阻尼和固有频率的测量 ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,即激振力的频率就是系统的固有 频率。 若示波器y轴上分别接入的是位移信号和加 速度信号,则屏幕上出现图8,9的图像。
ppt课件
16
8.2.3 稳态激振法
图3所示为一个单自由度 质量---弹簧----阻尼系统强迫振 动模型。
位移响应为 位移幅值
图3 单自由度系统模型
系统确定后p,n,m是确定的。只要保证激 振力幅值 是常量, 的大小唯一取 决于激振力频率 。稳态激振法是每 给定一个激振频率 ,测量一次位移 响应幅值 ,从而得到一组 随 变化的数据。以 为横坐标, 为 纵坐标,可描在曲线上,振幅最大的点对 应的激振频率称为共振频率,测试系统发 生了位移共振。
阻尼系数和固有频率 的测量
ppt课件
1
8.1 阻尼系数的测量
8.1.1 自由振动衰减法
图1所示的一个单自由度质量---弹簧----
阻尼系统,其质量为m (kg),弹簧刚度系
数为k (N/m),粘性阻尼系数为r (N. m
/s)。当质量上承受初始条件t=0时,位
移
,速度
激励时,将做
自由衰减振动。在弱阻尼条件下其位移响
图4 强迫振动幅频响应曲线
图5 强迫振动相频响应曲线
ppt课件
9
在幅频响应曲线中,当
时,
;当
大值
。在图中作一条水平线,其纵坐标为
两点,该两点称为半功率点,两点之间的距离为
时,其最 ,与曲线交于
图4 强迫振动幅频响应曲线
ppt课件
10
8.1.3 共振法
强迫振动的位移响应为
速度响应为 速度幅值为
取得极值的条件为
ppt课件
17
图10 强迫振动时幅频响应曲线
式中,相对阻尼系数 可以通过半功率点法测得,在
的情况下也
可忽略,此时系统的共振频率等于固有频率。
若测量的是系统速度响应幅值与激振频率之间的关系曲线,则系统的共振频
率就是固有频率,即
若测量的是系统加速度幅值与激振频率之间的关系曲线,则系统的共振频率
与固有频率的关系为
,即当
时,系统发生速度共振,
。此时相位差
,即速度响应与激振力
之间的相位差为0;阻尼力
,即激振力所作的功全部被阻尼所消耗。故有系统发生速度共振时,
ppt课件
11
因此,只要测量系统发生速度共振时的速度幅值
幅值 ,即可计算出阻尼系数 ,并根据
系数 ,
算出相对阻尼系数
。
和激振力 算出衰减
也可利用示波器力与速度的图像来测量阻 尼系数。如图6所示,将力信号接入示波器的x 轴,速度信号接入示波器的y 轴,两通道的放 大倍数调成一致,因二者之间的相位差为0, 故形成图示的直线,该直线的斜率即为阻尼系 数,即
计算出无阻尼时系统的固有周期
对于衰减系数n,可以用三种方法来计算:
1、由相邻的正逢(或相邻的负峰)幅值比计算
ppt课件
5
2、由相邻的峰---峰幅值比计算 3、小阻尼情况适用公式
ppt课件
6
8.1.2 半功率点法
图3所示为一个单自由度质量---弹簧---阻尼系统强迫振动模型。其质量为m(kg), 弹簧刚度系数为k (N/m),粘性阻尼系数为 r (N. m /s)。质量m上承受简谐激振力
应为
图1 单自由度系统模型
(1)
衰减系数
ppt课件
2
响应曲线如图2所示。 结论:
频率,
为衰减振动的周期, 为衰减振动的圆频率。
ppt课件
为衰减振动的
3
图2 弱阻尼衰减振动的响应曲线
ppt课件
4
从图2衰减振动的响应曲线上可直接测量出
,然后根
据
可计算出 n ;
计算出 p; 可计算出
计算出r;
计算出无阻尼时系统的固有频率 ;
ppt课件
18
8.3 传递函数与频响函数
由振动理论可知,图11所示单自由
度粘性阻尼系统,阻尼力
,
系统运动的微分方程为:
对上式两边进行拉普拉斯变换,并假设 初始速度、位移值为0,有
图11单自由度粘性阻尼系统
式中s为拉氏变换因子,为复变量,也称复频率,其实部和虚部常用 和 表示,
即
; 为 的拉氏变换, 为 的拉氏变换。按照机械系统传递
作用。其强迫振动的位移 响应为
图3 单自由度系统模型
ppt课件
7
引入符号 则有
ppt课件
8
上式中, 相当于激振力的最大幅值 静止地作用在弹簧上所引 起的弹簧静变形; 称为频率比; 称为放大因子,以 为横坐标, 为纵坐标,对于不同的 值所得到的一组曲线,称为幅频响应曲 线,如图4所示(图中只给出了一种 值); 为位移响应滞后 力的相位角,以 为横坐标, 为纵坐标,对于不同的 值所得 到的一组曲线,称为相频响应曲线,如图5所示。
图6 共振法测阻尼的图像
若x轴接入的是位移信号,则形成的图像为正椭圆,椭圆 与x、y轴的交点即为 和 。据此也可测出阻尼系数
ppt课件
12
8.2 固有频率的测量
8.2.1 自由振动衰减法
系统的固有频率是指系统无阻尼时自由振动的频率,即
。
对图1所示的单自由度质量---弹簧----阻尼系统,当受初始扰动后,其自由振动
幅值B取得极值的条件为
,即在该点发生共振。共振幅值
位移信号与激振力信号之间的相位差
ppt课件
14
速度响应为 幅值 取得极值的条件为
,即在该点发生共振。共振幅值
速度信号与激振力信号之间的相位差 加速度响应
幅值 取得极值的条件为
,即在该点发生共振。共振幅值
加速度信号与激振力信号之间的相位差
ppt课件
15
的衰减曲线如图2所示。在曲线上可直接测量并计算出衰减的周期 ,衰减
系数 、相对阻尼系数 ,因而有
图1 单自由度系统模型 图2 弱阻尼衰减振动的响应曲线
ppt课件
பைடு நூலகம்
13
8.2.1 速度共振的相位判别法
图3所示为一个单自由度 质量---弹簧----阻尼系统强迫振 动模型。
位移响应为
图3 单自由度系统模型
函数的定义,有该系统的传递函数
ppt课件
19
对于自由振动, 的一对共轭复根为
,则有
。在小阻尼的情况下,求得
和 称为该系统的复频率,其实部 为系统的有阻尼固有频率。
即为系统的衰减系数,虚部
对系统运动的微分方程两边进行傅立叶变换,即
,即有系统的频响函数
图7 速度响应判别速度共振 图8位移响应判别速度共振
图9加速度响应判别速度共振
速度共振的相位判别法的依据即为系统发生 速度共振时,激振力和速度响应之间的相位 差为0。实验时,将激振力信号接入示波器的 x轴,速度响应信号接入示波器的y轴,改 变激振信号的频率 ,根据李沙育原理, 屏幕上将出现如图7的图像。即当图像变成 斜直线时,系统发生速度共振,此时,
ppt课件
16
8.2.3 稳态激振法
图3所示为一个单自由度 质量---弹簧----阻尼系统强迫振 动模型。
位移响应为 位移幅值
图3 单自由度系统模型
系统确定后p,n,m是确定的。只要保证激 振力幅值 是常量, 的大小唯一取 决于激振力频率 。稳态激振法是每 给定一个激振频率 ,测量一次位移 响应幅值 ,从而得到一组 随 变化的数据。以 为横坐标, 为 纵坐标,可描在曲线上,振幅最大的点对 应的激振频率称为共振频率,测试系统发 生了位移共振。
阻尼系数和固有频率 的测量
ppt课件
1
8.1 阻尼系数的测量
8.1.1 自由振动衰减法
图1所示的一个单自由度质量---弹簧----
阻尼系统,其质量为m (kg),弹簧刚度系
数为k (N/m),粘性阻尼系数为r (N. m
/s)。当质量上承受初始条件t=0时,位
移
,速度
激励时,将做
自由衰减振动。在弱阻尼条件下其位移响
图4 强迫振动幅频响应曲线
图5 强迫振动相频响应曲线
ppt课件
9
在幅频响应曲线中,当
时,
;当
大值
。在图中作一条水平线,其纵坐标为
两点,该两点称为半功率点,两点之间的距离为
时,其最 ,与曲线交于
图4 强迫振动幅频响应曲线
ppt课件
10
8.1.3 共振法
强迫振动的位移响应为
速度响应为 速度幅值为
取得极值的条件为
ppt课件
17
图10 强迫振动时幅频响应曲线
式中,相对阻尼系数 可以通过半功率点法测得,在
的情况下也
可忽略,此时系统的共振频率等于固有频率。
若测量的是系统速度响应幅值与激振频率之间的关系曲线,则系统的共振频
率就是固有频率,即
若测量的是系统加速度幅值与激振频率之间的关系曲线,则系统的共振频率
与固有频率的关系为
,即当
时,系统发生速度共振,
。此时相位差
,即速度响应与激振力
之间的相位差为0;阻尼力
,即激振力所作的功全部被阻尼所消耗。故有系统发生速度共振时,
ppt课件
11
因此,只要测量系统发生速度共振时的速度幅值
幅值 ,即可计算出阻尼系数 ,并根据
系数 ,
算出相对阻尼系数
。
和激振力 算出衰减
也可利用示波器力与速度的图像来测量阻 尼系数。如图6所示,将力信号接入示波器的x 轴,速度信号接入示波器的y 轴,两通道的放 大倍数调成一致,因二者之间的相位差为0, 故形成图示的直线,该直线的斜率即为阻尼系 数,即
计算出无阻尼时系统的固有周期
对于衰减系数n,可以用三种方法来计算:
1、由相邻的正逢(或相邻的负峰)幅值比计算
ppt课件
5
2、由相邻的峰---峰幅值比计算 3、小阻尼情况适用公式
ppt课件
6
8.1.2 半功率点法
图3所示为一个单自由度质量---弹簧---阻尼系统强迫振动模型。其质量为m(kg), 弹簧刚度系数为k (N/m),粘性阻尼系数为 r (N. m /s)。质量m上承受简谐激振力
应为
图1 单自由度系统模型
(1)
衰减系数
ppt课件
2
响应曲线如图2所示。 结论:
频率,
为衰减振动的周期, 为衰减振动的圆频率。
ppt课件
为衰减振动的
3
图2 弱阻尼衰减振动的响应曲线
ppt课件
4
从图2衰减振动的响应曲线上可直接测量出
,然后根
据
可计算出 n ;
计算出 p; 可计算出
计算出r;
计算出无阻尼时系统的固有频率 ;
ppt课件
18
8.3 传递函数与频响函数
由振动理论可知,图11所示单自由
度粘性阻尼系统,阻尼力
,
系统运动的微分方程为:
对上式两边进行拉普拉斯变换,并假设 初始速度、位移值为0,有
图11单自由度粘性阻尼系统
式中s为拉氏变换因子,为复变量,也称复频率,其实部和虚部常用 和 表示,
即
; 为 的拉氏变换, 为 的拉氏变换。按照机械系统传递
作用。其强迫振动的位移 响应为
图3 单自由度系统模型
ppt课件
7
引入符号 则有
ppt课件
8
上式中, 相当于激振力的最大幅值 静止地作用在弹簧上所引 起的弹簧静变形; 称为频率比; 称为放大因子,以 为横坐标, 为纵坐标,对于不同的 值所得到的一组曲线,称为幅频响应曲 线,如图4所示(图中只给出了一种 值); 为位移响应滞后 力的相位角,以 为横坐标, 为纵坐标,对于不同的 值所得 到的一组曲线,称为相频响应曲线,如图5所示。
图6 共振法测阻尼的图像
若x轴接入的是位移信号,则形成的图像为正椭圆,椭圆 与x、y轴的交点即为 和 。据此也可测出阻尼系数
ppt课件
12
8.2 固有频率的测量
8.2.1 自由振动衰减法
系统的固有频率是指系统无阻尼时自由振动的频率,即
。
对图1所示的单自由度质量---弹簧----阻尼系统,当受初始扰动后,其自由振动
幅值B取得极值的条件为
,即在该点发生共振。共振幅值
位移信号与激振力信号之间的相位差
ppt课件
14
速度响应为 幅值 取得极值的条件为
,即在该点发生共振。共振幅值
速度信号与激振力信号之间的相位差 加速度响应
幅值 取得极值的条件为
,即在该点发生共振。共振幅值
加速度信号与激振力信号之间的相位差
ppt课件
15
的衰减曲线如图2所示。在曲线上可直接测量并计算出衰减的周期 ,衰减
系数 、相对阻尼系数 ,因而有
图1 单自由度系统模型 图2 弱阻尼衰减振动的响应曲线
ppt课件
பைடு நூலகம்
13
8.2.1 速度共振的相位判别法
图3所示为一个单自由度 质量---弹簧----阻尼系统强迫振 动模型。
位移响应为
图3 单自由度系统模型
函数的定义,有该系统的传递函数
ppt课件
19
对于自由振动, 的一对共轭复根为
,则有
。在小阻尼的情况下,求得
和 称为该系统的复频率,其实部 为系统的有阻尼固有频率。
即为系统的衰减系数,虚部
对系统运动的微分方程两边进行傅立叶变换,即
,即有系统的频响函数
图7 速度响应判别速度共振 图8位移响应判别速度共振
图9加速度响应判别速度共振
速度共振的相位判别法的依据即为系统发生 速度共振时,激振力和速度响应之间的相位 差为0。实验时,将激振力信号接入示波器的 x轴,速度响应信号接入示波器的y轴,改 变激振信号的频率 ,根据李沙育原理, 屏幕上将出现如图7的图像。即当图像变成 斜直线时,系统发生速度共振,此时,