电压控制电流源

合集下载

《电路基础》受控源VCCS、VCVS、CCVS、CCCS的特性曲线实验

《电路基础》受控源VCCS、VCVS、CCVS、CCCS的特性曲线实验

《电路基础》受控源VCCS 、VCVS 、CCVS 、CCCS 的特性曲线实验一. 实验目的1. 加深对受控源的理解2. 熟悉由运算放大器组成受控源电路的分析方法,了解运算放大器的应用。

3. 掌握受控源特性的测量方法二. 实验原理与说明1. 受控源是双口元件,一个为控制端口,另一个为受控端口。

受控端口的电流或电压受到控制端口的电流或电压的控制。

根据控制变量与受控变量的不同组合,受控源可分为四类:i c=0 i c=0+ u c u c - - (a) VCVS (b) VCCS u c=0 u c=0 c c -(c) CCVS (d) CCCS图9-1 受控源(1) 电压控制电压源(VCVS ),如图7-1(a )所示,其特性为:0=c i(2) 电压控制电流源(VCCS ),如图7-1(b )所示,其特性为: c m s u g i ⋅=cs u u ⋅=α0=c i(3) 电流控制电压源(CCVS ),如图7-1(c )所示,其特性为:c s i u ⋅=γ0=c u(4) 电流控制电流源(CCCS ),如图7-1(d )所示,其特性为: c s i i ⋅=β0=c u2. 运算放大器与电阻元件组成不同的电路,可以实现上述四种类型的受控源。

各电路特性分析如下。

(1) 电压控制电压源(VCVS ):运算放大器电路如图7-2所示。

由运算放大器输入端“虚短”特性可知:1u u u ==-+212R u i R =由运算放大器的“虚断”特性,可知: 21R Ri i =21221R i R i u R R ⋅+⋅=()2121R R R u +=11211u u R R ⋅=⋅⎪⎪⎭⎫ ⎝⎛+=α式(7-1)++u 1 i R1 u 1 R Lu 2R 1 −i R2 u 2 i RR 2 R − − −图7-2 电压控制电压源(VCVS ) 图7-3 电压控制电流源(VCCS )即运算放大器的输出电压2u 受输入电压1u 控制。

受控源实验指导书

受控源实验指导书

实验八 受控源研究一.实验目的1.加深对受控源的理解。

2.熟悉由运算放大器组成受控源电路的分析方法,了解运算放大器的应用。

3.掌握受控源特性的测量方法。

二.实验原理1.受控源受控源向外电路提供的电压或电流是受其它支路的电压或电流控制,因而受控源是双口元件:一个为控制端口,或称输入端口,输入控制量(电压或电流),另一个为受控端口或称输出端口,向外电路提供电压或电流。

受控端口的电压或电流,受控制端口的电压或电流的控制。

根据控制变量与受控变量的不同组合,受控源可分为四类:(1)电压控制电压源(VCVS ),如图8-1(a )所示,其特性为:12u u μ= 其中:12u u =μ称为转移电压比(即电压放大倍数)。

(2)电压控制电流源(VCCS ), 如图8-1(b )所示,其特性为:12u g i = 其中:12m u i g =称为转移电导。

(3)电流控制电压源(CCVS ),如图8-1(c )所示,其特性为:12i r u = 其中:12i u r =称为转移电阻。

(4)电流控制电流源(CCCS ),如图8-1(d )所示,其特性为:12i i β= 其中:12i i =β称为转移电流比(即电流放大倍数)。

2.用运算放大器组成的受控源运算放大器的电路符号如图8-2所示,具有两个输入端:同相输入端u+和反相输入端u-,一个输出端uo,放大倍数为A ,则uo=A (u+-u-)。

对于理想运算放大器,放大倍数A 为∞,输入电阻为∞,输出电阻为0,由此可得出两︒ ︒ ︒ ︒+-1u +-12 u u μ = (a)1(b)11i (c)(d)图 8-1图 8-2O=u + u -个特性:特性1:u+=u_;特性2:i+=i_=0。

(1)电压控制电压源(VCVS )图8-3所示电路是由运算放大器构成的电压控制电压源,图中是反馈电阻,是负载电阻。

因为,且所以,又因为令,称为转移电压比或电压增益,是无量纲的常数,则;可见,运算放大器的输出电压u L 受输入电压u 1控制,其电路模型如图8-1(a )所示,转移电压比:)1(2f R R +=μ。

电路基础-电压源和电流源-受控源-基尔霍夫定律

电路基础-电压源和电流源-受控源-基尔霍夫定律

电路基础-电压源和电流源-受控源-基尔霍夫定律————————————————————————————————作者:————————————————————————————————日期:2第一章电路模型和基尔霍夫定律3讲授板书1、掌握电压源、电流源的概念、用法及特性;2、熟悉受控源的用法;3、掌握基尔霍夫定律的应用。

1、电压源、电流源用法及特性2、基尔霍夫定律的应用受控源的概念及用法1. 组织教学 5分钟3. 讲授新课70分钟1)电压源及电流源25 2)受控源15 3)基尔霍夫定律302. 复习旧课5分钟电路元件特性4.巩固新课5分钟5.布置作业5分钟34一、学时:2二、班级:06电气工程(本)/06数控技术(本)三、教学内容:[讲授新课]:第一章电路模型和电路定律(电压源和电流源的概念及特点受控源的概念及分类基尔霍夫定律)§1-8电源元件(independent source)1. 理想电压源1)定义:其两端电压总能保持定值或一定的时间函数,且电压值与流过它的电流i 无关的元件叫理想电压源。

2)电路符号3)理想电压源的电压、电流关系(1)电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关。

(2)通过电压源的电流由电源及外电路共同决定。

伏安关系曲线如下图示:实际电流源可由稳流电子设备产生,如晶体管的集电极电流与负载无关;光电池在一定光线照射下光电池被激发产生一定值的电流等。

4)电压源的功率在电压、电流的非关联参考方向下;P = us i56物理意义:电流(正电荷 )由低电位向高电位移动,外力克服电场力作功电源发出功率。

例1-3图示电路,当电阻R 在0~∞之间变化时,求电流的变化范围和电压源发出的功率的变化。

解:(1)当电阻为R 时,流经电压源的电流为: 电源发出的功率为:表明当电阻由小变大,电流则由大变小,电源发出的功率也由大变小。

(2)当,则(3)当,则由此例可以看出:理想电压源的电流随外部电路变化。

电压源与电流源

电压源与电流源

电压源与电流源实际电源有电池、发电机、信号源等。

电压源和电流源是从实际电源抽象得到的电路模型,它们是有源二端元件。

一、电压源电池是人们日常使用的一种电源,它有时可以近似地用一个理想电压源来表示。

理想电压源简称电压源,它是这样一种理想二端元件:它的端电压总可以按照给定的规律变化而与通过它的电流无关。

常见的电压源有交流电压源和直流电压源。

电压源的图形符号如图1-16所示。

图1-16(a)既可表示交流电压源又可表示直流电压源,图1-16(b)仅表示直流电压源符号。

电压源具有以下两个特点:①电压源对外提供的电压总保持定值US 或者是给定的时间函数us(t),不会因所接的外电路不同而改变。

②通过电压源的电流的大小由外电路决定,随外接电路的不同而不同。

图1-17给出了直流电压源的伏安特性,它是一条与横轴平行的直线,表明其端电压与电流的大小无关。

由于实际电源的功率有限,而且存在内阻,因此恒压源是不存在的,它只是理想化模型,只有理论上的意义。

需要说明的是,将端电压不相等的电压源并联,是没有意义的。

将端电压不为零的电压源短路,也是没有意义的。

图1-16 电压源的图形符号图1-17 直流电压源的伏安特性二、电流源理想电流源简称为电流源。

电流源是这样一种理想二端元件:电流源发出的电流总可以按照给定的规律变化而与其端电压无关。

电流源的图形符号如图1-18(a)所示,直流伏安特性如图1-18(b)所示。

图1-18 电流源的图形符号及其伏安特性电流源有以下两个特点:①电流源向外电路提供的电流总保持定值IS 或者是给定的时间函数is(t),不会因所接的外电路不同而改变。

②电流源的端电压的大小由外电路决定,随外接电路的不同而不同。

恒流源是理想化模型,现实中并不存在。

实际的恒流源一定有内阻,且功率总是有限的,因而产生的电流不可能完全输出给外电路。

需要说明的是,将电流不相等的电流源串联,是没有意义的。

将电流不为零的电流源开路,也是没有意义的。

电压源和电流源最大的区别就是一个是负载决定电流

电压源和电流源最大的区别就是一个是负载决定电流

电压源和电流源最大的区别就是一个是负载决定电流,一个是负载决定电压。

PWM对电压源和电流源控制同时有效,可以改变平均电压或平均电流。

用来分析电压PWM 控制的方法也可以用来分析电流PWM控制(将容感进行互换)。

以AC-DC-AC为例,电压型直流侧并大电容,电压脉动小,可近似恒压源,电压无法反向。

电流型直流侧串大电感,电流脉动小,可近似恒流源,电流无法反向。

文档收集自网络,仅用于个人学习逆变电路来看,由于电流型电流不可反向,而电压可反向,因此无需电压型所用的反并联无功反馈二极管。

而电机驱动时,电流型更容易实现再生制动。

文档收集自网络,仅用于个人学习逆变负载来看,电压型适合对谐波电流表现出高阻抗的负载,如电感。

而电流型则适合谐波阻抗低的负载,如电容。

因此在控制电机时,电流型需并联电容。

类似电压型接电容负载时,需串联电感。

文档收集自网络,仅用于个人学习电流型可能因负载多为感性,直流侧电感往往体大笨重,应用较少,所以接触太少。

以上是仅个人观点,一起探讨。

感应电机定转子之间靠电磁感应作用,在转子内感应电流以实现几点能量转换的电机。

感应电机一般用作电动机。

特点:优点:结构简单,制造方便,价格便宜,运行方便。

缺点:功率因素滞后,轻载功率因数低,调速性能稍差。

感应电机是异步电机的一种,由于现在异步电机主要是感应电机,所有现在也有人直接在定义时候将异步电机定义为感应电机,呵呵,其实异步电机包括感应电机、双馈异步电机和交流换向器电机————自己归纳总结,不知道正确否???功率强大的AC感应电机慢慢发展为标准的电机设计类型,其特点是效率高,且价格具诱惑力。

美国国家电气制造协会(National Electrical Manufacturers Associ ation, NEMA)已经开发了针对于此的规范,名为NEMA A、B、C和D电机类型,将典型电机特性标准化,如起动电流、转差、转矩点,以适应各种不同的负载应用。

第三节 开关电源电压型控制和电流型控制基本原理

第三节 开关电源电压型控制和电流型控制基本原理
• 1.平均电流反馈:响应速度慢 • 2.逐周过电流保护:检测瞬时电流,响应快 • 3.电压滞环的电压型控制:又称打嗝型控制 (hiccup-mode),当输出电压低于设定值时,开 关管才开通,否则开关管处于常关的状态。 • 4.常用控制芯片:TL494,SG3525
电压型控制的优点
• 1。单环控制,易于设计和分析; • 2。噪声裕量大; • 3。多路输出时,交叉调节性能好。
负载
0
x
PWM比较器 + C1 z=xy
R3
PI调节器
X为误差信号
+
Vref
将前面各个环节的传递函数代入上述控制系统,并进行 归一化后可以得到博德图。从博德图可知,电压模式控 制的开关电源,其稳定性和动态特性之间的矛盾比较突 出。(参阅教材和参考书得到此问题的详尽解释)
电压型控制的过电流保护形式 及其常用控制芯片
一、电压控制模式和电流控制模式
开关电源的控制模式分为:电压控制模式(Voltage Mode Control)和电流控制模式(Current Mode Control)两种。 电压控制模式:仅有一个输出电压反馈控制环。 电流控制模式:输出电压反馈控制外环和电流控制内环。 电流控制模式分类:峰值电流、滞环电流和平均电流控 制模式三种。
t=0
Qs =
π ( M1 − M 2 + 2M c )
2( M 1 + M 2 )
, 通过合理选择 M c,就可以使 Qs > 0,
MC − M2 n ] e0 从而保证系统的稳定。 此时误差en = [ M C + M1
峰值电流控制的优缺点及其 集成电路芯片
优点:(1)系统得稳定性增强,响应速度快(能够直接将干

受控源实验

受控源实验
2.2.恒压源(EEL-I,II,III,IV均含在主控制屏上,根据用户的要求,有可能有两种配置(1)+6V(+5V),+12V,0 30V可调成(2)0 30V双路可调)
3.3.恒流源(0 500mA可调)
4.4.EEL-31组件或EEL-54组件
四.四.实验内容
1.1. 测试电压控制电压源(VCVS)特性
0.15
0.2
0.25
0.3
0.4
(2)(2)测试CCCS的负载特性
保持 ,负载电阻 用电阻箱,并调节其大小,用电流表测量对应的输出电流 ,并将数据记入表8-8中
表8-8 CCCS的负载特性数据
50
100
150
200
1K
2K
10K
80K
五.五.注意事项
1.1.用恒流源供电的实验中,不许恒流源开路;
2.2.运算放大器输出端不能与地短路,输入端电压不宜过高(小于5V)。
三、实验内容
(一).VCVS的转移特性u2=f(u1)和负载特性u2=f(iL)研究。
图3—6
(1)零点漂移。按图3—6接线,当输入电压为零,RL=1KΩ时测量u2。
(2)固定RL=1KΩ调节稳压电源的输出电压,测量相应的u1和u2值。数据填入表3—2中。
表3—2
1
2
4
5
6
7
8
-1
-2
-4
-5
-6
-7
表3—1
名称
参数
CCCS
VCCS
CCVS
VCVS
H
Y
Z
G
A
受控源的受控量与控制量之比称为转移函数。四种受控源的转移函数分别用α、gm、µ、和rm表示。它们的定义如下:

电路基础原理电流源与电压源的区别与应用

电路基础原理电流源与电压源的区别与应用

电路基础原理电流源与电压源的区别与应用在电路中,电流源和电压源是两个基本的电子元件。

它们在电路中扮演着不同的作用,并且有着各自的特点和应用。

本文将探讨电流源和电压源的区别以及它们在电路中的应用。

一、电流源和电压源的区别1.1 电流源电流源是一个能够持续地提供稳定电流的元件。

当电路中存在电流源时,该源会向电路提供稳定的电流,无论电路中其他元件的电阻值如何,电流源的输出电流都不会改变。

电流源的电流输出是独立于电路中其他元件的。

1.2 电压源电压源是一个能够持续地提供稳定电压的元件。

电压源会向电路提供恒定的电压,无论电路中其他元件的电阻值如何,电压源的输出电压都不会改变。

电压源的电压输出是独立于电路中其他元件的。

1.3 区别与联系电流源和电压源的最大区别在于它们的输出特性。

电流源输出的是稳定的电流,而电压源输出的是稳定的电压。

此外,电流源和电压源通常可以相互转换,通过不同电路的设计可以将电流源转换为电压源,或者将电压源转换为电流源。

二、电流源和电压源的应用2.1 电流源的应用电流源在电路中有着广泛的应用。

一个常见的应用场景是在实验室中,用于提供稳定的电流供给。

例如,在进行电阻的测量时,需要一个稳定的电流源。

此外,电流源还常被应用于常流源电路中,通过控制电流的大小来实现对其他元件的工作状态的控制。

2.2 电压源的应用电压源同样在电路中有重要的应用。

一个例子是在直流电路中,电压源可以被用作电路的电源,为电路提供恒定的电压。

另外,在电子设备和电器中,我们常常使用电池和电源适配器作为电路的电压源,为设备提供所需的电压。

电压源的应用还包括在放大器电路中,通过控制电压源的大小来控制放大倍数。

2.3 电流源与电压源的组合应用在一些复杂的电路中,电流源和电压源可以结合使用,在实现不同的功能和控制上起到互补的作用。

例如,在集成电路设计中,常常使用电流源作为参考电流源,通过与其他电路元件配合使用来提供恒定的电流和电压。

这种组合应用能够满足电路对恒定电流和电压的要求,提高整体电路的性能和稳定性。

电压源、电流源和受控源

电压源、电流源和受控源
在某些电源供应系统中,电流源用于产生稳定的输出电流,确保负载 获得足够的功率。
受控源的实际应用
受控源在电子设备和系统中用 于实现特定的信号处理或控制
功能。
在放大器和振荡器中,受控源 用于改变电路的增益或频率响
应。
在模拟电路中,受控源用于实 现加法、减法、乘法或除法等 运算。
在传感器和测量系统中,受控 源用于产生激励信号或参考电 压,以便测量其他电路参数。
04
电压源、电流源和受控 源的比较
特性比较
01
02
03
电压源
电压源能够提供恒定的输 出电压,不受负载变化的 影响。
电流源
电流源能够提供恒定的输 出电流,不受负载变化的 影响。
受控源
受控源的输出电压或电流 受外部控制信号的影响, 可以模拟各种电路元件的 特性。
应用比较
电压源
电压源主要用于提供稳定的电压 参考,如模拟电路中的偏置电压。
受控源的输出阻抗与独立电源的输出阻抗不同, 其值可能受到控制量的影响。
受控源的应用
在模拟电路中,受控源可以作为放大器、混频器、乘法器等电子器件使用,实现信 号的放大、频率变换、信号处理等功能。
在数字电路中,受控源可以作为比较器、触发器等电子器件使用,实现信号的比较、 逻辑运算等功能。
在电力电子系统中,受控源可以作为逆变器、斩波器等使用,实现直流电的逆变、 交流电的整流等功能。
05
电压源、电流源和受控 源的实际应用
电压源的实际应用
01
电压源在电子设备和系统中扮演着提供稳定电压的角色,确保设备正 常运行。
02
在电池供电的系统中,电压源负责将电池的化学能转换为电能,为负 载提供稳定的电压。
03

g参数 电路

g参数 电路

g参数电路
g参数是描述电路中元件或系统电气性能的参数,通常用于模拟电子电路和系统的分析和设计。

在模拟电路中,g参数通常是电压控制电流源的增益参数,表示电压控制电流的能力。

g参数包括开环增益和闭环增益,开环增益是指电路中输出电压与输入电压之间的比例系数,闭环增益则是指电路中输出电流与输入电压之间的比例系数。

在模拟电路中,g参数通常由测量或仿真获得,用于分析电路的性能、稳定性、噪声和失真等特性。

同时,g参数也可以用于电路的优化设计和改进,以提高电路的性能和稳定性。

需要注意的是,g参数的具体定义和表示方式可能会因不同的应用领域和不同的文献而有所差异。

因此,在实际应用中,需要仔细查阅相关的技术手册、教材或规范,以了解具体的g参数定义和用法。

电流源和电压源电路

电流源和电压源电路
电流源和电压源电路
目 录
• 电流源和电压源的简介 • 电流源和电压源的基本电路 • 电流源和电压源的应用 • 电流源和电压源的实例分析 • 总结与展望
01 电流源和电压源的简介
电流源的定义和特性
定义
电流源是提供恒定电流的电源, 其输出电流不受负载电阻影响。
特性
电流源的输出电流始终保持恒定 ,不受输入电压或负载变化的影 响。
电压源的定义和特性
定义
电压源是提供恒定电压的电源,其输出电压不受负载电流影 响。
特性
电压源的输出电压始终保持恒定,不受输入电流或负载变化 的影响。
电流源和电压源的符号与表示
符号
电流源通常用带有“+”和“-”号 的三角形符号表示,电压源则用带有 “+”和“-”号的方形符号表示。
表示
在电路图中,电流源和电压源可以用 字母表示,如“I”表示电流源, “V”表示电压源。同时,还会标注相 应的电流或电压值以及正负极性。
宽范围可调
为了满足不同应用场景的需求,未来电流源和电压源电路 将具备宽范围可调的特性,以适应不同的输入和输出条件 。
高集成度与微型化
随着微电子技术的不断发展,未来电流源和电压源电路将 更加注重高集成度和微型化的设计,以减小体积和重量, 降低成本。
ቤተ መጻሕፍቲ ባይዱ
THANKS FOR WATCHING
感谢您的观看
应用场景
03
在电路分析和设计中,有时需要将复杂的电路简化为简单的模
型,这时就需要用到电流源和电压源的等效变换。
03 电流源和电压源的应用
电流源的应用
驱动负载
电流源可以提供稳定的电 流,用于驱动各种电子设 备或机械装置。
保护电路

电流控制电压源

电流控制电压源

rb
+ – us
e
ro
Re
RL
八)含受控源电路的分析举例
例12:已知图中 is =3A,求i
i +u–
说明:1)本课程讨论的含受控源的
is i2
5
3
+
0.5i2
电路并非一定对应实际电路 模型。

2)分析含受控源电路的依据
仍为两类约束
例13:求受控源及2V电压源的功率。
i 2
+u –
+ 1V
i1 1
(4) 电流控制的电流源 (CCCS)
i1
i2
+ u1 –
+u2
i1
_
u1= 0
i2= i1 : 电流放大倍数(电路参数)
CCCS
五)受控源(输出端口)的伏安特性
i1
i2
+
+
u1 _
i2=gu1 u_2
VCCS
i1
i2
+
+
u1 –
u2
i1 _
CCCS
设X 为 控制量,可以为电流也可以是电压
三)受控源的分类
1)受控电压源: 电压控制电压源(VCVS) 电流控制电压源(CCVS)
2)受控电流源: 电压控制电流源(VCCS) 电流控制电流源(CCCS)
四)受控源(四端元件)的电路模型和电路参数
(1) 电压控制的电压源(VCVS)
i1
i2
+ u_ 1
+
+

_
u1
u2 _
i1= 0
u2= u1
i1
i2

集成运算放大器(压控电流源)运用电路及详细解析

集成运算放大器(压控电流源)运用电路及详细解析

微分器的电路结构与积分器类似,包括集成运算放大器、 电容和反馈电阻。
微分器在信号处理、控制系统和电子测量等领域有广泛 的应用。
06 结论与展望
结论总结
01
集成运算放大器(压控电流源)在电路中具有重要作用,能够实现信号的放大、运 算和处理等功能。
02
通过对不同类型集成运算放大器(压控电流源)的特性、应用和电路设计进行比较 ,可以更好地选择适合特定需求的集成运算放大器(压控电流源)。
差分输入电路
总结词
差分输入电路是一种较为特殊的集成运算放大器应用电路,其输出电压与两个输 入电压的差值呈线性关系。
详细描述
差分输入电路的输出电压与两个输入电压的差值呈线性关系,适用于信号比较、 差分信号放大等应用。这种电路具有高输入阻抗和低输出阻抗的特点,能够有效 地减小外界干扰对信号的影响。
03 压控电流源的应用电路
详细描述
反相输入电路的输出电压与输入电压呈反相关系,即当输入 电压增加时,输出电压减小,反之亦然。这种电路具有高输 入阻抗和低输出阻抗的特点,适用于信号放大、减法运算等 应用。
同相输入电路
总结词
同相输入电路是一种较为简单的集成运算放大器应用电路,其输出电压与输入 电压呈同相关系。
详细描述
同相输入电路的输出电压与输入电压保持一致,适用于信号跟随、缓冲等应用。 这种电路具有低输入阻抗和低输出阻抗的特点,能够提高信号的驱动能力。
积分器可以将输入的电压信号 转换成电流信号,再通过负载 电阻转换成电压信号,实现信 号的积分运算。
案例三:微分器的应用
微分器是集成运算放大器的另一种应用可以将输入的电压信号转换成电流信号,再通过 负载电阻转换成电压信号,实现信号的微分运算。

负反馈放大电路的四种组态

负反馈放大电路的四种组态

模拟电子技术
知识点:
负反馈放大电路的四种组态
1.电压串联负反馈放大电路
▪输入以电压形式求和(KVL ):v id =v i -v f ▪稳定输出电压特点:
▪电压控制的电压源R L ↓→v o ↓→v f ↓→v id (=v i -v f )↑
v o ↑
2.电压并联负反馈放大电路
▪输入以电流形式求和(KCL ):i id =i i -i f ▪稳定输出电压

电流控制的电压源
特点:
3.
电流串联负反馈放大电路
▪输入以电压形式求和(KVL ):v id =v i -v f ▪稳定输出电流▪电压控制的电流源特点:
R L i o v f (=i o R f ) v i 一定时 v i d
i o
4.
电流并联负反馈放大电路
▪输入以电流形式求和(KCL ):i id =i i -i f ▪稳定输出电流
▪电流控制的电流源
特点:
特点小结
串联反馈:输入端电压求和(KVL)
并联反馈:输入端电流求和(KCL)
电压负反馈:稳定输出电压,具有恒压特性电流负反馈:稳定输出电流,具有恒流特性
交流负反馈类型的分析举例
(+)(-)
(+) (+)
级间电压串联负反馈(+)
交流负反馈类型的分析举例
(+)(-)
(+)
(-)(+)
电压并联负反馈
交流负反馈类型的分析举例
(+)(-)
(+)
(+) (+)
电流串联负反馈
知识点:
负反馈放大电路的四种组态。

电压控制型电流源

电压控制型电流源

1

0

u1 u2


0 g
g u1
0

u2

α称回转比(或回转器电阻),g = 1/α,称回转器电导
22
§1.4.6 回转器
回转器所吸收的能量
t
t
t
w(t)
p( )d

(u1i1 u2i2 )d
受控源有两个口,称双口。注意口电压、口电流方向的 规定。
独立电源与非独立电源所起的作用完全不同,独立电源 可用来对外电路输入信号,非独立电源场用来模拟电子 器件中所发生的现象。
b
c
ib
icuLeabharlann euceie eb ib
ube rbe
c ic
uce ib
e
表征线性受控源的方程是以电压、电流为变量的线性代
回转器的这种性质称翻转性。
23
§1.4.7 负转换器
负转换器(NC)分为电流反向负转换器(INC) 和电压反向负转换器(VNC)。
电流反向负转换器
i1
(INC)的电路符号 u1 如右图所示:
i2
INC
u2
其电压-电流关系为:
i1 = i2 流入与流出该器件的电流方向相反 u1 = u2 输入电压与输出电压极性相同
温度传感器
集成运算放大器
LED
电路制作
8
§1.4.4 运算放大器
运算放大器是当前应用非常广泛的一种器件。 我们感兴趣的是该器件的外部特性。
运算放大器的符号及对 其实测而得到的输入输 出特性曲线如图所示。
uo
ES
E 斜率A S

变流器控制策略

变流器控制策略

变流器控制策略一、引言变流器是一种将直流电能转换为交流电能或将交流电能转换为直流电能的装置。

它在电力系统中发挥着重要的作用,广泛应用于电力变换、电机控制等领域。

变流器的控制策略对其性能和效率具有重要影响,因此,研究和优化变流器的控制策略具有重要意义。

二、基本原理变流器的控制策略主要包括电压控制、电流控制和功率控制三种模式。

1. 电压控制模式电压控制模式是指通过调节变流器输出电压的大小来控制负载电压的模式。

在电压控制模式下,变流器根据负载电压的变化调整输出电压的大小,以保持负载电压的稳定性。

常见的电压控制策略有:电压串级控制、电流源控制和频率导向控制等。

2. 电流控制模式电流控制模式是指通过调节变流器输出电流的大小来控制负载电流的模式。

在电流控制模式下,变流器根据负载电流的变化调整输出电流的大小,以保持负载电流的稳定性。

常见的电流控制策略有:电流串级控制、电压源控制和功率导向控制等。

3. 功率控制模式功率控制模式是指通过调节变流器输出功率的大小来控制负载功率的模式。

在功率控制模式下,变流器根据负载功率的变化调整输出功率的大小,以保持负载功率的稳定性。

常见的功率控制策略有:功率串级控制、电压/电流源控制和频率/电压导向控制等。

三、控制策略优化为了提高变流器的性能和效率,需要对其控制策略进行优化。

1. 多级控制策略多级控制策略是指将多个控制策略组合起来,以实现更精确的控制效果。

例如,可以将电压控制和电流控制相结合,通过同时调节输出电压和电流来控制负载的电压和电流。

多级控制策略可以提高变流器的控制精度和响应速度,从而提高系统的稳定性和可靠性。

2. 模糊控制策略模糊控制策略是一种基于模糊逻辑的控制方法,它能够处理不确定性和模糊性问题。

在变流器控制中,模糊控制策略可以根据实际工况和负载要求,调节变流器的输出电压、电流和功率,以实现最佳控制效果。

模糊控制策略具有较强的鲁棒性和适应性,能够适应不同工况和负载变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档