遗传学的三大定律

合集下载

遗传法则的基本原理与遗传效应

遗传法则的基本原理与遗传效应

遗传法则的基本原理与遗传效应遗传学是研究基因和遗传现象的学科,它涉及到生命科学的很多方面。

遗传学的发展历程可以追溯到19世纪末,至今已经取得了很大的进展。

我们今天所掌握的遗传学知识,是在科学家们长期的实验和思考总结之后形成的。

当我们谈论遗传法则和遗传效应时,这样的知识是必需的。

1. 遗传法则的基本原理:在遗传学中,遗传法则是指三条基本规律:孟德尔遗传定律、分离定律和自由组合定律。

这些定律有助于科学家们理解基因如何传递,以及在所有物种中的共有和差异性。

孟德尔遗传定律:孟德尔是奥地利的一名修道士,他在实验中发现一些样本有特定的性状,而不是这些性状的平均值。

他研究了自交种植物丛的基因,比如豌豆。

然后他得出结论:一个亲本具有两个基因,它们分别控制一个性状。

这些基因有助于定义后代的属性,并以不同的比例传递给新一代。

分离定律:在自交丛种植物中,孟德尔观察到基因会在控制性状的过程中分离。

这是因为一对基因可以随机分离,称为随机游走。

例如,一个植物的基因A和基因B是随机分离的,所以这个植物的基因就成了AB和Ab的两种可能组合。

自由组合定律:在每个基因上,有多种基因型和表现型的可能性。

通过混合不同的基因型来确定表型这是一种突变机制。

同样,这个机制可以在亲代基因的配合中看到。

2. 遗传效应:遗传效应是指一种性状基因表达的影响。

这些表现可以是等位基因在孟德尔定律下的单一和分离表现,也可以是与自由组合定律相联系的复合表现。

对于某些性状,只有一组等位基因可以控制表现,而对于其他性状,则可以由多个等位基因控制。

此外,还有一些基因是在女性和男性之间发挥遗传作用的。

遗传效应可以分为三种类型。

添加效应:添加效应是指一组基因的总和决定了性状的表现。

例如,身高可能由一组多个等位基因控制。

因此,在一组大多数人高的人中,添加效应可能来自一组已知高基因。

非添加效应:与添加效应不同,非添加效应是在等位基因之间产生复合影响的结果。

举个例子,SRY基因控制着胚胎的生殖器发育。

遗传学上的基因法则

遗传学上的基因法则

遗传学上的基因法则
遗传学上的基因法则:在遗传学中,基因法则通常指的是遗传规律和定律,其中包括分离定律、自由组合定律和连锁与互换定律等。

1. 分离定律:是遗传学中最基本的一个规律,它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因活动的,基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组,在子代继续表现各自的作用。

2. 自由组合定律:当具有两对或者更多对相对性状的亲本杂交,在此一代产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。

3. 连锁与互换定律:原来为同一亲本所具有的两个性状,在f2中常常有连系在一起遗传的倾向,这种现象成为连锁遗传。

连锁遗传定律的发现,证实了染色体是控制性状遗传基因的载体,通过交换的测定,进一步证明了基因在染色体上具有一定的距离的顺序,呈直线排列。

除了上述的三个主要遗传学定律外,遗传学中还有许多其他的规则和定律,例如孟德尔遗传定律、哈迪-温伯格平衡定律等。

这些定律和规则是理解和解释生物遗传现象的基础。

遗传学定律

遗传学定律

遗传学定律遗传学是研究遗传现象和遗传规律的科学。

通过观察和实验,遗传学家总结出了一些重要的遗传定律,这些定律揭示了遗传物质的传递规律和基因的表达方式。

本文将对遗传学定律进行详细阐述,以便更好地理解遗传学的基本原理。

1. 孟德尔定律孟德尔定律是遗传学的基石,也被称为遗传学的第一定律。

孟德尔通过对豌豆杂交的研究,发现了隐性和显性基因的存在,以及基因在遗传中的分离和重新组合。

他总结了两个重要定律:分离定律和自由组合定律。

分离定律指出,不同性状的基因在生殖过程中能够分离,保持其独立性;自由组合定律则指出,不同性状的基因在生殖过程中能够自由组合,而不受其他基因的影响。

2. 孟德尔定律的延伸除了孟德尔定律,还有一些遗传学定律对于遗传现象的理解也起到了重要作用。

比如,染色体理论和连锁不平衡定律。

染色体理论指出,基因是储存在染色体上的,而染色体在生殖过程中也会遵循孟德尔的分离和自由组合定律。

连锁不平衡定律则指出,某些基因之间存在着紧密联系,它们很难在遗传过程中分离,因此会遗传为一体。

3. 多基因遗传定律多基因遗传定律是指在一个性状上,有多个基因同时发挥作用,从而产生连续性变化的现象。

这个定律对于解释人类的复杂性状非常重要,比如身高、体重等。

根据这个定律,人类的身高不仅受到单个基因的影响,还受到多个基因的共同作用,因此会呈现出连续性的变化。

4. 突变定律突变是遗传学中的一个重要概念,它是指基因在复制过程中发生突然变异的现象。

突变定律指出,突变是基因变异的主要来源,它提供了遗传变异的物质基础。

突变可以是有害的,导致疾病的发生;也可以是有益的,促进物种进化的进程。

5. 随机分离定律随机分离定律是指在遗传过程中,基因的分离是随机发生的。

也就是说,每个个体在生殖过程中,所含的基因会随机地分离到下一代中。

这个定律保证了基因的多样性,为物种的适应性演化提供了基础。

遗传学定律的研究和应用,不仅为人们揭示了基因的传递规律和表达方式,也为人类的健康和进化提供了重要的科学依据。

解读遗传的基本规律

解读遗传的基本规律

解读遗传的基本规律
基因遗传规律有三大规律,分别是基因分离定律,基因自由组合定律,和基因连锁、交换定律。

第一规律,分离定律是遗传学中最基本的一个规律,它从本质上阐明了控制生物性状的遗传物质是以自成单位的基因活动的,基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此在减数分裂的配子形成过程中,成对的基因在杂种细胞中能够彼此互不干扰,独立分离,通过基因重组,在子代继续表现各自的作用,这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。

第二规律,是自由组合定律,就是当具有两对或者更多对相对性状的亲本杂交,在此一代产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。

第三个定律,就是连锁与互换定律,连锁与互换定律是指原来为同一亲本所具有的两个性状,在f2中常常有连系在一起遗传的倾向,这种现象成为连锁遗传。

连锁遗传定律的发现,证实了染色体是控制性状遗传基因的载体,通过交换的测定,进一步证明了基因在染色体上具有一定的距离的顺序,呈直线排列。

遗传学中的孟德尔定律

遗传学中的孟德尔定律

遗传学中的孟德尔定律遗传学是研究遗传现象和遗传规律的科学分支。

而孟德尔定律是遗传学中的重要法则之一,由奥地利植物学家格雷戈尔·约翰·孟德尔(Gregor Johann Mendel)在19世纪提出并得到了广泛认可。

本文将详细介绍孟德尔定律的三个基本规律及其意义和应用。

一、孟德尔定律的背景和基本原理孟德尔定律是建立在对植物杂交研究的基础之上,孟德尔通过对豌豆的杂交实验,总结出了三个基本规律。

这三个规律分别是:第一法则(也称为纯合子法则):同一性状的两个纯合子杂交,其一代都具有相同性状;第二法则(也称为分离子法则):在杂合子的后代中,相同性状的基因以1:2:1比例出现;第三法则(也称为自由组合法则):不同性状的基因在杂合子的后代中出现自由组合。

这三个基本规律的提出至关重要,它们对遗传学理论的发展产生了深远的影响。

孟德尔定律的背后原理是基因的遗传性以及基因在细胞分裂和个体繁殖中的作用方式。

二、孟德尔定律的意义和应用孟德尔定律的提出对遗传学理论的发展产生了重要影响,它奠定了现代遗传学的基础,并为后来的遗传学研究提供了思路和方法。

下面将详细介绍孟德尔定律的具体意义和应用。

1. 继承规律的解释:孟德尔定律解释了为什么某些性状在一代中显示而在另一代中消失。

通过对基因的分离和组合,孟德尔定律揭示了性状的遗传方式。

2. 遗传变异的理解:孟德尔定律帮助我们理解个体之间的遗传差异是如何产生的。

个体之间的遗传变异是进化的基础,而孟德尔定律的发现为我们解释了遗传变异的原因。

3. 育种和农业的应用:孟德尔定律被广泛应用于育种和农业领域。

通过对植物和动物的杂交实验,育种者能够选出具有理想性状的后代,提高作物的产量和品质。

4. 疾病遗传的研究:孟德尔理论也被应用于疾病遗传的研究。

通过对家族的遗传病案例进行研究,科学家能够揭示某些疾病的遗传模式,为疾病的预防和治疗提供参考依据。

5. 进化理论的发展:孟德尔定律的提出对进化理论的发展产生了重大影响。

遗传学三大定律

遗传学三大定律

不连锁基因。对于除此以外的完全连锁、部分连锁 以及所谓假连锁基因,遵循连锁互换规律。
连锁互换定律
发现人:美国的生物学家与遗传学家摩尔根Thomas Hunt Morgan 于1909年发现。 连锁互换定律是在1900年孟德尔遗传规律被重新发现后,人们以 更多的动植物为材料进行杂交试验,其中属于两对性状遗传的结 果,有的符合独立分配定律,有的不符。摩尔根以果蝇为试验材 料进行研究,最后确认所谓不符合独立遗传规律的一些例证,实 际上不属独立遗传,而属另一类遗传,即连锁遗传。于是继孟德 尔的两条遗传规律之后,连锁遗传成为遗传学中的第三个遗传规 律。所谓连锁遗传定律,就是原来为同一亲本所具有的两个性状, 在F2中常常有连系在一起遗传的倾向,这种现象称为连锁遗传。 连锁遗传定律的发现,证实了染色体是控制性状遗传基因的载体。 通过交换的测定进一步证明了基因在染色体上具有一定的距离的 顺序,呈直线排列。这为遗传学的发展奠定了坚实地科学基础。
遗传学三大定律
目录
分离定律 自由组合定律 连锁与互换定律
分离定律
基因作为遗传单位在体细胞中是成双的,它在遗传 上具有高度的独立性,因此,在减数分裂的配子形 成过程中,成对的基因在杂种细胞中能够彼此互不 干扰,独立分离,通过基因重组在子代继续表现各 自的作用。这一规律从理论上说明了生物界由于杂 交和分离所出现的变异的普遍性。
适用范围

1.有性生殖生物的性状遗传 2.真核生物的性状遗传 3.细胞核遗传 4.一对相对性状的遗传
限制因素
基因分离定律的F1和F2要表现特定的分离比应具备以 下条件: 1.所研究的每一对相对性状只受一对等基因控制,而且 等位基因要完全显性。 2.不同类型的雌、雄配子都能发育良好,且受精的机 会均等。 3.所有后代都应处于比较一致的环境中,而且存活率 相同。 4.供实验的群体要大、个体数量要足够多。

动物遗传的三大定律包括

动物遗传的三大定律包括

动物遗传的三大定律包括
在遗传学领域,研究动物遗传的三大定律对于理解动物遗传规律具有重要意义。

这三大定律分别是孟德尔遗传定律、性连锁遗传定律和独立配对定律。

一、孟德尔遗传定律
孟德尔遗传定律又称为孟德尔法则,是由奥地利的修道士孟德尔在十九世纪中
期提出的。

孟德尔通过对豌豆植物的杂交实验发现了两个重要定律。

第一定律是单因素分离定律,说明每一对无关基因在结合交配过程中独立地传递给子代。

第二定律是自由组合定律,说明不同的因子在子代中以自由组合的方式重新排列。

二、性连锁遗传定律
性连锁遗传定律又称为染色体连锁遗传,是指一些基因位于同一染色体上,因
此它们的遗传就会有联锁效应,即这些基因会一起遗传给后代。

性连锁遗传定律揭示了某些特征的遗传方式具有性别相关性,并为解释性别差异提供了理论依据。

三、独立配对定律
独立配对定律是指在杂合体的两对同源染色体上的基因,其对生殖细胞的分离
和再组合是相互独立的。

这意味着两对同源染色体上的基因会独立地组合成各种不同类型的生殖细胞。

这种基因的独立排列和分离再组合现象,为遗传信息的多样性提供了基础解释。

综上所述,动物遗传的三大定律包括孟德尔遗传定律、性连锁遗传定律和独立
配对定律。

这些定律为遗传学研究提供了基本的理论框架,帮助我们更好地理解和解释动物的遗传规律。

通过深入研究这些遗传定律,我们可以更好地应用遗传学知识,推动动物遗传领域的发展与进步。

孟德尔遗传定律内容

孟德尔遗传定律内容

孟德尔遗传定律内容
孟德尔遗传定律内容指的是分离定律和基因的自由组合定律
1、分离定律又称孟德尔第一定律。

其要点是:决定生物体遗传性状的一对等位基因在配子形成时彼此分开,随机分别进入一个配子中。

该定律揭示了一个基因座上等位基因的遗传规律。

基因位于染色体上,细胞中的同源染色体对在减数分裂时经过复制后发生分离是分离定律的细胞学基础。

2、基因的自由组合定律,或称基因的独立分配定律,是遗传学的三大定律之一(另外两个是基因的分离定律和基因的连锁和交换定律)。

它由奥地利遗传学家孟德尔经豌豆杂交试验发现。

同源染色体相同位置上决定相对性状的基因在形成配子时等位基因分离,非等位基因自由组合。

遗传学复习之——名词解释

遗传学复习之——名词解释

第2章遗传的三大基本定律1. 测交:指将未知基因型的个体与一隐性纯合基因型个体杂交来确定未知个体基因型的方法。

2. 回交:子一代与亲本之一相互交配的一种杂交方法。

3. 基因型:指所研究性状所对应的有关遗传因子。

4. 表型:指在特定的环境下所研究的基因型的性状表现。

5. 纯合体:由两个相同的遗传因子结合而成的个体。

6. 杂合体:由两个不同的遗传因子结合而成的个体。

7. 等位基因:指一对同源染色体的某一给定的位点的成对的遗传因子。

8. 不完全显性:又称半显性,杂合体的表型介于纯合体显性与纯合体隐性之间。

9. 并显性:一对等位基因的两个成员在杂合体中都表达的遗传现象。

10. 超显性:杂合体Aa的性状表现超过纯合显性AA的现象。

11. 致死基因:指那些使生物体不能存活的等位基因。

12. 一因多效:一个基因可以影响到若干性状,又称为基因的多效性。

13. 基因互作:不同对的基因相互作用,出现了新的性状。

14. 抑制基因:有些基因本身并不能独立地表现任何可见表型效应,但可以完全抑制其他非等位基因的表型效应。

15. 上位效应/遮盖作用:一对等位显性基因的表现受到另外一对非等位基因的作用,这种非等位基因的抑制作用称为上位效应。

起抑制作用的基因称为上位基因,被抑制的基因称为称为下位基因。

16. 连锁遗传:两队非等位基因并不总是能进行独立分配及自由组合的,而更多的时候是作为一个共同单位而传递的,从而表现为另一种遗传现象,即连锁遗传。

17. 不完全连锁:指位于同一染色体上的两个或两个以上的非等位基因不总是作为一个整体遗传到子代中去的。

18. 重组:新类型的产生是由于同源染色体上的不同对等位基因之间的重新组合的结果,这种现象称为重组。

19. 遗传染色体学说:在第一次减数分裂中,由于同源染色体的分离,使位于同源染色体的等位基因分离,从而导致性状的分离;由于决定不同性状的两对非等位基因分别处在两对非同源染色体上,形成配子时同源染色体的等位基因分离,非同源染色体上的非等位基因以同等的机会在配子内自由组合,从而导致基因的自由组合,实现了性状的自由组合。

孟德尔遗传学定律

孟德尔遗传学定律

孟德尔遗传学定律以下是孟德尔遗传学定律:一、分离定律。

1.定义:在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。

2.实质:进行有性生殖的生物在进行减数分裂产生配子的过程中,位于同源染色体上的等位基因随同源染色体分离而彼此分开,分别进入不同的配子中。

3.适用范围:真核生物的细胞核基因的遗传。

二、自由组合定律。

1.定义:当进行有性生殖的生物进行减数分裂产生配子时,位于非同源染色体上的非等位基因的组合也会发生自由组合。

2.实质:在进行减数分裂产生配子的过程中,位于非同源染色体上的非等位基因的组合会发生自由组合。

3.适用范围:真核生物的细胞核基因的遗传。

三、遗传平衡定律。

1.定义:在理想状态下,各等位基因的频率和等位基因的基因型频率在遗传中是稳定不变的,即保持着基因平衡。

该理想状态要满足5个条件:①种群足够大;②种群中个体间可以随机交配;③没有突变发生;④没有新基因加入;⑤没有自然选择。

此时各基因频率和各基因型频率存在如下等式关系并且保持不变。

2.实质:各等位基因的频率和等位基因的基因型频率在遗传中是稳定不变的。

3.适用范围:真核生物的细胞核基因的遗传。

四、分离重组定律。

1.定义:在减数分裂过程中,同源染色体的分离是随机的,这种分离在遗传学上被称为基因重组。

2.实质:同源染色体的随机性分离导致非等位基因的重组。

3.适用范围:真核生物的细胞核基因的遗传。

五、显性定律。

1.定义:如果具有相对性状的纯合亲本杂交后产生的杂合子一代中,显现出的亲本某一性状的为显性性状。

在生物个体的表现型中,控制同一性状的成对的基因处于杂合状态时,这一相对性状才能表现出来。

显性纯合子与隐性纯合子杂交后代为杂合子自交后代。

2.实质:具有相对性状的纯合亲本杂交后产生的杂合子一代中,显现出的亲本某一性状为显性性状。

高中遗传三大规律教案模板

高中遗传三大规律教案模板

教学目标:1. 让学生了解遗传学的三大基本规律:分离定律、自由组合定律和连锁互换定律。

2. 使学生掌握三大规律的基本原理和应用方法。

3. 培养学生运用遗传学知识解决实际问题的能力。

教学重点:1. 分离定律、自由组合定律和连锁互换定律的基本原理。

2. 三大规律的应用方法。

教学难点:1. 三大规律在遗传学中的应用。

2. 学生对遗传学知识的理解与应用。

教学过程:一、导入1. 提问:什么是遗传?遗传学的研究内容是什么?2. 引入遗传学的三大基本规律,激发学生学习兴趣。

二、分离定律1. 介绍分离定律的基本原理:在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;当细胞进行减数分裂时,等位基因会随着同源染色体的分离而分开,分别进入两个配子当中,独立地随配子遗传给后代。

2. 通过实例讲解分离定律的应用,如孟德尔的豌豆杂交实验。

3. 学生练习:根据分离定律,判断显性和隐性性状。

三、自由组合定律1. 介绍自由组合定律的基本原理:非等位基因自由组合。

这就是说,一对染色体上的等位基因与另一对染色体上的等位基因的分离或组合是彼此间互不干扰的,各自独立地分配到配子中去。

2. 通过实例讲解自由组合定律的应用,如两对相对性状的杂交实验。

3. 学生练习:根据自由组合定律,预测后代的基因型和表现型。

四、连锁互换定律1. 介绍连锁互换定律的基本原理:在生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,作为一个单位进行传递;在减数分裂的四分体时期,同源染色体上的非姐妹染色单体之间可以发生交叉互换。

2. 通过实例讲解连锁互换定律的应用,如基因连锁和基因突变。

3. 学生练习:根据连锁互换定律,分析基因突变对后代的影响。

五、总结与反思1. 总结三大遗传规律的基本原理和应用方法。

2. 反思:三大遗传规律在生物学研究中的应用价值。

六、作业1. 完成课后习题,巩固所学知识。

2. 查阅资料,了解遗传学在医学、农业等领域的应用。

《遗传学的三大定律》课件

《遗传学的三大定律》课件

4
接合性状的定律
接合性状会在后代中重新表现。
分离定律
定律的概述
分离定律解释了基因分离的方式。
自由组合法则
基因的组合在配子中是自由的。
随机分离法则
基因在配子中的分离是随机的。
自交法则
自交可以产生纯合子。
连锁定律
定律的概述
连锁定律描述了基因的连锁传递 方式。
连锁分化法则
连锁的基因分化可以通过重组得 到干涉。
连锁互换法则
连锁基因可以通过染色体的交换 进行重新组合。
解析及应用
1
定律的含义与解析
解析遗传学定律的含义以及它们对遗传
教育与遗传学的关联
2
研究的影响。
探讨教育与遗传学之间的联系,为教育
提供个性化的指导。
3
三大定律的实际应用
介绍遗传学定律在农业、医学和社会科 学中的实际应用。
总结及展望
总结遗传学的三大定律的重要性,并展望未来遗传学的发展和应用。
《遗传学的三大定律》 PPT课件
遗传学的三大定律是遗传学的基础,解释了遗传现象以及基因在遗传中的表 现。这个PPT课件将详细介绍孟德尔定律、分离定律和连锁定律。孟德尔定律1Fra bibliotek定律的概述
孟德尔定律是现代遗传学的基石。
2
甄别性状的定律
不同性状的遗传是独立进行的。
3
中庸性状的定律
中庸性状的后代会表现出中庸的外观。

单基因遗传的三大规律

单基因遗传的三大规律

单基因遗传的三大规律
一、分离定律
分离定律是遗传学中最基本的规律之一,它是指在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随着同源染色体的分开而分离,分别进入两个子细胞中,独立地随配子遗传给后代。

简单来说,就是位于同源染色体上的等位基因,在遗传时会发生分离,产生两种不同组合的配子。

二、自由组合定律
自由组合定律又称为独立分配定律,它是指在生物进行减数分裂形成配子时,位于非同源染色体上的非等位基因的遗传,是互不干扰的,各自独立地分配到配子中去。

这个定律揭示了不同遗传因子的独立分配关系,是遗传学中非常重要的规律之一。

三、连锁遗传定律
连锁遗传定律是指位于同一条染色体上的基因,会随着染色体的遗传而一起遗传给后代。

这个定律揭示了基因在染色体上的连锁关系,是研究生物遗传规律的重要依据。

在连锁遗传定律的基础上,科学家们发现了许多重要的遗传疾病和基因特征,对于医学和生物学的研究具有重要的意义。

这三大规律共同构成了单基因遗传的基础理论框架,它们是解释和研究基因行为、基因组结构以及基因和疾病之间关系的重要工具。

在实际研究和应用中,需要结合具体的研究对象和情况,运用这些规律进行深入的研究和探索。

遗传学三大定律

遗传学三大定律

遗传型为3 n 表现型为2 n (A+a)2=A 2+2Aa+a2
紫花与白花纯种的杂交实验
杂种与隐性亲本的测交
Mendel按上述方法继续对7组相对性状分别进行杂交实验、统计了 子二代植株显性与隐性性状之间的比例,结果都十分相似,总体上都 体现了3:1的规律。
图示:豌豆7组相对性状分别杂交实验结果
⑵自由组合定律
Law of Independent Assortment
在减数分裂过程中,非同源染色体自由组合。
示一对染色体的遗传
(一对染色体可以形成两种类型的配子,四种类型的后代,即21× 21 =4)
⑶联锁互换定律
Law of crossing-over
同一条染色体上的基因是相互联锁的,组成一 个联锁群,随该染色体遗传而遗传。但在减数分裂中, 同源染色体上部分等位基因随同源染色体之间的互换而 改变原有的联锁关系,使同源染色体上的等位基因产生 新的排列。
摩 尔 根 1928 年 8 月 发 表 的 基 因 论 ( The Theory of the gene )奠定了细胞遗传学的基础。摩尔根等通过果蝇突变型 的发现与杂交及相关的细胞学的研究证明: 1、孟德尔的“遗传因子”即基因位于染色体上,染色体的 成对性是孟德尔因子成对性的细胞学基础。 2 、决定同一性状的“因子”位于同对染色体的同一位置 上,谓“等位基因”( allele ),它们在配子形成的减数分 裂中随成对染色体的分离而分离,是孟德尔分离定律的细胞 学基础;位于不同对染色体上基因,在配子形成的减数分裂 中,随不同对染色体之间的分离与组合而自由组合,是孟德 尔自由组合的细胞学基础。 3、基因在染色体上呈直线排列 4、位于同一对染色体上的基因组成一个连锁群,它们在上 下代遗传中随染色体的遗传而联合遗传,同时也随着减数分 裂中同对染色体之间的交换而交换,这就是摩尔根的基因连 锁与交换定律(morgan’s law of Lingage and crossingover)

遗传学三大定律对作物生产指导的意义

遗传学三大定律对作物生产指导的意义

遗传学三大定律对作物生产指导的意义
一、莫尔杂交定律
莫尔杂交定律是指当两个不同品种的植物杂交时,其子代表现出第三种中间型的遗传表现。

这种定律有助于认识作物遗传学,并有助于作物育种。

鉴于遗传变异是作物长期演化的主要动力,利用莫尔杂交定律能够产生新的遗传变异,从而改良和增产作物。

二、染色体定律
染色体定律是指每个细胞的染色体数量比父代相同,也就是每个细胞都至少有一对染色体。

染色体定律有助于认识作物遗传学,并为作物育种提供了理论依据。

此外,染色体定律也
提供了有效的方法来改良作物,比如基因编辑和基因重组等。

三、遗传定律
遗传定律是指遗传物质由父母传给子代的过程,其中遗传物质的组成与父母的性状有关。

遗传定律对作物育种具有重要指导意义,使育种者可以根据遗传定律预测子代的性状,从而达到育种目的。

此外,遗传定律也有助于理解作物遗传组成,并为遗传调控技术提供理论参考。

遗传学三大基本定律

遗传学三大基本定律

遗传学三大基本定律基因分离定律:在杂合子细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;当细胞进行减数分裂时,等位基因会随着同源染色体的分离而分开,分别进入两个配子当中,独立地随配子遗传给后代。

适用范围有:有性生殖生物的性状遗传、真核生物的性状遗传、细胞核遗传、一对相对性状的遗传。

例,卷发与直发为一对相对性状,且卷发为显性,直发为隐性。

父母俱为卷发,如基因型俱为Aa,则有可能生出直发(aa)的后代。

自由组合定律:费等位基因自由组合,即一对染色体上的等位基因与另一对染色体上的等位基因的分离或组合是彼此间互不干扰的,各自独立地分配到配子中去。

自由组合通常发生在减数第一次分裂后期,只适用于不连锁基因。

例,卷发直发(A或a)与双眼皮单眼皮(B或b)两种形状互不干扰,各自遗传。

卷发、双眼皮为显性,直发、单眼皮为隐性。

俱为卷发、双眼皮的夫妇,若其基因型俱为AaBb,其子女表现性有卷发单眼皮,直发单眼皮,卷发双眼皮,直发双眼皮四种可能。

连锁互换定律:生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,作为一个单位进行传递,称为连锁律。

在减数分裂时,同源染色体间的非姐妹单体之间可能发生交换,就会使位于交换区段的等位基因发生互换。

一对同源染色体上的不同对等位基因之间可以发生交换,称为交换律或互换律。

例,有一种叫做指甲髌骨综合症的人类显性遗传病,致病基因(用NP表示)与ABO血型的基因(IA,IB或i)位于同一条染色体上.在患这类疾病的家庭中,NP基因与IA基因往往连锁,而NP的正常等位基因np与IB基因或i基因连锁,又已知NP和IA之间的重组率为10%.由此可以推测出,患者的后代只要是A型或AB型血型(含IA基因),一般将患指甲髌骨综合症,不患这种病的可能性只有10%。

因此,这种病的患者在妊娠时,应及时检验胎儿的血型,如果发现胎儿的血型是A型或AB型,最好采用流产措施,以避免生出指甲髌骨综合症患儿.。

三大遗传规律—分离定律、自由组合定律、连锁交换定律

三大遗传规律—分离定律、自由组合定律、连锁交换定律

F1代杂种
(Aa) Aa
Aa
隐性纯种
aa (aa)
a
a 配子
F1代杂种 (Aa)
Aa
高茎
aa
隐性纯种
(aa)
矮茎
子代 Aa
Aa
aa aa
显性杂种(1)比 隐性纯种(1)
(Aa)
(aa)
子代 Aa Aa aa aa
合计
64株其中: 高茎30株(1) 比 矮茎34株(1.13)
(Aa)
(aa)
五、孟德尔分离定律(law of segregation)
4n=42=16(如左图)子代个体数
第三节 孟德尔定律的重新发现
与基因在染色体上的“萨顿假说”
1900年三位科学家先后通过自己的豌豆杂交证实了孟德尔发现的颗粒遗传学说。1902年 萨顿(W.Sutton,1877-1916)完成了1种蝗虫的染色体研究,确认其体细胞的染色体为24条, 按形态可区分为12对;在生殖细胞的形成中成对染色体通过配对、再分开,每个配子只能得 到成对染色体的1条,不同对的染色体可以自由组合进入同一配子。1903年他在《遗传中的 染色体》一文中提出了基因在染色体上的“萨顿假说”——染色体携带基因,染色体在减数分 裂 中 的 行 为 符 合 孟 德 尔 的 “ 分 离 与 自 由 组 合 规 律 ” 。 1909 年 , 丹 麦 生 物 学 家 约 翰 逊 (W.L.Johannsen, 1857—1927)给孟德尔的“遗传因子”一词起了一个新名字,叫做“基因” (gene),并且提出了表现型(phenotype)和基因型(genotype)的概念。表现型是指生物 个体表现出来的性状,如豌豆的高茎和矮茎;与表现型有关的基因组成叫做基因型,如高茎 豌豆的基因型是DD或Dd,矮茎豌豆的基因型是dd。控制相对性状的基因,叫做等位基因 (allele),如D和d。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄色×绿色子叶 黄色×绿色子叶 黄色×绿色子叶
3580 1310 11903
1438 109090 134737
1190
3.01:1
1904 1905
1905 1909
445 2.94:1 3903 3.05:1
514 2.80:1 36186 3.01:1 44892 3.01:1
(一)分离定律(Law of segregation)
奥地利布隆(Brü nn) 现捷克布尔诺(Bruo)
豌豆杂交操作方法
一、孟德尔的豌豆杂交实验
表 1-1
亲本性状 圆形×皱形 种子 黄色×绿色 种子 红花×白花 饱满×缢缩 豆荚
孟德尔的豌豆杂交实验7对性状的结果
F1 圆形 黄色 红花 饱满 5474圆 6022黄 705红 882满 F2 1850皱 2001绿 224白 299缩 F2比例 2.96:1 3.01:1 3.15:1 2.95:1
P
卫生品系 (AABB)
×
不卫生品系 (aabb)
F1
卫生品系 (AaBb) 互交
F2
卫生品系 只会揭盖 不会揭盖 不卫生品系 不除病蜂 会除病蜂 A_ B_ A_bb aaB_ aabb 9 : 3 : 3 : 1 图 1-9 蜜蜂卫生品系行为的遗传
孟德尔植物杂交试验成功的因素



选用适当的研究材料: 豌豆:闭花授粉(天然纯合的纯种);相对性状差异明显; (从22个初选性状中)选择7个单位性状正好分别位于7对同 源染色体上;易于种植和进行人工授粉(杂交)操作 严格的试验方法与正确的试验结果统计分析方法: 试验方法:有目的的试验设计、足够大的试验群体等 统计分析方法:按系谱进行考察记载、进行归类统计并 计算其类型间的比例(坚实的数理科学基础)。 独特的思维方式: 由简到繁、先易后难,高度的抽象思维能力,“假设— 推理—论证”科学思维方法的充分应用。
第二章 遗传的三大基本定律
问题 1、怎样认识和研究生物性状的遗传现象? 2、研究生物性状的遗传有规律可循吗?怎样 才能揭示和证明这些规律的存在? 3、三大遗传规律的本质是什么?怎样正确认 识规律之外的例外情况? 4、孟德尔、摩尔根的成功经验有哪些?这些 经验对我们的工作有什么主要启示? ……
三、孟德尔定律(Mendel’s laws)
对一对性状的观察得出了三条规律: F1代的性状一致,通常和一个亲本相同。 得以表现的性状为显性,未能表现的性状称 隐性,此称F1一致性法则 在杂种F2代中,初始亲代的二种性状(显 性和隐性)都能得到表达(分离现象) F2代中两性状的比例总为 3:1。
2、杂种1代(F1)的观察: 确定了:显性性状 (dominant character) 隐性性状 (recessive character) 否定了融合遗传观念,提出了颗粒式遗传
3、F2 代的观察 进行统计处理; 采用大样本; 通过自交来研究其遗传结构。
♀圆 × 皱♂ RR rr 纯合基因型 F1 杂合基因型 圆 Rr(253 株) 自交 F2 圆 RR+2Rr (5474 株) 2.96 : 随机取 565 株 193 株 后代皆 为圆形 RR 372 株 后代有圆 皱两种,比 例为 3:1 皱 rr (1850 株) 1 自交 皱 rr
白化 半乳糖血症 苯丙酮尿症 全色盲 早老症 自毁容貌综合征
(2)杂合体是不能留作种子
一个患有白化
病的印第安霍 皮人女孩(中)
人类家谱分析中常用的符号 男 女 不知性别 婚配 近亲婚配 生育子女 同卵双生 异卵双生 I II 1 2 3 男女患者 男女携带者 性连锁携带者 流产儿或死胎 已故家庭成员 先证者 人类遗传家谱
黄园 ( R_Y_) ↓ 正交: 98 粒 反交: 94 粒
黄园 黄皱 绿园 绿皱
(R_ Y_)31 粒 (R_ yy) 27 粒 (r r Y_) 26 粒 (r r yy) 2 6 粒
图 1-7 豌豆两对性状的回交实验
5.多对基因的杂交
表 1-3 杂合体自交或互交时所产生的 各种基因型表型数以及分离比 F1 配子 F1 配子 F2 F2 类型 组合 基因型 表型 2 4 3 2 4 16 9 4 8 64 27 8 16 256 81 16 n n n n 2 4 3 2
基 因 对数 1 2 3 4 N
分离比 (3+1) 2 (3+1) 3 (3+1) 4 (3+1) n (3+1)
1
6. 孟德尔自由组合定律的意义



自由组合定律广泛存在,如蜜蜂的腐臭病 (foul brood) 使生物群体中存在着多样性,使得生物得 以生存和进化 可应用于育种,有利于组合双亲优良性状, 并可根据杂交后代出现的优良组合及比例, 确定育种工作的规模
孟德尔(Gregor J. Mendel,1822-1884)及其杂交试验



从1856-1871年进行了大量植物杂交试验研究; 其中对豌豆(严格自花/闭花授粉)差别明显的7对简单性 状进行了长达8年研究,提出遗传因子假说及其分离与 自由组合定律(Mendel’s Laws); 1865年2月8日和3月8日先后两次在布隆自然科学会例 会上宣读发表;1866年整理成长达45页的《植物杂交 试验》一文,发表在《布隆自然科学会志》第4卷上。
孟德尔定律长期不被接受的原因

孟德尔本人对其理论普遍适用性的研究遇到挫折。

由于他在材料选择上的不幸,结果他并不能用遗传因 子假说来解释蜜蜂、山柳菊属植物等的遗传现象。

而在材料的选择上,很大程度上是受到一个当时的学 术权威慕尼黑大学植物学教授耐格里的影响。

可能连他自己都怀疑其理论的正确性或适用范围;尽 管对豌豆的7对相对性状的试验是完全能够自圆其说。
P
纯合体可以真实遗传 杂合体不能稳定遗传
图 1-1 孟德尔的豌豆的杂交实验
P
♀ 圆 RR
圆 RR ×
× 皱 ♂ rr 圆 × Rr
皱 rr
B1
圆 R_
圆 皱 B2 Rr rr 57 53(正交) 49 48(反交) 1 : 1
首创了测交方法
图 1-2 孟德尔豌豆的回交实验
(二)科学推论,合理解释:
绿色×黄色 豆荚
花腋生×花 顶生 高茎×矮茎
绿色
腋生 高茎
428绿
651腋生 787高
152黄
207顶生 277矮
2.82:1
3.14:1 2.84:1
二、孟德尔植物杂交实验的特点
(一)设计严密,层次分明 1、亲本(parental generation )杂交 (1) 严格选材 (2) 选择研究的性状 (3) 采用正反交(reciprocal crosses) (4) 设立对照实验
1、分离定律的实质 控制性状的一对等位基因在产生配子时彼此分 离,并独立地分配到不同的性细胞中。 2、分离定律的意义 (1)具有普遍性 遗传病约有4344种(1988年) 侏儒(先天性软骨发育不全) 显性 裂手裂足 舞蹈病(Huntington)
一个患先天性软 骨发育不全症 (侏儒症)的男孩
隐性
第二章 遗传的三大基本定律
第一节 第二节 第三节 第四节 第五节 孟德尔及其孟德尔定律 基因与环境作用的关系 孟德尔定律的扩展 遗传的染色体学说 连锁与交换定律
第一节 孟德尔及其孟德尔定律

孟德尔分离定律 自由组合定律 遗传数据的统计处理


几个概念



亲代(P) 子一代(F1) 子二代(F2) 正交与反交 自交 回交 测交

(二)自由组合定律 (law of independent assortment)
在研究两对相对性状后提出 1、自由组合定律的内容: 即在配子形成时各对等位基因彼此分离后, 独立自由地组合到配子中 2、自由组合定律的实质: 配子形成时非同源染色体自由组合
3.自由组合的解释
P1 F1 F2 黄园 × 绿皱 RRYY rryy 黄园( RrYy )
孟德尔定律长期不被接受的原因

达尔文于1859年发表的自然 选择学说及其所引起的争论 吸引了过多的注意力; 而孟德尔在科学界是一个籍 籍无名之辈; 他的研究表明遗传因子与性 状在世代间的稳定传递,与 当时进化论强调的生物界广 泛变异的思想也似乎并不相 吻合。
孟德尔思想的超前性。 颗粒遗传观念、统计分析 方法、严密的逻辑思维等 都超出了同时代学者们的 理解和接受能力。 遗传因子仅仅是一个抽象 概念。当时对生物有性生 殖过程及其机制知之基少, 连染色体也是1888年才命 名的。
四、统计学原理在遗传学中的应用
(一)概率的概念 概率(probability) nA 概率的公式为: P(A)= lim n→∞ n
P(A):A事件发生的概率 n : 群体中的个体数或测验次数 nA: A事件在群体中出现的次数
四、统计学原理在遗传学中的应用
(二)概率规则 1、相乘定律: 独立事件 (independent events) P(A· B) = P(A) × P(B) 2、相加定律 互斥事件(matually exclusive events) P(A或B) = P(A) + P(B) 3、组合事件(combining probability rule) P=1/2×1/2+1/2×1/2=1/2
六位学者重复孟德尔植物杂交实验的结果
实验者 亲代
黄 1865 1900
黄色×绿色子叶 黄色×绿色子叶
F2 绿
F2比例
孟德尔 Correns
6022 1394
2001 3.01:1 453 3.08:1
Tschermak 1900 Hurst Bateson
Lock Darbishire
相关文档
最新文档