结合律。

3. 数乘:- 数乘是将向量乘以一个实数,结果仍然是一个向量。

- 数乘满足分配律、结合律和与实数乘法的兼容性。

三、向量的几何性质1. 长度(模):- 向量的长度表示向量的大小。

- 计算公式:$|\vec{a}| = \sqrt{a_x^2 + a_y^2}$,其中$a_x$ 和 $a_y$ 分别是向量在 x 轴和 y 轴上的分量。

2. 方向:- 向量的方向由其与正 x 轴的夹角 $\theta$ 确定。

- 方向角的计算公式:$\theta = \arctan(\frac{a_y}{a_x})$。

3. 单位向量:- 长度为 1 的向量称为单位向量。

- 单位向量可以通过将任意向量除以其长度得到。

四、向量的坐标表示1. 笛卡尔坐标:- 在笛卡尔坐标系中,向量可以表示为 $(x, y)$。

- 坐标表示法便于进行向量的加减和数乘运算。

2. 极坐标:- 向量还可以用极坐标表示,即 $(r, \theta)$,其中 $r$ 是长度,$\theta$ 是方向角。

五、向量的数量积(点积)1. 定义:- 两个向量的数量积是一个标量,表示为 $\vec{a} \cdot\vec{b}$。

- 计算公式:$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y$。

2. 性质:- 数量积可以用来计算两个向量的夹角:$\cos(\theta) =\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$。

平面向量及其应用知识点总结

平面向量及其应用知识点总结

平面向量及其应用知识点总结
一、平面向量的定义和性质
1. 平面向量的定义:平面上的向量是由两个有序数对表示的,称为平
面向量。

2. 平面向量的性质:
(1)平面向量有大小和方向,大小为其长度,方向为从起点指向终点的方向。

(2)平面向量可以相加、相减和数乘,满足加法交换律、结合律和数乘结合律。

(3)平面向量之间可以定义数量积和叉积,满足数量积交换律、结合律和分配律,叉积具有反交换律和分配律。

二、平面向量的表示方法
1. 坐标表示法:设平面上两个点A(x1,y1)和B(x2,y2),则以A为起点,B为终点所表示的平面向量为AB=(x2-x1,y2-y1)。

2. 向量符号表示法:在AB上任取一点C作为起点,则以C为起点,B为终点所表示的平面向量也是AB。

三、平面向量之间的运算
1. 平移:将一个平面上的向量沿着另一个给定的非零向量进行移动得到新的向量。

2. 旋转:将一个给定角度旋转后得到新的向量。

3. 投影:将一个向量沿着另一个向量的方向投影得到新的向量。

4. 反向:将一个向量反过来得到新的向量。

5. 平面向量之间的加法、减法和数乘运算。

四、平面向量的应用
1. 向量运动学:平面上的物体在运动时可以用平面向量表示其位移、速度和加速度等物理量。

2. 向量力学:平面上的物体在受力时可以用平面向量表示其受力和作
用力等物理量,通过分解力求解问题。

3. 向量几何:利用平面向量可以求解线段长度、角度、垂直、平行等几何问题,如判断两条直线是否相交,判断三点共线等问题。

4. 向量代数:利用平面向量可以进行代数运算,如求解方程组、矩阵计算等问题。

平面向量知识点总结

平面向量知识点总结

平面向量知识点总结平面向量是高中数学中的重要内容,它在解决几何、物理等问题中有着广泛的应用。

下面我们来对平面向量的知识点进行一个全面的总结。

一、平面向量的基本概念1、向量的定义既有大小又有方向的量称为向量。

向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

2、向量的模向量的大小称为向量的模,记作|a|。

3、零向量长度为 0 的向量称为零向量,记作0。

零向量的方向是任意的。

4、单位向量长度等于 1 个单位的向量称为单位向量。

5、平行向量(共线向量)方向相同或相反的非零向量称为平行向量,也称为共线向量。

规定零向量与任意向量平行。

6、相等向量长度相等且方向相同的向量称为相等向量。

二、平面向量的线性运算1、向量的加法(1)三角形法则:已知向量a,b,首尾相连,连接第一个向量的起点与第二个向量的终点,得到的向量就是a + b。

(2)平行四边形法则:以同一起点的两个向量为邻边作平行四边形,从公共起点出发的对角线所表示的向量就是这两个向量的和。

向量加法的运算律:交换律:a + b = b + a结合律:(a + b)+ c = a +(b + c)2、向量的减法(1)定义:减去一个向量等于加上这个向量的相反向量。

即a b = a +( b)(2)三角形法则:共起点,连终点,指向被减向量。

3、向量的数乘(1)定义:实数λ与向量a的乘积是一个向量,记作λa,其长度为|λa| =|λ||a|,当λ > 0 时,λa与a方向相同;当λ < 0 时,λa与a方向相反;当λ = 0 时,λa = 0。

(2)运算律:结合律:λ(μa)=(λμ)a分配律:(λ +μ)a =λa +μa,λ(a + b)=λa +λb三、平面向量的坐标表示1、在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个单位向量i,j作为基底。

对于平面内的任意一个向量a,有且只有一对实数 x,y,使得a = xi + yj,则有序数对(x,y)叫做向量a的坐标,记作a =(x,y)。

高中数学平面向量知识点总结82641

高中数学平面向量知识点总结82641

平面向量知识点总结第一局部:向量的概念与加减运算,向量与实数的积的运算. 一.向量的概念:1.向量:向量是既有大小又有方向的量叫向量.记作:|AB |模是可以比拟大小的4.两个特殊的向量:1单向量——长度〔模〕为0的向量,记作0.0的方向是任意的 0的区别 2单位向量一一长度〔模〕为1个单位长度的向量叫做单位向量任一组平行向量都可移到同一条直线上 所以平行向量也叫共线向量..向量的加法:1 .定义:求两个向量的和的运算,叫做向量的加法.注意:;两个向量的和仍旧是向量〔简称和向量〕2 .三角形法那么:a+b -- i ------------ ►CAB2. I (1) 起点、向量的表布方法: 几何表示法: 点一射线 单向线段一一具有一定方向的线段 有向线段的三要素:(2) 字母表示法: AB 可表小为a(3) 的概念:向量 AB -大小——长度称为向量的模..向量间的关系:1 .平行向量:方向相同或相反的非零向量叫做平行向量.记作: a // b // c 规定: 0与任一向量平行2 .相等向量:长度相等且方向相同的向量叫做相等向量.记作: a =b 规定: 0=0任两相等的非零向量都可用一有向线段表示,与起点无关.3,共线向量:1 “向量平移〞〔自由向量〕:使前一个向量的终点为后一个向量的起点2可以推广到n个向量连加—+■—*■—* —»—F3 a 0 0 a a4不共线向量都可以采用这种法那么一一三角形法那么3.加法的交换律和平行四边形法那么1向量加法的平行四边形法那么〔三角形法那么〕:2向量加法的交换律:a+b=b + a3向量力口法的结合律:〔a+b〕 +c = a+ 〔b+c〕4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端.四.向量的减法:1 .用“相反向量〞定义向量的减法1 “相反向量〞的定义:与a长度相同、方向相反的向量.记作a2规定:零向量的相反向量仍是零向量. 〔a〕 = a任一向量与它的相反向量的和是零向量. a + 〔 a〕 = 0如果a、b互为相反向量,贝Ua = b, b = a, a + b = 03向量减法的定义:向量a加上的b相反向量,叫做a与b的差.即:a b = a + 〔 b〕求两个向量差的运算叫做向量的减法.2 .用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:假设b + x = a,那么x叫做a与b的差,记作a b3 .向量减法做图:AB表示a bo强调:差向量“箭头〞指向被减数总结:1向量的概念:定义、表示法、模、零向量、单位向量、平行向量、相等向量、共线向量2向量的加法与减法:定义、三角形法那么、平行四边形法那么、运算定律五:实数与向量的积〔强调:“模〞与“方向〞两点〕1 .实数与向量的积实数人与向量a的积,记作:入a定义:实数人与向量a的积是一个向量,记作:入a1 I 入a|二|入||a|2人>0时入a与a方向相同;入<0时入a与a方向相反;入=0时入a=02 .运算定律:结合律:入〔旧〕二〔入^a ①第一分配律:〔入+〔^=入2+照②第二分配律:入〔a+b〕=2ia +入b ③3 .向量共线充要条件:向量b与非零向量a共线的充要条件是:有且只有一个非零实数入使b =入a六.平面向量定理:用两个不共线向量表示一个向量;或一个向量分解为两个向量.(其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合)平面向量根本定理:如果ei,1是同一平面内的两个不共线向量,那么于一平面内的任一向量a,有且只有一对实数入1,入2使a=入芯+入2e2注意几个问题:1 或、e2必须不共线,且它是这一平面内所有向量的一组基底2这个定理也叫共面向量定理3入1,入2是被a, el, e.唯一确定的数量第二局部:向量的坐标运算七.向量的坐标表示与坐标运算1 .平面向量的坐标表示:在坐标系下,平面上任何一点都可用一对实数(坐标)来表示取x轴、y轴上两个单位向量i, j作基底,那么平面内作一向量a=x i+yj,记作:a=(x, y)称作向量a的坐标2 .注意:1每一平面向量的坐标表示是唯一的;2 设A(x i, y1) B(x2, y2)那么AB=(x2x1, y2 y1)3两个向量相等的充要条件是两个向量坐标相等.3 .结论:两个向量和与差的坐标分别等干这两个向量相应坐标的和与差.同理可得:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标.4 .实数与向量积的坐标运算:a=(x, y) 实数入V—*■■■—F-贝U入a =入(x i +y j尸入x i +入y j・二入a=(入x,入y)结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标.八.向量平行的坐标表示结论:a // b (b 0)的充要条件是x1y2-x2y1=0注意:1消去入时不能两式相除,: y1, y2有可能为0, . b 0x2, y2中至少有一个不为03从而向量共线的充要条件有两种形式:a //b 〔b 0〕 a bX i V2 X 2 y i 0九.线段的定比分点:1.线段的定比分点及入P i , P 2是直线l 上的两点,P 是l 上不同于P i , P 2的任一点,存在实 数入,人叫做点P 分P 1P 2所成的比,有三种情况:-------- < > -・^——>P 〔 P 2 P P P 1 P 2〔外分〕入<0 〔入<-1〕 〔外分〕入X 1 X 2 1 y i y 21 X 3 .中点公式:假设P 是RP 2中点时,入二i 、, 2、. |y yi 2y2|4 .注意几个问题: i 人是关键,入>0内分 入<0外分入-i 假设P 与P i 重合, 入=0 P 与P 2重合人不存在2中点公式是定比分点公式的特例i ——3始点终点很重要,如P 分P i P 2的定比入=- 那么P 分P 2P l 的定比入=2 2 4 公式:如 X i , X 2, X,人知三求一十.平面向量的数量积及运算律 2充要条件不能写成"y 2X iX 2X 1, X 2有可能为0 使肥=入PP 2---------- > ----------- » -------P iPP 2入>0〔内分〕<0 〔-i< 入 <0〕x2.定比分点坐标公式 a b = |a||b|cos ,〔一〕平面向量数量积i.定义:平面向量数量积〔内积〕的定义,C3—注意的几个问题;一一两个向量的数量积与向量同实数积有很大区别定.1两个向量的数量积是一个实数, 不是向量,符号由cos的符号所决2两个向量的数量积称为内积, axb,而ab是两个数量的积, 写成ab;今后要学到两个向量的外积书写时要严格区分.3在实数中,假设a 0,且ab=0,那么b=0;但是在数量积中,假设a 0, 且ab=0,不能推出b=0o由于其中cos有可能为0o这就得性质2.4 实数a、b、c(b 0), ab=bc a=c.但是a b = b c a = c 如右图:a b =|a||b|cos = |b||OA|b c = |b|c|cos = |b||OA|l ab=bc 但a c5 在实数中,有(ab)c = a(b c),但是(ab)c a(b c) O b A显然,这是由于左端是与c共线的向量, 而一般a与c不共线.(二)投影的概念及两个向量的数量积的性质:1 .“投影〞的概念:作图而右端是与a共线的向量,O a B1 ziOC: |b|cOs 注意:1投影也是一个数量,不是向量.为锐角时投影为正值;为钝角时投影为负值;为直角时投影为0;=0时投影为|b|;=180时投影为|b|02,向量的数量积的几何意义:数量积a b等于a的长度与b在a方向上投影|b|cos的乘积.3.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.ea = a e =|a|cosa b a b = 0当a与b同向时,a b = |a||b|;当a与b反向时,a b = |a||b|. 特别的aa = |a|2或|a| 0^a b cos = ----|a||b|B5 1abi & |a||b|十一.平面向量的数量积的运算律1 .交换律:a b = b a2 .结合律:(a) b = (a b) = a ( b)3 .分配律:(a + b)c = a c + bc十二.平面向量的数量积的坐标表示1 .设a = (x i, y i), b = (x2, y2), x轴上单位向量i, y轴上单位向量j,那么:i i = 1,j j = 1, i j = j i = 02 .a b = X1X2 + y1y23 .长度、角度、垂直的坐标表示1 a = (x, y) |a|2 = x2 + y2|a| = ,. x2 y22 假设A = (x1, y1), B = (x2, y2),那么AB = J(x1 x2)2 (y1 y2)23 cos =3 ——x1x2 y1y21a | |b|x; y: , x22、24 , , a b a b = 0即x1x2 + y1y2 = 0 (注意与向量共线的坐标表示原十三.平移一、平移的概念:点的位置、图形的位置改变,而形状、大小没有改变,从而导致函数的解析式也随着改变.这个过程称做图形的平移.(作图、讲解) 一个平移实质上是一个向量二、平移公式:设PP'= (h, k),即:OP' OP PP'x' x h(x y ) =乂y) + (h, k) ----- 平移公式y' y k三、注意:1它反映了平移后的新坐标与原坐标间的关系2知二求一3这个公式是坐标系不动,点P(x, y)按向量a = (h, k)平移到点P' x(' y'.)另一种平移是:点不动,把坐标系平移向量a,即:ho这两种变换使点在坐标系中的相对位置是一样k的,这两个公式作用是一致的.十四.正弦定理1正弦定理的表达:在一个三角形中.各边和它所对角的正弦比相等公式即:一a- = —b- = —J它适合于任何三角形.sin A sin B sin C2可以证实一a—=—b—= —J=2R (R为AABC外接圆半径)sin A sin B sin C3每个等式可视为一个方程:知三求从理论上正弦定理可解决两类问题:1 .两角和任意一边,求其它两边和一角;2 .两边和其中一边对角,求另一边的对角,进而可求其它的边和角.十五.余弦定理1 .余弦定理语言描述:三角形任何一边的平方等于其它两边平方的和减去 这两边与它们夹角的余弦的积的两倍.2 .余弦定理公式:a 2b 2c 2 2bccosA,22 2b ac 2accosB 22,2cab 2abcosC4 .强调几个问题:1熟悉定理的结构,注意“平方〞 “夹角〞“余弦〞等 2知三求一3当夹角为90时,即三角形为直角三角形时即为勾股定理〔特例〕cosC、余弦定理的应用能解决的问题:1.三边求角2.三边和它们的夹角求第三边4 变形cos A2bccosB2ac2ac。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量知识点总结第一部分:向量的概念与加减运算,向量与实数的积的运算。

一.向量的概念:1. 向量:向量是既有大小又有方向的量叫向量。

2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:可表示为3.模的概念:向量的大小——长度称为向量的模。

记作:|| 模是可以比较大小的4.两个特殊的向量:1︒零向量——长度(模)为0的向量,记作。

的方向是任意的。

注意与0的区别2︒单位向量——长度(模)为1个单位长度的向量叫做单位向量。

二.向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。

记作:∥∥ 规定:与任一向量平行2. 相等向量:长度相等且方向相同的向量叫做相等向量。

记作:= 规定:=任两相等的非零向量都可用一有向线段表示,与起点无关。

3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。

三.向量的加法:1.定义:求两个向量的和的运算,叫做向量的加法。

注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则:强调: a bca +b AA ABB BC C a +ba +b aa b b ba a1︒“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点2︒可以推广到n 个向量连加 3︒a a a =+=+004︒不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则1︒向量加法的平行四边形法则(三角形法则): 2︒向量加法的交换律:+=+3︒向量加法的结合律:(+) +=+ (+)4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。

四.向量的减法:1.用“相反向量”定义向量的减法1︒“相反向量”的定义:与a 长度相同、方向相反的向量。

记作 -a 2︒规定:零向量的相反向量仍是零向量。

-(-a ) = a任一向量与它的相反向量的和是零向量。

a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 03︒向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。

即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。

2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b3.向量减法做图:表示a - b 。

强调:差向量“箭头”指向被减数总结:1︒向量的概念:定义、表示法、模、零向量、单位向量、平行向量、相等向量、共线向量2︒向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点)1.实数与向量的积实数λ与向量a ρ的积,记作:λa ρ定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ1︒|λa ρ|=|λ||a ρ|2︒λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=2.运算定律:结合律:λ(μa ρ)=(λμ)a ρ①第一分配律:(λ+μ)a ρ=λa ρ+μa ρ②第二分配律:λ(a ρ+b ρ)=λa ρ+λb ρ ③ 3.向量共线充要条件:向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ使b ρ=λa ρ六.平面向量定理:用两个不共线向量表示一个向量;或一个向量分解为两个向量。

(其实质在于:同一平面内任一向量都可以表示为两个不共线向量的线性组合)平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么于一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e注意几个问题:1︒ 1e 、2e 必须不共线,且它是这一平面内所有向量的一组基底2︒ 这个定理也叫共面向量定理3︒λ1,λ2是被a ρ,1e ,2e 唯一确定的数量第二部分:向量的坐标运算 七.向量的坐标表示与坐标运算1.平面向量的坐标表示:在坐标系下,平面上任何一点都可用一对实数(坐标)来表示取x 轴、y 轴上两个单位向量, 作基底,则平面内作一向量a ρ=x +y ,记作:a ρ=(x, y) 称作向量a ρ的坐标2.注意:1︒每一平面向量的坐标表示是唯一的;2︒设A(x 1, y 1) B(x 2, y 2) 则AB =(x 2-x 1, y 2-y 1) 3︒两个向量相等的充要条件是两个向量坐标相等。

3.结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。

同理可得:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。

4.实数与向量积的坐标运算:已知a ρ=(x, y) 实数λ则λa ρ=λ(x +y j )=λx +λy j∴λa ρ=(λx, λy )结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。

八.向量平行的坐标表示结论:a ρ∥b ρ (b ρ≠)的充要条件是x 1y 2-x 2y 1=0注意:1︒消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ρ≠∴x 2, y 2中至少有一个不为02︒充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 3︒从而向量共线的充要条件有两种形式:a ρ∥b ρ (b ρ≠0)01221=-=⇔y x y x λ九.线段的定比分点:1.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)2.定比分点坐标公式⎪⎩⎪⎨⎧++=++=⇒λλλλ112121y y y x x x 3.中点公式:若P 是21P P 中点时,λ=1 222121y y y x x x +=+=4.注意几个问题:1︒ λ是关键,λ>0内分 λ<0外分 λ≠-1 若P 与P 1重合,λ=0P 与P 2重合 λ不存在2︒ 中点公式是定比分点公式的特例3︒ 始点终点很重要,如P 分21P P 的定比λ=21则P 分12P P 的定比λ=2 4︒ 公式:如 x 1, x 2, x, λ 知三求一十.平面向量的数量积及运算律(一)平面向量数量积1.定义:平面向量数量积(内积)的定义,a ⋅b = |a ||b |cos θ, 并规定0与任何向量的数量积为0。

⋅2.向量夹角的概念:范围0︒≤θ≤180︒P 1PP222PPPθ = 0︒ θ = 180︒OO B B3.注意的几个问题;——两个向量的数量积与向量同实数积有很大区别 1︒两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定。

2︒两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而ab 是两个数量的积,书写时要严格区分。

3︒在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0。

因为其中cos θ有可能为0。

这就得性质2。

4︒已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c 。

但是a如右图:a ⋅b = |a ||b |cos β = |b ||OA|b ⋅c = |b ||c |cos α = |b ||OA| ⇒ab =bc 但a ≠ c 5︒在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c ) 显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线。

(二)投影的概念及两个向量的数量积的性质:1.“投影”的概念:作图 定义:|b |cos θ叫做向量b 在a 方向上的投影。

注意:1︒投影也是一个数量,不是向量。

2︒当θ为锐角时投影为正值; 当θ为钝角时投影为负值; 当θ为直角时投影为0; 当θ = 0︒时投影为 |b |; 当θ = 180︒时投影为 -|b |。

2.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积。

3.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量。

1︒e ⋅a = a ⋅e =|a |cos θ 2︒a ⊥b ⇔ a ⋅b = 03︒当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |。

特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a ba ⋅ CO 1O O B 1O O 1O5︒|a ⋅b | ≤ |a ||b |十一. 平面向量的数量积的运算律1. 交换律:a ⋅ b = b ⋅ a2. 结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )3. 分配律:(a + b )⋅c = a ⋅c + b ⋅c 十二. 平面向量的数量积的坐标表示1.设a = (x 1, y 1),b = (x 2, y 2),x 轴上单位向量i ,y 轴上单位向量j ,则:i ⋅i = 1,j ⋅j = 1,i ⋅j = j ⋅i = 02.a ⋅b = x 1x 2 + y 1y 23.长度、角度、垂直的坐标表示1︒a = (x , y ) ⇒ |a|2 = x 2 + y 2 ⇒ |a | =22y x +2︒若A = (x 1, y 1),B = (x 2, y 2),则AB =221221)()(y y x x -+- 3︒ co s θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=4︒∵a ⊥b ⇔ a ⋅b = 0 即x 1x 2 + y 1y 2 = 0(注意与向量共线的坐标表示原则)十三.平移一、平移的概念:点的位置、图形的位置改变,而形状、大小没有改变,从而导致函数的解析式也随着改变。

这个过程称做图形的平移。

(作图、讲解)一个平移实质上是一个向量 二、平移公式:设'PP = (h , k ),即:''PP OP +=∴(x ’, y ’) = (x , y ) + (h , k ) ∴⎩⎨⎧+=+=k y y hx x '' —— 平移公式三、注意:1︒它反映了平移后的新坐标与原坐标间的关系2︒知二求一3︒这个公式是坐标系不动,点P (x , y )按向量a = (h , k )平移到点P ’(x ’,y ’)。

相关文档
最新文档