离子液体(综述)
文献综述 完整版
XXX大学文献综述***届离子液体+ 溶剂二元体系电导率、表面张力物性研究进展学生姓名XXX学号XXX院系XXX专业XXX指导教师XXX填写日期XXX离子液体 + 溶剂二元体系电导率、表面张力物性研究进展摘要离子液体作为一种新型的绿色溶剂,其物理化学性质的研究受到了普遍的关注,采用离子液体与各类溶剂形成二元体系研究究引起了全世界研究者的关注。
针对离子液体二元体系常规理化性质的研究有利于了解离子液体的结构特性及新型离子液体的开发。
离子液体二元体系的理化性质除受到温度和离子液体本身结构的影响外,还受到二元体系中溶剂极性和各组分含量等的影响。
本文综述了离子液体的电导率、表面张力的研究进展。
研究发现大部分离子液体的表面张力γ随温度升高而减小,同一种离子液体浓度越高,表面张力越小,表面张力随含水量的增加而增加;离子液体在相同温度下电导率随浓度的增加而增大,相同浓度下电导率随温度的升高而增大。
关键词:离子液体;电导率;表面张力离子液体具有与传统有机溶剂截然不同的性质和特点,其化学稳定性好、溶解性好、熔点低、不易挥发、可传热、可流动、对环境污染少,可作为绿色溶剂用于化学反应和分离过程,近年来受到了人们的广泛关注和被广泛应用,例如精细化学品合成、高分子聚合物及有关合成、分离萃取、消除环境污染、太阳能电池和燃料电池等[1]。
离子液体成为国内外研究的热点之一,目前已广泛应用于催化、材料和萃取分离[2-5]等领域由于离子液体所具备的这些优点,近年来离子液体越来越多地被作为一种可设计的功能型分子,即所谓的功能化离子液体(TSIL)。
功能化离子液体是指在阳离子或阴离子上引入官能团的离子液体,但其与离子液体是一个不可分割的整体。
由于功能化离子液体的核心离子与官能团影响着反应过程,与溶解于其中的溶质产生相互作用,导致最终过程优化的实现,更加符合实验和工业需求而受到重视。
本文结合国内外的研究情况,不仅对离子液体+溶剂二元体系表面张力实验测定工作进展做了归纳,还对电导率方面的研究做了相应的综述。
离子液体——一种新型的绿色溶剂
离子液体——一种新型的绿色溶剂摘要:离子液体作为“绿色的、可设计性”溶剂越来越受到关注。
本文介绍了离子液体种类、特性和制备,综述了离子液体在萃取分离生物制品和生物燃料中、在萃取金属离子和稀土分离中以及在分离过程、电化学、化学反应及材料领域中的应用,展望了离子液体的应用前景。
关键词:离子液体;绿色化学;溶剂随着科技发展和环保意识的增强,寻找绿色反应溶剂和发现环境友好催化剂是绿色化学的主要研究方向之一。
室温离子液体作为一种新型的绿色溶剂正在迅速发展,成为科学研究的热点。
室温离子液体是指主要由有机阳离子和无机或有机阴离子构成的在室温或近于温下呈液态的盐类,也称室温熔融盐,但是它不同于我们通常所说的离子化合物。
传统意义上的离子化合物在室温下一般都是固体,其强大的离子键使阴、阳离子在晶格上只能作振动,不能转动或平动。
他们一般都具有较高的熔点、沸点和硬度。
然而对于离子液体,如果把阴、阳离子做得很大且又极不对称,由于空间阻碍,强大的静电力无法使阴、阳离子在微观上作紧密堆积,使得阴、阳离子在室温下不仅可以振动,甚至可以转动、平动,整个有序的晶体结构遭到彻底破坏,离子之间作用力减小,晶格能降低,从而使离子化合物的熔点下降,在室温下成为液态。
离子液体具有很多传统的分子溶剂不可比拟的独特性能。
1. 离子液体的分类(1)根据离子液体发现的先后顺序和年代可以将离子液体划分为第一、第二和第三代离子液体。
1948年美国专利报道了主要用于电镀领域的三氯化铝和卤化乙基吡啶离子液体,可称之为第一代离子液体。
20世纪90年代,稳定性更好的由二烷基咪唑阳离子和四氟硼酸、六氟磷酸阴离子构成的离子液体产生,此类被称为第二代离子液体。
2000年以来,二烷基咪唑阳离子液体的种类和功能被进一步的丰富,制备出功能化离子液体,从而赋予离子液体以某种特殊性质、用途和功能,使其成为“任务专一性离子液体”,这一类成为第三代离子液体。
(2)依据阳离子的不同可以将离子液体分为季铵盐类、季膦盐类、咪唑类、吡啶类、三氮唑类、苯并三氮唑类等。
离子液体综述
离子液体综述离子液体是一种新型的绿色溶剂,具有独特的物理和化学性质。
本文将详细介绍离子液体的定义和性质、合成和分离、在化学反应和材料科学中的应用以及在生物医学中的用途,同时探讨离子液体的环保和安全问题以及研究现状和前景。
1.离子液体的定义和性质离子液体是指全部由离子组成的液体,通常由有机阳离子和无机阴离子组成。
离子液体具有以下主要性质:(1)低蒸气压:离子液体在常温下不易挥发,蒸气压很低,因此可以作为绿色溶剂使用。
(2)良好的热稳定性:离子液体具有很高的热稳定性,可以在高温下使用。
(3)良好的电化学窗口:离子液体具有很宽的电化学窗口,可以作为电解质的良好溶剂。
(4)液体范围宽:离子液体的熔点较低,可以在很宽的温度范围内保持液态。
2.离子液体的合成和分离离子液体的合成主要通过化学反应和电化学合成两种方法实现。
化学反应法是通过酸碱反应或复分解反应等合成离子液体。
电化学合成法是在电解池中通电电解来制备离子液体。
对于离子液体的分离,通常采用物理分离方法,如过滤、萃取和蒸馏等。
由于离子液体的特殊性质,需要使用特殊设备进行分离和纯化。
3.离子液体在化学反应中的应用离子液体在化学反应中具有广泛的应用,主要作为催化剂、反应介质和萃取剂等。
(1)催化剂:离子液体可以作为催化剂用于许多化学反应,如烷基化反应、酯化反应和聚合反应等。
离子液体能够改变反应动力学,提高反应速率和选择性。
(2)反应介质:离子液体可以作为反应介质,使得反应在均相中进行,提高反应效率和产物的纯度。
(3)萃取剂:离子液体可以作为萃取剂用于萃取金属离子和有机物,具有高效、环保等优点。
4.离子液体在材料科学中的应用离子液体在材料科学中也有广泛的应用,主要涉及高分子材料、陶瓷材料、晶体材料等领域。
(1)高分子材料:离子液体可以作为聚合反应的介质和引发剂,制备高性能的高分子材料。
(2)陶瓷材料:离子液体可以作为溶质,制备高性能的陶瓷材料,改变材料的微观结构和性能。
离子液体的合成及其在有机合成中的应用
离子液体的合成及其在有机合成中的应用一、本文概述离子液体是一种特殊的液态盐,具有独特的物理化学性质,如高离子导电性、低蒸汽压、良好的热稳定性、宽的电化学窗口和可设计性等。
这些特性使得离子液体在有机合成中展现出广阔的应用前景。
本文旨在探讨离子液体的合成方法及其在有机合成领域中的应用。
我们将详细介绍离子液体的合成方法,包括通过酸碱中和反应、季铵化反应、离子交换反应等合成不同类型的离子液体。
我们还将讨论如何通过调控离子液体的阴阳离子组成和结构,优化其性能以满足不同应用需求。
我们将综述离子液体在有机合成中的应用。
离子液体可以作为溶剂、催化剂和反应介质,在多种有机合成反应中发挥重要作用。
例如,离子液体可以用于提高有机反应的速率和选择性,实现绿色合成和节能减排。
离子液体还可以用于合成具有特殊结构和功能的有机化合物,如手性分子、高分子材料和纳米材料等。
我们将对离子液体在有机合成中的优势和挑战进行总结,并展望其未来的发展方向。
离子液体作为一种新型绿色溶剂和催化剂,在有机合成中具有广阔的应用前景。
然而,离子液体的成本、稳定性和毒性等问题仍需解决。
因此,未来的研究将集中在开发新型离子液体、优化其合成方法和拓展其应用领域等方面。
通过本文的阐述,我们期望能够为读者提供一个关于离子液体合成及其在有机合成中应用的全面而深入的理解,为离子液体在相关领域的研究和应用提供有益的参考。
二、离子液体的合成离子液体,作为一种独特的溶剂和反应介质,近年来在化学领域引起了广泛的关注。
离子液体的合成是其在各种应用中使用的基础,涉及到了多种化学原理和合成技术。
离子液体的合成主要可以分为两类:一步合成法和两步合成法。
一步合成法是通过一步化学反应直接生成离子液体,这种方法通常适用于那些离子液体组分之间反应活性较高,且不易发生副反应的情况。
两步合成法则首先合成离子液体的阳离子或阴离子前驱体,然后再通过离子交换或酸碱中和等反应得到目标离子液体。
这种方法在合成复杂离子液体时更为常见。
离子液体的分类、合成与应用
离子液体的分类、合成与应用离子液体是一种新型的绿色溶剂,具有独特的物理和化学性质,在许多领域中有着广泛的应用。
本文旨在介绍离子液体的分类、合成与应用,以期为相关领域的研究提供一定的参考。
离子液体是指全部由离子组成的液体,具有良好的导电性、稳定性和可设计性。
离子液体在科学领域中有着广泛的应用,如催化剂、电化学、材料科学等。
本文将重点介绍离子液体的分类、合成与应用。
离子液体可以根据不同的阳离子和阴离子进行分类。
根据阳离子的类型,离子液体主要分为以下几类:烷基咪唑离子液体:这类离子液体具有较高的熔点和良好的热稳定性,是应用最广泛的离子液体之一。
吡啶鎓离子液体:这类离子液体具有良好的化学稳定性和较高的粘度,适用于高温下的催化反应。
季铵盐离子液体:这类离子液体具有较低的熔点和较高的电导率,适用于电化学领域。
季膦盐离子液体:这类离子液体具有较高的稳定性和低毒性,适用于食品和医药等领域。
根据阴离子的类型,离子液体也可以分为以下几类:氯离子型离子液体:以氯离子为阴离子的离子液体,具有较低的熔点和较高的电导率。
溴离子型离子液体:以溴离子为阴离子的离子液体,具有较高的稳定性和良好的溶解性。
氟离子型离子液体:以氟离子为阴离子的离子液体,具有极高的稳定性和低表面张力。
磷酸根型离子液体:以磷酸根为阴离子的离子液体,具有较高的粘度和良好的热稳定性。
选择合适的阳离子和阴离子:根据需要选择合适的阳离子和阴离子,以满足对离子液体的性质和应用要求。
合成阳离子:将选择的阳离子进行化学合成,得到目标阳离子。
合成阴离子:将选择的阴离子进行化学合成,得到目标阴离子。
合成离子液体:将合成的阳离子和阴离子在一定的条件下混合,得到目标离子液体。
影响离子液体合成的因素有很多,如反应温度、反应时间、溶剂种类和浓度等。
在实际合成过程中,需要对这些因素进行优化和控制,以保证合成的离子液体具有优良的性质和稳定性。
离子液体在许多领域中有着广泛的应用,其主要应用领域包括:催化反应:离子液体可以作为催化剂的载体,提高催化剂的活性和选择性。
离子液体
离子液体——一种新型的绿色溶剂张萍,沈正荣﹡(浙江省医学科学院,浙江杭州 310013)摘要:目的综述离子液体的组成、性质、合成方法以及在溶解方面的应用。
方法查阅近年文献,进行归纳整理。
结果和结论离子液体是室温下呈液态的离子化合物,具有很多独特的性能,作为一种新型的绿色溶剂推动了绿色化学的发展。
关键词:离子液体;绿色化学;溶剂随着科技发展和环保意识的增强,寻找绿色反应溶剂和发现环境友好催化剂是绿色化学的主要研究方向之一。
室温离子液体作为一种新型的绿色溶剂正在迅速发展,成为科学研究的热点。
室温离子液体是指主要由有机阳离子和无机或有机阴离子构成的在室温或近于室温下呈液态的盐类,也称室温熔融盐,但是它不同于我们通常所说的离子化合物。
传统意义上的离子化合物在室温下一般都是固体,其强大的离子键使阴、阳离子在晶格上只能作振动,不能转动或平动。
他们一般都具有较高的熔点、沸点和硬度。
然而对于离子液体,如果把阴、阳离子做得很大且又极不对称,由于空间阻碍,强大的静电力无法使阴、阳离子在微观上作紧密堆积,使得阴、阳离子在室温下不仅可以振动,甚至可以转动、平动,整个有序的晶体结构遭到彻底破坏,离子之间作用力减小,晶格能降低,从而使离子化合物的熔点下降,在室温下成为液态[1]。
离子液体具有很多传统的分子溶剂不可比拟的独特性能。
1. 离子液体的组成离子液体的阳离子主要有以下四类[2,3]:烷基季铵离子[NR x H4-x]+;烷基季膦离子[PR x H4-x]+;N-烷基取代吡啶离子[RPy]+;1,3-二烷基取代咪唑离子,或称为N,N’-二烷基取代咪唑离子,记为[RR’im]+;其中最稳定的是烷基取代的咪唑阳离子。
阴离子则可以是AlC14-、BF4-、PF4-、CF3COO-、CF3SO3-、(CF3SO2)2 N-、SbF6-等有机离子和配合物离子,有些情况下也可以是Cl-、Br-、I-、NO3-、ClO4-等简单无机离子。
离子液体研究进展
离子液体研究进展一、本文概述离子液体,也称为离子性液体或离子溶剂,是一种在室温或接近室温下呈液态的盐类。
自20世纪90年代以来,离子液体作为一种新型的绿色溶剂和功能性材料,在化学、物理、材料科学、能源、环境等领域引起了广泛的关注。
离子液体具有独特的物理化学性质,如低蒸汽压、良好的热稳定性、宽的电化学窗口、高的离子导电性和可设计性等,使得它们在许多领域都有潜在的应用价值。
本文旨在全面综述离子液体的研究进展,包括离子液体的合成方法、性质表征、应用领域以及存在的挑战和未来的发展趋势。
通过对近年来相关文献的梳理和分析,我们将重点介绍离子液体在化学反应介质、电化学能源、分离技术、材料制备以及环境保护等方面的应用进展,并探讨离子液体在实际应用中面临的挑战和解决方案。
通过本文的综述,我们期望能够为读者提供一个关于离子液体研究进展的全面视角,并为离子液体的未来发展提供新的思路和方向。
我们也希望本文能够激发更多研究者对离子液体的兴趣,推动离子液体在各个领域的应用和发展。
二、离子液体的合成与性质离子液体,作为一种新型的绿色溶剂和功能性材料,近年来受到了广泛关注。
其独特的物理化学性质,如低蒸汽压、良好的热稳定性、高的离子电导率以及可调的溶解性等,使离子液体在众多领域,如化学合成、电化学、分离技术等中展现出广阔的应用前景。
离子液体的合成方法多种多样,主要包括一步合成法和两步合成法。
一步合成法通常是通过酸碱中和反应或季铵化反应直接生成离子液体,这种方法操作简单,但产物的纯度和选择性相对较低。
两步合成法则首先合成离子液体的阳离子或阴离子前体,然后再通过离子交换或复分解反应生成离子液体。
这种方法可以控制产物的纯度和选择性,但需要多步操作,相对复杂。
离子液体的性质与其组成和结构密切相关。
其阳离子和阴离子的种类、大小和对称性等因素都会影响其物理化学性质。
例如,离子液体的熔点受其离子大小的影响,离子半径越大,熔点越低。
离子液体的溶解性也与其离子结构有关,通过调节阳离子和阴离子的种类,可以实现对特定物质的溶解。
离子液体的应用研究综述
离子液体的应用研究综述离子液体是在室温或室温附近呈液态的由离子构成的物质,具有呈液态的温度区间大、溶解范围广、没有显著的蒸气压、良好的稳定性、极性较强且酸性可调、电化学窗口大等许多优点,因此,它是继超临界CO2 后的又一种极具吸引力的绿色溶剂,是传统挥发性溶剂的理想替代品。
因此,离子液体在分离过程、电化学、有机合成、聚合反应等方面有着十分广阔的应用前景,一、在电化学中的应用离子液体完全是由离子构成的,是电化学工作者良好的研究对象,可应用于电解、电镀、电池、光电池等领域。
Fuller等人在室温离子液体1-乙基-3-甲基咪唑四氟化硼([ emim ]BF4 )中研究了二茂铁、四硫富瓦烯的电氧化行为,结果表明,二茂铁和四硫富瓦烯在[ emim ]BF4 中可形成可逆程度很高的氧化还原对,是一种极为卓越的可适用于电化学合成的溶剂。
金属在离子液体中电极的沉积要比水溶液中所需的电位低,这方面首先研究的是铝的电镀,然后是银的电沉积,大量银沉积过程的电流效率几乎都为100%。
控制电压、电流密度、离子浓度等,可在一个较宽范围内获得确定组成的金属或合金。
二、在化学反应中的应用以离子液体作为化学反应的介质,为化学反应提供了不同于传统分子溶剂的环境,有可能通过改变反应机理而使催化剂活性、稳定性更好,转化率、选择性更高。
离子液体种类多,选择范围宽,将催化剂溶于离子液体中,与离子液体一起循环利用,催化剂兼有均相催化效率高、多相催化易分离的优点。
同时离子液体无蒸气压,液相温度范围宽,产物可通过倾析、萃取、蒸馏等简单的方法分离出来。
1.在有机合成中的应用离子液体[ EtNH3 ] [NO3 ]最先应用于环戊二烯与丙烯酸甲酯和甲基酮的Diels2Alder反应,结果表明:离子液体的种类和组成对内、外旋产物的比例影响较大,与丙酮等非极性分子溶剂相比,离子液体体系中反应速率更快,内旋产物的选择性更高,为解决对水敏感的Diels2Alder反应提供了一个良好的溶剂环境。
离子液体(综述)
离子液体的现状、应用及其前景姓名:丁文章专业:轻工技术与工程学号:6140206024摘要:离子液体因为具有如蒸汽压低,电化学窗口宽,物质溶解性好,稳定诸多优点而被极多的化学工作者关注.本文就离子液里的研究进展.离子液体的类型及应用,离子液体的毒性等几个方面做出详细的阐述,并对离子液体的前景做出了初步的预测.关键词:离子液体;离子液体的类型;应用;毒性;Abstract:Ionic liquid has the following advantages, wide electrochemical window, steam down material good solubility ,This paper is about of the research progress in the ionic liquid, the types and application of ionic liquids and the toxicity of ionic liquid, and made a preliminary forecast to the prospect of the ionic liquid.Keyword:Ionic liquid;the types of Ionic liquid; application of ionic liquids; toxicity of ionic liquid;1引言离子液体[1]是指全部由有机阳离子和无机或有机阴离子构成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体,在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体.离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+HNO3-的合成(熔点12℃) .这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体.1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体.他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) .但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用.直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽.1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃.在这以后,离子液体的应用研究才真正得到广泛的开展.与传统的有机溶剂相比,离子液体具有如下特点[2]:(1) 液体状态温度范围宽,从低于或接近室温到300℃, 且具有良好的物理和化学稳定性;(2)无色、无臭, 不挥发, 几乎没有蒸气压.(3) 蒸汽压低,不易挥发,消除了VOC(V olatile Organic Compounds)环境污染问题;(4) 对大量的无机和有机物质都表现出良好的溶解能力, 且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5) 具有较大的极性可调控性, 粘度低, 密度大, 可以形成二相或多相体系, 适合作分离溶剂或构成反应–分离耦合新体系.2 离子液体的种类[3]从定义上看,离子液体是不同种类的金属离子的组合,我们通过改变改变不同的阳离子/阴离子组合可设计合成许多种离子液体,但当前研究的离子液体仍为数不多.目前所研究的离子液体均是由阴阳离子共同组合而成的液态介质, 其具体分类也可以按照阴阳离子的不同进行划分.根据组成离子液体的阳离子的不同可以分为 4 类(表一), 根据组成离子液体的阴离子的不同可以分为2 类(表二).研究的离子液体中,阳离子主要以咪唑阳离子为主,阴离子主要以卤素离子和其它无机酸离子(如四氟硼酸根等)为主.但近几年来又合成了一系列新型的离子液体.在阳离子方面,、一些新型阳离子的离子液体被开发出来如下图所示:在阴离子方面,也合成了一些新型阴离子的离子液体,如下所示:由于离子液体本身所具有的许多传统溶剂所无法比拟的优点及其作为绿色溶剂应用于有机及高分子物质的合成,因而受到越来越多的化学工作者的追捧,其研究的热度也不断攀升.3 离子液体的应用3.1酸化反应在利用酸性的氯化铝金属离子进行醇酸醋化反应, 其反应具有以下优点:反应温度低、条件温和、无污染、不腐蚀设备、催化剂可重复使用、反应时间短、易分离得到高纯度、高选择性和高产率.但是,由于酯化过程有水产生, 会对氯铝酸离子液体有一定程度的破坏.当将磺酸基引人到离子液体的阳离子烷基链上可得到酸性离子液体,其在催化多种醇酸醋化反应时表现出了一定的活性[4].3.2反应-分离耦合利用离子液体的极性可调控性,选择不同的阳离子/阴离子组合则可与水或有机物形成一相或多相体系.利用反应物、产物和催化剂在离子液体和水中不同的溶解性,则可以实现反应–分离的耦合,同时由于离子液体可重复使用,避免了使用有机溶剂时所造成的污染.例如,在进行[bmim]、[BF4]作为两相催化介质的实验时.当将钯化合物溶解在[bmim]、[BF4]中, 进行1,3–丁二烯的水相二聚催化反应.当温度升高到70℃时,水相和离子液体相成为均一表二根据组成离子液体的阳离子分类离子名称表达式例子烷基季铵离子[NR X H4-X]+烷基季磷离子[PR X H4-X]+1-丁基-3-甲基咪唑烷基取代咪唑离子[RR'im]+溴化 1-乙基吡啶[RR'R''im]+烷基取代吡啶离子[RP y]+氯化 1-丁基吡啶表二根据组成离子液体的阴离子分类离子名称表达式例子卤化盐离子MX a ALcl3 、BrCl3非卤化盐离子BF4-、PF-6、CF3SO3-、BF-6相,丁二烯在钯催化下发生反应.当反应结束后,把温度降到5℃以下,则自动分成水相和离子液体相两相.产品在离子液体中溶解度很小而进入水相,催化剂则有97%都留在离子液体相中,实现了反应过程与分离过程的耦合[5].3.3 Diels - Alder环加成反应用环戊二烯与丙烯酸甲酯进行环加成反应,产物有内式和外式, 用离子液[ EtNH3]NO3则选择内式, 反应速率比在非极性溶剂中快, 没有在水中快, 但可用对水敏感的试剂.用[ bmim] +与BF-4、AlCl-4、CF3SO-3、NO-3、PF-6组成的离子液体有同样的倾向, 效果稍差[6].3.4 烯烃的环氧化用[ emim]BF4为溶剂, 用甲基三氧化铼为催化剂, 尿素过氧化氢( UHP) 为氧化剂, 可得到优秀的转化率和选择性.所用烯烃有: 环己烯、1 -甲基环己烯、环己烯- 2 -醇、苯乙烯、环辛烯、环辛二烯- 1, 5 等[7].3.5 离子液体的毒性[8]虽然离子液体有诸多优点,并被认为是绿色化学重要的类型之一,但是但离子液体本身并非绿色产品,某些离子液体甚至是有毒的.从离子液体的制备、再生和处置过程看[9]: 目前用于制备离子液体的主要原料( 烷基取代咪唑、烷基取代吡啶、烷基取代盐和烷基取代铵盐等) 大多是挥发性有机物; 而离子液体的再生过程主要是采用具有挥发性的传统有机溶剂进行萃取的过程; 某些离子液体本身是有毒且难以生物降解的.因此, 在离子液体大规模应用前需对其应用风险进行评价.4展望离子液体作为绿色化学的符号,具有品种多、可设计、性能独特、应用领域广泛的特点, 因此其具有很好的应用前景乐观.但是离子液体也存在一些问题,例如:离子液体的粘度较大、离子液体对环境的影响和毒性没有确切的数据等.目前, 对离子液体的合成与应用研究主要集中在如何提高离子液体的稳定性, 降低离子液体的生产成本等方面.但是随着对离子液体研究的不断深入,新型离子液体的开发.相信离子液体绿色溶剂的愿景一定可以实现.参考文献:[1] 石家华, 孙逊, 杨春和, 等. 离子液体研究进展[ J] . 化学通报, 2002, ( 4) : 2 432 250.[2]张锁江,吕兴梅,刘志平,等. 离子液体——从基础研究到工业应用( Ionic Liquid——from Basic Research to Industrial Application) . 北京: 科学出版社( Beijing: Science Press) ,2006. 150—157 [ 3] 张英锋, 李长江, 等. 离子液体的分类、合成与应用[ J] . 化学教育, 2005, ( 2) : 728.[4]Zhang S J,Y uan X L,Chen Y H,et al. J. Chem. Eng. Data,2005,50: 1582—1585[5]Wilkes J S, Zaworotko M J. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids [J]. J. Chem. Soc. mun., 1992, (13): 965–967.[6]Roumiana PS, Georgi S C, Anatolii A G, et al.A Powerful Algorithm for Liquid–Liquid–Liquid Equilibria Predictions and Calculations [J]. Chem. Eng. Sci., 2000, 55(11): 2121–2129.[7]Wasserscheid P, Welton T. Ionic Liquids in Synthesis.Weinheim: Wiley-VCH, 2002. 174-283[8]Wilkes J S, Levisky J A, Wilson R A, et al. Inorg. Chem. ,1982, 21( 3) : 1236-1264[9]何鸣元, 戴立益. 离子液体与绿色化学[J]. 化学教学, 2002, 6: 1-3.。
离子液体 纳米材料
离子液体纳米材料
离子液体是一种特殊的盐类化合物,其特点是在常温下呈液态状态。
它们通常由大型有机阳离子和小型无机阴离子组成,因此具有较低的熔点和较宽的电化学窗口。
离子液体具有优异的化学稳定性、热稳定性和电化学活性,因此在催化、溶剂、电化学、绿色化学等领域具有广泛的应用前景。
纳米材料是指至少在一维尺度(纳米级别)上具有特定结构和特殊性质的材料。
常见的纳米材料包括纳米颗粒、纳米线、纳米管等。
由于其特殊的尺寸效应、表面效应和量子效应,纳米材料表现出与其宏观对应物质不同的物理、化学和生物学特性。
纳米材料在材料科学、纳米技术、生物医学、能源储存等领域具有广泛的应用前景。
离子液体与纳米材料之间存在着密切的关联。
离子液体作为一种优秀的溶剂,可以被用于纳米材料的合成、修饰和分散,有助于调控纳米材料的形貌、尺寸和性质。
同时,一些离子液体本身也具有纳米结构,例如离子液体液晶,这些离子液体纳米结构也展现出了一些特殊的性质和应用潜力。
另外,离子液体与纳米材料的复合体系也得到了广泛的研究,这种复合体系往往能够兼具离子液体和
纳米材料的优异性能,拓展了它们在催化、传感、能源等领域的应用。
总的来说,离子液体和纳米材料都是当前材料科学和化学领域备受关注的研究热点,它们之间存在着多种关联和相互作用,相信在未来会有更多的新颖研究和应用涌现出来。
常用离子液体研究进展评述
离 子液体 ( nc iud , i i q i)又称 室温 离子 o l
在 室 温 或 室 温 附近 完 全 由 阴 、 阳离 子 组 成 的 有 机 盐 。 室 温 离 子 液 体 中 可 进 行 在
F id r f 酰基化 反应 , id~Crf 烷 基 re -C at s Fre at s
回收 循 环 使 用 。 的相行为 。
化 反 应 , 可 将 其 作 为 理 想 的 电解 质来 获 也
得铝 合 金镀 层 。 子 液 体作 为 反 应 溶 剂 、 离 模
( ) 用 紫 外 光 谱 法 对 室 温 离 子 液 体 2利
含 氟 离 子 液 体 具 有 很 多有 价 值 的特 性 和 广 阔 的 应 用 前 景 。 现 出 大 量 新 型 含 氟 涌
一
较 . 易燃 ;2 较宽 的液 态温 度 范 围 、 () 良好 的导 电 态 稳 定 温 度 范 围 , 好 的 化 学 稳 定 性 和 较 1 4 胍盐 离子 液体 的研 究进 展 在 气 胍 基 化 合 物 由 于具 有 较 高 的 热 和 化 学 性 和较 宽 的 电位 窗 口; 3 通过 阴 阳 离 子 的 强 的 选 择 溶 解 能 力 , 化 学 反 应 、 体 分 () 较 较 液 设 计可 调 节 其对 无机 物 、 、 水 有机 物 及 聚 合 离 、 体 分 离 等 过 程 中 表 现 出 良好 的应 用 稳 定 性 、 高 的 催 化 活 性 、 强 的 生 理 活 潜 能 。 关 研 究 在建 立 液 体化 学 结 构 一陛质 性 , 受 到化 学 家 和 药 学 家 的 广泛 关 注 。 相 而 尤 物 的溶 解性 及 离 子液 体 酸 度 ;4 毒 性低 , () 可 胍 关 系 的 模 型 上 进 行 了开 创 性 工 作 , 为芳 香 其 在 生 命 体 系 中 , 基 官 能 团 由 于 具 有 独 特 的分 子识 别 作 用而 使 其 成 为 生 命 科学 的 脂 离 子 液 体 的 性 质 取 决 于 其 正 、 离 子 碳 氢 化 合 物 、 肪 族 碳 氢化 合 物 混 合 体 系 负 此 胍盐 由于 其 阳 离子 电 种 类及 其 取 代 基 的 结 构 , 离 子 液 体 的 纯 的分 离 ( , 而 如 甲苯 、 正庚 烷 的 分 离) 醚 合成 反 研 究重 点之 一 。 外 , 、 热 烯 度对 其 性 质有 着 至 关 重要 的 作用 。 因此 , 在 应 中醇 的分 离 、 烃 中醇 的 萃 取 等 实 际 过 荷 分散 程 度 高 、 稳 定性 和 化 学 稳 定性 高 、
离子液体综述
离子液体离子液体是指全部由离子组成的液体,如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。
在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。
在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。
某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。
种类离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。
离子液体作为离子化合物,其熔点较低的主要原因是因其结构中某些取代基的不对称性使离子不能规则地堆积成晶体所致。
它一般由有机阳离子和无机阴离子组成,常见的阳离子有季铵盐离子、季鏻盐离子、咪唑盐离子和吡咯盐离子等,阴离子有卤素离子、四氟硼酸根离子、六氟磷酸根离子等。
目前所研究的离子液体中,阳离子主要以咪唑阳离子为主,阴离子主要以卤素离子和其它无机酸离子(如四氟硼酸根等)为主。
但近几年来又合成了一系列新型的离子液体,例如在阳离子方面,Shreeve领导的研究小组合成了一些新型阳离子的离子液体如下所示:在阴离子方面,Yoshida研究小组也合成了一些新型阴离子的离子液体。
由于离子液体本身所具有的许多传统溶剂所无法比拟的优点及其作为绿色溶剂应用于有机及高分子物质的合成,因而受到越来越多的化学工作者的关注。
离子液体的制备离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。
离子液体的合成大体上有两种基本方法:直接合成法和两步合成法。
直接合成法通过酸碱中和反应或季胺化反应等一步合成离子液体,操作经济简便,没有副产物,产品易纯化。
Hlrao等酸碱中和法合成出了一系列不同阳离子的四氟硼酸盐离子液体。
另外,通过季胺化反应也可以一步制备出多种离子液体,如卤化1-烷基3-甲基咪唑盐,卤化吡啶盐等。
离子液体应用研究进展
离子液体应用研究进展一、本文概述离子液体作为一种新型的绿色溶剂和功能性材料,近年来在化学、材料科学、能源、环境等领域引起了广泛关注。
由于其独特的物理化学性质,如良好的溶解性、低挥发性、高离子导电性、高热稳定性等,离子液体在多个领域都展现出广阔的应用前景。
本文旨在综述离子液体在不同领域的应用研究进展,包括催化、电化学、分离提纯、生物质转化、能源存储与转换等方面。
通过对相关文献的梳理和评价,本文旨在为读者提供一个全面而深入的离子液体应用研究的进展报告,以期推动离子液体在更多领域的应用和发展。
二、离子液体在化学反应中的应用离子液体作为一种新型的绿色溶剂和反应介质,近年来在化学反应领域的应用受到了广泛的关注和研究。
其独特的物理化学性质,如低蒸汽压、高离子导电性、良好的热稳定性和化学稳定性,使得离子液体成为许多传统有机溶剂的理想替代品。
在有机合成领域,离子液体作为反应介质,可以有效地提高反应的选择性和产率。
例如,在Wittig反应、Diels-Alder反应以及Heck 反应等经典有机反应中,离子液体的使用不仅能够改善反应的动力学行为,还能显著提高产物的纯度。
离子液体还在电化学领域展现出巨大的应用潜力。
作为一种高效的电解质,离子液体在电化学合成、电沉积以及电池技术等方面都有广泛的应用。
其宽的电化学窗口和良好的离子导电性使得离子液体成为下一代高性能电池的理想选择。
值得一提的是,离子液体还在催化反应中发挥着重要作用。
作为一种新型的催化剂载体或反应介质,离子液体能够与催化剂之间形成协同作用,从而提高催化剂的活性和稳定性。
例如,在烃类裂解、酯化反应以及生物质转化等催化过程中,离子液体的引入都能够显著提升反应效率。
然而,尽管离子液体在化学反应中展现出众多优势,但其在实际应用中仍面临一些挑战和问题,如成本较高、合成方法复杂以及在某些反应中的性能尚不稳定等。
因此,未来在离子液体的研究中,还需要进一步探索其合成方法、优化其性能,并拓展其在更多化学反应领域的应用。
离子液体在药物研究中的应用
离子液体在药物研究中的应用随着药物制剂的日益复杂,离子液体(ILs)作为新型分子结构,已经在药物研究领域发挥着重要作用。
离子液体不仅具有控制分子尺寸和形状的优势,而且在提高药物稳定性和抗氧化性方面也发挥着关键作用。
近几年来,ILs在药物制造、药物纳米粒子制备和药物作用机制研究等方面已经发挥出显著作用。
本文将综述离子液体在药物研究中的应用,主要包括:离子液体的结构及性质、ILs在药物制造中的应用、ILs在药物纳米粒子制备中的应用、ILs在药物作用机制研究中的应用。
离子液体结构及性质离子液体是一类介于液态有机分子溶剂和有机离子溶液之间的介质,它是一种复杂的有机-无机离子体,由极性有机分子和离子(通常为离子组分)形成。
它们具有优异的溶解性,能有效溶解各种极性有机分子,并具有控制分子尺寸的特点。
同时,由于ILs的低毒性和气味,它们在药物研究中具有良好的安全性。
ILs在药物制造中的应用离子液体作为一种极性有机溶剂,具有优异的溶解性和较高的质量,因而可以用于制造不同类型的高质量药物。
此外,ILs还能降低药物制备过程中的温度及压强,有助于稳定活性药物的结构及性质,从而提高药物的稳定性。
另外,ILs还能减少药物制备过程中的污染物,有助于保护环境。
ILs在药物纳米粒子制备中的应用ILs在药物纳米粒子制备中发挥着重要作用,它可以充当包裹剂,保护药物,并防止药物吸收和释放过程中的氧化。
此外,ILs可以在体内稳定药物,且没有毒性,可以有效控制药物的释放时间,从而实现药物的持续释放,是一种有利的药物分布方法。
ILs在药物作用机制研究中的应用ILs具有优良的抗氧化性能,可以抑制药物作用机制中氧化反应,保护药物稳定性并延缓其失活。
因此,ILs可以用于优化药物作用机制,有助于提高药物的活性和疗效。
综上所述,离子液体已经发挥出重要作用,在药物制造、药物纳米粒子制备和药物作用机制研究等方面都变得越来越重要。
但是,还需要更多研究认识ILs特性,并将其应用到药物研究中,以期发挥其更多潜在功能。
有机合成中的离子液体催化研究综述
有机合成中的离子液体催化研究综述近年来,离子液体作为一种新型的催化剂在有机合成领域引起了广泛的关注。
离子液体具有独特的物化性质,可以调控反应的速率和选择性,从而在有机合成中发挥重要作用。
本文将综述离子液体在有机合成中的应用及其催化机理。
第一部分:离子液体的基本特性离子液体是一类具有低熔点的有机盐,其熔点通常低于100℃。
离子液体由阳离子和阴离子组成,可以根据需要设计合成不同的离子对。
离子液体具有良好的溶解性、热稳定性和可重复使用性,可以作为绿色催化剂替代传统的有机溶剂。
第二部分:离子液体在有机合成中的应用离子液体可以在有机合成中发挥多种催化作用,包括酸催化、碱催化、金属催化和离子催化等。
其中,离子液体作为酸催化剂可以催化酯化、醚化、醇缩合等反应;离子液体作为碱催化剂可以催化酯水解、烯烃加氢等反应;离子液体作为金属催化剂可以催化氧化还原反应、氢化反应等;离子液体作为离子催化剂可以催化烯烃聚合、烷基化等反应。
这些反应中,离子液体催化剂可以提高反应的速率和选择性,同时减少副产物的生成,具有重要的应用价值。
第三部分:离子液体催化机理的研究进展离子液体催化机理的研究对于揭示催化反应的本质和提高催化效率具有重要意义。
目前,研究者通过理论计算、实验表征和反应动力学等方法,对离子液体催化反应的机理进行了深入研究。
研究结果表明,离子液体催化剂通过形成氢键、离子对相互作用和空间位阻效应等方式,调控反应的活性中心和过渡态结构,从而影响反应的速率和选择性。
第四部分:离子液体催化的应用案例离子液体催化在有机合成中已经取得了一系列的重要应用。
以酯化反应为例,研究者利用离子液体作为酸催化剂,可以在较低的温度下实现高转化率和选择性。
另外,离子液体催化剂还可以用于有机合成中的催化转化、催化剂的回收和废水处理等方面,具有广阔的应用前景。
结论:离子液体作为一种新型的催化剂,在有机合成中具有广泛的应用前景。
离子液体催化剂可以调控反应的速率和选择性,提高催化反应的效率和环境友好性。
在离子液体中蛋白质溶解性和稳定性的研究进展
在离子液体中蛋白质溶解性和稳定性的研究进展近年来,离子液体(ionic liquids,ILs)作为一种新型绿色溶剂受到了广泛关注。
离子液体是一类离子型溶剂,在常规溶剂中通常无法溶解的化合物,如蛋白质、纤维素等,在离子液体中表现出了较好的溶解性和稳定性。
因此,研究人员开始关注在离子液体中蛋白质的溶解性和稳定性。
本文将主要就近年来在离子液体中蛋白质溶解性和稳定性的研究进展进行综述。
一、离子液体对蛋白质的溶解性影响离子液体的设计和选择对其对蛋白质的溶解性起着至关重要的作用。
一些研究表明,含氟离子的离子液体对蛋白质有更好的溶解性。
例如,含有三氟甲基磺酰基的离子液体在蛋白质溶解性方面表现出了优异的性能。
此外,离子液体的水合性质、极性和溶解度也会对蛋白质的溶解性产生影响。
因此,合理设计和选择离子液体的结构对提高蛋白质的溶解性具有重要作用。
二、离子液体对蛋白质的稳定性影响离子液体还可以提高蛋白质的稳定性,延长其寿命。
研究表明,离子液体可以减少蛋白质的热变性和化学变性,同时也可以提高蛋白质的抗氧化性。
离子液体的温和性质和低挥发性使其对蛋白质的保护作用更为显著。
此外,离子液体还可能改变蛋白质的构象,增加其稳定性。
因此,离子液体对蛋白质的稳定性提高有着积极的作用。
三、离子液体在蛋白质的应用离子液体不仅可以提高蛋白质的溶解性和稳定性,还可以为蛋白质的提取、纯化和储存提供新的思路。
利用离子液体将蛋白质从细胞中提取出来,可以避免传统有机溶剂的毒性及难以去除的问题;在蛋白质的纯化过程中,离子液体也能提高分离效率和产品纯度;同时,在蛋白质的储存方面,离子液体可以延长其寿命,减少变性和降解。
综上所述,离子液体在蛋白质溶解性和稳定性方面具有良好的性能,并且在蛋白质的应用上也有很大的潜力。
未来,随着对离子液体的深入研究和技术发展,相信离子液体将会在蛋白质工程领域中得到更广泛的应用。
离子液体——精选推荐
绿色化学中的离子液体摘要本文评述了离子液体的一般性质及其在一系列化学反应中的应用,并且展望了它作为绿色溶剂的将来。
关键词绿色化学绿色溶剂离子液体迄今,绝大多数化学反应都在分子溶剂中进行,如水和多数常见的有机溶剂。
近年来一种新的溶剂-离子液体的出现引起了各国学者的关注。
该溶剂在室温下是流质(也称为室温离子液),而组成是离子系列的,组成该溶剂至少有两种成份,即可变换的阳离子和阴离子。
由于该溶剂可按利用者的需要或具某些特种性质而设计,所以又称之为“设计者溶剂”。
离子液体既可作溶剂又可作催化剂,在该液体中进行反应的热力学和动力学与在普通溶剂中有所不同的,一般说来,离子液体对热稳定,不可燃,不挥发,不氧化,不爆炸,低毒性,故用于合成反应中是清洁友好的。
已有的报导证明,离子液体增加了反应的活性、选择性及催化剂的稳定性等,更深地探索会发现一些新的不可预见的事物,激发人们聚焦于此的原因还在于人们一直倡导绿色化学和绿色合成。
离子液体的领域已有综述,它包括Welton [1],Wasserscheid 和Keim[2],以及Freemantle[3],特别是长期从事这一领域研究的Seddon等[4]。
第一个常温离子液体[EtNH3][NO3](mp. 12 ℃)于1914年发现,但仅在上世纪七十年后才有新的进展[5、6]。
离子液体包括两大类:一类是简单的盐,由有机阳离子和阴离子组成,有机阳离子通常包括有季铵阳离子、季膦盐阳离子、杂环芳香化合物及天然产物的衍生物等,其中常见的是咪唑盐,如另一类是二元离子液体(即含有平衡的盐)。
例,AlCl3(Ⅲ)和氯化1-甲基-3-乙基咪唑盐的混合物,它含有几种不同的离子系列,它们的熔点和性质取决于组成,常用[C2mim]Cl-AlCl3来表示这个络合物。
离子溶液被称为“设计者溶剂”,那么它的熔点,粘度,密度和疏水等性能可用简单地变换离子结构来控制。
如[Rmim]BF4的烷基链长(C数)小于6时,在25 C时与水混溶,当链长大于6时,它就与水不混溶了,这种行为对反应的选择和产物萃取和分离有利。
离子液体在水中的存在状态及离子液体水合作用的研究
离子液体在水中的存在状态及离子液体水合作用的研究离子液体在水中的存在状态及离子液体水合作用的研究离子液体(ILs)是一类具有独特性质的介质,在过去的十年中,它受到越来越多科学家的关注。
离子液体与水是水分子组成的复杂系统,存在着复杂的水-离子液体界面联系和非介电液体-离子液体界面联系。
本文将对离子液体在水中存在的状态及离子液体水合作用的研究进行综述。
一、离子液体在水中的存在状态(1)离子液体与水的界面联系离子液体和水的界面联系尤为重要,也是引起离子液体溶解度影响的因素之一。
离子液体粒子会改变水分子的排列结构,影响离子液体和水分子间的界面相容性以及离子液体水双分子吸附层的运动。
此外,水分子正负电极分布及团簇的形成和离子液体的极性液体也会影响离子液体溶解度的变化。
(2)离子液体的溶解度离子液体的溶解度在水中通常较低,也受水的温度、pH、浓度和电荷等参数的影响。
当离子液体的阴、阳离子混合物改变时,其在水中的溶解度会有变化,这一点也受到许多因素的影响,例如水的性质、离子液体构造、它所夹带的介质分子以及其他离子液体极性液体的吸附。
二、离子液体水合作用的研究(1)生理效应由于离子液体的特殊性,它们在生理环境中有着重要的应用,如作为气雾剂材料,也可用于传递微观物质和药物等。
研究表明,离子液体与水内部有着复杂的相互关系,可能会改变生物环境中的物质,甚至对细胞有某种影响,比如抑制细菌生长、促进基因表达特等。
(2)润湿性润湿性是指表面上水分子和离子液体分子存在多层非等性吸附状态的能量。
这种状态有利于环境和生物的交互作用,充分发挥环境和生物的作用。
研究表明,离子液体的润湿性在水中是一个非常重要的研究课题,是水的极性液体特性的基础,也是离子液体在各种应用中的基础。
综上所述,离子液体在水中的存在形式及水离子液体合作用的研究均是有价值的研究领域,它们也可能带来更多更复杂的现象。
此外,未来新型离子液体介质的研发和发展将为水离子液体合作用研究提供新的发展方向,带来更多前沿性研究成果。
关于离子性液体的毒性和环境命运的回顾
离子液体的毒性及前景的综述摘要:离子液体是可以代替工业中易挥发有机化合物的低熔点的绿色有机盐类。
这些溶剂之所以称作是环保的化学物质是因为他们的蒸汽压可以忽略不计。
尽管如此,离子液体在水中的溶解性以及一些研究阐述的其对水生有机物的毒性仍然引起了广泛的关注。
由于离子液体会对土壤和水生环境产生污染,我们必须充分了解离子液体在陆地环境中的运动(包括微生物降解、吸附作用、解吸附作用)。
本文通过总结近些年对于离子液体研究取得的成就以及其在环境风险评价中的地位,希望提出对离子液体的前沿的研究。
1、导语在当今化学加工业,大多数的挥发性有机化合物普遍应用引起了广泛的关注。
主要是因为这些生产过程中和环境中的有机溶剂具有毒性,它的易挥发性和可燃性也会造成潜在的爆炸事故。
目前,由于许多溶剂的有害作用及其带来的环境问题(如大气辐射、工业废水),所以现在政府禁止人们应用这些溶剂。
因此,许多学者都把目光放在绿色工程的研究上,绿色工程旨在寻找可代替有害化学物的环保型物质。
在近些年符合绿色科技的溶剂中,离子液体与其他物质如超临界CO2 和双水相相比受到了更广泛的关注。
早期离子液体作为熔盐是化学史上最热门的部分之一。
它的熔点小于100℃,因此可以被合成大的非对称的阳离子和不协调的阴离子结构。
然而这一独特的可溶的却又不协调的离子液体结构为各种化学生产提供了很好的媒介。
另外,它的物理性质使它的长度发生变换和作为烷基链的支链以及阴离子的初期形式。
基于以上的优点,离子液体可以得到广泛的应用。
与其他分子态的溶剂不同,离子液体的结构变化多样,因此它们是多样化的特殊溶剂。
因为离子液体的蒸汽压很低且不易燃,一些学者把它们代誉为现代最先进的技术、可持续化学的创新方法的代表。
目前,也有报道显示这些离子液体已经作为有机物合成,催化作用和生物催化作用(生物触媒作用)的反应物得以应用。
Gordon指出由于经济过程、反应活性、萃取和收益都有所提高,离子液体在化学反应上的应用具有明显的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子液体的现状、应用及其前景姓名:丁文章专业:轻工技术与工程学号:6140206024摘要:离子液体因为具有如蒸汽压低,电化学窗口宽,物质溶解性好,稳定诸多优点而被极多的化学工作者关注.本文就离子液里的研究进展.离子液体的类型及应用,离子液体的毒性等几个方面做出详细的阐述,并对离子液体的前景做出了初步的预测.关键词:离子液体;离子液体的类型;应用;毒性;Abstract:Ionic liquid has the following advantages, wide electrochemical window, steam down material good solubility ,This paper is about of the research progress in the ionic liquid, the types and application of ionic liquids and the toxicity of ionic liquid, and made a preliminary forecast to the prospect of the ionic liquid.Keyword:Ionic liquid;the types of Ionic liquid; application of ionic liquids; toxicity of ionic liquid;1引言离子液体[1]是指全部由有机阳离子和无机或有机阴离子构成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体,在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体.离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+HNO3-的合成(熔点12℃) .这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体.1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体.他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) .但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用.直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽.1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃.在这以后,离子液体的应用研究才真正得到广泛的开展.与传统的有机溶剂相比,离子液体具有如下特点[2]:(1) 液体状态温度范围宽,从低于或接近室温到300℃, 且具有良好的物理和化学稳定性;(2)无色、无臭, 不挥发, 几乎没有蒸气压.(3) 蒸汽压低,不易挥发,消除了VOC(V olatile Organic Compounds)环境污染问题;(4) 对大量的无机和有机物质都表现出良好的溶解能力, 且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5) 具有较大的极性可调控性, 粘度低, 密度大, 可以形成二相或多相体系, 适合作分离溶剂或构成反应–分离耦合新体系.2 离子液体的种类[3]从定义上看,离子液体是不同种类的金属离子的组合,我们通过改变改变不同的阳离子/阴离子组合可设计合成许多种离子液体,但当前研究的离子液体仍为数不多.目前所研究的离子液体均是由阴阳离子共同组合而成的液态介质, 其具体分类也可以按照阴阳离子的不同进行划分.根据组成离子液体的阳离子的不同可以分为 4 类(表一), 根据组成离子液体的阴离子的不同可以分为2 类(表二).研究的离子液体中,阳离子主要以咪唑阳离子为主,阴离子主要以卤素离子和其它无机酸离子(如四氟硼酸根等)为主.但近几年来又合成了一系列新型的离子液体.在阳离子方面,、一些新型阳离子的离子液体被开发出来如下图所示:在阴离子方面,也合成了一些新型阴离子的离子液体,如下所示:由于离子液体本身所具有的许多传统溶剂所无法比拟的优点及其作为绿色溶剂应用于有机及高分子物质的合成,因而受到越来越多的化学工作者的追捧,其研究的热度也不断攀升.3 离子液体的应用3.1酸化反应在利用酸性的氯化铝金属离子进行醇酸醋化反应, 其反应具有以下优点:反应温度低、条件温和、无污染、不腐蚀设备、催化剂可重复使用、反应时间短、易分离得到高纯度、高选择性和高产率.但是,由于酯化过程有水产生, 会对氯铝酸离子液体有一定程度的破坏.当将磺酸基引人到离子液体的阳离子烷基链上可得到酸性离子液体,其在催化多种醇酸醋化反应时表现出了一定的活性[4].3.2反应-分离耦合利用离子液体的极性可调控性,选择不同的阳离子/阴离子组合则可与水或有机物形成一相或多相体系.利用反应物、产物和催化剂在离子液体和水中不同的溶解性,则可以实现反应–分离的耦合,同时由于离子液体可重复使用,避免了使用有机溶剂时所造成的污染.例如,在进行[bmim]、[BF4]作为两相催化介质的实验时.当将钯化合物溶解在[bmim]、[BF4]中, 进行1,3–丁二烯的水相二聚催化反应.当温度升高到70℃时,水相和离子液体相成为均一表二根据组成离子液体的阳离子分类离子名称表达式例子烷基季铵离子[NR X H4-X]+烷基季磷离子[PR X H4-X]+1-丁基-3-甲基咪唑烷基取代咪唑离子[RR'im]+溴化 1-乙基吡啶[RR'R''im]+烷基取代吡啶离子[RP y]+氯化 1-丁基吡啶表二根据组成离子液体的阴离子分类离子名称表达式例子卤化盐离子MX a ALcl3 、BrCl3非卤化盐离子BF4-、PF-6、CF3SO3-、BF-6相,丁二烯在钯催化下发生反应.当反应结束后,把温度降到5℃以下,则自动分成水相和离子液体相两相.产品在离子液体中溶解度很小而进入水相,催化剂则有97%都留在离子液体相中,实现了反应过程与分离过程的耦合[5].3.3 Diels - Alder环加成反应用环戊二烯与丙烯酸甲酯进行环加成反应,产物有内式和外式, 用离子液[ EtNH3]NO3则选择内式, 反应速率比在非极性溶剂中快, 没有在水中快, 但可用对水敏感的试剂.用[ bmim] +与BF-4、AlCl-4、CF3SO-3、NO-3、PF-6组成的离子液体有同样的倾向, 效果稍差[6].3.4 烯烃的环氧化用[ emim]BF4为溶剂, 用甲基三氧化铼为催化剂, 尿素过氧化氢( UHP) 为氧化剂, 可得到优秀的转化率和选择性.所用烯烃有: 环己烯、1 -甲基环己烯、环己烯- 2 -醇、苯乙烯、环辛烯、环辛二烯- 1, 5 等[7].3.5 离子液体的毒性[8]虽然离子液体有诸多优点,并被认为是绿色化学重要的类型之一,但是但离子液体本身并非绿色产品,某些离子液体甚至是有毒的.从离子液体的制备、再生和处置过程看[9]: 目前用于制备离子液体的主要原料( 烷基取代咪唑、烷基取代吡啶、烷基取代盐和烷基取代铵盐等) 大多是挥发性有机物; 而离子液体的再生过程主要是采用具有挥发性的传统有机溶剂进行萃取的过程; 某些离子液体本身是有毒且难以生物降解的.因此, 在离子液体大规模应用前需对其应用风险进行评价.4展望离子液体作为绿色化学的符号,具有品种多、可设计、性能独特、应用领域广泛的特点, 因此其具有很好的应用前景乐观.但是离子液体也存在一些问题,例如:离子液体的粘度较大、离子液体对环境的影响和毒性没有确切的数据等.目前, 对离子液体的合成与应用研究主要集中在如何提高离子液体的稳定性, 降低离子液体的生产成本等方面.但是随着对离子液体研究的不断深入,新型离子液体的开发.相信离子液体绿色溶剂的愿景一定可以实现.参考文献:[1] 石家华, 孙逊, 杨春和, 等. 离子液体研究进展[ J] . 化学通报, 2002, ( 4) : 2 432 250.[2]张锁江,吕兴梅,刘志平,等. 离子液体——从基础研究到工业应用( Ionic Liquid——from Basic Research to Industrial Application) . 北京: 科学出版社( Beijing: Science Press) ,2006. 150—157 [ 3] 张英锋, 李长江, 等. 离子液体的分类、合成与应用[ J] . 化学教育, 2005, ( 2) : 728.[4]Zhang S J,Y uan X L,Chen Y H,et al. J. Chem. Eng. Data,2005,50: 1582—1585[5]Wilkes J S, Zaworotko M J. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids [J]. J. Chem. Soc. mun., 1992, (13): 965–967.[6]Roumiana PS, Georgi S C, Anatolii A G, et al.A Powerful Algorithm for Liquid–Liquid–Liquid Equilibria Predictions and Calculations [J]. Chem. Eng. Sci., 2000, 55(11): 2121–2129.[7]Wasserscheid P, Welton T. Ionic Liquids in Synthesis.Weinheim: Wiley-VCH, 2002. 174-283[8]Wilkes J S, Levisky J A, Wilson R A, et al. Inorg. Chem. ,1982, 21( 3) : 1236-1264[9]何鸣元, 戴立益. 离子液体与绿色化学[J]. 化学教学, 2002, 6: 1-3.。