上海市闵行区2014年高考数学(文)(二模)

合集下载

届上海市闵行区高三二模数学理试题及答案

届上海市闵行区高三二模数学理试题及答案

上海市闵行区2014届高三下学期教育质量调研(二模)数 学 试 卷(理科)一. 填空题(本大题满分56分)本大题共有14题1.2135(21)lim331n n n n →∞++++-=++L .2.关于方程211323x x =-的解为 .3.已知全集U =R ,集合1|,01P y y x x ⎧⎫==<<⎨⎬⎩⎭,则U P ð= . 4.设x ∈R ,向量(,1)a x =r ,(1,2)b =-r ,且a b ⊥r r ,则||a b +=r r.5.在ABC △中,若60A ∠=o ,45B ∠=o,BC =AC = . 6.在极坐标系中,21(02)ρθθπ=+≤<与=2πθ的交点的极坐标为 .7.用一平面去截球所得截面的面积为3πcm 2,已知球心到该截面的距离为1 cm ,则该球的体积是 cm 3.8.复数i z a b =+(a b ∈R 、,且0b ≠),若24z bz -是实数,则 有序实数对()a b ,可以是 .(写出一个有序实数对即可) 9.已知关于x 的不等式2320ax ax a ++-<的解集为R ,则实 数a 的取值范围 .10.设摩天轮逆时针方向匀速旋转,24分钟旋转一周,轮上观光箱所在圆的方程为221x y +=.已知时间0t =时,观光箱A的坐标为1(22,则当024t ≤≤时(单位:分),动点A 的纵坐标y 关于t 的函数的单调递减区间是 . 11.若不等式4()()16a x y x y++≥对任意正实数x y 、恒成立,则正实数a 的最小值为 . 12.计算机毕业考试分为理论与操作两部分,每部分考试成绩只记“合格”与“不合格”,只有当两部分考试都“合格”者,才颁发计算机“合格证书”.甲、乙两人在理论考试中“合格”的概率依次为4253、,在操作考试中“合格”的概率依次为1526、,所有考试是否合格,相互之间没有影响.则甲、乙进行理论与操作两项考试后,恰有1人获得“合格证书”的概率 .13.已知数列{}n a ,对任意的*k ∈N ,当3n k =时,3n n a a =;当3n k ≠时,n a n =,那么该数列中的第10个2是该数列的第 项.14.对于函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:①任取[)120,x x ∈+∞、,都有12()()2f x f x -≤恒成立;②()2(2)f x kf x k =+*()k ∈N ,对于一切[)0,x ∈+∞恒成立;第7题图B ACED第20题图③函数()ln(1)y f x x =--有3个零点; ④对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是9,8⎡⎫+∞⎪⎢⎣⎭. 则其中所有真命题的序号是 .二. 选择题15.下列命题中,错误..的是( ). (A )过平面α外一点可以作无数条直线与平面α平行 (B )与同一个平面所成的角相等的两条直线必平行(C )若直线l 垂直平面α内的两条相交直线,则直线l 必垂直平面α (D )垂直于同一个平面的两条直线平行 16.已知集合2{320}A x x x =-+≤,0,02x a B x a x -⎧⎫=>>⎨⎬+⎩⎭,若“x A ∈”是“x B ∈”的充分非必要条件,则a 的取值范围是( ).(A )01a << (B )2a ≥ (C ) 12a << (D )1a ≥17.若曲线(,)0f x y =上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是( ).(A )210x y +-=(B )10x =(C )2210x y x x +---= (D )2310x xy -+=18.已知等差数列{}n a 的前n 项和为n S ,向量,n S OP n n ⎛⎫= ⎪⎝⎭u u u r ,1,mS OP m m ⎛⎫= ⎪⎝⎭u u u r ,2,kS OP k k ⎛⎫= ⎪⎝⎭u u u r ()*n m k ∈N 、、,且12OP OP OP λμ=⋅+⋅u u u r u u u r u u u r ,则用n m k 、、表 示μ= ( ).(A )k m k n --????? (B )k n k m --?????? (C )n m k m --???? (D )n mn k--三. 解答题19.BCD A -中,BD 长为E 为棱BC 的中点,求(1)异面直线AE 与CD 所成角的大小(结果用反三角函数值表示); (2)正三棱锥BCD A -的表面积.20.(本题满分14分)本题共有2个小题,第(1)小题满分6小题满分8分.如图,点A 、B 是单位圆O 上的两点,点C 是圆O 与x 半轴的交第21题图 点,将锐角α的终边OA 按逆时针方向旋转3π到OB . (1)若点A 的坐标为34,55⎛⎫ ⎪⎝⎭,求1sin 21cos 2αα++的值; (2)用α表示BC ,并求BC 的取值范围.21.(本题满分14分)本题共有2个小题,第(1)小题满分8分,第(2)小题满分6分.为了寻找马航MH370残骸,我国“雪龙号”科考船于2014年3月26日从港口O出发,沿北偏东α角的射线OZ 方向航行,而在港口北偏东β角的方向上有一个给科考船补给物资的小岛A ,OA =海里,且==βαcos ,31tan 132.现指挥部需要紧急征调位于港口O 正东m 海里的B 处的补给船,速往小岛A 装上补给物资供给科考船.该船沿BA 方向全速追赶科考船,并在C 处相遇.经测算当两船运行的航线与海岸线OB 围成的三角形OBC 的面积S 最小时,这种补给方案最优. (1)求S 关于m 的函数关系式()S m ;(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)、(3)小题满分各6分.设椭圆1Γ的中心和抛物线2Γ的顶点均为原点O ,1Γ、x 3 2- 4y-0 4-2Γ的焦点均在x 轴上,过2Γ的焦点F 作直线l ,与2Γ交于A 、B 两点,在1Γ、2Γ上各取两个点,将其坐标记录于下表中: (1)求1Γ,2Γ的标准方程;(2)若l 与1Γ交于C 、D 两点,0F 为1Γ的左焦点,求00F AB F CDS S △△的最小值;(3)点P Q 、是1Γ上的两点,且OP OQ ⊥,求证:2211OPOQ+为定值;反之,当2211OPOQ+为此定值时,OP OQ ⊥是否成立?请说明理由.23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知曲线C 的方程为24y x =,过原点作斜率为1的直线和曲线C 相交,另一个交点记为1P ,过1P 作斜率为2的直线与曲线C 相交,另一个交点记为2P ,过2P 作斜率为4的直线与曲线C 相交,另一个交点记为3P ,……,如此下去,一般地,过点n P 作斜率为2n的直线与曲线C 相交,另一个交点记为1+n P ,设点),(n n n y x P (*n ∈N ).(1)指出1y ,并求1n y +与n y 的关系式(*n ∈N );(2)求{}21n y -(*n ∈N )的通项公式,并指出点列1P ,3P ,…,12+n P ,… 向哪一点无限接近?说明理由;(3)令2121n n n a y y +-=-,数列{}n a 的前n 项和为n S ,设1314n n b S =+,求所有可能的乘积(1)i j b b i j n ⋅≤≤≤的和.第22题图BAE D第19题图O F数学试卷(理科)参考答案与评分标准一. 填空题1.13; 2.2; 3.(],1-∞; 45. 6.(理)(1,)2ππ+、 7.(理) 323π 8. ()2,1或满足2a b =的任意一对非零实数对; 9.(理)8,05⎛⎤- ⎥⎝⎦; 10.(理)[2,14]; 11.4; 12.(理)2345; 13.39366(923⋅) 14.(理)①③?、.二. 选择题 15. B ; 16. A ; 17.C ; 18. C 三.解答题19. 解:(1)过点A 作AO ⊥平面BCD ,垂足为O ,则O 为BCD △的中心,由21233AO ⋅⋅1AO =(理1分文2分) 又在正三角形BCD 中得=1OE ,所以AE =……………………………(理2分文4分)取BD 中点F ,连结AF 、EF ,故EF ∥CD ,所以AEF ∠就是异面直线AE 与CD 所成的角.(理4分文6分) 在△AEF中,AE AF ==EF =5分文8分)所以222cos 2AE EF AF AEF AE EF +-∠==⋅⋅.…………………(理6分文10分)所以,异面直线AE 与CD 所成的角的大小为7分文12分)(2)由AE =BCD A -的侧面积为13322S BC AE =⋅⋅⋅=⋅= …………………(理10分)所以正三棱锥BCD A-的表面积为2S BC == …………………………(理12分)20.解:(1)由已知, 34cos ,sin .55αα==………(2分)24sin 22sin cos ,25ααα∴==227cos 2cos sin .25ααα=-=-………(4分)1sin 21cos 2αα++=24149257181()25+=+-.………………………………………………(6分) (2)1,3OC OB COB πα==∠=+由单位圆可知:,……………………(8分)222+-2cos BC OC OB OC OB COB=∠由余弦定理得:112cos 22cos 33ππαα⎛⎫⎛⎫=+-+=-+ ⎪ ⎪⎝⎭⎝⎭ ………………………(10分)02πα⎛⎫∈ ⎪⎝⎭Q ,,5336πππα⎛⎫∴+∈⎪⎝⎭,,1cos 32πα⎛⎫⎛⎫∴+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭……(12分)第21题图(21,2,.BC BC ⎛∴∈∴∈ ⎝⎭……………………(14分) 21.(1)以O 点为原点,正北的方向为y 轴正方向建立直角坐标系,…(1分)则直线OZ的方程为3y x =,设点A (x0,y 0),则0900x β==,0600y β==,即A (900,600), …………………(3分) 又B (m ,0),则直线AB 的方程为:600()900y x m m=--,…………(4分)由此得到C 点坐标为:200600(,)700700m mm m --,…(6分) 21300()||||(700)2700C m S m OB y m m ∴=⨯=>- …(8分)(2)由(1)知22300300()7001700m S m m m m ==--+…(10分) 223003007001111700()14002800m m m =-+--+………(12分) 所以当111400m =,即1400m =时,()S m 最小,(或令700t m =-,则222300300(700)700()300(1400)700m t S m t m t t+===++- 840000≥,当且仅当1400m =时,()S m 最小)∴征调1400m =海里处的船只时,补给方案最优. …………………(14分)22.解:(1)()-2,0⎭在椭圆上,(()34-4,,在抛物线上, 2211,43x y ∴Γ+=: 2Γ:24.y x = …………………(4分) (2)(理)0F l 设到直线的距离为d, 00F AB F CD S S △△=1212d AB ABCD d CD ⋅=. F(1,0)是抛物线的焦点,也是椭圆的右焦点,①当直线l 的斜率存在时, 设l :(1)y k x =-,1122A(x ,(x ,y B y 设),),3344(x ,(x ,y y C ),D )联立方程24(1)y x y k x ⎧=⎨=-⎩,得2222(24)0k x k x k -++=,0k ≠时0∆>恒成立.()2241k AB k +===(也可用焦半径公式得:)2122412k AB x x k+=++=)………………(5分)联立方程22143(1)x yy k x⎧+=⎪⎨⎪=-⎩,得2222(3+4)84120k x k x k-+-=,0∆>恒成立.()2212134kCDk+===+, ……(6分)∴0F ABF CDSS△△=()()2222222413414433312134kkkk kkk++==+>++. ………………(8分)②当直线l的斜率不存在时,l:1x=,此时,4AB=,3CD=,0F ABF CDSS△△=43.……………………………(9分)所以,0F ABF CDSS△△的最小值为43. ……………………………(10分)(3)(理)证明:①若P、Q分别为长轴和短轴的端点,则2211OP OQ+=712.(11分)②若P、Q都不为长轴和短轴的端点,设1:;:.OP y kx OQ y xk==-那么(x,(x,P P Q Qy yP),Q)联立方程22143x yy kx⎧+=⎪⎨⎪=⎩,解得222221212,4343P Pkx yk k==++;……………(12分)同理,联立方程221431x yy xk⎧+=⎪⎪⎨⎪=-⎪⎩,解得222221212,3434Q Qkx yk k==++;222222222211117771212121212121234343434kk k kOP OQk k k k+∴+=+==+++++++(13分)反之,对于1Γ上的任意两点P Q、,当2211712OP OQ+=时,设1:OP y k x=,2:OQ y k x=,易得222122111212,4343P Pkx yk k==++;222222221212,4343Q Qkx yk k==++,由2211712OP OQ+=得22122212434371212121212k kk k+++=++,即222222221212121287767(1)k k k k k k k k+++=+++,亦即121k k=±,…(15分)所以当2211OPOQ+为定值712时,OP OQ ⊥不成立 ……………(16分) “反之”的方法二:如果有OP OQ ⊥,且OQ 不在坐标轴上,作OQ 关于坐标轴对称的射线与1Γ交于'Q ,'OQ OQ =,显然,OP OQ ⊥与'OP OQ ⊥不可能同时成立…………………………………(16分)23. 解:(1)14y =. …………………………………………………………(1分)设(,)n n n P x y ,111(,)n n n P x y +++,由题意得 221111442n nn n n n n n ny xy x y yx x ++++⎧⎪=⎪⎪=⎨⎪-⎪=-⎪⎩. …………(2分)114()2n n n y y +⇒+=⋅ …………………(4分)(2)分别用23n -、22n -代换上式中的n 得23222322212214()214()2n n n n n n y y y y ------⎧+=⋅⎪⎪⎨⎪+=⋅⎪⎩2322123112()=()24n n n n y y ----⇒-=-⋅- (2n ≥) ………………(6分)又14y =,121841()()334n n y n --∴=+∈*N , …………………(8分)因218lim 3n n y -→+∞=,所以点列1P ,3P ,…,12+n P ,…向点168(,)93无限接近(10分) (3)(理)121211()4n n n n a y y -+-=-=-Q ,411()34n n S ⎡⎤∴=-⋅-⎢⎥⎣⎦. ……(11分)4n n b =,4i j i j b b +⋅=(1)i j n ≤≤≤. …………………(12分)将所得的积排成如下矩阵:1112131222323334444444444n n n n n A ++++++++++⎛⎫⋅⋅⋅⎪⋅⋅⋅ ⎪⎪=⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅ ⎪⎪⎝⎭,设矩阵A 的各项和为S .在矩阵的左下方补上相应的数可得1112131212223231323331234444444444444444n n n n n n n n B ++++++++++++++++⎛⎫⋅⋅⋅ ⎪⋅⋅⋅ ⎪ ⎪=⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⎪ ⎪⎝⎭矩阵B 中第一行的各数和231116444(41)3n ns +=+++=-L , 矩阵B 中第二行的各数和342264444(41)3n n s +=+++=-L , ………矩阵B 中第n 行的各数和1124444(41)3n n n n nn n s ++++=+++=-L ,………(15分)从而矩阵B 中的所有数之和为21216(41)9nn s s s +++=-L . ………………(16分)所有可能的乘积(1)i j b b i j n ⋅≤≤≤的和()()()22422421164144444429n n ns ⎡⎤=--+++++++⎢⎥⎣⎦L L 232454+1645n n ++-⋅=. ………………………………………………(18分)。

2014年高考上海卷数学(文)真题试题试卷及答案

2014年高考上海卷数学(文)真题试题试卷及答案

2014年普通高等学校招生全国统一考试(上海卷)数学试题卷(文史类)一、填空题(本大题满分56分)本大题共有14题.考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数212cos (2)y x =-的最小正周期是_________.2.若复数z=1+2i ,其中i 是虚数单位,则1()z z+z ⋅=__________.3.设常数a ∈R ,函数2()1f x x x a =-+-,若(2)1f =,则(1)f =_________.4.若抛物线22y px =的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为__________. 5.某校高一、高二、高三分别有学生1600名、1200名、800名,为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样,若高三抽取20名学生,则高一、高二共抽取的学生数为_________. 6.若实数x ,y 满足1xy =,则2x +22y 的最小值为_________.7.若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为________.(结果用反三角函数值表示) 8.在长方体中割去两个小长方体后的几何体的三视图如图, 则切割掉的两个小长方体的体积之和等于________.9.设,0,()1,0,x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的 取值范围是_________.10.设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q =________.11.若2132()f x x x-=-,则满足0)(<x f 的x 取值范围是_________.12.方程sin 3cos 1x x +=在区间[0,2]π上的所有解的和等于_________.13.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 .(结果用最简分数表示)14.已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为__________.3511 12二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15.设,a b ∈R ,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件 (C )充分必要条件 (D )既非充分又非必要条件 16.已知互异的复数a ,b 满足0ab ≠,集合{,}a b ={2a ,2b },则a b +=( ) (A )2 (B )1 (C )0 (D )1-17.如图,四个边长为1的正方形排成一个大正方形,AB 是大正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( ) (A )7 (B )5 (C )3 (D )118.已知),(111b a P 与),(222b a P 是直线1+=kx y (k 为常数)上两个不同 的点,则关于x 和y 的方程组⎩⎨⎧=+=+1,12211y b x a y b x a 的解的情况是( )(A )无论k ,1P ,2P 如何,总是无解 (B )无论k ,1P ,2P 如何,总有唯一解 (C )存在k ,1P ,2P ,使之恰有两解 (D )存在k ,1P ,2P ,使之有无穷多解 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤. 19.(本题满分12分)底面边长为2的正三棱锥ABC P -,其表面展开图是三角形123PP P ,如图,求△123PP P 的各边长及此三棱锥的体积V .P 1AC BP 2P 3P 3AB P 1 P 7 P 6 P 5P 2P 420.(本题满分14分)本题有2个小题,第1小题满分6分,第2小题满分1分.设常数0≥a ,函数aax f x x -+=22)(.(1)若a =4,求函数)(x f y =的反函数)(1x fy -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A ,B 两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设A ,B 在同一水平面上,从A 和B 看D 的仰角分别为α和β.(1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)? (2)施工完成后CD 与铅垂方向有偏差,现在实测得,,45.1812.38==βα求CD 的长(结果精确到0.01米)?αACBβD22.(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分. 在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点),(111y x P ,),(222y x P ,记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线. (1)求证:点)2,1(A ,)0,1(-B 被直线01=-+y x 分隔;(2)若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;(3)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分割线.23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1133n n n a a a +≤≤,n ∈N *,11a =. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比; (3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.2014年普通高等学校招生全国统一考试(上海卷)数学(文科)参考答案一、填空题 1.π2【解析】()212cos 2cos4y x x =-=-,则π2T =. 【考点】二倍角余弦公式以及标准三角函数最小正周期的求解 2.6【解析】211516z z z z ⎛⎫+⋅=+=+= ⎪⎝⎭.【考点】复数的代数四则运算以及复数模的性质 3.3【解析】由()21f =得1414a a +-=⇒=,则()1143f =-=. 【考点】对函数概念的理解 4.2x =-【解析】易知焦点为()2,0,则准线方程为2x =-. 【考点】圆锥曲线基本量 5.70 【解析】()201600120070800+=. 【考点】分层抽样的方法(关键是样本比例相等) 6.22【解析】2222222x y xy +≥= 【考点】基本不等式求最值 7.1arccos 3θ=【解析】设圆锥的底面半径为r ,母线长为l ,母线与轴所成角为θ. 由已知得233rl r l r ππ=⇒=,则1sin 3r l θ==,所以1arccos 3θ=.【考点】反正弦函数、解三角形 8.24【解析】2(322)24V =⨯⨯⨯=. 【考点】三视图、长方体体积的计算 9.2a ≤【解析】由题意知()02f ≤,即2a ≤. 【考点】分段函数的值域 10.152-+ 【解析】由题意得231111a a q a q q==--且01q <<,则152q -+=.【考点】无穷递缩等比数列的各项和 11.()0,1【解析】首先注意定义域()0,+∞;再由()0f x <得2132x x -<,作图即得结果为()0,1.【考点】幂函数与数形结合 12.7π3【解析】由已知化简得π1sin 32x ⎛⎫+= ⎪⎝⎭,因为ππ,2π333x π⎡⎤+∈+⎢⎥⎣⎦,则π5ππ,2π366x +=+,所以1π2x =,211π6x =,所以127π3x x +=. 【考点】三角方程 13.115【解析】3108115P C ==. 【考点】古典概型 14.23m ≤≤【解析】由已知得曲线C 为以原点为圆心,2为半径的左半圆.A 为P Q 、的中点. 设()6,Q n ,则()26,P m n --.因为()26,P m n --在曲线C 上,则2260m -≤-≤,即23m ≤≤. 【考点】向量与解析几何 二、选择题 15.B【解析】由“2a >且2b >”可以推出“+4a b >”;由“+4a b >”推不出“2a >且2b >”,故选B. 【考点】充分条件、必要条件、充分必要条件 16.D【解析】由题得22,1,1,a a a b b b ⎧==⎧⎪⇒⎨⎨==⎪⎩⎩(舍),或2222,1a b a b b a a b b a⎧=⎪⇒-=-⇒+=-⎨=⎪⎩.【考点】集合相等的含义、复数的运算 17.C【解析】cos i i AB AP AB AP θ⋅=⋅,cos i AP θ的值可能为0、1或2,所以i AB AP ⋅=0、2或4, 即i AB AP ⋅(i =1,2,…,7)的不同值的个数为3,故选C. 【考点】平面向量的数量积 18.B【解析】易得原点O 不在直线1y kx =+上,所以()()()111222,,0,0,,P a b P a b O 不在同一直线上, 故向量1OP 与向量2OP 不平行,所以1221a b a b ≠,方程组有唯一解,故选B. 【考点】二元线性方程组解的讨论 三、解答题19.在△123P P P 中,13PA P A =,23P C P C =, 所以AC 是中位线,故1224PP AC ==. ……3分 同理,234P P =,314P P =.所以△123P P P 是等边三角形,各边长均为4. ……6分 设Q 是△ABC 中心,则PQ ⊥平面ABC ,所以233AQ =,22263PQ AP AQ =-=. ……9分 从而,12233ABC V S PQ =⋅=△. ……12分【考点】椎体体积的计算20.(1)因为2424x x y +=-,所以4(1)21x y y +=-, ……3分得1y <-或1y >,且24(1)log 1y x y +=-.因此,所求反函数为124(1)()log 1y f x y -+=-,1x <-或1x >. ……6分(2)当0a =时,()1f x =,定义域为R ,故函数()y f x =是偶函数; ……8分当1a =时,21()21x x f x +=-,定义域为(,0)(0,)-∞+∞,2121()()2121x x x x f x f x --++-==-=---,故函数()y f x =是奇函数; ……11分当0a >且1a ≠时,定义域22(,log )(log ,)a a -∞+∞关于原点不对称,故函数()y f x =既不是奇函数,也不是偶函数. ……14分 【考点】反函数、函数的奇偶性、分类讨论 21.(1)记CD h =.根据已知得tan tan 20αβ≥>,tan 35h α=,tan 80h β=,所以2280035180hh h ⨯≥>⎛⎫- ⎪⎝⎭, ……4分 APB HCQ解得20228.28h ≤≈.因此,CD 的长之多约为28.28米. ……6分 (2)在△ABD 中,由已知,+=56.57αβ,115AB =, 由正弦定理得sin sin()BD ABααβ=+,解得85.064BD ≈. ……10分 在△BCD 中,由余弦定理得2222cos CD BC BD BC BD β=+-⋅⋅,解得26.93CD ≈.所以,CD 的长约为26.93米. ……14分 【考点】任意角的三角比、正弦定理和余弦定理22.(1)因为40η=-<,所以点,A B 被直线10x y +-=分隔. ……3分(2)直线y kx =与曲线2241x y -=有公共点的充要条件是方程组22,41y kx x y =⎧⎨-=⎩有解,即1||2k <. 因为直线y kx =是曲线2241x y -=的分隔线,故它们没有公共点,即1||2k ≥. 当1||2k ≥时,对于直线y kx =,曲线2241x y -=上的点(1,0)-和(1,0)满足20k η=-<, 即点(1,0)-和(1,0)被y kx =分隔. 故实数k 的取值范围是11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. ……9分 (3)设M 的坐标为(,)x y ,则曲线E 的方程为22(2)||1x y x +-⋅=,即222(2)1x y x ⎡⎤+-⋅=⎣⎦. ……11分对任意的0y ,0(0,)y 不是上述方程的解,即y 轴与曲线E 没有公共点. ……13分 又曲线E 上的点(1,2)-和(1,2)对于y 轴满足0η<,即点(1,2)-和(1,2)被y 轴分隔. 所以y 轴为曲线E 的分隔线. ……16分 【考点】新定义问题、曲线与方程 23.(1)由条件得263x ≤≤且933xx ≤≤,解得36x ≤≤. 所以x 的取值范围是[3,6]. ……3分(2)设{}n a 的公比为q .由133n n a a ≤,且110n n a a q -=≠,得0n a >.因为+1133n n n a a a ≤≤,所以133q ≤≤.从而11111110003m m m a q q ---⎛⎫==≥ ⎪⎝⎭,131000m -≥,解得8m ≥. ……7分8m =时,711,310003q ⎡⎤=∈⎢⎥⎣⎦. 所以,m 的最小值为8,8m =时,{}n a 的公比为741010. ……9分(3)设数列12100,,,a a a 的公差为d .则1+33n n n a a d a ≤≤,223n n a d a -≤≤,1,2,,99n =. ①当0d >时,999821a a a a >>>>,所以102d a <≤,即02d <≤; ……12分 ②当0d =时,999821a a a a ====,符合条件; ……14分③当0d <时,999821a a a a <<<<,所以9999223a d a -≤≤,2(198)2(198)3d d d -+≤≤+,又0d <,所以20199d -≤<. 综上,12100,,,a a a 的公差的取值范围为2,2199⎡⎤-⎢⎥⎣⎦. ……18分 【考点】建立不等关系、解不等式、等差数列、等比数列、分类讨论.。

数学_2014年上海市某校高考数学二模试卷(六)(文科)_(含答案)

数学_2014年上海市某校高考数学二模试卷(六)(文科)_(含答案)

2014年上海市某校高考数学二模试卷(六)(文科)一、填空题(共14小题,每小题0分,满分39分) 1. 方程组{x −2y −5=03x +y =8的增广矩阵为________.2. 已知集合M ={x|x 2<4, x ∈R},N ={x|log 2x >0},则集合M ∩N =________.3. 若Z 1=a +2i ,Z 2=|12i23|,且z 1z 2为实数,则实数a 的值为________.4. 用二分法研究方程x 3+3x −1=0的近似解x =x 0,借助计算器经过若干次运算得下表:05. 已知e →1、e →2是夹角为π2的两个单位向量,向量a →=e →1−2e →2,b →=ke →1+e →2,若a → // b →,则实数k 的值为________.6. 某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间[96, 106],样本中净重在区间[96, 100)的产品个数是24,则样本中净重在区间[100, 104)的产品个数是________.7. 一个圆锥的底面积为4π,且该圆锥的母线与底面所成的角为π3,则该圆锥的侧面积为________.8. 公差为d ,各项均为正整数的等差数列{a n }中,若a 1=1,a n =65,则n +d 的最小值等于________.9. 设双曲线x 2−y 2=6的左右顶点分别为A 1、A 2,P 为双曲线右支上一点,且位于第一象限,直线PA 1、PA 2的斜率分别为k 1、k 2,则k 1⋅k 2的值为________.10. 设△ABC 的三个内角A ,B ,C 所对的边长依次为a ,b ,c ,若△ABC 的面积为S ,且S =a 2−(b −c)2,则sinA 1−cosA=________.11. 袋中装有7个大小相同的小球,每个小球上标记一个正整数号码,号码各不相同,且成等差数列,这7个号码的和为49,现从袋中任取两个小球,则这两个小球上的号码均小于7的概率为________.12. 设f(x)=ax 2+bx ,且1≤f(−1)≤2,2≤f(1)≤4,则f(2)的最大值为________. 13. 已知△ABC 的重心为O ,AC =6,BC =7,AB =8,则AO →⋅BC →=________.14. 设f(x)是定义在R 上的函数,若f(0)=18,且对任意的x ∈R ,满足f(x +2)−f(x)≤3x ,f(x +4)−f(x +2)≥9×3x ,则f(8)=________.二、选择题(共4小题,每小题3分,满分12分) 15. 二项式(x −1x )6展开式中x 4的系数为( )A 15B −15C 6D −616. 在△ABC 中,“AB →⋅AC →<0”是“△ABC 是钝角三角形”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 17. 设函数f(x)=|sinx|+cos2x,x ∈[−π2,π2],则函数f(x)的最小值是( ) A −1 B 0 C 12D 9818. 给出下列四个命题:①如果复数z 满足|z +i|+|z −i|=2,则复数z 在复平面的对应点的轨迹是椭圆.②若对任意的n ∈N ∗,(a n+1−a n −1)(a n+1−2a n )=0恒成立,则数列{a n }是等差数列或等比数列.③设f(x)是定义在R 上的函数,且对任意的x ∈R ,|f(x)|=|f(−x)|恒成立,则f(x)是R 上的奇函数或偶函数. ④已知曲线C :√x 29−√y 216=1和两定点E(−5, 0)、F(5, 0),若P(x, y)是C 上的动点,则||PE|−|PF||<6.上述命题中错误的个数是( ) A 1 B 2 C 3 D 4三、解答题(共5小题,满分74分) 19.如图,在直三棱柱ABC −A 1B 1C 1中,∠BAC =π2,AB =AC =2,AA 1=6,点E 、F 分别在棱AA 1、CC 1上,且AE =C 1F =2.(1)求三棱锥A 1−B 1C 1F 的体积;(2)求异面直线BE 与A 1F 所成的角的大小.20. 如图,在半径为20cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上.(1)请你在下列两个小题中选择一题作答即可:①设∠BOC=θ,矩形ABCD的面积为S=g(θ),求g(θ)的表达式,并写出θ的范围.②设BC=x(cm),矩形ABCD的面积为S=f(x),求f(x)的表达式,并写出x的范围.(2)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积.21. 已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过M(2,1),N(2√2,0)两点.(1)求椭圆E的方程;(2)若平行于OM的直线l在y轴上的截距为b(b<0),直线l交椭圆E于两个不同点A、B,直线MA与MB的斜率分别为k1、k2,求证:k1+k2=0.22. 已知函数f(x)=x|x−a|−1,x∈R.4(1)当a=1时,指出f(x)的单调递减区间和奇偶性(不需说明理由);(2)当a=1时,求函数y=f(2x)的零点;(3)若对任何x∈[0, 1]不等式f(x)<0恒成立,求实数a的取值范围.23. 过坐标原点O作倾斜角为60∘的直线交抛物线Γ:y2=x于P1点,过P1点作倾斜角为120∘的直线交x轴于Q1点,交Γ于P2点;过P2点作倾斜角为60∘的直线交x轴于Q2点,交Γ于P3点;过P3点作倾斜角为120∘的直线,交x轴于Q3点,交Γ于P4点;如此下去….又设线段OQ1,Q1Q2,Q2Q3,…,Q n−1Q n,…的长分别为a1,a2,a3,…,a n,…,数列{a n}的前n项的和为S n.(1)求a1,a2;(2)求a n,S n;(3)设b n=a a n(a>0且a≠1),数列{b n}的前n项和为T n,若正整数p,q,r,s成等差数列,且p<q<r<s,试比较T p⋅T s与T q⋅T r的大小.2014年上海市某校高考数学二模试卷(六)(文科)答案]1. [1−253182. {x|1<x<2}3. −324. 5.35. −126. 447. 8π8. 179. 1 10. 4 11. 1712. 14 13. −283 14.6561815. D 16. A 17. B 18. B19. 解:(1)在直三棱柱ABC −A 1B 1C 1中,FC 1⊥平面A 1B 1C 1, 故FC 1=2是三棱锥A 1−B 1C 1F 的高.而直角三角形的S △A 1B 1C 1=12A 1B 1×A 1C 1=12×2×2=2.∴ 三棱锥A 1−B 1C 1F 的体积=V F−A 1B 1C 1 =13S △A 1B 1C 1×FC 1 =13×2×2=43. (2)连接EC ,∵ A 1E // FC ,A 1E =FC =4, ∴ 四边形A 1ECF 是平行四边形, ∴ A 1C // EC ,∴ ∠BEC 是异面直线A 1F 与BE 所成的角或其补角.∵ AE ⊥AB ,AE ⊥AC ,AC ⊥AB ,AE =AB =AC =2, ∴ EC =EB =BC =2√2. ∴ △BCE 是等边三角形.∴ ∠BEC =60∘,即为异面直线BE 与A 1F 所成的角.20. 解:如图所示,(1)①连接OC ,设∠BOC =θ,矩形ABCD 的 面积为S ,则BC =20sinθ,OB =20cosθ(其中0<θ<π2);∴ S =AB ⋅BC =2OB ⋅BC =400sin2θ,且当sin2θ=1,即θ=π4时,S 取最大值为400,此时BC =10√2;所以,取BC =10√2时,矩形ABCD 的面积最大,最大值为400cm 2.②连接OC ,设BC =x ,矩形ABCD 的面积为S ;则AB =2√400−x 2(其中0<x <30), ∴ S =2x√400−x 2=2√x 2(400−x 2)≤x 2+(400−x 2)=400,当且仅当x 2=400−x 2,即x =10√2时,S 取最大值400;所以,取BC =10√2cm 时,矩形ABCD 的面积最大,最大值为400cm 2.(2)由(1)知,取∠BOC =π4时,得到C 点,从而截得的矩形ABCD ,此时截得的矩形ABCD 的面积最大,最大值为400cm 2. 21. 解:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0, n >0, m ≠n) 将M(2,1),N(2√2,0)代入椭圆E 的方程,得{4m +n =18m =1解得m =18,n =12,所以椭圆E 的方程为x 28+y 22=1.(2)∵ 直线l 平行于OM ,且在y 轴上的截距为b ,又k OM =12, ∴ 直线l 的方程为y =12x +b .由{y =12x +bx 28+y 22=1得x 2+2bx +2b 2−4=0,设A(x 1, y 1)、B(x 2, y 2),则x 1+x 2=−2b ,x 1x 2=2b 2−4. 又k 1=y 1−1x 1−2,k 2=y 2−1x 2−2,故k 1+k 2=y 1−1x 1−2+y 2−1x 2−2=(y 1−1)(x 2−2)+(y 2−1)(x 1−2)(x 1−2)(x 2−2).又y 1=12x 1+b ,y 2=12x 2+b ,所以上式分子=(12x 1+b −1)(x 2−2)+(12x 2+b −1)(x 1−2)=x 1x 2+(b −2)(x 1+x 2)−4(b −1)=2b 2−4+(b −2)(−2b)−4(b −1)=0 故k 1+k 2=0.22. 解:(1)当a=1时,函数的单调递减区间为[12,1]…函数f(x)既不是奇函数也不是偶函数.…(2)当a=1时,f(x)=x|x−1|−14,由f(2x)=0得2x|2x−1|−14=0…即{2x≥1(2x)2−2x−14=0或{2x<1(2x)2−2x+14=0…解得2x=1+√22或2x=1−√22(舍),或2x=12所以x=log21+√22=log2(1+√2)−1或x=−1.…(3)当x=0时,a取任意实数,不等式f(x)<0恒成立,故只需考虑x∈(0, 1],此时原不等式变为|x−a|<14x即x−14x <a<x+14x…故(x−14x )max<a<(x+14x)min,x∈(0,1]又函数g(x)=x−14x 在(0, 1]上单调递增,∴ (x−14x)max=g(1)=34…函数ℎ(x)=x+14x 在(0,12]上单调递减,在[12,1]上单调递增,∴ (x+14x )min=ℎ(12)=1;所以34<a<1,即实数a的取值范围是(34,1).…23. 解:(1)如图,由△OQ1P1是边长为a1的等边三角形,得点P1的坐标为(a12,√3a12),又∵ P1(a12,√3a12)在抛物线y2=x上,∴ 3a124=a12,得a1=23…同理根据P2(23+a22,−√3a22)在抛物线y2=x上,可得a2=43…(2)如图,因为点Q n−1的坐标为(a 1+a 2+a 3+...+a n−1, 0),即点(S n−1, 0)(点Q 0与原点重合,S 0=0), 所以直线Q n−1P n 的方程为y =√3(x −S n−1)或y =−√3(x −S n−1),因此,点P n 的坐标满足{y 2=x|y|=√3(x −S n−1)消去x 得√3y 2−|y|−√3S n−1=0,所以|y|=√1+12S n−12√3…又|y|=a n ⋅sin60∘=√32a n,故3a n =1+√1+12S n−1从而3a n 2−2a n =4S n−1…①由①有3a n+12−2a n+1=4S n …②②-①得3(a n+12−a n 2)−2(a n+1−a n )=4a n即(a n+1+a n )(3a n+1−3a n −2)=0,又a n >0,于是a n+1−a n =23 所以{a n }是以23为首项、23为公差的等差数列,a n =a 1+(n −1)d =23n由此可得:S n =(a 1+a n )n2=13n(n +1)…(3)∵b n+1b n=a2(n+1)3a 2n 3=a 23,∴ 数列{b n }是正项等比数列,且公比q 0=a 23≠1,首项b 1=a 23=q 0,∵ 正整数p ,q ,r ,s 成等差数列,且p <q <r <s ,设其公差为d ,则d 为正整数, ∴ q =p +d ,r =p +2d ,s =p +3d 则T p =b 1(1−q 0p)1−q 0,T q =b 1(1−q 0p+d)1−q 0,T r =b 1(1−q 0p+2d)1−q 0,T s =b 1(1−q 0p+3d)1−q 0…T p ⋅T s −T q ⋅T r =b 12(1−q0)2⋅[(1−q 0p)(1−q 0p+3d)−(1−q 0p+d)(1−q 0p+2d )]=b 12(1−q0)2⋅[(q 0p+d+q 0p+2d)−(q 0p+q 0p+3d)]…而(q 0p+d +q 0p+2d )−(q 0p +q 0p+3d )=q 0p (q 0d −1)−q 0p+2d (q 0d −1)=(q 0d −1)(q 0p −q 0p+2d )=(q 0d −1)q 0p (1−q 02d )=−q 0p (q 0d −1)(q 02d−1)… 由于a >0且a ≠1,可得q 0=a 23>0且q 0≠1,又∵ d 为正整数,∴ (q 0d −1)与(q 02d −1)同号,因此,−q 0p (q 0d −1)(q 02d−1)<0,可得T p ⋅T s <T q ⋅T r .综上所述,可得若正整数p ,q ,r ,s 成等差数列,且p <q <r <s ,必定有T p ⋅T s <T q ⋅T r .…。

2014学年上海市各区二模数学试卷25题整理

2014学年上海市各区二模数学试卷25题整理

ACBE OD备用图2014学年上海市各区二模数学试卷25题整理25.(15闵行)(本题满分14分,其中第(1)小题各4分,第(2)、(3)小题各5分)如图,已知在梯形ABCD 中,AD // BC ,AB = DC = 5,AD = 4.M 、N 分别是边AD 、BC 上的任意一点,联结AN 、DN .点E 、F 分别在线段AN 、DN 上,且ME // DN ,MF // AN ,联结EF .(1)如图1,如果EF // BC ,求EF 的长;(2)如果四边形MENF 的面积是△ADN 的面积的38,求AM 的长;(3)如果BC = 10,试探索△ABN 、△AND 、△DNC 能否两两相似?如果能,求AN 的长;如果不能,请说明理由.25.(15杨浦)(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 在Rt △ABC 中,∠BAC =90°,BC =10,3tan 4ABC ∠=,点O 是AB 边上动点,以O 为圆 心,OB 为半径的⊙O 与边BC 的另一交点为D ,过点D 作AB 的垂线,交⊙O 于点E ,联结BE 、AE 。

(1) 当AE //BC (如图(1))时,求⊙O 的半径长;(2) 设BO =x ,AE =y ,求y 关于 x 的函数关系式,并写出定义域;(3) 若以A 为圆心的⊙A 与⊙O 有公共点D 、E ,当⊙A 恰好也过点C 时,求DE 的长。

A B C D M N E F(图1) A B C D M NE F (第25题图) 图(1)AB CD E O ABC备用图(第25题图)25.(15长宁)(本题满分14分)如图,已知矩形ABCD ,AB =12 cm ,AD =10 cm ,⊙O 与AD 、AB 、BC 三边都相切,与DC 交于点E 、F 。

已知点P 、Q 、R 分别从D 、A 、B 三点同时出发,沿矩形ABCD 的边逆时针方向匀速运动,点P 、Q 、R 的运动速度分别是1 cm/s 、x cm/s 、1.5 cm/s ,当点Q 到达点B 时停止运动,P 、R 两点同时停止运动.设运动时间为t (单位:s ). (1)求证: DE =CF ;(2)设x = 3,当△P AQ 与△QBR 相似时,求出t 的值;(3)设△P AQ 关于直线PQ 对称的图形是△P A'Q ,当t 和x 分别为何值时,点A'与圆心O 恰好重合,求出符合条件的t 、x 的值.25. (15黄浦)(本题满分14分,第(1)小题满分3分,第(2)满分6分,(3)小题满分5分)如图8,Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =2,CD 是斜边AB 上的高,点E 为边AC 上一点(点E 不与点A 、C 重合),联结DE ,作CF ⊥DE ,CF 与边AB 、线段DE 分别交于点F 、G .(1)求线段CD 、AD 的长;(2)设CE x =,DF y =,求y 关于x 的函数解析式,并写出它的定义域; (3)联结EF ,当△EFG 与△CDG 相似时,求线段CE 的长.第25题图(备用图)图825.(15金山)(本题满分14分)如图,已知在ABC ∆中,10==AC AB ,34tan =∠B (1) 求BC 的长;(2) 点D 、E 分别是边AB 、AC 的中点,不重合的两动点M 、N 在边BC 上(点M 、N 不与点B 、C 重合),且点N 始终在点M 的右边,联结DN 、EM ,交于点O ,设x MN =,四边形ADOE 的面积为y . ①求y 关于x 的函数关系式,并写出定义域;②当OMN ∆是等腰三角形且1=BM 时,求MN 的长.25.(15浦东)(本题满分14分,其中第(1)小题3分,第(2)小题6分,第(3)小题5分)如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上一动点,∠APD =∠B ,PD 交射线AM 于点D ,联结CD .AB =4,BC =6,∠B =60°. (1)求证:BP AD AP ⋅=2;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.A B C P D (第25题图) M AB C (第25题备用图)M25.(15宝山嘉定)(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)在Rt △ABC 中,︒=∠90C ,2=BC ,Rt △ABC 绕着点B 按顺时针方向旋转,使点C 落在斜边AB 上的点D ,设点A 旋转后与点E 重合,联结AE ,过点E 作直线EM 与射线CB 垂直,交点为M .(1)若点M 与点B 重合如图10,求BAE ∠cot 的值;(2)若点M 在边BC 上如图11,设边长x AC =,y BM =,点M 与点B 不重合,求y 与x 的函数关系式,并写出自变量x 的取值范围; (3)若EBM BAE ∠=∠,求斜边AB 的长.25.(15普陀)(本题满分14分)如图11-1,已知梯形ABCD 中,AD //BC ,90D ∠=,5BC =,3CD =,cot 1B =. P 是边BC 上的一个动点(不与点B 、点C 重合),过点P 作射线PE ,使射线PE 交射线BA 于点E ,BPE CPD ∠=∠.(1)如图11-2,当点E 与点A 重合时,求DPC ∠的正切值;(2)当点E 落在线段AB 上时,设BPx =,BE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)设以BE 长为半径的⊙B 和以AD 为直径的⊙O 相切,求BP 的长.CBDA 图11备用图C BD A 图11备用图(E )P CBDA 图11-2CBDA 图11-125.(15松江)(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,AB =4,AD=3,552sin =∠BCD ,点P 是对角线BD 上一动点,过点P 作PH ⊥CD ,垂足为H . (1)求证:∠BCD =∠BDC ;(2)如图1,若以P 为圆心、PB 为半径的圆和以H 为圆心、HD 为半径的圆外切时,求DP 的长;(3)如图2,点E 在BC 延长线上,且满足DP =CE ,PE 交DC 于点F ,若△ADH 和△ECF 相似,求DP 的长.ABCHPD (第25题图1)ABCHPD EF(第25题图2)25.(15徐汇)如图,在ABC Rt ∆中,90ACB ∠=︒,AC =4,14cos A =,点P 是边AB 上的动点,以P A 为半径作⊙P .(1)若⊙P 与AC 边的另一交点为点D ,设AP =x ,△PCD 的面积为y ,求y 关于x 的函数解析式,并直接写出函数的定义域;(2)若⊙P 被直线BC 和直线AC 截得的弦长相等,求AP 的长;(3)若⊙C 的半径等于1,且⊙P 与⊙CAP 的长.BA25.(15奉贤)(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB (第25题图)AB(备用图)A25.(15静安青浦)(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)在⊙O中,OC⊥弦AB,垂足为C,点D在⊙O上.(1)如图1,已知OA=5,AB=6,如果OD//AB,CD与半径OB相交于点E,求DE 的长;(2)已知OA=5,AB=6(如图2),如果射线OD与AB的延长线相交于点F,且△OCD 是等腰三角形,求AF的长;(3)如果OD//AB,CD⊥OB,垂足为E,求sin∠ODC的值.(第25题图1)BO A CDE(第25题图2)BOA C25.(15崇明)(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;(2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(备用图1)BA C(备用图2)BAC。

2014届上海市闵行区高三二模数学文试题及答案

2014届上海市闵行区高三二模数学文试题及答案

第7题图上海市闵行区2014届高三下学期教育质量调研(二模)数 学 试 卷(文科)考生注意:1.答卷前,考生务必在答题纸上将学校、姓名及准考证号等填写清楚,并在规定的区域内贴上条形码.答题时客观题用2B 铅笔按要求涂写,主观题用黑色水笔填写. 2.本试卷共有23道题,共4页.满分150分,考试时间120分钟. 3.考试后只交答题纸,试卷由考生自己保留.一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格 内直接填写结果,每个空格填对得4分,否则一律得零分. 1.2135(21)lim331n n n n →∞++++-=++ .2.关于方程211323x x =-的解为 .3.已知全集U =R ,集合1|,22P y y x x ⎧⎫==>⎨⎬⎩⎭,则U P ð= . 4.设x ∈R ,向量(,1)a x = ,(1,2)b =- ,且a b ⊥ ,则||a b +=.5.在ABC △中,若60A ∠= ,45B∠= ,BC =AC = . 6.若点(,)x y 位于曲线y x =与1y =所围成的封闭区域内(包括边界), 则4x y -的最小值为 .7.一个几何体的三视图如图所示,则该几何体的体积为 . 8.复数i z a b =+(a b ∈R 、,且0b ≠),若24z bz -是实数, 则有序实数对()a b ,可以是 .(写出一对即可) 9.已知关于x 的不等式222(1)(3)0x a x a --++>的解集 为R ,则实数a 的取值范围 .10.将函数()()cos 0f x x ωω=>的图像向右平移3π个单位长 度后,所得的图像与原图像重合,则ω的最小值等于 . 11.已知不等式4()()16a x y x y++≥对任意正实数x y 、恒成立,则正实数a 的最小值为 . 12.有标号分别为1、2、3的蓝色卡片和标号分别为1、2的绿色卡片,从这五张卡片中任取两张,这两张卡片颜色不同且标号之和小于4的概率是 .13.已知数列{}n a ,对任意的*k ∈N ,当3n k =时,3n n a a =;当3n k ≠时,n a n =,那么该数列中的第10个2是该数列的第 项.14.对于函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:①任取[)120,x x ∈+∞、,都有12()()2f x f x -≤恒成立;②()2(2)f x kf x k =+*()k ∈N ,对于一切[)0,x ∈+∞恒成立;③函数()ln(1)y f x x =--有3个零点; ④对任意0x >,不等式2()f x x≤恒成立. 则其中所有真命题的序号是 .二. 选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.下列命题中,错误..的是( ). (A )过平面α外一点可以作无数条直线与平面α平行 (B )与同一个平面所成的角相等的两条直线必平行(C )若直线l 垂直平面α内的两条相交直线,则直线l 必垂直平面α (D )垂直于同一个平面的两条直线平行 16.已知集合2{320}A x x x =-+≤,0,02x a B x a x -⎧⎫=>>⎨⎬+⎩⎭,若“x A ∈”是“x B ∈”的充分非必要条件,则a 的取值范围是( ).(A )01a << (B )2a ≥ (C ) 12a << (D )1a ≥17.若曲线(,)0f x y =上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是( ).(A )210x y +-= (B)10x =(C )220x x y -+= (D )210x xy -+=18.已知等差数列{}n a 的前n 项和为n S ,向量,n S O P n n ⎛⎫= ⎪⎝⎭ ,1,mS OP m m ⎛⎫= ⎪⎝⎭,2,kS OP k k ⎛⎫= ⎪⎝⎭()*n m k ∈N 、、,且12OP OP OP λμ=⋅+⋅ ,则用nm k 、、表 示μ=( ).(A )k m k n -- (B )k n k m -- (C )n m k m -- (D )n mn k-- 三. 解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.BAED 第19题图第20题图第21题图19.(本题满分12分)如图,BCD A -中,BD 长为E 为棱BC 的中点,求异面直线AE 与CD 所成角的大小(结果用反三角函数值表示).20.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.如图,点A 、B 是单位圆O 上的两点,点C 是圆O 与x 轴的正半轴的交点,将锐角α的终边OA按逆时针方向旋转3π到OB . (1)若点A 的坐标为34,55⎛⎫⎪⎝⎭,求1sin 21cos 2αα++的值;(2)用α表示BC ,并求BC 的取值范围.21.(本题满分14分)本题共有2个小题,第(1)小题满分8分,第(2)小题满分6分.为了寻找马航MH370残骸,我国“雪龙号”科考船于2014年3月26日从港口O出发,沿北偏东α角的射线OZ 方向航行,而在港口北偏东β角的方向上有一个给科考船补给物资的小岛A ,OA =海里,且==βαcos ,31tan 132.现指挥部需要紧急征调位于港口O 正东m 海里的B 处的补给船,速往小岛A 装上补给物资后,继续沿BA 方向全速追赶科考船,并在C 处相遇给科考船补给物资.经测算当两船运行的航线与海岸线OB 围成的三角形OBC 的面积S 最小时,这种补给方案最优. (1)求S 关于m 的函数关系式()S m ;(2)应征调位于港口正东多少海里处的补给船只,补给方案最优?22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)、(3)小题满分各6分.设椭圆1Γ的中心和抛物线2Γ的顶点均为原点O ,1Γ、2Γ的焦点均在x 轴上,过2Γ的焦点F 作直线l ,与2Γ交于A 、B 两点,在1Γ、2Γ上各取两个点,将其坐标记录于下表中: (1)求1Γ,2Γ的标准方程;x3 2- 4(2)设M 是2Γ准线上一点,直线MF 的斜率为0k ,MA MB 、的斜率依次为12k k 、,请探究:0k 与12k k +的关系;(3)若l 与1Γ交于C 、D 两点,0F 为1Γ的左焦点,问00F AB F CDS S △△是否有最小值?若有,求出最小值;若没有,请说明理由.23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知曲线C 的方程为24y x =,过原点作斜率为1的直线和曲线C 相交,另一个交点记为1P ,过1P 作斜率为2的直线与曲线C 相交,另一个交点记为2P ,过2P 作斜率为4的直线与曲线C 相交,另一个交点记为3P ,……,如此下去,一般地,过点n P 作斜率为2n 的直线与曲线C 相交,另一个交点记为1+n P ,设点),(n n n y x P (*n ∈N ).(1)指出1y ,并求1n y +与n y 的关系式(*n ∈N );(2)求{}21n y -(*n ∈N )的通项公式,并指出点列1P ,3P ,…,12+n P ,… 向哪一点无限接近?说明理由;(3)令2121n n n a y y +-=-,数列{}n a 的前n 项和为n S ,试比较314n S +与1310n +的大小,并证明你的结论.第22题图BAED第19题图O F 数学试卷(文科)参考答案与评分标准一. 填空题1.13; 2.2; 3.(],1-∞; 45. 6. (文) -5; 7.(文)73π; 8. ()2,1或满足2a b =的任意一对非零实数对; 9.(文)(1,5)-; 10. (文) 6; 11.4; 12. (文) 310; 13.39366(923⋅) 14.(文)①③④. 二. 选择题 15. B ; 16. A ; 17.C ; 18. C 三.解答题19.解:(1)过点A 作AO ⊥平面BCD ,垂足为O ,则O 为BCD △的中心,由212334AO ⋅⋅⋅得1AO =(理1分文2分)又在正三角形BCD 中得=1OE ,所以AE = ……………………………(理2分文4分)取BD 中点F ,连结AF 、EF ,故EF ∥CD , 所以AEF ∠就是异面直线AE 与CD 所成的角.(理4分文6分) 在△AEF中,AE AF ==EF =5分文8分)所以222cos 2AE EF AF AEF AE EF +-∠==⋅⋅.…………………(理6分文10分)所以,异面直线AE 与CD 所成的角的大小为.……(理7分文12分)(2)由AE=BCD A -的侧面积为13322S BC AE =⋅⋅⋅=⋅= …………………(理10分)所以正三棱锥BCD A-的表面积为2S BC == …………………………(理12分)20.解:(1)由已知, 34cos ,sin .55αα==………(2分)24sin 22sin cos ,25ααα∴==227cos 2cos sin .25ααα=-=-………(4分)1sin 21cos 2αα++=24149257181()25+=+-.………………………………………………(6分) (2)1,3OC OB COB πα==∠=+由单位圆可知:,……………………(8分)222+-2cos BC OC OB OC OB COB=∠由余弦定理得:112cos 22cos 33ππαα⎛⎫⎛⎫=+-+=-+ ⎪ ⎪⎝⎭⎝⎭ ………………………(10分)第21题图02πα⎛⎫∈ ⎪⎝⎭,,5336πππα⎛⎫∴+∈ ⎪⎝⎭,,1cos 32πα⎛⎫⎛⎫∴+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭……(12分) (21,2,.BC BC ⎛∴∈+∴∈ ⎝⎭……………………(14分) 21.(1)以O 点为原点,正北的方向为y 轴正方向建立直角坐标系,…(1分)则直线OZ 的方程为3y x =,设点A (x 0,y 0),则0900x β==,0600y β==,即A (900,600), …………………(3分)又B (m ,0),则直线AB 的方程为:600()900y x m m=--,…………(4分)由此得到C 点坐标为:200600(,)700700m mm m --,…(6分) 21300()||||(700)2700C m S m OB y m m ∴=⨯=>- …(8分)(2)由(1)知22300300()7001700m S m m m m ==--+…(10分) 223003007001111700()14002800m m m =-+--+………(12分) 所以当111400m =,即1400m =时,()S m 最小,(或令700t m =-,则222300300(700)700()300(1400)700m t S m t m t t+===++- 840000≥,当且仅当1400m =时,()S m 最小)∴征调1400m=海里处的船只时,补给方案最优. …………………(14分)22.解:(1)()-2,0⎭在椭圆上,(()34-4,,在抛物线上, 2211,43x y ∴Γ+=: 2Γ:24.y x = …………………(4分) (2)(文)F(1,0)是抛物线的焦点,①当直线l 的斜率存在时, 设l :(1)y k x =-,1122A(x ,(x ,y B y 设),),联立方程24(1)y x y k x ⎧=⎨=-⎩,得2222(24)0k x k x k -++=,0k ≠时0∆>恒成立212224k x x k++=,121x x ⋅=, ………………(6分) 因2Γ准线为1x =-,设(1,)M m -,02mk =-,1111y m k x -=+,2221y m k x -=+21212121221212122()224411144kx k m kx k m kx x m x x k m mk mk k mx x x x x x k -----+----+=+===-++++++0k 与12k k +的关系是1202k k k +=. .……………………………(8分) ②当直线l 的斜率不存在时,l :1x =,得(1,2)(1,2)A B -、122m k -=,222m k --=,12k k m +=-,仍然有1202k k k += ………(10分)(3)(文)0F l 设到直线的距离为d, 00F AB F CD S S △△=1212d AB ABCD d CD ⋅=. F(1,0)是抛物线的焦点,也是椭圆的右焦点,①当直线l 的斜率存在时, 设l :(1)y k x =-,1122A(x ,(x ,y B y 设),),3344(x ,(x ,y y C ),D )联立方程24(1)y x y k x ⎧=⎨=-⎩,得2222(24)0k x k x k -++=,0k ≠时0∆>恒成立.()2241k AB k +=== (也可用焦半径公式得:)2122412k AB x x k+=++=)………………(11分) 联立方程22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得2222(3+4)84120k x k x k -+-=,0∆>恒成立.()2212134k CD k +===+, ……(12分) ∴00F AB F CDS S △△=()()2222222413414433312134k k k k k k k ++==+>++. ………………(14分) ②当直线l 的斜率不存在时,l :1x =, 此时,4AB =,3CD =,00F AB F CDS S △△=43.……………………………(15分) 所以,00F AB F CDS S △△的最小值为43. ……………………………(16分) 23. 解:(1)14y =. …………………………………………………………(1分)设(,)n n n P x y ,111(,)n n n P x y +++,由题意得 221111442n nn n n n n n ny xy x y yx x ++++⎧⎪=⎪⎪=⎨⎪-⎪=-⎪⎩. …………(2分) 114()2n n n y y +⇒+=⋅ …………………(4分)(2)分别用23n -、22n -代换上式中的n 得23222322212214()214()2n n n n n n y y y y------⎧+=⋅⎪⎪⎨⎪+=⋅⎪⎩2322123112()=()24n n n n y y ----⇒-=-⋅- (2n ≥) ………………(6分)又14y =,121841()()334n n y n --∴=+∈*N , …………………(8分)因218lim 3n n y -→+∞=,所以点列1P ,3P ,…,12+n P ,…向点168(,)93无限接近(10分) (3)(文)121211()4n n n n a y y -+-=-=- ,411()34n n S ⎡⎤∴=-⋅-⎢⎥⎣⎦. ………(12分)n 3111=44310n S n ++与比较大小,只要比较n 43n+10与比较大小.………(13分)n 1224(13)1333139310(3)n n nn n n C C C n n n =+=+⋅+⋅++⋅>++=+≥ …(15分) 当n =1时,3114310n S n +>+ …………………(16分)当n =2时,3114310n S n +=+ …………………(17分)当n >2时,3114310n S n +<+. …………………(18分)。

2014年高考文科数学上海卷-答案

2014年高考文科数学上海卷-答案

x2 y2 1的右焦点重合,故 p 2 得 p 4 ,∴抛物线的准线方程为 x p 2 .故答案为: x 2 .
95
2
2
【提示】由题设中的条件 y2 2 px (p 0)的焦点与椭圆 x2 y2 1的右焦点重合,故可以先求出椭圆的右 95
焦点坐标,根据两曲线的关系求出 p,再由抛物线的性质求出它的准线方程.
即可. 【考点】一次函数的性质与图象. 三、解答题 19.【答案】 2 2
3 【解析】依题意:△P1P2P3 是边长为 4 的正三角形,折叠后是棱长为 2 的正四面体 y f (x) (如图).
设顶点 A、B 在底面 C 内的投影为 CD ,连接 D ,
则 B 为△ABC 的重心,和 底面 CD . BO 3 , AB 2 3 ,
【提示】建立适当的平面直角坐标系,利用坐标分别求出数量积,由结果可得答案.
【考点】平面向量数量积的运算.
18.【答案】B
【解析】解:P(a1,b1) 与 P2 (a1,b1) 是直线 y kx 1(k 为常数)上两个不同的点,直线 y kx 1 的斜率存在,

k
b2 a2
b1 a1
,即
a1
a2
a b
a2 b2
①或
a b
b2 a2
②,由①得
a b
0或a 0或b
1 ,
1
∵ ab 0 ,∴ a 0 且 b 0 ,即 a 1, b 1,此时集合{1,1}不满足条件. 由②得,若 b a2 , a b2 ,则两式相减得 a2 b2 b a ,即 (a b)(a b) (a b) , ∵互异的复数 a,b,∴ a b 0 ,即 a b 1 ,故选:D. 【提示】根据集合相等的条件,得到元素关系,即可得到结论. 【考点】集合的相等. 17.【答案】C 【解析】解:如图建立平面直角坐标系,则 A(0,0) ,B(0,2) ,P1(0,1) ,P2 (1,0) ,P3 (1,1) ,P4 (1,2) ,P5 (2,0) ,

2014年上海市高考数学试卷(文科)答案与解析

2014年上海市高考数学试卷(文科)答案与解析

2014年上海市高考数学试卷(文科)参考答案与试题解析一、填空题(本大题共14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是.=故答案为:2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.z+=4.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=)的焦点与椭圆+解:由题意椭圆++=1得=牙齿健康状况2y=y=≥=2,=±27.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为arcsin(结果用反三角函数值表示)==3==arcsinarcsin9.(4分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为(﹣∞,x综合得出x+x+≥10.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.,由此能求出((﹣,q=q=故答案为:11.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).﹣,若满足<,y=的解集为:(12.(4分)(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于.x+==2k+=2k+sinx+sinx+cosx=x+=x+=2k,或x+,x=,+=故答案为:.选择的3天恰好为连续3天的概率是(结果用最简分数表示).天共有种情况,,故答案为:.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].通过曲线方程判断曲线特征,通过+,说明﹣+=,∈则17.(5分)(2014•上海)如图,四个边长为1的小正方形排成一个大正方形,AB是大正方形的一条边,P i(i=1,2,…,7)是小正方形的其余顶点,则•(i=1,2,…,7)的不同值的个数为()∴=),),),),==∴=0=2,=4=0,,=4∴(18.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()k=,19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3=20.(14分)(2014•上海)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);的位置可得=,整理可得=,整理可得21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC 长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?,tan,,由正弦定理得a=≈22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为)联立.当≥,﹣][,23.(18分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)若{a n}是等比数列,且a m=,求正整数m的最小值,以及m取最小值时相应{a n}的公比;)由题意可得:,,由已知可得,,由于,可得,可得,由已知可得,解出即可.)由题意可得:;,由已知可得,,又.因此,1000===,由已知可得,时,不等式即,..。

2014届上海市高考数学·二模汇编 三角函数

2014届上海市高考数学·二模汇编 三角函数

2014届高中数学·二模汇编(专题:三角函数)2014届高中数学·二模汇编 三角函数一、填空题1、(2014长宁嘉定二模文理3)函数2)cos (sin x x y +=的最小正周期是__________________.2、(2014长宁嘉定二模文9)已知43tan -=a ,则=a 2cos __________ 3、(2014长宁二模理13)设⎪⎭⎫⎝⎛+=x n x f n 2πsin )((*N ∈n ),若△ABC 的内角A 满足 ++)()(21A f A f 0)(2014=+A f ,则=+A A cos sin ____________.4、(2014崇明二模文11)ABC △中,5,3,sin 2sin a b C A === ,则cos C = .5、(2014崇明二模理6)方程sin cos 1x x +=-的解集是 .6、(2014奉贤二模文10)将函数3cos ()1sin xf x x=的图像向左平移m 个单位(0)m >,若所得图像对应的函数为偶函数,则m 的最小值是________. 7、(2014奉贤二模理10)已知函数3cos ()1sin xf x x=, 则方程()021cos =+⋅x x f 的解是________.8、(2014虹口二模文4理3)在ABC ∆中,已知sin :sin :sin 1:2:5A B C =,则最大角等于 . 9、(2014虹口二模文7理6)已知tan 2α=,tan()1αβ+=-,则tan β= 10、(2014黄浦二模文理2)函数x x y 22sin cos -=的最小正周期=T .11、(2014黄浦二模文理8)在A B C ∆中,角C B A 、、所对的边的长度分别为c b a 、、,且ab c b a 3222=-+,则=∠C .12、(2014闵行二模文理5)在ABC △中,若60A ∠=,45B ∠=,32BC =,则AC = . 13、(2014闵行二模文10)将函数()()cos 0f x x ωω=>的图像向右平移3π个单位长度后,所得的图像 与原图像重合,则ω的最小值等于 .14、(2014闵行二模文理14)对于函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:①任取[)120,x x ∈+∞、,都有12()()2f x f x -≤恒成立;②()2(2)f x kf x k =+*()k ∈N ,对于一切[)0,x ∈+∞恒成立; ③函数()ln(1)y f x x =--有3个零点; ④对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是9,8⎡⎫+∞⎪⎢⎣⎭. 则其中所有真命题的序号是 .15、(2014浦东二模文理12)在ABC ∆中, 角B 所对的边长6b =,ABC ∆的面积为15,外接圆半径R 5=, 则ABC ∆的周长为 .16、(2014徐汇二模文理3)函数cos 24y x π⎛⎫=+⎪⎝⎭的单调递减区间是____________. 17、(2014徐汇二模文理7)函数()()sin cos cos 2sin cos sin x x x f x xx xπ+-=-的最小正周期T =____________.18、(2014徐汇二模文理8)已知函数)12(arcsin )(+=x x f ,则=-)6(1πf____________.19、(2014杨浦静安青浦宝山二模文理6)若),(ππ-∈x ,则方程12cos 2sin 3=-x x 的解是_____________. 20(2014普陀二模文5)若31cos =α(πα<<0),则=α2sin . 21、(2014普陀二模文7)若函数)sin()(ϕ+=x x f (πϕ<<0)是偶函数,则函数)(x f 的单调递 减区间为 .二、选择题22、(2014长宁嘉定二模文理16)下列说法正确的是 ( )A .命题“若12=x ,则1=x ”的否命题是“若12=x ,则1≠x ”B .“1-=x ”是“022=--x x ”的必要不充分条件C .命题“若y x =,则y x sin sin =”的逆否命题是真命题D .“1t a n=x ”是“4π=x ”的充分不必要条件23、(2014长宁嘉定二模文理18)设函数)(x f y =的定义域为D ,若对于任意1x 、D x ∈2,当a x x 221=+时, 恒有b x f x f 2)()(21=+,则称点),(b a 为函数)(x f y =图像的对称中心. 研究函数3sin )(-+=x x x f π的某一个对称中心,并利用对称中心的上述定义,可得到 ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛20144027201440262014220141f f f f 的值为( )A .4027B .4027-C .8054D .8054-24、(2014崇明二模文理18)某同学对函数sin ()xf x x=进行研究后,得出以下五个结论:① 函数()y f x =的图像是轴对称图形;② 函数()y f x =对任意定义域中x 值,恒有()1f x <成立; ③ 函数()y f x =的图像与x 轴有无穷多个交点,且每相邻两交点间距离相等; ④ 对于任意常数0N >, 存在常数b a N >>,函数()y f x =在[],a b上单调递减,且1b a -≥;⑤ 当常数k 满足0k ≠时,函数 ()y f x =的图像与直线y kx =有且仅有一个公共点.其中所有正确结论的序号是( ) A .①②③④B .①③④⑤C .①②④D .①③④25、(2014奉贤二模文15)三角形ABC 中,设,AB a BC b ==,若()0a a b ⋅+<,则三角形ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .无法确定 26、(2014奉贤二模文理18)已知R ∈βα,,且设βα>:p ,设:sin cos sin cos q ααβββα+>+⋅,则p 是q 的 A .充分必要条件 B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件 27、(2014虹口二模理18)函数x x f sin )(=在区间)10,0(π上可找到n 个不同数1x ,2x ,……,n x , 使得nn x x f x x f x x f )()()(2211=== ,则n 的最大值等于( ) .A 8 .B 9 .C 10 .D 1428、(2014徐汇二模文17理16)在A B C ∆中,角C B A 、、的对边分别是c b a 、、,且B A ∠=∠2,则BB3s i n s i n 等于( ) A .c a B .b c C .abD .c b29、(2014杨浦静安青浦宝山二模文理16)“1=ω”是“函数x x x f ωω22cos sin )(-=的最小正周期为π”的( ).)(A 充分必要条件 )(B 充分不必要条件 )(C 必要不充分条件 )(D 既不充分又必要条件三、解答题30、(2014长宁嘉定二模文理19)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知B p C A sin sin sin ⋅=+(0>p ),且241b ac =. (1)当45=p ,1=b 时,求a ,c 的值;(2)若B 为锐角,求实数p 的取值范围。

数学_2014年上海市奉贤区高考数学二模试卷(文科)_(含答案)

数学_2014年上海市奉贤区高考数学二模试卷(文科)_(含答案)

2014年上海市奉贤区高考数学二模试卷(文科)一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接写结果,每空4分)1. 函数f(x)=lg(2x−4)的定义域为________.2. 设z=a+i(a∈R+,i是虚数单位),满足|2z|=√2,则a=________.3. 如果函数f(x)=log a x的图象过点P(12, 1),则limn→∞(a+a2+...+a n)=________.4. 执行如图所示的程序框图,输出的S的值为________.5. 若圆C的半径为1,圆心在第一象限,且与直线4x−3y=0和x轴都相切,则该圆的标准方程是________.6. 在(x+1)n的二项展开式中,按x的降幂排列,只有第5项的系数最大,则各项的二项式系数之和为________(答案用数值表示).7. 将外形和质地一样的4个红球和6个白球放入同一个袋中,将它们充分混合后,现从中取出4个球,取出一个红球记2分,取出一个白球记1分,若取出4个球总分不少于5分,则有________种不同的取法.8. 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.9. 设实数x,y满足{x+y≥22x−y≤4y≤4,则x−2y的最大值等于________.10. 将函数f(x)=|√3cosx1sinx|的图象向左平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是________.11. 已知抛物线y2=20x焦点F恰好是双曲线x2a2−y2b2=1的右焦点,且双曲线过点(154, 3),则该双曲线的渐近线方程为________.12. 定义在(0, +∞)上的函数f(x)满足:①当x∈[1, 3]时,f(x)={x−1,1≤x≤23−x,2<x<3②f(3x)=3f(x),设关于x的函数F(x)=f(x)−1的零点从小到大依次记为x1,x2,x3,…,则x1+x2+x3=________.13. 已知,{a n}是首项为a公差为1的等差数列,b n=1+a na n.如对任意的n∈N∗,都有b n≥b 8成立,则a 的取值范围是________.14. 以(0, m)间的整数(m >1),m ∈N)为分子,以m 为分母组成分数集合A 1,其所有元素和为a 1;以(0, m 2)间的整数(m >1),m ∈N)为分子,以m 2为分母组成不属于集合A 1的分数集合A 2,其所有元素和为a 2;…,依此类推以(0, m n )间的整数(m >1, m ∈N)为分子,以m n 为分母组成不属于A 1,A 2,…,A n−1的分数集合A n ,其所有元素和为a n ;则a 1+a 2+...+a n =________m n −12 .二.选择题(本大题满分20分)本大题共有4题,每小题5分,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15. 三角形ABC 中,设AB →=a →,BC →=b →,若a →•(a →+b →)<0,则三角形ABC 的形状是( )A 锐角三角形B 钝角三角形C 直角三角形D 无法确定16. 设数列{a n }( )A 若a n 2=4n ,n ∈N ∗,则{a n }为等比数列B 若a n ⋅a n+2=a n+12,n ∈N ∗,则{a n }为等比数列 C 若a m ⋅a n =2m+n ,m ,n ∈N ∗,则{a n }为等比数列 D 若a n ⋅a n+3=a n+1⋅a n+2,n ∈N ∗,则{a n }为等比数列17. 下列命题正确的是( )A 若x ≠kπ,k ∈Z ,则sin 2x +41+sin 2x ≥4B 若a <0,则a +4a ≥−4C 若a >0,b >0,则lga +lgb ≥2√lga ⋅lgbD 若a <0,b <0,则b a +a b ≥2 18. 已知α、β∈R ,且设p:α>β,设q:α+sinαcosβ>β+sinβcosα,则p 是q 的( )A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. 如图,在直三棱柱ABC −A 1B 1C 1中,AC =3,BC =4,AB =5,点D 是AB 的中点.四面体B 1−BCD 的体积是2,求异面直线DB 1与CC 1所成的角.20. 已知函数f(x)=|x −a|−9x +a ,x ∈[1, 6],a ∈R . (1)若a =1,试判断并用定义证明函数f(x)的单调性;(2)当a ∈(1, 6)时,求函数f(x)的最大值的表达式M(a).21. 某人沿一条折线段组成的小路前进,从A 到B ,方位角(从正北方向顺时针转到AB 方向所成的角)是50∘,距离是3km ;从B 到C ,方位角是110∘,距离是3km ;从C 到D ,方位角是140∘,距离是(9+3√3)km .试画出大致示意图,并计算出从A 到D 的方位角和距离(结果保留根号).22. 如图,已知平面内一动点A到两个定点F1、F2的距离之和为4,线段F1F2的长为2√3.(1)求动点A的轨迹Γ的方程;(2)过点F1作直线l与轨迹Γ交于A、C两点,且点A在线段F1F2的上方,线段AC的垂直平分线为m.①求△AF1F2的面积的最大值;②轨迹Γ上是否存在除A、C外的两点S、T关于直线m对称,请说明理由.23. 若函数f(x)满足:集合A={f(n)|n∈N∗}中至少存在三个不同的数构成等比数列,则称函数f(x)是等比源函数.(1)判断下列函数:①y=x2;②y=lgx中,哪些是等比源函数?(不需证明)(2)证明:函数g(x)=2x+3是等比源函数;(3)判断函数f(x)=2x+1是否为等比源函数,并证明你的结论.2014年上海市奉贤区高考数学二模试卷(文科)答案1. {x|x>2}2. 13. 14. √325. (x−2)2+(y−1)2=16. 2567. 195π8. √339. 210. 2π3x11. y=±4312. 1413. (−8, −7)14. m n−1215. B16. C17. D18. A19. 解:直三棱柱ABC −A 1B 1C 1中CC 1 // BB 1所以∠DB 1B 为异面直线DB 1与CC 1所成的角(或其补角)直三棱柱ABC −A 1B 1C 1中V B 1−BCD =13S △BCD ⋅B 1B =13×12×4×32B 1B =2得BB 1=2 由点D 是AB 的中点得DB =52 直三棱柱ABC −A 1B 1C 1中B 1B ⊥BDRt △B 1BD 中tan∠DB 1B =BD B 1B =522=54 所以∠DB 1B =arctan 54(或∠DB 1B =arccos 441√41)所以异面直线DB 1与BC 1所成的角为arctan 54(或arccos 441√41)20. 解:(1)当a =1,x ∈[1, 6]时,f(x)为增函数,证明:∵ f(x)=x −9x ,任取x 1,x 2∈[1, 6],且x 1<x 2, 则f(x 1)−f(x 2)=(x 1−9x 1)−(x 2−9x 2)=(x 1−x 2)(x 1x 2+9)x 1x 2<0,∴ f(x)在[1, 6]是增函数;(2)∵ a ∈(1, 6),∴ f(x)={2a −(x +9x ),1≤x ≤a x −9x ,a <x ≤6, ①当1<a <3时,f(x)在[1, a]上是增函数,在[a, 6]上也是增函数,∴ 当x =6时,f(x)取得最大值92,②当3<a <6时,f(x)在[1, 3]上是增函数,在[3, a]上是减函数,在[a, 6]上是增函数, 而f(3)=2a −6,f(6)=92,当3<a ≤214时,2a −6≤92,当x =6时,f(x)取得最大值为92. 当214≤a <6时,2a −6>92,当x =3时,f(x)取得最大值为2a −6.综上得,M(a)={92,(1<a ≤214)2a −6,(214<a <6)21. 解:示意图,如图所示,连接AC ,在△ABC 中,∠ABC =50∘+(180∘−110∘)=120∘,又AB =BC =3,∴ ∠BAC =∠BCA =30∘ 由余弦定理可得AC =√AB 2+BC 2−2AB ⋅BC ⋅cos120∘=3√3在△ACD 中,∠ACD =360∘−140∘−(70∘+30∘)=120∘,CD =3√3+9.由余弦定理得AD =√AC 2+CD 2−2AC ⋅CD ⋅cos120∘=9(√2+√6)2(km). 由正弦定理得sin∠CAD =CD⋅sin∠ACDAD =√22∴ ∠CAD =45∘,于是AD 的方位角为50∘+30∘+45∘=125∘,∴ 从A 到D 的方位角是125∘,距离为9(√2+√6)2km . 22. 解:(1)因为4>2√3,所以轨迹是以F 1、F 2为焦点的椭圆,以线段F 1F 2的中点为坐标原点,以F 1F 2所在直线为x 轴建立平面直角坐标系, 可得动点A 的轨迹Γ的方程为x 24+y 2=1;(2)①由题意,|F 1F 2|=2√3,当A 在椭圆与y 轴相交的地方,△AF 1F 2的高最大,面积最大,∴ △AF 1F 2的面积的最大值为12⋅2√3⋅1=√3;②当AC ⊥F 1F 2时,存在除A 、C 外的两点S 、T 关于直线m 对称,下面证明AC 与F 1F 2不垂直时,不存在除A 、C 外的两点S 、T 关于直线m 对称. 假设存在这样的两个不同的点S(x 3, y 3),T(x 4, y 4),设ST 的中点为H(m, n),则k OH ⋅k ST =−14,k OM k AC =−14,∴ k OH =k OM =−14k ,∴ 直线m 过原点,斜率为−14k ≠−1k ∴ 假设不成立,∴ AC 与F 1F 2不垂直时,不存在除A 、C 外的两点S 、T 关于直线m 对称.23. 解:(1)①∵ 12,22,42,82构成等比数列,∴ y =x 2是等比源函数.②∵ lg10,lg100,lg10000构成等比数列,∴ y =lgx 是等比源函数.(2)证明:∵ g(x)=2x+3,∴ g(1)=2+3=5,g(6)=12+3=15,g(21)=42+3=45,∵ 5,15,45成等比数列∴ 函数g(x)=2x+3是等比源函数.(3)函数f(x)=2x+1不是等比源函数.证明如下:假设存在正整数m,n,k且m<n<k,使得f(m),f(n),f(k)成等比数列,则(2n+1)2=(2m+1)(2k+1),整理得22n+2n+1=2m+k+2m+2k,等式两边同除以2m,得22n−m+2n−m+1=2k+2k−m+1.∵ n−m≥1,k−m≥2,∴ 等式左边为偶数,等式右边为奇数,∴ 等式22n−m+2n−m+1=2k+2k−m+1不可能成立,∴ 假设不成立,∴ 函数f(x)=2x+1不是等比源函数.。

[vip专享]2013-14学年上海闵行区高三数学二模试题与解答(文科)

[vip专享]2013-14学年上海闵行区高三数学二模试题与解答(文科)

7.一个几何体的三视图如图所示,则该几何体的体积为 .
8.复数 z a bi ( a、b R ,且 b 0 ),若 z2 4bz 是实数,
则有序实数对 (a,b) 可以是
.(写出一对即可)
9.已知关于 x 的不等式 2x2 2(a 1)x (a 3) 0 的解集
为 R ,则实数 a 的取值范围 .
21

P17-3D C B A3P682 1 2 1
“” 3 21“”“”
“” 21P961P9610 3 2 1 4 3 2 271 1
3 “” 2 413“” 2 1 5
“”
6.若点 (x, y) 位于曲线 y x 与 y 1所围成的封闭区域内(包
括边界), 则 4x y 的最小值为

21
规定区域内写出必要的步骤. 19.(本题满分 12 分)
如图,在体积为 3 的正三棱锥 A BCD 中,
A
BD 长为 2 3 , E 为棱 BC 的中点,求异面直线
B
AE 与 CD 所成角的大小(结果用反三角函数值表
D
示).
E C
第 19 题图
20.(本题满分 14 分)本题共有 2 个小题,第(1)小题满分 6 分,第(2)小题满分 8 分.
(B)与同一个平面所成的角相等的两条直线必平行
(C)若直线 l 垂直平面 内的两条相交直线,则直线 l 必垂直平面
(D)垂直于同一个平面的两条直线平行
23WOR1DWO---RDWwOorRdDw1ordword
21
16.已知集合 A {x
x2
3x 2 0} , B
x
“”
3 “” 2 413“” 2 1 5

上海市闵行区高三二模数学文科及答案

上海市闵行区高三二模数学文科及答案

数 学 试卷(文科)(满分150分,时间120分钟) 考生注意:1.答卷前,考生务必在答题纸上将学校、班级、准考证号、姓名等填写清楚.2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 3.本试卷共有23道试题.一.填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸的相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.用列举法将方程33log log (2)1x x ++=的解集表示为. 2.若复数满足(1i)2z ⋅+=(其中为虚数单位),则1z +=. 3.双曲线221412x y-=的两条渐近线的夹角的弧度数为. 4.若4cos 5α=,且()0,απ∈,则tg 2α=.5.二项式5(21)x -的展开式中,项的系数为.6.已知等比数列{}n a 满足232,1a a ==,则12lim ()n n a a a →+∞+++=.7.如果实数,x y 满足线性约束条件20,3501,x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =+-的最小值等于.8.空间一线段AB ,若其主视图、左视图、俯视图的长度均为,则线段AB 的长度为.9.给出条件:①12x x <,②12x x >,③12x x <,④2212x x <.函数()sin f x x x =+,对任意12,22x x ππ⎡⎤∈-⎢⎥⎣⎦、,能使12()()f x f x <成立的条件的序号是.10.已知数列{}n a 满足221(1)22()n n n a a a n *+-=-+∈N ,则使20152015a >成立的正整数的一个值为.11.斜率为2的直线与焦点在轴上的椭圆2221(0)y x b b+=>交于不同的两点、.若点、在轴上的投影恰好为椭圆的两焦点,则该椭圆的焦距为.12.函数2()log 2a f x x ax =+-在区间()0,1内无零点,则实数的范围是.13.已知点是半径为的O 上的动点,线段AB 是O 的直径.则AB PA AB PB ⋅+⋅的取值范围为.14.已知函数2131()1log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()1x g x x =+,若对任意的12,x x ∈R ,均有12()()f x g x ≤,则实数的取值范围是.二.选择题(本大题满分20分)本大题共有4小题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,选对得5分,否则一律得0分. 15.如果0a b <<,那么下列不等式成立的是 ()(A)2a ab <.(B)2ab b -<-.(C)11a b <.(D)b a a b>. 16.从4个不同的独唱节目和2个不同的合唱节目中选出4个节目编排一个节目单,要求最后一个节目必须是合唱,则这个节目单的编排方法共有 ()(A)14种. (B)48种. (C)72种.(D) 120种. 17.函数sin y x =的定义域为[],a b ,值域为11,2⎡⎤-⎢⎥⎣⎦,则b a -的最大值是( )(A).(B)34π.(C)35π.(D). 18.如图,已知直线平面,垂足为,在ABC △中,2,2,BC AC AB ===AC 的中点.该三角形在空间按以下条件作自由移动:(1)A l ∈,(2)C α∈.则OP PB +的最大值为( )(A). (B)(C) 1.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,已知圆锥的底面半径为10r =,点Q 为半圆弧AB 的中点,点为母线的中点.若直线PQ 与所成的角为4π,求此圆锥的表面积. 20.(本题满分14分)本题共有2个小题,第(1)小题满分410分.a b c 、、,且3B π=.设三角形ABC 的内角A B C 、、所对的边长分别是若ABC △不是钝角三角形,求:(1)角的范围;(2)2a c的取值范围.21.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前个月的需求量(万吨)与的函数关系为*0,116,)y p x x =>≤≤∈N ,并且前4个月,区域外的需求量为20万吨.(1)试写出第个月石油调出后,油库内储油量(万吨)与的函数关系式;(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定的取值范围.22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分。

上海市闵行区2014学年第二学期高三年级质量调研考试数学(文理答案)

上海市闵行区2014学年第二学期高三年级质量调研考试数学(文理答案)

闵行区2014学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一. 填空题 1.[]1,4-; 2.1i -+; 3.12-; 4.14; 5.(理)1,(文)32; 6.54-; 7.33π;8.(理)58,(文)12;9.(理) 9632+,(文)4; 10.(理)1,12⎡⎤⎢⎥⎣⎦,(文) 1; 11.(理)5,(文) 14x =;12. 833; 13.(文理) ④; 14.(理){}1,3,67---,(文)1-或3-或67-二. 选择题 15. B ; 16. B ; 17.D ; 18. A . 三. 解答题19.(文)[解] 11111183323A ABC BC V S AA BC AC AA -=⋅=⋅⋅⋅⋅=△A 11822411323AA AA =⋅⋅⋅⋅=⇒= ………………………………4分11//BB CC , 11A BB ∴∠是直线B A1与直线1CC 所成的角 ……6分 11111222tan 2A B A BB BB y ∴∠===………………………10分 112arctan2A BB ∴∠= 所以直线B A 1与1CC 所成的角为2arctan 2………………12分 19.(理)[解]法一:1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角.…………………4分 设1CC y =222114BC CC BC y =+=+,11112121tan 454AC A BC y BC y ∴∠===⇒=+, ……………8分 所以111111111111183323C A BC A C BC C BC V V S A C BC CC A C --==⋅=⋅⋅⋅⋅=△.…12分法二:如图,建立空间直角坐标系,设1CC y =. 得点(020)B ,,, 1(00)C y ,,,1(20)A y ,,. 则1(22)A B y =--,,,平面C C BB 11的法向量为(100)n =,,. …………………4分 设直线B A 1与平面C C BB 11所成的角为θ,则12126sin 468A B ny A B n yθ⋅===⇒=⋅+,……………8分所以111111111111183323C A BC A C BC C BC V V V S A C BC CC A C --===⋅=⋅⋅⋅⋅=△.…12分 20.[解] (1) 40000()(1640)164360W xR x x x x=-+=--+10100x <<,……6分 (2) 解400001643602760W x x=--+≥ ………………12分 得2(50)0x -≤时, 所以50x =.答:为了让年利润W 不低于2760万元,年产量50x =. …………………14分 21.(文)[解](1) 2222a a =⇒=………………3分将点P 的坐标代入方程22212x y b+=得281199b +=⇒21b = ………6分 所以椭圆Γ的方程为2212x y +=.…………………………………7分 (2)法一:设点C D 、的坐标分别为1122(,)(,)x y x y 、则2222112222,22x y x y +=+=,且12122,1x x y y +=+= ………9分 由2222112222,22x y x y +=+=得:12121212()()2()()0x x x x y y y y +-++-=121212122()2()01y y x x y y x x --+-=⇒=-- ………………12分所以直线CD 的方程为32y x =-+………………14分 法二:设点C D 、的坐标分别为1122(,)(,)x y x y 、 设直线CD 的方程为1(1)2y k x =-+ ………………9分 将1(1)2y k x =-+代入2222x y += CB 1C 1B1AA yzx得22223(21)(42)2202k x k k x k k +--+--= 由212242221k kx x k -+==+得1k =- ………………12分 所以直线CD 的方程为32y x =-+………………14分 21.[解](理)(1)因为椭圆Γ过点4(,)33b P ,所以2161199a+=,解得22a = ……3分 又以AP 为直径的圆恰好过右焦点2F ,所以220F A F P ⋅= 又24(,),(,0),(0,)33bP F c A b得2(,)F A c b =-,24(,)33b F P c =-,所以24()033b c c --+= 而22222b a c c =-=-,所以2210c c -+=得1c = ………………6分故椭圆Γ的方程是2212x y +=. ………………………………7分 (2)法一:设点C D 、的坐标分别为1122(,)(,)x y x y 、,则2222112222,22x y x y +=+=,且12122,1x x y y +=+= ………9分 由2222112222,22x y x y +=+=得:12121212()()2()()0x x x x y y y y +-++-=121212122()2()01y y x x y y x x --+-=⇒=--所以CD 所在直线的方程为32y x =-+………………11分 将32y x =-+代入2222x y +=得253602x x -+=21212121023||2||2()42433CD x x x x x x =-=⋅+-=⋅-=………14分 法二:设点C D 、的坐标分别为1111(,)(2,1)x y x y --、,………9分 则2222111122,(2)2(1)2x y x y +=-+-= 两等式相减得1132y x =-+………………11分将32y x =-+代入2222x y +=得253602x x -+= 21212121023||2||2()42433CD x x x x x x =-=⋅+-=⋅-=.……14分 22.[解](1)(文理)2213()cos 2sin 2sin cos +222f x x x x x =++- 13πcos 2sin 2cos 2+2sin 2+2226x x x x ⎛⎫=+-=- ⎪⎝⎭,……………2分 函数()f x 的最小正周期T π= ………………………………4分(2)当,123t ππ⎡⎤∈⎢⎥⎣⎦时,20,62t ππ⎡⎤-∈⎢⎥⎣⎦,π()sin 2+22,216f t t ⎛⎫⎡⎤=-∈+ ⎪⎣⎦⎝⎭6分 []22()[()]22()[()2]22,1F t f t f t f t ⇒=-=--∈-- …………………8分(理)存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足()0F t m ->的实数m 的取值范围为(),1-∞-.……10分 (文)存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足()0F t m -=的实数m 的取值范围为[]2,1--.……10分 (3)(理)存在唯一的2,63x ππ⎡⎤∈-⎢⎥⎣⎦,使12()()1f x f x ⋅=成立. ………………12分 (文理)当1,63x ππ⎡⎤∈-⎢⎥⎣⎦时,12,622x πππ⎡⎤-∈-⎢⎥⎣⎦,11π()sin 2+221,216f x x ⎛⎫⎡⎤=-∈-+ ⎪⎣⎦⎝⎭ 2211π()sin 2+221,21()6f x x f x ⎛⎫⎡⎤==-∈-+ ⎪⎣⎦⎝⎭[]21π1sin 2=21,16()x f x ⎛⎫⇒--∈- ⎪⎝⎭ ………………14分设112()a f x -=,则[]1,1a ∈-,由2πsin 2=6x a ⎛⎫- ⎪⎝⎭ 得22ππ22arcsin 2=2arcsin ,66x k a x k a k πππ-=+-+-∈Z 或所以2x 的集合为2221π17π|arcsin +arcsin +,212212x x k a x k a k ππ⎧⎫=+⋅=-⋅∈⎨⎬⎩⎭Z 或 ∵1π17π5arcsin +,arcsin +6212332126a a ππππ-≤⋅≤≤-⋅≤ ∴2x 在,63ππ⎡⎤-⎢⎥⎣⎦上存在唯一的值21πarcsin 212x a =⋅+使12()()1f x f x ⋅=成立. 16分23.(文)[解] (1)法1:由142()n n a a n n *++=+∈N 得12236,10a a a a +=+= 所以31242a a d d -==⇒=,所以12a =故2,n a n = ……………………………2分 因为2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+ ① 对任意的n *∈N 恒成立则1112233-1-1(2)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+(2n ≥) ② ①-②得12(2)n n n a b n n +=⋅≥又114a b =,也符合上式,所以12()n n n a b n n +*=⋅∈N所以2n n b = ……………………………4分 法2:由于{}n a 为等差数列,令n a kn b =+, 又142()n n a a n n *++=+∈N ,所以(1)2242()kn b k n b kn b k n k *++++=++=+∈N所以24,222,0k k b k b =+=⇒==故2n a n = ………………2分 因为2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+ ① 对任意的n *∈N 恒成立则1112233-1-1(2)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+(2n ≥) ②①-②得12(2)n n n a b n n +=⋅≥又114a b =,也符合上式,所以12()n n n a b n n +*=⋅∈N所以2n n b = ……………………………4分 (2)假设存在,p q *∈N 满足条件,则244)2392q p +-=(化简得2324472q p p -+-= ……………………………6分 由p *∈N 得22447p p +-为奇数,所以32q -为奇数,故3q =得22244712240p p p p +-=⇒+-= ……………………8分 故46()p p ==-或舍去所以存在满足题设的正整数=4,=3p q . ……………………………10分(3)易得2n S n n =+,则22n nn S n n b +=, ……………………12分 下面考察数列2()2nn nf n +=的单调性, 因为2211(1)1(1)(2)(1)()222n n n n n n n n n f n f n +++++++-+-=-=……………14分所以3n ≥时,(1)()f n f n +<,又(1)1,f =3(2)(3)2f f ==,5(4),4f =15(5),16f =21(6),32f =……………………………16分 因为M 中的元素个数为5,所以不等式,nnS n b λ*≥∈N 解的个数为5, 故λ的取值范围是2115,3216⎛⎤⎥⎝⎦. ……………………………18分 23.(理)[解] (1)法1:设数列{}n a 的公差为d ,数列{}n b 的公比为q 。

上海市2014届高三高考数学系列模拟卷(2)答案--含答案

上海市2014届高三高考数学系列模拟卷(2)答案--含答案

2013学年上海高考数学模拟试卷答题卡B一、填空题 1. {}0,2 2. i 3. 04.89 5. 30- 6. 33(,)33-7. 2± 8. 30 9. 120010. 322-+ 11. 1:24 12. ()()+∞⋃-,50,513. [2,)+∞ 14. )111(222210nx x x a +++ 62π二、选择题15. A B C D 16. A B C D 17. A B C D 18. A B C D21.(本题满分12分)(I ).因为34cos ,sin 55θθ==,所以24sin 22sin cos 25θθθ==(6分)(II )因为AOB ∆为等边三角形,所以60AOC ∠=,所以cos cos(60)∠=∠+BOC AOC 34310-=同理, 433sin 10BOC +∠=,故点A 的坐标为343433(,)1010-+(6分)19.(本题满分14分)(I )由题设AB AC SB SC====SA ,连结OA ,ABC △为等腰直角三角形,所以22OA OB OC SA ===,且AO BC ⊥,又SBC △ 为等腰三角形,SO BC ⊥,且22SO SA =,从而222OA SO SA +=. 所 以SOA △为直角三角形,SO AO ⊥.又AO BO O =.所以SO ⊥平面ABC .(7分)(II )取SC 中点M ,连结AM OM ,,由(Ⅰ)知SO OC SA AC ==,,得OM SC AM SC ⊥⊥,.OMA ∠∴为二面角A SC B --的平面角.由AO BC AO SOSO BC O ⊥⊥=,,得AO ⊥平面SBC .所以AO OM⊥,又32AM SA =,故26sin 33AO AMO AM ∠===.所以二面角A SC B --的余弦值为33(7分)20.(本题满分14分)(I )157a b =.证明如下:设11a b a ==,则0a ≠,且22a d aq +=……⑴,46a d aq +=……⑵,由⑴,⑵得:()2423a a q q =-,从而42320q q -+=,∴22q =或21q =.(∵0q >,∴1q =,此时0d =,不可,舍之)∴2 2.q =代入⑴得2a d =.61517148,8a a d a b aq a =+===,因此,157a b =.(7分)(II )假设存在正整数,m n ,使得n m a b =,即()11m a n d aq-+-=,由(1)可知:22,2q a d ==,∴()1212m d n d dq -+-=,∴112m n q -+=,∴()()1221114422m m m n q--++==⨯=, 即存在正整数,m n ,使得n m a b =,,m n 之间所满足的关系式为()2112m n ++=,,m n N +∈.事实上,当()2112m n ++=,,m n N +∈时,有()()121n a a n d d n d =+-=+-()1212m n d d +=+=⋅()11212222m m m m d qa aqb ---=⋅=⋅==.故知结论成立. (7分)22.(本题满分16分)(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.23.(本题满分18分)(I )函数2(0)by x x x=+>的最小值是2b 2,则226b =,∴2log 9b =(4分)。

2014届上海市闵行区高三二模数学理错题整理

2014届上海市闵行区高三二模数学理错题整理

28:2014闵行区高三数学二模6.在极坐标系中,21(02)ρθθπ=+≤<与=2πθ的交点的极坐标为 .10.设摩天轮逆时针方向匀速旋转,24分钟旋转一周,轮上观光箱所在圆的方程为221x y +=.已知时间0t =时,观光箱A 的坐标为1(2,则当024t ≤≤时(单位:分),动点A 的纵坐标y 关于t 的函数的单调递减区间是 .12.计算机毕业考试分为理论与操作两部分,每部分考试成绩只记“合格”与“不合格”,只有当两部分考试都“合格”者,才颁发计算机“合格证书”.甲、乙两人在理论考试中“合格”的概率依次为4253、,在操作考试中“合格”的概率依次为1526、,所有考试是否合格,相互之间没有影响.则甲、乙进行理论与操作两项考试后,恰有1人获得“合格证书”的概率 .14.对于函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:①任取[)120,x x ∈+∞、,都有12()()2f x f x -≤恒成立;②()2(2)f x kf x k =+*()k ∈N ,对于一切[)0,x ∈+∞恒成立;③函数()ln(1)y f x x =--有3个零点;④对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是9,8⎡⎫+∞⎪⎢⎣⎭. 则其中所有真命题的序号是 .17.若曲线(,)0f x y =上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是( ).(A )210x y +-= (B)10x = (C )2210x y x x +---= (D )2310x xy -+=18.20.22.点P Q 、是1Γ上的两点,且OP OQ ⊥,求证:2211OP OQ +为定值;反之,当2211OP OQ +为此定值时,OP OQ ⊥是否成立?请说明理由.。

上海市闵行区2014届高三二模语文试题及答案

上海市闵行区2014届高三二模语文试题及答案

上海市闵行区2014届高三下学期教育质量调研考试(二模)语文试题考生注意:1.答卷前,考生务必在答题纸上将自己的姓名、准考证号、所在学校及班级等填写清楚。

2.所有试题的答案必须全部涂(选择题)或写(非选择题)在答题纸上,写在试卷上一律不给分。

答题时应注意试题题号和答题纸题号一一对应,不能错位。

3.本试卷共6页。

满分150分。

考试时间150分钟。

一阅读 80分(一)阅读下文,完成第1—6题。

(17分)文学中的知识分子形象裴毅然①中外文学作品中有一道奇特风景线:知识分子一直是被嘲笑的主角,很少成为获得赞美的主角。

②新文学运动以,鲁迅的《孔乙己》、叶圣陶描摹灰色知识分子的《潘先生在难中》、钱钟书的《围城》等名著名篇,瞄准的对象尽是知识分子。

上世纪五十年代以后,在知识分子逐渐陷入整体挨批的社会大氛围下,从思想界到文学界,知识分子全得低头认罪,成为必然自觉改造的对象,文学形象中的知识分子自然也高大不起。

进入九十年代,从特定意义上,知识分子仍然是社会上的弱者,因为谁都可以扯上知识分子开骂一通。

王朔说知识分子“不骂白不骂”,并不仅仅是王朔个人的“美学投机”或“艺术选择”,实际上代表着整个社会审美的某种价值趋向。

③中国文学尽拿知识分子“开涮”,乃是一个有趣的研究课题,本人试析一二。

④知识分子有能力参预各项社会活动,有可能跻身权益分配之列,社会身份十分微妙,处于不上不下的中间阶层。

因掌握知识,知识分子自必怀有一定理想,不屑于流同俗辈,不安于既有现状。

行高于众、品异于俗,知识分子的英雄自画像,自命不凡自我夸张,主客观之间存在相当差距。

在群俗看,便很有点脱离现实做白日梦的味道,可嘲可笑之处多多,即富含“可嘲笑因素”、“可打趣内容”。

聪慧敏感的作家,自然不会放过这一大好卖点。

这可以说是知识分子何以成为“嘲笑主角”的最重要之因素。

⑤无论中外,相对识文断字的知识分子,工农社会地位更低,处于社会最低层。

尤其在旧时中国,不少工农连基本生存条件都不具备。

上海市杨浦、静安、宝山、青浦四区2014届下学期高三年级二模考试数学试卷(文科) 有答案

上海市杨浦、静安、宝山、青浦四区2014届下学期高三年级二模考试数学试卷(文科)  有答案

上海市杨浦、静安、宝山、青浦四区2014届下学期高三年级二模考试数学试卷(文科)(满分150分,完卷时间120分钟) 2014.4一、填空题 (本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.二阶行列式ii i ++-1101的值是 . (其中i 为虚数单位)2. 已知j i,是方向分别与x 轴和y 轴正方向相同的两个基本单位向量,则平面向量ji +的模等于 .3.二项式7)1(+x 的展开式中含3x 项的系数值为_______________.4.已知圆锥的母线长为5,侧面积为π15,则此圆锥的体积为__________.(结果中保留π)5.已知集合{}sin ,A y y x x R ==∈,{}21,B x x n n Z ==+∈,则AB = .(文)若),(ππ-∈x ,则方程12cos 2sin 3=-x x 的解是_____________. 9.(文)满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+,0,0,32,42y x y x y x 的目标函数y x f +=的最小值为_______.10. 阅读程序框图,运行相应的程序,输出的结果为 .11.(文)在平面直角坐标系xOy 中,若中心在坐标原点的双曲线过点()2,3,且它的一个第10题图顶点与抛物线24y x =的焦点重合,则该双曲线的方程为 .12. (文)从5男3女8位志愿者中任选3人参加冬奥会火炬接力活动,所选3人中恰有两位女志愿者的概率是 .13.(文)若三个数c a ,1,成等差数列(其中c a ≠),且22,1,c a 成等比数列,则nn ca c a )(lim 22++∞→的值为 .14. (文) 函数()f x 的定义域为实数集R ,⎪⎩⎪⎨⎧<≤--≤≤=.01,1)21(,10,)(x x x x f x 对于任意的x R ∈都有(1)(1)f x f x +=-.若在区间[1,3]-上函数()()g x f x mx m =--恰有四个不同的零点,则实数m 的取值范围是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. (文) 不等式12x x->的解集为……………………………………………( ). )(A }01|{>-<x x x 或 )(B }1|{-<x x )(C }1|{->x x )(D }01|{<<-x x16.“1=ω”是“函数x x x f ωω22cos sin )(-=的最小正周期为π”的…………( ).)(A 充分必要条件 )(B 充分不必要条件 )(C 必要不充分条件 )(D 既不充分又必要条件17. 若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2S ,则1S :2S =………………………………………………………………( ).)(A 1:1 )(B 2:1 )(C 3:2 )(D 4:118. (文)已知向量,满足:1||||==b a ,且||3||b k a b a k -=+(0>k ).则向量a 与向量b 的夹角的最大值为 ……………………………… ( ).)(A 3π )(B 32π )(C 6π )(D 65π三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分) (文)已知几何体由正方体和直三棱柱组成,其三视图和直观图(单位:cm )如图所示.设两条异面直线1AQ 和PD 所成的角为θ,求cos θ的值. 20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点O 为圆心的两个同心圆弧AD 、弧BC 以及两条线段AB 和CD 围成的封闭图形.花坛设计周长为30米,其中大圆弧AD 所在圆的半径为10米.设小圆弧BC 所在圆的半径为x 米(100<<x ),圆心角为θ弧度.(1)求θ关于x 的函数关系式;(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,当x 为何值时,y 取得最大值?21.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分(文)已知椭圆2222:1x y C a b+=()0a b >>的右焦点F (1,0),长轴的左、右端点分别1A 1D C 1Q 1 A 正视图侧视图俯视图为12,A A ,且121FA FA ⋅=-. (1)求椭圆C 的方程;(2)过焦点F 斜率为k (0>k )的直线l 交椭圆C 于,A B 两点,弦AB 的垂直平分线与x轴相交于D 点. 试问椭圆C 上是否存在点E 使得四边形ADBE 为菱形?若存在,求k 的值;若不存在,请说明理由.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分(文)已知数列}{n a 满足⎪⎩⎪⎨⎧≥=+==-+).2(,,8,21121n ca a a a a n n n (c 为常数,*N n ∈)(1)当2=c 时,求n a ; (2)当1=c 时,求2014a 的值;(3)问:使n n a a =+3恒成立的常数c 是否存在?并证明你的结论.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分(文)设函数xx g 3)(=,xx h 9)(=. (1)解方程:0)1()(8)(=--h x g x h ; (2)令3)()()(+=x g x g x p ,求证:22013)20142013()20142012()20142()20141(=++++p p p p ; (3)若bx g ax g x f +++=)()1()(是实数集R 上的奇函数,且0))(2()1)((>⋅-+-x g k f x h f 对任意实数x 恒成立,求实数k 的取值范围.四区2013学年度高考模拟考试数学试卷文理科解答参考答案及评分标准 2014.04一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 理1.2; 2.2 3.35; 4.π125.{}1,1-;6. 30x y +-= 7. 22; 8.41 9. ⎩⎨⎧==,sin 4,cos 4ααy x (α为参数);10. 13811..895613561525630156100=⨯+⨯+⨯+⨯=ξE 12.3. 13.2314.1012sin =α 文1.2; 2.2 3.35; 4.π12 5.{}1,1-;6.}2,6,2,65{ππππ--7.30x y +-= ; 8.22 9.37; 10. 4111. 2213y x -=; 12.1253381556C C C = 13.当1-=ac 时,0lim 622222=⎪⎭⎫⎝⎛++∴⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++∞→nn n n c a c a c a c a ; 当1=ac 时,c a =舍去. 14.]41,0(二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分. 15.D ;16.B ;17.C ;18.理D ;文A三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .19.(理)1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(1,,0),(0,0,1)2A CB D F P --. (1) 证明方法一:Q 四边形是平行四边形,Q PA ⊥平面A B C D ∴P A D A ⊥,又A C D A ⊥,AC PA A =I ,∴DA ⊥平面PAC .方法二:证得DA uu u r是平面PAC 的一个法向量,∴DA ⊥平面PAC .(2)通过平面几何图形性质或者解线性方程组,计算得平面PAF 一个法向量为(1,2,0)m =u r, 又平面PCD 法向量为(1,1,1)n =r,所以||cos ,||||m n m n m n ⋅<>==u r ru r r u r r∴.(文)由//PQ CD ,且PQ CD =,可知//PD QC ,故1AQC ∠为异面直线1AQ 、PD 所成的角(或其补角). 由题设知2222111126AQ A B B Q =+==,12AC == 取BC 中点E ,则QE BC ⊥,且3QE =,222223110QC QE EC =+=+=.由余弦定理,得2221111cos cos 2AQ QC AC AQC AQ QCθ+-=∠=⋅==. 20.(1)设扇环的圆心角为θ,则()30102(10)x x θ=++-, 所以10210xxθ+=+, (2) 花坛的面积为2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<. 装饰总费用为()9108(10)17010x x x θ++-=+,所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++,令17t x =+,则3913243()101010y t t =-+≤,当且仅当t =18时取等号, 此时121,11x θ==. 答:当1x =时,花坛的面积与装饰总费用的比最大.21.理(1)依题意不妨设1(0,)B b -,2(0,)B b ,则1(1,)FB b =--,2(1,)FB b =-.由12FB FB a ⋅=-,得21b a -=-.又因为221a b -=,解得2,a b =.所以椭圆C 的方程为22143x y +=. (2)依题意直线l 的方程为(1)y k x =-.由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(34)84120k x k x k +-+-=.设11(,)M x y ,22(,)N x y ,则2122834k x x k +=+,212241234k x x k-=+. 所以弦MN 的中点为22243(,)3434k kP k k -++.所以MN ===2212(1)43k k +=+. 直线PD 的方程为222314()4343k k y x k k k +=--++, 由0y =,得2243k x k =+,则22(,0)43k D k +,所以DP =.所以224312(1)43DP k k MN k +==++=. 又因为211k +>,所以21011k <<+.所以104<. 所以DP MN 的取值范围是1(0,)4.(文)(1)依题设1(,0)A a -,2(,0)A a ,则1(1,0)FA a =--,2(1,0)FA a =-. 由121FA FA ⋅=-,解得22a =,所以21b =. 所以椭圆C 的方程为2212x y +=. (2)依题直线l 的方程为(1)y k x =-.由22(1),22y k x x y =-⎧⎨+=⎩得()2222214220k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,弦AB 的中点为00(,)M x y ,则2122421k x x k +=+,21222(1)21k x x k -=+,22221k x k =+,0221k y k -=+,所以2222(,)2121k kM k k -++.直线MD 的方程为22212()2121kk y x k k k +=--++, 令0y =,得2221D k x k =+,则22(,0)21k D k +. 若四边形ADBE 为菱形,则02E D x x x +=,02E D y y y +=.所以22232(,)2121k kE k k -++.若点E 在椭圆C 上,则2222232()2()22121k kk k -+=++.整理得42k =,解得2k =所以椭圆C 上存在点E 使得四边形ADBE 为菱形.22.理(1)99)832(3+=-⋅⋅x x x ,93=x,2=x(2)21323)21()20141007(===p p ,2163)21()20141007(===q q . 因为1333333333333)1()(11=+++=+++=-+--xxx xx xx x p x p ,1393399399399)1()(11=+++=+++=-+--x x x x x x x x q x q所以,211006)20142013()20142()20141(+=+++p p p , 211006)20142013()20142()20141(+=+++q q q . )20142013()20142()20141(p p p +++ =)20142013()20142()20141(q q q +++ . (3)因为bx ax x f +++=)()1()(ϕϕ是实数集上的奇函数,所以1,3=-=b a .)1321(3)(+-=xx f ,)(x f 在实数集上单调递增. 由0))(2()1)((>⋅-+-x g k f x h f 得))(2()1)((x g k f x h f ⋅-->-,又因为)(x f 是实数集上的奇函数,所以,)2)(()1)((-⋅>-x g k f x h f ,又因为)(x f 在实数集上单调递增,所以2)(1)(-⋅>-x g k x h 即23132-⋅>-x xk 对任意的R x ∈都成立,即x xk 313+<对任意的R x ∈都成立,2<k . (文)(1)46)1(62-=-+=n n a n (2) 21=a ,82=a ,63=a ,24-=a ,85-=a ,66-=a ,27=a ,88=a ,69=a ,210-=a ,811-=a ,612-=a ,我们发现数列为一周期为6的数列.事实上,由n n n a a a =+-+11有n n n n a a a a -=-=+++123,n n n n a a a a =-==++++3336.……8分(理由和结论各2分)因为 463352014+⨯=,所以242014-==a a . (3)假设存在常数c ,使n n a a =+3恒成立. 由n n n ca a a =+-+11 ○1,及n n a a =+3,有1112+-++=+⇒=+n n n n n n ca a a ca a a ○2 ○1式减○2式得0)1)((1=+-+c a a n n . 所以01=-+n n a a ,或01=+c .当*N n ∈,01=-+n n a a 时,数列{n a }为常数数列,不满足要求.由01=+c 得1-=c ,于是n n n a a a -=+-+11,即对于2≥∈n N n 且,都有11-+--=n n n a a a ,所以 nn n n n n a a a a a a --=--=+++++12123,,从而n n n n n n n a a a a a a a =-+=--=+++++11123, )1(≥n .所以存在常数1-=c ,使n n a a =+3恒成立. 23.理(1)1111a b a a ===,242112211--====--n a n n n n a a b ;(2)根据反证法排除11a =和*113()a a N ≥∈证明:假设12a ≠,又*N a n ∈,所以11a =或*113()a a N ≥∈11 ①当11a =时,1111a b a a ===与13b =矛盾,所以11a ≠;②当*113()a a N ≥∈时,即1113a a b a ≥==,即11a a a ≥,又1+<n n a a ,所以11a ≤与*113()a a N ≥∈矛盾;由①②可知21=a .(3)首先{}n a 是公差为1的等差数列,证明如下:1n n a a +>*2,n n N ⇒≥∈时1n n a a ->,所以11n n a a -≥+()n m a a n m ⇒≥+-,*(,)m n m n N <∈、1111[1(1)]n n a a n n a a a a ++++⇒≥++-+即11n n n n c c a a ++-≥-由题设11n n a a +≥-又11n n a a +-≥11n n a a +⇒-=即{}n a 是等差数列.又{}n a 的首项11a =,所以n a n =,)223222(32n n n S ⋅++⋅+⋅+-= ,对此式两边乘以2,得14322232222+⋅--⋅-⋅--=n n n S两式相减得=⋅-++++=+13222222n n n n S 22211-⋅-++n n n22211-=⋅+++n n n n S ,5021>⋅++n n n S 即5221≥+n ,当5≥n 时,526421>=+n ,即存在最小正整数5使得5021>⋅++n n n S 成立.注:也可以归纳猜想后用数学归纳法证明n a n =.(文)(1)0)1()(8)(=--h x g x h 即:09389=-⋅-x x ,解得93=x ,2=x(2)21323)21()20141007(===p p . 因为1333333333333)1()(11=+++=+++=-+--x x xx x x xx p x p , 所以,22013211006)20142013()20142()20141(=+=+++p p p , (3)同理科22(3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7题图上海市闵行区2014届高三下学期教育质量调研(二模)数 学 试 卷(文科)考生注意:1.答卷前,考生务必在答题纸上将学校、姓名及准考证号等填写清楚,并在规定的区域内贴上条形码.答题时客观题用2B 铅笔按要求涂写,主观题用黑色水笔填写. 2.本试卷共有23道题,共4页.满分150分,考试时间120分钟. 3.考试后只交答题纸,试卷由考生自己保留.一. 填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格 内直接填写结果,每个空格填对得4分,否则一律得零分. 1.2135(21)lim331n n n n →∞++++-=++ . 2.关于方程211323x x=-的解为 .3.已知全集U =R ,集合1|,22P y y x x ⎧⎫==>⎨⎬⎩⎭,则U P ð= . 4.设x ∈R ,向量(,1)a x =,(1,2)b =-,且a b ⊥,则||a b += . 5.在ABC △中,若60A ∠=,45B ∠=,BC =AC = . 6.若点(,)x y 位于曲线y x =与1y =所围成的封闭区域内(包括边界), 则4x y -的最小值为 .7.一个几何体的三视图如图所示,则该几何体的体积为 . 8.复数i z a b =+(a b ∈R 、,且0b ≠),若24z bz -是实数, 则有序实数对()a b ,可以是 .(写出一对即可) 9.已知关于x 的不等式222(1)(3)0x a x a --++>的解集 为R ,则实数a 的取值范围 .10.将函数()()cos 0f x x ωω=>的图像向右平移3π个单位长 度后,所得的图像与原图像重合,则ω的最小值等于 . 11.已知不等式4()()16a x y x y++≥对任意正实数x y 、恒成立,则正实数a 的最小值为 .12.有标号分别为1、2、3的蓝色卡片和标号分别为1、2的绿色卡片,从这五张卡片中任取两张,这两张卡片颜色不同且标号之和小于4的概率是 .13.已知数列{}n a ,对任意的*k ∈N ,当3n k =时,3n n a a =;当3n k ≠时,n a n =,那么该数列中的第10个2是该数列的第 项.14.对于函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:①任取[)120,x x ∈+∞、,都有12()()2f x f x -≤恒成立;②()2(2)f x kf x k =+*()k ∈N ,对于一切[)0,x ∈+∞恒成立; ③函数()ln(1)y f x x =--有3个零点; ④对任意0x >,不等式2()f x x≤恒成立. 则其中所有真命题的序号是 .二. 选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.下列命题中,错误..的是( ). (A )过平面α外一点可以作无数条直线与平面α平行 (B )与同一个平面所成的角相等的两条直线必平行(C )若直线l 垂直平面α内的两条相交直线,则直线l 必垂直平面α (D )垂直于同一个平面的两条直线平行 16.已知集合2{320}A x x x =-+≤,0,02x a B xa x -⎧⎫=>>⎨⎬+⎩⎭,若“x A ∈”是“x B ∈”的充分非必要条件,则a 的取值范围是( ).(A )01a << (B )2a ≥ (C ) 12a << (D )1a ≥ 17.若曲线(,)0f x y =上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是( ).(A )210x y +-= (B)10x =(C )220x x y -+= (D )210x xy -+= 18.已知等差数列{}n a 的前n 项和为n S ,向量,n S OP n n ⎛⎫= ⎪⎝⎭,1,m S OP m m ⎛⎫= ⎪⎝⎭, 2,k S OP k k ⎛⎫= ⎪⎝⎭()*n m k ∈N 、、,且12OP OP OP λμ=⋅+⋅,则用n m k 、、表 示μ=( ).(A )k m k n -- (B )k n k m -- (C )n m k m -- (D )n mn k--BAED第19题图第20题图三. 解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)BCD A -中,BD长为E 为棱BC 的中点,求异面直线AE与CD 所成角的大小(结果用反三角函数值表示).20.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.如图,点A 、B 是单位圆O 上的两点,点C 是圆O 与x 轴的正半轴的交点,将锐角α的终边OA 按逆时针方向旋转3π到OB .(1)若点A 的坐标为34,55⎛⎫ ⎪⎝⎭,求1sin 21cos 2αα++的值; (2)用α表示BC ,并求BC 的取值范围.第21题图21.(本题满分14分)本题共有2个小题,第(1)小题满分8分,第(2)小题满分6分.为了寻找马航MH370残骸,我国“雪龙号”科考船于2014年3月26日从港口O 出发,沿北偏东α角的射线OZ 方向航行,而在港口北偏东β角的方向上有一个给科考船补给物资的小岛A ,OA =海里,且==βαc o s ,31ta n 132.现指挥部需要紧急征调位于港口O 正东m 海里的B 处的补给船,速往小岛A 装上补给物资后,继续沿BA 方向全速追赶科考船,并在C 处相遇给科考船补给物资.经测算当两船运行的航线与海岸线OB 围成的三角形OBC 的面积S 最小时,这种补给方案最优. (1)求S 关于m 的函数关系式()S m ; (2)应征调位于港口正东多少海里处的补给船只,补给方案最优?22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)、(3)小题满分各6分.设椭圆1Γ的中心和抛物线2Γ的顶点均为原点O ,1Γ、2Γ的焦点均在x 轴上,过2Γ的焦点F 作直线l ,与2Γ交于A 、B 两点,在1Γ、2Γ上各取两个点,将其坐标记录于下表中:(1)求1Γ,2Γ的标准方程;(2)设M 是2Γ准线上一点,直线MF 的斜率为0k ,MA MB 、的斜率依次为12k k 、,请探究:0k 与12k k +的关系;(3)若l 与1Γ交于C 、D 两点,0F 为1Γ的左焦点,问00F AB F CDS S △△是否有最小值?若有,求出最小值;若没有,请说明理由.第22题图23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知曲线C 的方程为24y x =,过原点作斜率为1的直线和曲线C 相交,另一个交点记为1P ,过1P 作斜率为2的直线与曲线C 相交,另一个交点记为2P ,过2P 作斜率为4的直线与曲线C 相交,另一个交点记为3P ,……,如此下去,一般地,过点n P 作斜率为2n的直线与曲线C 相交,另一个交点记为1+n P ,设点),(n n n y x P (*n ∈N ). (1)指出1y ,并求1n y +与n y 的关系式(*n ∈N );(2)求{}21n y -(*n ∈N )的通项公式,并指出点列1P ,3P ,…,12+n P ,… 向哪一点无限接近?说明理由;(3)令2121n n n a y y +-=-,数列{}n a 的前n 项和为n S ,试比较314n S +与1310n +的大小,并证明你的结论.BACE D第19题图O F数学试卷(文科)参考答案与评分标准一. 填空题1.13; 2.2; 3.(],1-∞; 45. 6. (文) -5; 7.(文)73π; 8. ()2,1或满足2a b =的任意一对非零实数对; 9.(文)(1,5)-; 10. (文) 6; 11.4; 12. (文)310; 13.39366(923⋅) 14.(文)①③④. 二. 选择题 15. B ; 16. A ; 17.C ; 18. C 三.解答题19. 解:(1)过点A 作AO ⊥平面BCD ,垂足为O,则O 为BCD △的中心,由212334AO ⋅⋅⋅得1AO =(理1分文2分) 又在正三角形BCD 中得=1OE ,所以AE =……………………………(理2分文4分)取BD 中点F ,连结AF 、EF ,故EF ∥CD ,所以AEF ∠就是异面直线AE 与CD 所成的角.(理4分文6分) 在△AEF中,AE AF ==EF =5分文8分)所以222cos 24AE EF AF AEF AE EF +-∠==⋅⋅.…………………(理6分文10分) 所以,异面直线AE 与CD 所成的角的大小为arccos 4.……(理7分文12分)(2)由AE=BCD A -的侧面积为13322S BC AE =⋅⋅⋅=⋅= …………………(理10分)所以正三棱锥BCDA -的表面积为24S BC == …………………………(理12分)20.解:(1)由已知, 34cos ,sin .55αα==………(2分)24sin 22sin cos ,25ααα∴==227cos 2cos sin .25ααα=-=-………(4分) 1sin 21cos 2αα++=24149257181()25+=+-.………………………………………………(6分) (2)1,3OC OB COB πα==∠=+由单位圆可知:,……………………(8分)222+-2cos BC OC OB OC OB COB=∠由余弦定理得:112cos 22cos 33ππαα⎛⎫⎛⎫=+-+=-+ ⎪ ⎪⎝⎭⎝⎭ ………………………(10分)第21题图02πα⎛⎫∈ ⎪⎝⎭,,5336πππα⎛⎫∴+∈ ⎪⎝⎭,,1cos 32πα⎛⎫⎛⎫∴+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭……(12分) (21,2,.BC BC ⎛∴∈+∴∈ ⎝⎭……………………(14分) 21.(1)以O 点为原点,正北的方向为y 轴正方向建立直角坐标系,…(1分) 则直线OZ的方程为3y x =,设点A (x 0,y 0),则0900x β==,0600y β==,即A (900,600), …………………(3分) 又B (m ,0),则直线AB 的方程为:600()900y x m m=--,…………(4分) 由此得到C 点坐标为:200600(,)700700m mm m --,…(6分) 21300()||||(700)2700C m S m OB y m m ∴=⨯=>- …(8分)(2)由(1)知22300300()7001700m S m m m m ==--+ …(10分) 223003007001111700()14002800m m m =-+--+………(12分) 所以当111400m =,即1400m =时,()S m 最小,(或令700t m =-,则222300300(700)700()300(1400)700m t S m t m t t+===++- 840000≥,当且仅当1400m =时,()S m 最小)∴征调1400m =海里处的船只时,补给方案最优. …………………(14分) 22.解:(1)()-2,0⎭在椭圆上,(()34-4,,在抛物线上, 2211,43x y ∴Γ+=: 2Γ:24.y x = …………………(4分) (2)(文)F(1,0)是抛物线的焦点,①当直线l 的斜率存在时, 设l :(1)y k x =-,1122A(x ,(x ,y B y 设),),联立方程24(1)y x y k x ⎧=⎨=-⎩,得2222(24)0k x k x k -++=,0k ≠时0∆>恒成立212224k x x k ++=,121x x ⋅=, ………………(6分)因2Γ准线为1x =-,设(1,)M m -,02m k =-,1111y m k x -=+,2221y mk x -=+21212121221212122()224411144kx k m kx k m kx x m x x k m mk mk k mx x x x x x k -----+----+=+===-++++++0k 与12k k +的关系是1202k k k +=. .……………………………(8分) ②当直线l 的斜率不存在时,l :1x =,得(1,2)(1,2)A B -、122m k -=,222m k --=,12k k m +=-,仍然有1202k k k += ………(10分)(3)(文)0F l 设到直线的距离为d, 00F AB F CD S S △△=1212d AB ABCD d CD⋅=. F(1,0)是抛物线的焦点,也是椭圆的右焦点,①当直线l 的斜率存在时, 设l :(1)y k x =-,1122A(x ,(x ,y B y 设),),3344(x ,(x ,y y C ),D )联立方程24(1)y x y k x ⎧=⎨=-⎩,得2222(24)0k x k x k -++=,0k ≠时0∆>恒成立.()2241k AB k +=== (也可用焦半径公式得:)2122412k AB x x k+=++=)………………(11分) 联立方程22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得2222(3+4)84120k x k x k -+-=,0∆>恒成立.()2212134k CD k +===+, ……(12分) ∴00F AB F CDS S △△=()()2222222413414433312134k k k k k k k ++==+>++. ………………(14分) ②当直线l 的斜率不存在时,l :1x =, 此时,4AB =,3CD =,00F AB F CDS S △△=43.……………………………(15分) 所以,00F AB F CDS S △△的最小值为43. ……………………………(16分) 23. 解:(1)14y =. …………………………………………………………(1分)设(,)n n n P x y ,111(,)n n n Px y +++,由题意得 221111442n nn n n n n n ny xy x y yx x ++++⎧⎪=⎪⎪=⎨⎪-⎪=-⎪⎩. …………(2分) 114()2n n n y y +⇒+=⋅ …………………(4分)(2)分别用23n -、22n -代换上式中的n 得23222322212214()214()2n n n n n n y y y y ------⎧+=⋅⎪⎪⎨⎪+=⋅⎪⎩2322123112()=()24n n n n y y ----⇒-=-⋅- (2n ≥) ………………(6分)又14y =,121841()()334n n y n --∴=+∈*N , …………………(8分)因218lim 3n n y -→+∞=,所以点列1P ,3P ,…,12+n P ,…向点168(,)93无限接近(10分) (3)(文)121211()4n n n n a y y -+-=-=-,411()34n n S ⎡⎤∴=-⋅-⎢⎥⎣⎦. ………(12分)n 3111=44310n S n ++与比较大小,只要比较n 43n+10与比较大小.………(13分)n 1224(13)1333139310(3)n nn n n n C C C n n n =+=+⋅+⋅++⋅>++=+≥…(15分)当n =1时,3114310n S n +>+ …………………(16分)当n =2时,3114310n S n +=+ …………………(17分)当n >2时,3114310n S n +<+. …………………(18分)。

相关文档
最新文档