计算机控制与数据采集
工业自动化中的计算机控制技术
工业自动化中的计算机控制技术工业自动化是指通过计算机、仪器仪表和执行器等技术手段,对工业生产过程进行监测、控制和优化,以提高生产效率、降低成本和改善产品质量。
在工业自动化系统中,计算机控制技术起到了至关重要的作用。
一、计算机控制技术的基本原理和分类1.1 基本原理计算机控制技术是指利用计算机进行物理过程的控制,主要包括采集过程的信息、处理这些信息并对物理过程进行控制的三个环节。
其中,信息采集是指通过传感器等设备,将物理过程的信息转换成计算机可以处理的电信号;信息处理是指利用计算机对采集到的信息进行运算和处理;控制是指计算机根据处理后的信息,通过执行器等设备对物理过程进行干预和调节。
1.2 分类根据计算机控制技术的不同特点和应用领域,可以将其分为以下几类:1.2.1 逻辑控制技术逻辑控制技术是利用计算机对离散事件进行控制的技术,常用于开关控制、计时器等。
逻辑控制技术通过编写逻辑控制程序,根据输入的条件决定输出的动作,实现对工业过程的控制。
1.2.2 过程控制技术过程控制技术是利用计算机对连续过程进行控制的技术,常用于流程控制、温度控制等。
过程控制技术通过采集过程的信息,对其进行处理和分析,并根据处理结果对过程进行控制,实现对工业过程的自动化控制。
1.2.3 模型预测控制技术模型预测控制技术是利用数学模型对系统进行建模,并通过对模型进行预测和优化来实现对工业过程的控制。
模型预测控制技术可以对工业过程进行长期的预测和优化,以达到最佳的控制效果。
二、计算机控制技术在工业自动化中的应用2.1 生产线控制生产线控制是指利用计算机控制技术对生产线上的设备和工艺进行控制,以实现生产过程的自动化。
通过在生产线上布置传感器和执行器等设备,采集生产过程的信息并对其进行处理和控制,可以提高生产效率、降低成本,并提高产品质量的稳定性。
2.2 机器人控制机器人控制是指利用计算机控制技术对机器人进行控制,实现其灵活和自主的工作能力。
自动化常用英文缩写
自动化常用英文缩写自动化(Automation)是指利用计算机技术和控制系统,实现对各种工业和生活过程的自动控制和管理。
在自动化领域中,常用的英文缩写词汇被广泛使用,以简洁明了地表示相关概念和术语。
以下是一些常见的自动化常用英文缩写及其解释:1. PLC:Programmable Logic Controller(可编程逻辑控制器)PLC是一种用于工业自动化控制系统的特殊计算机,用于控制和监控生产过程中的各种设备和机械。
它能够根据预先编制的程序进行逻辑运算和决策,实现自动化控制。
2. SCADA:Supervisory Control and Data Acquisition(监控与数据采集)SCADA系统用于监控和控制分布式设备和系统,以实现对生产过程的监视和控制。
它通过采集和处理实时数据,提供操作员界面和报警功能,匡助运营人员做出决策。
3. HMI:Human Machine Interface(人机界面)HMI是一种用户界面设备,用于人与机器之间的交互操作和信息显示。
它可以通过触摸屏、键盘、鼠标等方式与自动化系统进行通信,实现对设备状态的监控和控制。
4. DCS:Distributed Control System(分布式控制系统)DCS是一种分布式的控制系统,用于监控和控制工业过程中的各个单元或者设备。
它由多个控制器组成,分布在不同的位置,并通过通信网络进行数据交换和协调。
5. MES:Manufacturing Execution System(创造执行系统)MES是一种用于管理和控制创造过程的信息系统。
它与企业资源计划(ERP)系统集成,用于跟踪和控制生产计划、物料流动、质量管理等环节,提高生产效率和质量。
6. CNC:Computer Numerical Control(计算机数控)CNC是一种通过计算机控制运动和操作的自动化系统,用于控制机床和其他创造设备。
它可以根据预先编程的指令,精确地控制机器的运动轨迹和工作过程。
计算机控制系统典型结构
计算机控制系统典型结构典型的计算机控制系统结构如下:1.传感器传感器是计算机控制系统中的重要组成部分,用于感知环境变化并将其转化为电信号。
传感器可以测量温度、湿度、压力、光照强度、速度等物理量,将这些物理量转化为电信号,并输入给控制系统。
2.数据采集和信号处理模块数据采集和信号处理模块用于接收传感器传输的信号,并对信号进行处理和转换。
该模块主要包括模数转换器(A/D转换器),能够将模拟信号转化为数字信号;数字信号处理芯片,用于对数字信号进行滤波、放大、调制等处理。
3.控制器控制器是计算机控制系统中的核心部分,负责生成控制信号,并对执行器进行控制。
控制器根据传感器采集到的数据,结合预设的控制算法,计算出相应的控制信号,并将其输出给执行器。
4.执行器执行器是计算机控制系统中的输出部分,用于对控制信号进行物理操作。
执行器可以是电动机、电磁阀、液压缸等,它们根据收到的控制信号进行动作,将能量转化为机械运动或其他形式的输出。
5.人机界面人机界面使人们能够与计算机控制系统进行交互,包括显示器、键盘、触摸屏等。
通过人机界面,用户可以监控系统运行状态、设置参数、接收报警信息等。
6.通信模块通信模块用于与其他系统或设备进行数据交换和通信。
它可以实现计算机控制系统与其他控制系统、计算机网络或外部设备之间的数据传输。
通信模块可以使用串口、以太网、无线传输等方式。
7.控制算法控制算法是计算机控制系统中的重要组成部分,它决定着控制系统的性能和稳定性。
控制算法根据传感器采集的数据和预设的控制目标,对系统进行调度和控制。
常见的控制算法包括PID控制算法、模糊控制算法、神经网络控制算法等。
8.数据存储与处理数据存储与处理模块用于存储和处理控制系统中产生的数据。
它可以将数据存储在内存、硬盘或其他存储介质中,以供后续分析和决策使用。
数据处理模块则根据需要对存储的数据进行分析、计算和统计。
以上是计算机控制系统的典型结构,其组成部分相互协作,完成物理操作的控制和调度。
计算机数据采集及处理
读书报告:计算机数据采集及处理主要内容:计算机数据采集系统数字滤波标度变换可靠性越限报警一、计算机数据采集系统1.数据采集与处理的作用和分类数据采集是指将生产过程的物理量采集并转换成数字量以后,再由计算机进行存储、处理显示或者打印的过程。
计算机数据采集系统的任务,就是采集各类传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机;计算机根据需要进行相应的计算、处理并输出,以便实现对生产过程的自动监控。
一般监控系统采集数据大致可分为以下八类:输入模拟量。
它是指将现场具有连续变化特征的电气量和非电气量直接或经过变换后,输入到计算机系统的接口设备的物理量。
适合计算机系统的模拟量参数范围包括0~5VDC、0~10VDC、0~20mA、±20mA、4~20mA等。
输出模拟量。
它是指计算机系统接口设备输出的模拟量,输入开关量。
它是指过程设备的状态或者位置的指示信号,输入到计算机系统接口设备的数字量(即开关量),此类数字输入量一般适用一位“0”或“1”表示。
输出开关量。
它是指计算机系统接口设备输出的监视或者控制的数字量,在生产过程控制中为了安全可靠,一般输出开关量是经过继电器隔离的。
输入脉冲量。
它是指过程设备的脉冲信息输入到计算机系统接口设备,由计算机系统进行脉冲检测的一位数字量,如机组齿盘测速信号。
数字输入BCD码。
它是将BCD码制数字型的输入模拟量输入到计算机系统接口设备,一个BCD码输入模拟量一般要占用16位数字量输入通道。
数字输入事件顺序记录(SOE)量。
它是指将数字输入状态量定义成事件信息量,要求计算机系统接口设备记录输入量的状态变化及其变化发生的精确时间,一般应能满足5ms分辨率要求。
在监控系统中,机组货电气设备的事故信号均以SOE量输入,系统对SOE量以中断的方式响应。
外部数据报文。
它是将过程设备或者外部系统的数据信息,以异步或同步报文通过串行口与计算机系统交换数据。
2.模拟量的输入与输出模拟量的输入与输出通道,是计算机控制系统的一个重要组成部分。
第四章 数据采集和控制
第四章数据采集和控制4.1概述在控制系统中,现场的原始数据,如温度、压力、设备状态等,是系统的基础和关键,无法获取这些数据,所有针对它们进行的计算和操作就都是错误的,离开了这些数据系统就象人没有了视觉和触觉一样,自动化就是一句空话。
同样地,建立在控制系统基础之上的监控系统,及时准确地采集和控制数据也是组态软件的基础。
不过作为更高层次的系统,监控系统在实时性等方面比控制系统的要求要低。
例如,控制系统是通过电缆连接现场的每个信号/数据的,数据的采集,运算处理和控制动作很快,而监控系统一般通过通信线路从控制系统中取得现场数据,实时性就低很多,运算处理一般都是和监控相关的,并不参与过程控制,即使数据连接通信断开了,对过程控制也没有大的影响。
4.2 控制网络数据传输介绍要想了解组态软件的数据采集和控制的方式,就要了解控制系统的网络构成,对于大多数控制系统来说,一般的网络构成主要有三部分:现场层,控制层,监控层。
图4.1 控制系统和监控系统的数据采集和控制现场层:这一层包括现场的各种设备,是控制系统的被控对象,在数据传输方面主要提供数据的传输接口,这些接口包括串口,以太网等控制层:这一层包括各种对现场层设备的控制元件,是控制系统的执行机构,在数据传输方面主要是把现场来的各类电信号转换为数据信号。
监控层:这一层包括各类监控设备和数据处理设备,是控制系统的控制中心,在数据传输方面主要是对控制层来的各种数据进行处理。
上面说了数据传输的三层网络,那么数据是怎么在这三层之间传输呢?这就需要了解数据传输的介质,这些介质就包括传输的硬件和传输的协议。
4.2.1 设备硬件1、RS-232 接口在串行通讯时,要求通讯双方都采用一个标准接口,使不同的设备可以方便地连接起来进行通讯。
RS-232接口是目前最常用的一种串行通讯接口。
在RS-232 中任何一条信号线的电压均为负逻辑关系。
即:逻辑"1"为-3 到-15V;逻辑"0"为+3 到+15V 。
计算机控制课程设计数据采集系统设计正文
1 引言数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。
数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。
数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。
随着计算机技术的飞速发展和普及,数据采集系统在多个领域有着广泛的应用。
数据采集是工、农业控制系统中至关重要的一环,在医药、化工、食品、等领域的生产过程中,往往需要随时检测各生产环节的温度、湿度、流量及压力等参数。
在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。
随着计算机在工业控制领域的不断推广应用,将模拟信号转换成数字信号已经成为计算机控制系统中不可缺少的重要环节,因此数据采集系统有着更加重要的意义。
本次的课程设计中,我通过查阅有关资料,确定了系统设计方案,并设计了硬件电路图,分析主要模块的功能及他们之间的数据传输和控制关系。
最后利用Protel绘制了电路原理图,Keil编写源代码。
本课程设计采用89C51系列单片机,设计的系统由硬件和软件两部分构成,硬件部分主要完成数据采集,软件部分完成数据处理和显示。
数据采集采用AD0809模数转换芯片,具有很高的稳定性,采样的周期由可编程定时/计数器8253控制。
完成采样的数据后输入单片机内部进行处理,并送到LED显示。
软件部分用Keil 软件编程,操作简单,具有良好的人机交互界面。
程序部分负责对整个系统控制和管理,采用了汇编语言进行了判别通道、数据采集处理、数据显示、数据通信等程序设计,具有较好的可读性。
使系统实现了通过一个A/D转换器采样一个模拟电压,每隔一定时间去采样一次,每次相隔的时间由定时器/计数器芯片8253控制,采样的结果送入A/D转换器芯片0809,转换完成后,把转换好的数字信号送入并行接口芯片8255,然后由中断控制器向CPU发出中断请求,在CPU控制下把8225中的数字送入外设即CRT/LED 显示。
计算机控制系统-4-数据采集与处理技术 (2)
+Vs -Vs VIN OFFSET CH LF398 IN OUT IN +
V EE Vcc V DD REF OFF DB11 BIF OUT P0.7 REF IN AD574 VIN STS 12/8 DG AG DB 0 CE R/C A0 CS P 0.0 RD WR A0 P2.7 P2.6 A1 A2
3)、平均值滤波法一般适用于具有周期性干扰噪声的信号, 但对偶然出现的脉冲干扰信号,滤波效果尚不理想。
中位值滤波法
中位值滤波法的原理是对被测参数连续采样m 次(m≥3)且是奇数,并按大小顺序排列;再取中间 值作为本次采样的有效数据。
特点: 中位值滤波法对脉冲干扰信号等偶然因素引发 的干扰有良好的滤波效果。如对温度、液位等变化 缓慢的被测参数采用此法会收到良好的滤波效果; 对流量、速度等快速变化的参数一般不宜采用中位 值滤波法。
4.2.3 模拟量数据采集的预处理方法
包括:有效性检查与数字滤波技术
1、有效性检查
检查被测量是否 在信号标准的上 下限值范围内。
2、 数字滤波技术
所谓数字滤波,就是通过一定的计算或判断程序减少干 扰在有用信号中的比重。故实质上它是一种程序滤波。 与模拟滤波器相比,有以下几个优点:
(1)数字滤波是用程序实现的,不需要增加硬设备,所以可靠性高,稳定 性好。 (2)数字滤波可以对频率很低(如0.01HZ)的信号实现滤波,克服了模拟滤 波器的缺陷。 (3)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤波参数, 具有灵活、方便、功能强的特点。
采样数据明显存在被干扰现象(彩色数据)。
对1、2、3次采样中位值滤波后值:24
对4、5、6次采样中位值滤波后值:27
对7、8、9次采样中位值滤波后值:25
控制系统的数据采集与处理技术
控制系统的数据采集与处理技术随着科技的不断发展和进步,控制系统在各个领域中起着举足轻重的作用。
而控制系统的数据采集与处理技术则是其中至关重要的一环。
本文将对控制系统的数据采集与处理技术进行探讨,从数据采集的方式、处理方法以及技术应用等方面进行分析。
一、数据采集方式在控制系统中,数据采集是指将现实世界中的各种信息转化为计算机可以处理的数据形式。
常见的数据采集方式包括模拟信号采集和数字信号采集。
1. 模拟信号采集模拟信号采集是指将模拟信号通过模数转换器(ADC)转化为数字信号的过程。
在控制系统中,我们通常会采用传感器将各种物理量转化为电压或电流信号,再经过一定的放大和滤波处理后,将模拟信号送入ADC进行采样和转换。
2. 数字信号采集数字信号采集是指直接获取数字信号的过程。
例如,计算机数字输入/输出卡(DAQ)可以直接采集各种数字信号,并进行存储和处理。
数字信号采集具有抗干扰性强、采集速度高等优点,被广泛应用于控制系统中。
二、数据处理方法数据采集完成后,接下来就需要进行数据处理,以提取有用的信息,并为后续的控制决策提供依据。
在控制系统中,常用的数据处理方法包括滤波、数据压缩、特征提取以及智能算法等。
1. 滤波滤波是数据处理的基本方法之一,其目的是去除数据中的噪声和干扰,保留有用信号。
滤波方法包括低通滤波、高通滤波、带通滤波等,具体选择滤波器的类型和参数应根据实际情况进行。
2. 数据压缩对于大规模的数据集,为了减少数据存储和传输的开销,需要对数据进行压缩。
数据压缩可以分为有损压缩和无损压缩两种方式,具体选择哪种方式取决于对数据精度和压缩比的要求。
3. 特征提取数据处理的另一个重要环节是特征提取,即从原始数据中提取出对问题解决有帮助的特征。
常见的特征提取方法包括傅里叶变换、小波变换、主成分分析等,可以通过这些方法将原始数据转化为更具代表性和可分离性的特征。
4. 智能算法随着人工智能技术的快速发展,智能算法在控制系统数据处理中得到了广泛应用。
SCADA系统介绍
SCADA系统介绍SCADA系统是工控领域的一个重要应用形态,是一种基于现代信息处理技术及监测技术实现生产过程自动化控制和数据管理的系统,可以实现生产设备的远程监测和控制。
本文将对SCADA系统的定义、功能、组成部分、原理及应用领域等进行详细介绍。
一、 SCADA系统的定义SCADA是英文Supervisory Control And Data Acquisition系统的简称,也叫作监控与数据采集系统。
SCADA系统是一种应用于工业生产控制领域的现代化自动化系统。
SCADA系统通过远程数据采集和数据传输技术,实现了对生产设备的远程监测、控制和管理,其主要功能包括数据采集、数据处理、数据存储、报警和自动控制等。
二、 SCADA系统的功能SCADA系统在企业生产中的主要功能是实现生产设备的远程监测和控制,包括以下几个方面的功能:1、远程监测:通过远程传输数据技术,实时监测生产现场的各项参数数据,如温度、湿度、压力、流量、浓度、电流、电压等。
2、远程控制:通过远程控制技术,远程控制生产线上的各项设备,包括开关灯、开关机、调节温度、调节压力等。
3、数据记录:自动记录生产现场的各项参数数据,并进行存储,便于历史数据的查询和统计分析。
4、报警提示:根据预设的参数阈值,当生产现场某些参数出现异常时,及时发出报警提示,以保障生产设备的安全运行。
三、 SCADA系统的组成部分SCADA系统分为两个主要部分:前端和后端。
前端负责数据采集、数据处理、监视等工作,后端负责数据存储、统计分析、报警处理等工作。
下面将对SCADA系统的组成部分进行详细介绍。
1、前端前端包括数据采集设备、人机界面和通信模块等几个部分。
(1)数据采集设备数据采集设备通常由传感器、信号处理器、数据采集卡、数据采集仪器等组成。
传感器主要负责测量生产现场各项参数,信号处理器则负责对传感器采样的模拟信号进行处理,并将处理后的信号转化为数字量信号,数字量信号经过数据采集卡转化为计算机能够识别的信号,最后数据采集仪器将数据发送到计算机,供后续处理使用。
1.3.1-第一部分SCADA系统教材_第三章中控系统
主讲人:吕峰(北京油气调控中心)一、SCADA系统的定义及应用1、定义SCADA系统(Supervisory Control And Data Acquisition),即监视控制与数据采集系统,以计算机控制软件系统、通信线路、现场控制与数据采集单元为基础的生产过程控制与调度自动化系统。
它能通过现场控制与数据采集单元收集场站设施的生产操作信息,并通过通信线路将信息传送到远方的调度控制中心通过计算机软件系统进行显示和报告,控制中心的操作员监视这些信息,并能向远方的场站设施发布控制指令。
一、SCADA系统的定义及应用2、应用领域SCADA系统的应用领域很广,它可以应用于石油、化工、电力、给水、交通等领域。
油气管道SCADA系统的主要任务是通过各站的站控系统(PLC)或远控截断阀室(RTU)完成管道数据采集、数据处理及存储归档、设备和流程控制、故障处理、安全保护、报警等任务,同时完成批量跟踪、顺序输送、泄漏检测、输油泵运行优化、输油泵故障诊断及分析、仪表故障诊断及分析、罐区管理等功能。
调度操作人员通过SCADA 系统操作员工作站提供/显示的管道系统工艺过程的压力、温度、流量、密度、设备运行状态等信息,完成对管道全线的监控及运行管理。
二、油气管道SCADA系统组成油气管道SCADA系统以4C(C omputer,C ontrol,C ommunication,C RT)技术,即计算机、通讯、控制和图形显示技术为基础,网络结构主要由即中控系统(DCC),站控系统(SCS),以及通信系统(COMM)三部分构成,实现遥信、遥测、遥控和遥调,“四遥”功能。
二、油气管道SCADA系统组成1、中控系统SCADA系统的控制中心部分称为主站系统或中控系统,中控系统一般采用先进的服务器、工作站、网络设备等硬件,以及通讯、图形显示、过程控制、数据库等软件构成,整个中控系统是一套集数据采集、信息展示、逻辑控制、数据存储功能的复杂的软硬件系统。
单片机数据采集控制系统
单片机数据采集控制系统
单片机数据采集控制系统是一种利用单片机进行数据采集和控制的系统。
它通
常由单片机、传感器、执行器和外围电路组成。
在系统中,传感器用于采集环境或者物体的各种参数,例如温度、湿度、光强等。
传感器将采集到的摹拟信号转换为数字信号,并通过接口与单片机进行通信。
单片机作为系统的核心部件,负责接收传感器的信号,并进行数据处理和控制。
它可以根据采集到的数据进行各种算法运算,实现对环境或者物体的监测和控制。
同时,单片机还可以通过与执行器的通信,控制执行器的动作,实现对系统的控制。
外围电路主要包括供电电路、通信接口电路、显示电路等。
供电电路为系统提
供稳定的电源,通信接口电路实现单片机与外部设备的通信,显示电路用于显示系统的数据或者状态。
单片机数据采集控制系统在工业自动化、环境监测、智能家居等领域具有广泛
的应用。
它可以实时采集和处理数据,提高系统的自动化程度和智能化水平,提高工作效率和质量。
什么是SCADA
什么是SCADA?(详细介绍)SCADA(Supervisory Control And Data Acquisition)系统,即数据采集与监视控制系统。
SCADA系统的应用领域很广,它可以应用于电力系统、给水系统、石油、化工等领域的数据采集与监视控制以及过程控制等诸多领域。
在电力系统以及电气化铁道上又称远动系统。
SCADA系统是以计算机为基础的生产过程控制与调度自动化系统。
它可以对现场的运行设备进行监视和控制,以实现数据采集、设备控制、测量、参数调节以及各类信号报警等各项功能。
由于各个应用领域对SCADA的要求不同,所以不同应用领域的SCADA系统发展也不完全相同。
在电力系统中,SCADA系统应用最为广泛,技术发展也最为成熟。
它作为能量管理系统(EMS系统)的一个最主要的子系统,有着信息完整、提高效率、正确掌握系统运行状态、加快决策、能帮助快速诊断出系统故障状态等优势,现已经成为电力调度不可缺少的工具。
它对提高电网运行的可靠性、安全性与经济效益,减轻调度员的负担,实现电力调度自动化与现代化,提高调度的效率和水平中方面有着不可替代的作用。
实时数据库概述实时数据库RTDB(Real-Time Data Base)是数据和事务都有定时特性或显示的定时限制的数据库。
RTDB的本质特征就是定时限制,定时限制可以归纳为两类:一类是与事务相联的定时限制,典型的就是“截止时间”;另一类为与数据相联的“时间一致性”。
时间一致性则是作为过去的限制的一个时间窗口,它是由于要求数据库中数据的状态与外部环境中对应实体的实际状态要随时一致,以及由事务存取的各数据状态在时间上要一致而引起的。
实时数据库是一个新的数据库研究领域,它在概念、方法和技术上都与传统的数据库有很大的不同,其核心问题是事物处理既要确保数据的一致性,又要保证事物的正确性,而它们都与定时限制相关联。
实时数据库子系统是SCADA系统的核心之一。
实时数据库子系统设计包含实时数据库结构设计和实时数据库管理程序设计两部分组成,实时数据库结构设计主要根据SCADA系统的特点和要求设计实时数据库的结构。
计算机控制系统数据采集与处理技术全解
计算机控制系统数据采集与处理技术全解1. 引言计算机控制系统在现代工业自动化领域起着至关重要的作用。
在计算机控制系统中,数据采集与处理是其中的核心环节之一。
本文将全面介绍计算机控制系统数据采集与处理技术,包括数据采集的原理和方法、数据处理的技术和算法等。
2. 数据采集的原理和方法数据采集是指通过各种传感器和仪器,将现实世界中的各种物理量、事件等转化为计算机可以接受和处理的数字信号。
数据采集的原理主要涉及模拟信号的采样与量化、传感器的选择与应用等方面。
2.1 模拟信号的采样与量化模拟信号是连续变化的信号,为了能够在计算机中进行处理,首先需要将模拟信号进行采样和量化。
采样是指将模拟信号在时间上进行离散化,而量化是指将采样后的信号在幅度上进行离散化。
常用的采样与量化方法有脉冲采样、均匀量化和非均匀量化等。
2.2 传感器的选择与应用在数据采集过程中,传感器的选择和应用决定了数据采集的准确性和可靠性。
常见的传感器包括温度传感器、压力传感器、速度传感器等。
根据不同的应用场景,选择合适的传感器进行数据采集,可以提高数据采集的精度和稳定性。
3. 数据处理的技术和算法数据采集是为了获取各种物理量和事件的数字信号,而数据处理则是对这些数字信号进行分析和处理,从中提取出有用的信息。
数据处理的技术和算法包括数据滤波、数据压缩、数据插值等。
3.1 数据滤波数据滤波是指对采集到的数据进行平滑处理,去除掉其中的噪声和干扰。
常见的数据滤波方法有移动平均滤波、中值滤波、滑动窗口滤波等。
3.2 数据压缩数据压缩是指对采集到的数据进行压缩编码,以减少存储空间和传输带宽的占用。
常见的数据压缩方法有哈夫曼编码、LZW编码、JPEG压缩等。
3.3 数据插值数据插值是指通过已知数据点之间的关系,推算出缺失数据点的数值。
常见的数据插值方法有线性插值、多项式插值、样条插值等。
4. 数据采集与处理系统的设计与实现在实际应用中,数据采集和处理通常并不是独立进行的,而是需要设计和实现一个完整的数据采集与处理系统。
浅谈SCADA系统与MES系统的关系
浅谈SCADA系统与MES系统的关系导读:随着中国智能制造2025的行业大趋势不断推进,国内制造业升级成为了共识。
企业想要打造信息化、智能化工厂离不开MES系统和SCADA系统,今天华磊迅拓就和大家聊一聊SCADA 系统与MES系统的关系。
SCADA的英文是Supervisory Control And DataAcquisition,监控与数据采集,从名称可以看出SCADA系统的主要功能数据采集和监控。
一般的SCADA系统由上位机和下位机及通信网络组成,随着企业业务规模的不断壮大及互联网技术的发展,第三代SCADA也就是网络化阶段的大型SCADA系统在结构上更加开放,兼容性更好,可以无缝集成到全厂综合自动化系统中。
由此大型SCADA系统规模、稳定性及开放性要求更高,可以由几百点到上万点,用户对SCADA系统的需求越来越多样化,因此对于系统架构提出了更高的要求。
对于现代工业企业,如何能使决策者随时查看生产过程数据,以便快速地做出更为灵活的商业决策,是企业信息化建设的关键,在企业MES所关注的各项资源中,生产过程信息依然是重要的资源,如果不能解决生产过程信息实时有效上传的问题,将仍然无法充分利用和保障MES及ERP管理系统的投资。
在流程工业生产过程及调度优化需要将大量的实时测量数据进行集成和存储,采用集散控制系统(DCS)和关系数据库技术难以满足速度和容量的要求,同时无法平台化和标准化,相关接口不统一,访问复杂,不适合大规模集成的需要。
因此以分布式实时库设计的SCADA系统及实时数据库系统紧密的关联到了一起。
实时数据库系统能够提供高速、及时的实时数据服务,能够有效地集成异构控制系统,提供分布式的数据服务,使企业全生产过程控制和业务管理相结合。
企业综合管理系统、生产指挥、监控调度系统不可或缺的包括SCADA系统组及实时数据库系统,构建这些业务系统包括采集服务器、SCADA服务器、实时历史数据库服务器、关系业务数据服务器、报警服务器等。
自动控制系统的数据采集与处理
自动控制系统的数据采集与处理自动控制系统是一种利用计算机和相关技术实现自动化控制的系统。
而数据采集与处理是自动控制系统中至关重要的一环。
本文将就自动控制系统的数据采集与处理进行探讨。
一、数据采集的定义与目的数据采集是指通过各种传感器或测量设备收集目标对象的信息,并将其转换为可理解和处理的数据形式。
数据采集的目的在于提供真实、准确的信息,为后续的数据处理和决策提供支持。
二、数据采集的方法与技术1. 传感器技术传感器是实现数据采集的核心技术之一。
常见的传感器有温度传感器、压力传感器、流量传感器等。
通过传感器可以将目标对象的物理量转换为可测量和可记录的电信号或数字信号。
2. 通信技术数据采集需要将采集到的数据传输至数据处理单元或者上位机进行进一步处理。
常见的通信技术包括有线通信和无线通信。
有线通信主要采用常见的通信接口,如RS232、RS485,而无线通信可采用蓝牙、WiFi、LoRa等无线传输方式。
3. 数据压缩与优化在进行数据采集时,要考虑到数据的实时性、精确性以及数据量对系统的负荷影响等因素。
对于大量数据采集的系统,可以采用数据压缩与优化技术,减少数据的冗余和传输压力。
三、数据处理的定义与过程数据处理是指对采集到的原始数据进行处理、分析和计算,得到有用的信息和结果的过程。
数据处理的目标在于从原始数据中获取有意义的信息,并为决策提供依据。
数据处理的过程主要包括数据预处理、特征提取、建模与仿真、控制策略设计等环节。
具体而言,数据预处理用于对原始数据进行滤波、降噪、纠正等操作;特征提取则对数据进行统计分析和特征提纯,以获取更有意义的指标和特征;建模与仿真阶段将采集到的数据进行建模分析,并通过仿真验证不同的控制策略的可行性;最后,控制策略设计环节将整合前期处理得到的信息和模型,进一步优化与控制系统的设计。
四、数据采集与处理在自动控制系统中的应用自动控制系统中的数据采集与处理广泛应用于工业自动化、军事装备、环境监测、交通运输等各个领域。
实验四 传热综合计算机数据采集和过程控制实验
4.4传热综合计算机数据采集和过程控制实验一、实验目的⒈ 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。
⒉ 应用线性回归分析方法,确定圆管内强制湍流对流传热关联式Nu=ARe m Pr 0.4中常数A 、m 的值。
⒊ 通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m 中常数B 、m 的值和强化比Nu/Nu 0,了解强化传热的基本理论和基本方式。
4.了解热电偶测温技术以及传热过程计算机数据采集和过程控制技术。
1 普通套管换热器传热系数及其准数关联式的测定⒈ 对流传热系数i α的测定对流传热系数i α可以根据牛顿冷却定律,用实验来测定。
因为i α<<o α ,所以传热管内的对流传热系数≈i α 热冷流体间的总传热系数()/i m i K Q t S =∆⨯ (W/m 2·℃),即im i i S t Q ⨯∆≈α (4-13)式中:i α—管内流体对流传热系数,W/(m 2·℃); Q i —管内传热速率,W ;S i —管内换热面积,m 2; m t ∆—对数平均温差,℃。
对数平均温差由下式确定: 1212()()()ln()w i w i m w i w i t t t t t t t t t ---∆=-- (4-14)式中:t i1,t i2—冷流体的入口、出口温度,℃;t w —壁面平均温度,℃;因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示,由于管外使用蒸汽,近似等于热流体的平均温度。
管内换热面积:i i i L d S π= (4-15)式中:d i —内管管内径,m ;L i —传热管测量段的实际长度,m 。
由热量衡算式:)(12i i pi i i t t c W Q -= (4-16) 其中质量流量由下式求得:3600i i i V W ρ=(4-17)式中:V i —冷流体在套管内的平均体积流量,m 3 / h ; c pi —冷流体的定压比热,kJ / (kg ·℃); ρi —冷流体的密度,kg /m 3。
简述计算机控制系统的一般控制过程
1.简述计算机控制系统的一般控制过程。
答:(1) 数据采集及处理,即对被控对象的被控参数进行实时检测,并输给计算机进行处理;(2) 实时控制,即按已设计的控制规律计算出控制量,实时向执行器发出控制信号。
2.简述典型的计算机控制系统中所包含的信号形式。
答:(1) 连续信号连续信号是在整个时间范围均有定义的信号,它的幅值可以是连续的、也可以是断续的。
(2) 模拟信号模拟信号是在整个时间范围均有定义的信号,它的幅值在某一时间范围内是连续的。
模拟信号是连续信号的一个子集,在大多数场合与很多文献中,将二者等同起来,均指模拟信号。
(3) 离散信号离散信号是仅在各个离散时间瞬时上有定义的信号。
(4) 采样信号采样信号是离散信号的子集,在时间上是离散的、而幅值上是连续的。
在很多场合中,我们提及离散信号就是指采样信号。
(5) 数字信号数字信号是幅值整量化的离散信号,它在时间上和幅值上均是离散的。
3. 对于n阶线性定常离散系统(1)()()xkAxkBuk ;0(0)xx ,若存在有限个输入向量序能将某个初始状态0 (0)xx 在第l步控制到零状态,即列 (0),(1),,(1)uuul nl()0xl ,则称此状态是能控的。
若系统的所有状态都是能控的,则称此系统) ,(BA是状态完全能控的,或简称系统是能控的。
4. 为提高计算机控制系统的可靠性,通常采取的措施有哪些?答:为提高计算机控制系统的可靠性,通常采取以下几种措施: (1) 提高元器件和设备的可靠性。
(2) 采取抗干扰措施,提高系统对环境的适应能力。
(3) 采用可靠性设计技术。
(4) 采用故障诊断技术。
5. 简述比例调节,积分调节,微分调节的作用?(1)比例调节器:比例调节器对偏差是即时反应的,偏差一旦出现,调节器立即产生控制作用,使输出量朝着减小偏差的方向变化,控制作用的强弱取决于比例系数KP。
比例调节器虽然简单快速,但对于系统响应为有限值的控制对象存在静差。
计算机控制技术
计算机控制技术计算机控制技术是指利用计算机作为控制装置来实现对各种设备、系统或过程的控制和调节的一种技术手段。
在现代工业生产、交通运输、能源调控等领域,计算机控制技术已经得到广泛应用,并起到了至关重要的作用。
一、概述计算机控制技术是利用硬件和软件手段,实现对设备、系统或过程的自动控制和调节。
它由硬件和软件两个层面构成,具体应用根据不同的需求和控制对象进行调整和设计。
二、基本原理计算机控制技术基于控制理论,利用计算机进行数据采集、处理和控制指令的执行。
其基本原理包括以下几个方面:1. 信号采集:利用传感器或检测设备将控制对象的不同参数转换成电信号,并通过模数转换器将模拟信号转换为数字信号。
2. 数据处理:通过采集到的数字信号进行数据处理,包括滤波、放大、处理等操作。
3. 控制算法:根据预定的控制算法,利用计算机进行逻辑判断和计算,得出控制指令。
4. 控制执行:将计算机计算得到的控制指令转化为控制信号,通过执行器或执行机构对控制对象进行控制。
三、应用领域计算机控制技术在各个领域都有广泛的应用,特别是在工业自动化控制、交通运输和能源调控方面。
1. 工业自动化控制:在工业生产过程中,计算机控制技术能够实现生产线的自动化控制,提高生产效率和质量。
例如,通过计算机控制技术可以实现对机械手臂的精确控制,完成自动装配任务。
2. 交通运输:在交通运输领域,计算机控制技术可以用于交通信号控制、智能交通系统等方面,提高交通运输的效率和安全性。
例如,通过计算机控制技术可以实现对交通信号灯的智能控制,根据实时交通情况进行信号灯的调整。
3. 能源调控:计算机控制技术在能源领域的应用尤为重要。
通过对能源系统进行精确的监测和控制,可以提高能源利用效率,减少能源浪费。
例如,在电力系统中,计算机控制技术可以对电网进行实时监测和调控,确保电力的稳定供应。
四、发展趋势计算机控制技术正朝着智能化和网络化方向发展。
随着人工智能和物联网等技术的不断发展,计算机控制技术将更加智能化地应用于各个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则:
Hl gx2 x1 c
故:
100 R lg
x2 x1
在分析仪器中,剩余度常被定义为:
R = Iman — I
即它是分析过程中被保留,未被利用的信息量的度量。 剩余度大表示该仪器的效率低。
2020/10/19
三、信号与噪声
signal and noise
本底信号: 没有试样时,仪器产生的信号;随机噪声;
2020/10/19
有关问题
(1) 采样保持电路
转换需一定时间,在转 换时,保持输入量。
(2) 干扰及其抑制
干扰源:电器,电机等
通过阻抗耦合、电场耦 合、磁场耦合等途径进入数 据采集系统。
如右图所示
加屏蔽线,正确接地, 屏蔽线应接现场地。
2020/10/19
Nyquist采样规则
计算机处理的任何变量都只能是分立取值,数组;如果 要无限精确描述一个连续量----采样间隔为零;受采样速度, 存储空间限制,实际不可能也不必要。 如何确定采样频率:保证信号不失真? 采样频率:以最高频率的2倍速度采样。
第二章 计算机与仪器分析
computer and instrument analysis
第二节 计算机控制与
数据采集
computer control and data collection
一、数-模转换(DAC)与计算 机控制技术
analog-digital converter (ADC) and technology of computer control 二、数据采集技术与模-数 转换器(ADC)
1. 曲线拟合
用数学方法将获取的数据作曲线拟合。方法: (1)根据实际获得的曲线找出与此曲线适应的数学模型;
(2)以实验得到的数据对(Xi,Yi),代入数学模型(关系式) ,用最小二乘法求出模型中的待定参数。
关键点:选择正确的数学模型
例:非正态色谱曲线,可采用r函数与指数衰减曲线相结合的 数学模型。
仅测定出Cu2+时的信息量,测定出Cu2+ 、 Zn2+时的信息量 分别是多少?(阴离子不能检测)。
2020/10/19
4. 定量分析中有关参数与信息量
在定量分析实验中,如果实验前知道某一组分的大致范
围时,即p(x)均匀地分布在(x1,x2)区间内,则:
H 0x x 1 2x 1 1x 2ln x 2 1x 1d xln x 2 (x 1)
2020/10/19
3. 信号求导
消除背景和重叠峰的干扰,提高分辨率和灵敏度。 方法:模拟微分电路或求导程序软件。
微分谱比原谱对谱特征的细微变化反应要灵敏的多,被 隐藏的谱的特征可以通过对原谱图的微分而得到加强。 应用:
(1)光谱图、色谱图:重叠峰、弱肩峰的区分; (2)电位滴定曲线的导数曲线容易确定滴定钟点。 注意点:微分时,原谱的噪声也被加强,高阶导数谱的噪声 增大的更明显,解决方法:对原谱进行平滑处理。
通过化学数据分析提供更多化学信息。 范畴:纯化学与量子化学之间凡涉及计算和计算机的所有领域。 应用举例:大连湾海水污染物与污染源之间的关系;控制
由尿样获取身体健康状况的全部信息;简化 化合物性质数据——结构,结构与性质的关系;新药 产品质量检验——生产中的问题;决策 犯罪现场的烟雾分析:香烟牌号,种类;破案
分析化学中的应用: (1) 多种微量元素的分布与健康(或疾病)的关系 (2) 物质中复杂成分的含量分析 (3) 各种谱的特征与性质关系 (4) 分子结构与谱特征的关系
2020/10/19
1. 多元分析方法的特点
在多元分析中,对每个研究对象(每个观察样本都有M 个变量或参数)取值,考察N个观察对象的集合就作成一张 N*M的数据表。
种类: 积分式:高精度,低速度 跟踪式:高速,
易受噪声 影响 多比较器式:最高速,
高分辨 逐次逼近式:高速,
高分辨
2020/10/19
ADC原理
多比较器式(右图) 10位,需1023个的转换器, 每个比较器对应一个逻辑输出。
设定一数据值,送入 DAC,产生Vb ,与Vi比较, C 满 足要求时,输出一个二进制数字。类似于天平称量加砝码, 但由大到小。
data collect and digital analog converter and
一、计算机控制与数-模转换器 ( DAC)
computer control and digital-analog converter (DAC)
计算机:数字符号; 分析仪器:模拟信号(电压或电流) Digital-Analog Converter ( DAC) 作用:将数字信号转变成模拟量。实现计算机控制。
剩余度是熵偏离其最大值的度量。熵的一个重要性质是 当所有的可能性都是等概率时,熵有最大值。
在定量分析中,如果试样中待测组分的含量完全是未知 的,则其可能的含量为0~100%,故:
100 Hman ln c
2020/10/19
仪器的效率和剩余度
分析时,一般样品的大致含量范围总是知道的,设其范围
为x1~x2。
2020/10/19
3. 信噪比(S/N)的提高
途径:a. 改善信号的测量技术; b. 信号经过适当处理; c. 优化。
(1) 信号的平均: 噪声信号
yN yN/ n
(2) 滤波和调制
2020/10/19
四、信号处理技术
technology of signal process
对分析信号进行处理是为了提高信息量,改善信噪比。 信号处理通常采用以下几种方法和技术:
H [p(x) ] p(x)lg p(x)dx
信息的概念是与事件发生的概率相联系的,出现小概率 事件所包含的信息量大,因此可定义信息量:
I = -lgpi 如果事件发生后的概率不等于1,即它是不确定的,则信 息量可表示为:
I =lg(qi/pi) 式中 qi 是事件发生后的概率。
2020/10/19
2020/10/19
五、 多元分析方法
polybasis analysis methods
如何在大批实验数据中总结出有用的规律或者挖掘出有 用的信息;
多元分析是一类计算机信息处理、信息挖掘技术,特别 适合用于从多种因素影响的大量实验数据中总结规律;
多元分析应用领域:处理卫星照片;指纹鉴别;文字和 语音识别;多参数、多变量问题的处理;
由于分析中偶然误差的存在,结果不可能是一定值而成 正态分布。设其标准偏差为σ,则:
H 12πe x p2x 22l n 12πe x p2x 22 dx
l n(2πe)
2020/10/19
于是:
IH0Hlnx22πxe1
σ越小,信息量越大。实验中增大信息量的途径? 减少干扰、提高仪器灵敏度、减小噪声、增加测定次数等。
保险检出限: yB+6B
数学期望值yB;标准偏差B 定义:以一定的置信度检出待测组分的最低浓度(或量)
yA =yB+kB
k 的取值对应于不同置信概率
2020/10/19
2.灵敏度
分析仪器的响应值与浓度(或量)改变一个单位时所引起 的信号的变化, y/ c.(IUPAC给出的定义);
单纯灵敏度高不能保证有低的检测限; 检测限与B有关, B来自随机噪声,信号变化可能被 噪声淹没。
2020/10/19
内容选择:
第一节 计算机与仪器分析
computer and instrument analysis
第二节 数据采集与计算机控制
computer control and data collection
第三节 信息处理与数据挖掘技术
information process and technology of date excavate
technology of date excavate 五、多元分析方法
polybasis analysis methods
一、化学计量学简介
a brief introduction of chemometrics
化学计量学:化学与计算机结合的产物 1974年,Kowalski 与Wold 提出建立国际化学计量学协会 任务:运用数学和统计的方法设计或选择最佳测试过程和实验
计算机
DAC
分析仪器
2020/10/19
DAC原理图
2020/10/19
二、数据采集与模/数转换器(ADC)
daal converter (ADC)
作用:将连续的模拟量形式的数据转变成非连续的二进 制形式数据。实现计算机数据采集。DAC 的逆过程。
i1
在信息理论中,习惯取“2”作为对数的底,此时单位
为bit(e为底,nat)。设有一具有两种可能性的等概率事件:
即 p1p21 2则H (1 2,1 2)1bit 同 理 H(1,1,1,1)2bit
4444
2020/10/19
信息量和熵
熵是事件不确定程度的度量,不确定程度越大,熵就越
大。对于一个概率密度为p(x)的连续型分布熵的定义为:
2020/10/19
3. 分析化学实验中的信息量与熵
在定性分析实验中,判断某一组分是否存在。 实验前:
概率:各为1/2(实验前并无任何信息)
H0 = 1 bit 实验后: H =0 故信息量: I = H0 - H = 1 bit
如果采用仪器分析定性,不能将全部组分检测出,如何确定? 例:原子吸收测定含铜、锌试样(组成未知)。
2. 信息量与熵的关系
如果通过某些方法获取信息使原来事件的不确定程度减 小,所得到的信息的数量就是信息量,故信息量就是熵减少 的量:
I = H0- H
式中 H0 和H 分别表示获取“情报”前后,事件不确定程度 。在分析化学中则是实验前后的熵。若经过实验后的结果完 全确定,即实验后的熵=0,则: