02第二章 金属的晶体结构与结晶

合集下载

第二章 金的晶体结构与结晶

第二章 金的晶体结构与结晶

第二章 金属的晶体结构与结晶不同的金属材料具有不同的力学性能;同一种金属材料,在不同的条件下其力学性能也是不同的。

金属性能的这些差异,完全是由金属内部的组织结构所决定的。

因此,研究金属的晶体结构及其变化规律,是了解金属性能,正确选用金属材料,合理确定加工方法的基础。

第一节 金属的晶体结构一、晶体与非晶体固态物质按其原子(或分子)的聚集状态可分为晶体和非晶体两大类。

晶体:凡原子(或分子)按一定的几何规律作规则的周期性重复排列的物质,称为晶体;非晶体:原子(或分子)无规则聚集在一起的物质则称为非晶体。

自然界中,除少数物质(如松香、普通玻璃、石蜡等)属于非晶体外,大多数固态物质都是晶体。

由于晶体内部原子(或分子)的排列是有规则的,所以自然界中许多晶体都具有规则的外形,如结晶盐、水晶、天然金刚石等。

但晶体的外形不一定都是有规则的,如金属和合金等,这与晶体的形成条件有关。

因此,晶体与非晶体的根本区别还在于其内部原子(或分子)的排列是否有规则。

晶体与非晶体的区别还表现在许多性能方面,如晶体具有固定的熔点(或凝固点)、具有各向异性的特征。

而非晶体则没有固定的熔点(或凝固点),具有各向同性的特征。

显然,气体和液体都是非晶体。

特别是在液体中,虽然其原子(或分子)也是处于紧密聚集的状态,但不存在周期性排列,所以固态的非晶体可以看成是一种过冷状态的液体,只是其物理性质不同于通常的液体而已,玻璃就是一个典型的例子,故往往将非晶体称为玻璃体。

非晶体在一定条件下可以转化为晶体,如玻璃经高温长时间加热后能形成晶态玻璃。

而通常呈晶态的物质,如果将它从液态快速冷却下来,也可能成为非晶体,如金属液的冷却速度超过10℃/s时,可得到非晶态金属。

二、金属晶体的特性晶体又分为金属晶体和非金属晶体两类。

金属晶体除具有晶体所共有的特征外,还具有独特的性能,如金属具有金属光泽、良好的导电性和导热性、良好的塑性及正的电阻温度系数等。

这主要与金属的原子结构及原子问的结合方式有关。

第二章 晶体结构与结晶

第二章 晶体结构与结晶

α-Fe
γ-Fe
2、固态转变的特点 ⑴形核一般在某些特定部 位发生(如晶界、 位发生(如晶界、晶内 缺陷、特定晶面等)。 缺陷、特定晶面等)。
锡 疫
固态相变的晶界形核
⑵由于固态下扩散困难,因 由于固态下扩散困难, 而过冷倾向大。 而过冷倾向大。 ⑶固态转变伴随着体积变化, 固态转变伴随着体积变化,
(2)细化晶粒的方法 )细化晶粒的方法
1)增大过冷度——提高液体金属的冷却速 增大过冷度 过冷度——提高液体金属的冷却速 度。 2)变质处理——在金属中加入能非自发形 变质处理——在金属中加入能非自发形 核的物质,增加晶核的数量或者阻碍晶核长 核的物质, 大。 3)振动或搅拌——造成枝晶破碎细化(增 振动或搅拌——造成枝晶破碎细化 造成枝晶破碎细化( 加新生晶核)。 加新生晶核)。
(2)晶核长大 (2)晶核长大
晶核长大:即金属结晶时, 晶核长大:即金属结晶时,晶粒长大成为 晶体的过程。 晶体的过程。 两种长大方式 —— 平面生长 与 树枝状生长 树枝 状生 长 平面生长
树枝状结晶
金 属 的 树 枝 晶 金 属 的 树 枝 晶 冰 的 树 枝 晶
金 属 的 树 枝 晶
枝晶形成的原因: 枝晶形成的原因:
式中 ΔT——过冷度(℃); ΔT——过冷度 过冷度( ——金属的理论结晶温度 金属的理论结晶温度( T0 ——金属的理论结晶温度(℃); ——金属的实际结晶温度 金属的实际结晶温度( Tn ——金属的实际结晶温度(℃)。
金属的过冷度不是恒定值,它与冷却速度有关。 金属的过冷度不是恒定值,它与冷却速度有关。
(4)铸锭的缺陷 )
1、缩孔(集中缩孔) 、缩孔(集中缩孔) --最后凝固的地方 最后凝固的地方 2、缩松(分散缩孔) 、缩松(分散缩孔) --枝晶间和枝晶内 枝晶间和枝晶内 3、气孔(皮下气孔) 、气孔(皮下气孔)

机械制造基础第二章2

机械制造基础第二章2

位错对材料性能的影响比点缺陷更大, 位错对材料性能的影响比点缺陷更大 , 对金属材料的影 响尤甚。理想晶体的强度很高,位错的存在可降低强度, 响尤甚 。 理想晶体的强度很高,位错的存在可降低强度 , 但 是当错位量急剧增加后,强度又迅速提高。 是当错位量急剧增加后,强度又迅速提高。 生产中一般都是增加位错密度来提高强度, 生产中一般都是增加位错密度来提高强度 , 但是塑性 随之降低,可以说, 随之降低 , 可以说 , 金属材料中的各种强化机制几乎都是 以位错为基础的。 以位错为基础的。 3. 面缺陷:指在两个方向上的尺寸很大,第三个方向上的 面缺陷:指在两个方向上的尺寸很大, 尺寸很小而呈面状的缺陷。 尺寸很小而呈面状的缺陷。面缺陷的主要形式是各种类型 的晶界。 的晶界。 晶界:指晶粒与晶粒之间的边界。 晶界:指晶粒与晶粒之间的边界。
图1-6 冷却曲线
3.结晶过程。 晶体形核和成长过程。如图1-7所示,在液 3.结晶过程。 晶体形核和成长过程。如图1 所示, 结晶过程 体金属开始结晶时, 体金属开始结晶时,在液体中某些区域形成一些有规则排 列的原子团,成为结晶的核心, 形核过程)。 列的原子团,成为结晶的核心,即晶核 (形核过程)。 然后原子按一定规律向这些晶核聚集,而不断长大, 然后原子按一定规律向这些晶核聚集,而不断长大,形成 晶粒(成长过程)。在晶体长大的同时, )。在晶体长大的同时 晶粒(成长过程)。在晶体长大的同时,新的晶核又继续 产生并长大。当全部长大的晶体都互相接触,液态金属完 产生并长大。当全部长大的晶体都互相接触, 全消失,结晶完成。由于各个晶粒成长时的方向不一, 全消失,结晶完成。由于各个晶粒成长时的方向不一,大 晶界。 小不等,在晶粒和晶粒之间形成界面,称为晶界 小不等,在晶粒和晶粒之间形成界面,称为晶界。

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:

第二章 金属与合金的晶体结构与结晶

第二章  金属与合金的晶体结构与结晶

第二章 金属与合金的晶体结构与结晶第一节 金属的晶体结构自然界的固态物质,根据原子在内部的排列特征可分为晶体与非晶体两大类。

晶体与非晶体的区别表现在许多方面。

晶体物质的基本质点(原子等)在空间排列是有一定规律的,故有规则的外形,有固定的熔点。

此外,晶体物质在不同方向上具有不同的性质,表现出各向异性的特征。

在一般情况下的固态金属就是晶体。

一、晶体结构的基础知识(1)晶格与晶胞为了形象描述晶体内部原子排列的规律,将原子抽象为几何点,并用一些假想连线将几何点连接起来,这样构成的空间格子称为晶格(图2-1)晶体中原子排列具有周期性变化的特点,通常从晶格中选取一个能够完整反映晶格特征的最小几何单元称为晶胞(图2-1),它具有很高对称性。

(2)晶胞表示方法不同元素结构不同,晶胞的大小和形状也有差异。

结晶学中规定,晶胞大小以其各棱边尺寸a 、b 、c 表示,称为晶格常数。

晶胞各棱边之间的夹角分别以α、β、γ表示。

当棱边a b c ==,棱边夹角90αβγ===︒时,这种晶胞称为简单立方晶胞。

(3)致密度金属晶胞中原子本身所占有的体积百分数,它用来表示原子在晶格中排列的紧密程度。

二、三种典型的金属晶格1、体心立方晶格晶胞示意图见图2-2a。

它的晶胞是一个立方体,立方体的8个顶角和晶胞各有一个原子,其单位晶胞原子数为2个,其致密度为0.68。

属于该晶格类型的常见金属有Cr、W、Mo、V、α-Fe等。

2、面心立方晶格晶胞示意图见图2-2b。

它的晶胞也是一个立方体,立方体的8个顶角和立方体的6个面中心各有一个原子,其单位晶胞原子数为4个,其致密度为0.74(原子排列较紧密)。

属于该晶格类型的常见金属有Al、Cu、Pb、Au、γ-Fe等。

3、密排六方晶格它的晶胞是一个正六方柱体,原子排列在柱体的每个顶角和上、下底面的中心,另外三个原子排列在柱体内,晶胞示意图见图2-2c。

其单位晶胞原子数为6个,致密度也是0.74。

属于该晶格类型常见金属有Mg、Zn、Be、Cd、α-Ti等。

第02章金属的晶体结构与结晶

第02章金属的晶体结构与结晶
冷却曲线是表示金属冷却时,温度随时间变化的关系曲 线。如图2-12曲线中的水平线段表明,液态金属凝固时 释放出的结晶潜热,恰好抵偿了向周围空气中散失的热 量。水平线段对应的温度就是纯金属的结晶温度。
图2-11 热分析装置示意图
图2-12 纯金属的冷却曲线
2.4.1.3 合金的结晶
合金的结晶过程与纯金属有相似之处,结晶过程都有结 晶潜热放出。不同之处是纯金属的结晶过程总是在某一 恒定温度下进行的,而大多数合金是在某一温度范围内 进行结晶,在结晶过程中各相的成分还会发生变化。所 以二者的冷却曲线是不相同的。
2.4.1.2 纯金属的结晶
用热分析实验来分析纯金属的结晶过程和冷却曲线。
目前,人们多用热分析法配合X射线等手段来研究金属 的结晶过程。热分析实验装置如图2-11所示。用该装置 将纯金属熔化,然后缓慢冷却,在冷却过程中,每隔一 定时间测量一次温度,将记录下来的数据描绘在时间温度坐标图中,便得到纯金属的冷却曲线,如图2-12所 示。
2.3.2.3 面缺陷
面缺陷主要是指晶界和亚晶界,如图2-10(a)、(b)所示。
实际金属一般为多晶体,即由许多位向不同的晶粒组成。 因此在实际金属中有很多晶界存在。由于晶界处原子排 列不规律,偏离平衡位置较多,因此晶格畸变程度较大。 晶界处的抗腐蚀能力较差、熔点较低,且抗塑性变形能 力较强。
除晶界外,晶粒内部是由一些小晶块组成的,它们的晶 格位向有微小的差异,人们把这些小晶块叫做亚晶粒, 亚晶粒之间的界面称为亚晶界。亚晶界处的原子排列不 规则,也存在着晶格畸变。
2.4.1.5 金属的结晶过程 金属的结晶是由两个基本过程组成的,即生出微小的晶 体核心(简称生核)和晶核进行长大(简称为核长大)。 如图2-13所示为金属的结晶过程示意图。结晶开始时, 液体中某些部位的原子集团先后按一定的晶格类型排列 成微小的晶核,以后晶核向着不同位向按树枝生长的方 式长大,当成长的枝晶相互接触时,晶体就向着尚未凝 固的部位生长,直到枝晶间的金属液全部凝固为止,最 后形成了许多小晶粒。

金属材料与热处理第二章 金属的晶体结构与结晶

金属材料与热处理第二章 金属的晶体结构与结晶
(1)增加过冷度 即加快金属液的冷却速度。 (2)变质处理 即在浇注前向金属液中加入少量形核剂(又称变质 剂或孕育剂),造成大量非自发形核,使晶粒细化。 (3)振动处理 金属结晶时,对金属液进行机械振动、超声波振动
或电磁振动等,使生长中的枝晶破碎,提高形核率,达到细化晶粒的 目的。
第三节 金属的同素异构转变
一、纯金属的冷却曲线和过冷现象
纯金属都有一个固定的结晶温度(或称凝固点 ),所以纯金属的结晶过程总是在一个恒定的温度下 进行的。
二、纯金属的结晶过程
纯金属的结晶过程是在冷却曲线上平台所经 历的这段时间内发生的,它是不断形成晶核和晶核 不断长大的过程,如图2-16所示。
图2-16 金属结晶过程示意图
图2-8 简单立方晶格中的晶向
五、金属的实际晶体结构
如果一个晶体内部其晶格位向(即原子排列的 方向)是完全一致的,则这种晶体称为单晶体,如图29a所示。
图2-9 单晶体和多晶体结构示意图 a)单晶体 b)多晶体
1.点缺陷 点缺陷是晶体中呈点状的缺陷,即在三维方向上的尺寸
都很小的晶体缺陷。
图2-10 空位和间隙原子示意图
同素异构转变是纯铁的一个重要特性,是钢 铁能够进行热处理的理论依据。金属的同素异 构转变过程与金属液的结晶过程很相似,实质上 它是一个重结晶过程,因此,同素异构转变同样遵 循结晶的一般规律:转变时需要过冷;有潜热产 生;转变过程也是在恒温下通过晶核的形成和长 大来完成的,如图2-20所示。但由于同素异构转
8.什么是过冷现象和过冷度?过冷度与冷却速度有什么关系? 它对铸件的晶粒大小有什么影响?
9.金属液结晶的必要条件是什么?试叙述纯金属的结晶过程 。
10.什么是晶粒与晶界?晶粒大小对金属力学性能有什么影 响?

02第二章 金属的晶体结构与结晶

02第二章 金属的晶体结构与结晶
组织。
放大100∼2000倍的组织称高倍组织或显微组织。 在电子显微镜下放大几千∼几十万倍的组织称精细组织或电镜组
织。
显微组织实质上是指在显微镜下观察到的金属中各相或各晶粒的
形态、数量、大小和分布的组合。
二、合金的相结构
1、固溶体 合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之
理工艺的重要依据。
根据组元数, 分为二元相图、三元相图和多元相图。
Fe-C二元相图
三元相图
1. 二元相图的建立
几乎所有的相图都是通过实验得到的,最常用
的是热分析法。
二元相图的建立步骤为:[以Cu-Ni合金(白铜)为例] 1、配制不同成分的合金,测出各合金的冷却曲线,找出曲线 上的相变点(停歇点或转折点)。 2、在温度-成分坐标中做成分垂线,将相变点标在成分垂线上 3、将这些相变点连接起来,即得到Cu-Ni相图。
因而细晶粒无益。但晶粒太粗易产生应力集中。因而
高温下晶粒过大、过小都不好。
2.细化晶粒的方法
晶粒的大小取决于晶核的形成速度和长大速度。
单位时间、单位体积内形成的晶核数目叫形核率(N)。
单位时间内晶核生长的长度
叫长大速度(G)。
N/G比值越大,晶粒越细小。 因此,凡是促进形核、抑制长 大的因素,都能细化晶粒。
第二章 金属的晶体结构 与结晶
不同的金属具有不同的
力学性能,主要是由于材 料内部具有不同的成分、
组织和结构。
第一节 金属的晶体结构
一、晶体与非晶体
晶体是指原子呈规则排列的固体。常态下金属
主要以晶体形式存在。晶体具有各向异性。 非晶体是指原子呈无序排列的固体。在一定条 件下晶体和非晶体可互相转化。
T= T0 –T1

第二章金属的晶体结构与结晶详解

第二章金属的晶体结构与结晶详解

晶胞:能够完全反映 晶格特征的、最小的 几何单元称为晶胞
在晶体学中,通常取晶胞角 上某一结点作为原点,沿其 三条棱边作三个坐标轴X、 Y、Z,并称之为晶轴,而 且规定坐标原点的前、右、 上方为轴的正方向,反之为 反方向,并以(晶格常数) 棱边长度和棱面夹角来表示 晶胞的形状和大小 。
整个晶格就是有许多大小、形状和位向相同的 晶胞在空间重复堆积而成的。
3、晶面、晶向
•在晶体中,由一系列原子所组成的平面称为晶 面。 •任意两个原子之间的连线称为原子列,其所指 方向称为晶向。
二、常见金属的晶格类型
原子半径是指晶胞中原子密度最大方向相邻两 原子之间距离的一半。 晶胞中所含原子数是指一个晶胞内真正包含的 原子数目。 致密度(K)是指晶胞中原子所占体积分数, 即K = n v′/ V 。 式中,n为晶胞所含原子数 v′为单个原子体积
三、金属的结晶过程
结晶时晶体在液体中从无到有(晶核形成),由小变 大(晶核长大)的过程,同时存在同时进行。
金 属 结 晶 过 程 示 意 图
晶核的长大方式—树枝状
金 属 的 树 枝 晶
金 属 的 树 枝 晶
冰 的 树 枝 晶
四、晶粒大小对金属力学性能的影响 晶粒的大小对金属的力学性能、物理性能和 化学性能均有很大影响。 细晶粒组织的金属强度高、塑性和韧性好、 耐腐蚀性好。作为软磁材料的纯铁,晶粒越 粗大,则磁导率越大,磁滞损耗减少。 金属结晶后晶粒大小取决于形核率N[晶核形 成数目(mm3.s)]和长大率G(mm/s)
(3)面缺陷(晶界和亚晶界) 面缺陷使金属强度、硬度增高,塑性变形困难 ——“细晶强化”。
第二节 纯金属的结晶与铸锭 (二、三节合并)
• • • • • 凝固与结晶的基本概念 冷却曲线和过冷现象 金属的结晶过程 晶粒大小对金属力学性能的影响 金属的铸态组织

金属的晶体结构合金的晶体结构

金属的晶体结构合金的晶体结构

2.1 合金的晶体结构
➢ 合金中的各种相是组成合金的基本单元,而合金 组织则是合金中各种相的综和体。
➢ 一种合金的力学性能不仅取决于它的化学成分, 更取决于它的显微组织。
➢ 金属通过热处理可以在不改变化学成分的前提下 获得不同的组织,从而获得不同的力学性能。
2.1 合金的晶体结构
二、合金晶体结构的类型
由于溶剂晶格的间隙有限,所以间隙固溶体只能 是有限溶解溶质原子。
2.1 合金的晶体结构
➢固溶体的性能
由于溶质原子的溶入,固溶体发生晶格畸变,变 形抗力增大,使金属的强度、硬度升高的现象称为固 溶强化。它是强化金属材料的重要途径之一。
2.1 合金的晶体结构
2、金属化合物 金属化合物是合金组元间发生相互作用而生
位错线的密度可用单位体积 内位错线的总长度表示。位 错密度愈大,塑性变形抗力 愈大。因此,目前通过塑性 变形,提高位错密度,是强 化金属的有效途径之一。
2.1 金属的结构
(3)面缺陷ቤተ መጻሕፍቲ ባይዱ
面缺陷即晶界和亚晶界。 ➢ 晶界:晶粒之间原子无规
则排列的过渡层,又称大角 度晶界。 ➢ 亚晶界:晶粒内部亚组织 之间的边界,一系列刃型 位错所形成的小角度晶界。
晶界和亚晶界处表现出有较高的强度和硬度。 晶粒越细小晶界和亚晶界越多,它对塑性变形的阻碍作用就越大, 金属的强度、硬度越高。
2.1 合金的晶体结构
一、基本概念
1、合金 是由两种或两种以上的金属元素或金属与非金属
组成的具有金属特性的物质。
例:碳钢是铁和碳组成的合金。
2、组元 组成合金的最基本的、独立的物质称为组元,简
第二章 金属的晶体结构与结晶
第一节 金属的结构 第二节 合金的晶体结构

第二章 金属学的基本知识

第二章 金属学的基本知识
上一页 下一页
§ 2.1 金属与合金的晶体结构
合金中,具有同一化学成分且结构相同的均匀部分叫相。合金中相
与相之间有明显的界面。液态合金通常为单相液体。合金在固态下,
由一个固相组成时称为单相合金,由两个以上固相组成时称为多相合 金。
组成合金各相的成分、结构、形态、性能和各相的组合情况构成
了合金的组织。组织是合金的内部情景,还包括晶粒的大小、形状、 种类以及各种晶粒之间的相对数量和相对分布,可以用肉眼或借助各
固溶体,如图2-10(b)所示。
由于溶剂晶格的间隙有限,因此间隙固溶体都是有限固溶体。形成间 隙固溶体的条件是溶质原子与溶剂原子的比值r溶质/r溶剂≤0. 59。因此
形成间隙固溶体的溶质元素都是一些原子半径小的非金属元素,如氢、
硼、碳、氮、氧等。
上一页 下一页
§ 2.1 金属与合金的晶体结构
应当指出,所形成的固溶体虽然仍保持着溶剂金属的晶格类型, 但由于溶质与溶剂原子尺寸的差别,必然会造成晶格的畸变,如图 2-11。晶格畸变使合金的强度、硬度和电阻升高。这种通过溶人 溶质元素使固溶体的强度、硬度升高的现象称为固溶强化。固溶强 化是提高金属材料力学性能的重要途径之一。实践表明,适当控制
态的金属和合金。晶体具有一定的熔点,并具有各向异性的特征。
晶体中的原子排列情况如图2-1(a)所示。 2.晶体结构的基本知识 (1)晶格为了便于描述晶体中原子排列的规律及几何形状,人 为地将原子看作一个点,再用一些假想的线条,将原子的中心
下一页
§ 2.1 金属与合金的晶体结构
连接起来,使之构成一个空间格子,如图2-1 ( b)。这种抽象 的、用于描述原子在晶体中排列方式的空间格子叫做“晶格”。 晶格中的每个点叫做晶格结点。 (2)晶胞由于晶体中原子排列具有周期性特点,因此在研究晶 体结构时,为方便起见,通常只从晶格中选取一个能够完全反映 晶格特征的最小的几何单元来分析晶体中原子排列的规律,这个 最小的几何单元称为晶胞,如图2-1 (c)。实际上整个晶格就是 由许多大小、形状和位向相同的晶胞在空间重复堆积而成的。晶 胞的大小和形状常以晶胞的棱边长度a,b,c及棱边夹角α,β,γ来

工程材料学2金属的晶体结构与结晶

工程材料学2金属的晶体结构与结晶

§2.1 晶体学基础知识
注意:晶面指数特征与与原点位置无关;每一指数对应一组平行的晶面 。
§2.1 晶体学基础知识
晶面族:原子排列情况相同,但空间位向不同的各组晶面的集合。
§2.1 晶体学基础知识
立方晶系常见的晶面 Z
(011)
(110
) (011
(101)

(101 )
Y
(110
) X
§2.1 晶体学基础知识
柱体。
四轴定向:晶面符号一般写为(hkil),指
数的排列顺序依次与a1轴、 a2轴、 a3轴、c轴相对
应,其中a1、a2、a3三轴间夹角为120o,c轴与它 们垂直。它们之间的关系为:i =-(h+k)。
2.2.3、六方晶系晶面、晶向表示方法
1、晶面指数:
方法同立方晶系, (hkil)为在四个坐标 轴的截距倒数的化简 ,自然可保证关系式 h+k+i=0。底面指 数为(0001)。
铅锭宏观组织
沿晶断口
§2.3 金属材料的实际晶体结构
点缺陷对材料性能的影响
(1)提高材料的电阻 定向流动的电子在点缺陷处受到非平衡 力(陷阱),增加了阻力,加速运动提高局部温度(发热)。
(2)加快原子的扩散迁移 空位可作为原子运动的周转站。 ( 3 ) 使强度、硬度提高,塑性、韧性下降。
§2.3 金属材料的实际晶体结构
体心立方晶格为单斜晶系
§2.2 纯金属的典型晶体结构
1.体心立方、面心立方为何不在前述七大晶系之内?
面心立方晶格为菱方晶系
§2.2 纯金属的典型晶体结构
2.面心立方、密排六方的致密度相同,原子堆积方式的主要差异是什么?
密排六方晶格的堆垛顺序为ABABAB… 面心立方晶格的堆垛顺序为ABCABCABC…

第二章金属与合金的晶体结构及铁碳相图

第二章金属与合金的晶体结构及铁碳相图
下一页 返回
ቤተ መጻሕፍቲ ባይዱ.2 实际金属的晶体结构
2.2.2金属的结晶
1.结晶的基本概念 物质由液态转变为固态的过程称为凝固,如果通过凝固形成
晶体,则又称为结晶。晶体物质都有一个平衡结晶温度(熔 点),液体只有低于这一温度时才会结晶,固体高于这一温度 时才能发生熔化。在平衡结晶温度,液体与晶体同时共存, 处于平衡状态。而非晶体物质无固定的凝固温度,凝固总是 在某一温度范围逐渐完成。 纯金属的实际结晶过程可用冷却曲线来描述。冷却曲线是描 述温度随时间而变化的曲线,是用热分析法测绘的。从图26的冷却曲线可以看出,液态金属随时间冷却到某一温度时, 在曲线上出现了一个平台,这个平台所对应的温度就是
1.单晶体和多晶体 晶体内部的晶格位向完全一致的晶体称为单晶体,金属的单
晶体只能靠特殊的方法制得。实际使用的金属材料都是由许 多晶格位向不同的微小晶体组成的,每个小晶体都相当于一 个单晶体,内部的晶格位向是一致的,而小晶体之间的位向 却不相同。这种外形呈多面体颗粒状的小晶体称为晶粒;晶粒 与晶粒之间的界面称为晶界;由许多晶粒组成的晶体称为多 晶体,如图2-5所示,实际金属就是多晶体。 2.晶体缺陷 第一节介绍的金属晶体内部原子规则有序地排列是理想晶体 的状态。实际上金属由于结晶或其他加工等条件的影响,内 部原子排列并不是理想的,存在着大量的晶体缺陷(点缺陷、 线缺陷和面缺陷)。这些缺陷的存在,对金属性能会产生显著 的影响。
上一页
下一页 返回
2.2 实际金属的晶体结构
(2)晶核的长大 如图2-7所示,当第一批晶核形成后液体中的原子便不断
地向晶核沉积长大,与此同时又有新的晶核生成并长大, 形核与长大这两个过程是同时在进行着的,直至每个晶核 长大到互相接触,而每个长大了的晶核也就成为了一个晶 粒。

第二章晶体结构与结晶

第二章晶体结构与结晶

工程材料及机械制造基础
3)晶面族与晶向族 (hkl)与[uvw]分别表示的是一组平行的晶向和晶面。 与 分别表示的是一组平行的晶向和晶面。 分别表示的是一组平行的晶向和晶面 那些指数虽然不同, 那些指数虽然不同, 但原子排列完全相同 的晶向和晶面称作晶 的晶向和晶面称作晶 向族或晶面族。 向族或晶面族。分别 表示。 用{hkl}和<uvw>表示。 和 表示
工程材料及机械制造基础
晶态
非晶态
金属的结构
Si2O的结构 的结构
工程材料及机械制造基础
3.金属的晶体结构 3.金属的晶体结构 晶体结构描述了晶体中原子(离子、分子) 晶体结构描述了晶体中原子(离子、分子)的排列方 式。 理想晶体——实际晶体的理想化 1)理想晶体 实际晶体的理想化 三维空间无限延续,无边界 三维空间无限延续, 三维空间无限延续 严格按周期性规划排列,是完整的、无缺陷。 严格按周期性规划排列, 严格按周期性规划排列 是完整的、无缺陷。 原子在其平衡位置静止不动 2)理想晶体的晶体学抽象 空间规则排列的原子→刚球模型→晶格( 空间规则排列的原子→刚球模型→晶格(刚球抽象为 晶格结点,构成空间格架) 晶胞( 晶格结点,构成空间格架)→晶胞(具有周期性最小 组成单元) 组成单元)
工程材料及机械制造基础
第二章 晶体结构与结晶 内容: 金属的晶体结构 合金的晶体结构 实际金属的晶体结构 目的: 掌握晶体结构及其对材料的物理化学 性能、力学性能及工艺性能的影响, 性能、力学性能及工艺性能的影响,为 后续课程的学习做好理论知识的准备
工程材料及机械制造基础
第一节 金属的晶体结构 1.晶体与非晶体 晶体与非晶体 晶体
工程材料及机械制造基础
例一、已知某过原点晶向上一点的坐标为 , , 例一、已知某过原点晶向上一点的坐标为1,1.5, 2,求该直线的晶向指数。 ,求该直线的晶向指数。 将三坐标值化为最小整数加方括弧得[234]。 。 将三坐标值化为最小整数加方括弧得 例二、已知晶向指数为 例二、已知晶向指数为[110],画出该晶向。 ,画出该晶向。 找出1, , 坐标点 坐标点, 找பைடு நூலகம் ,1,0坐标点,连接原点与该点的直 线即所求晶向。 线即所求晶向。

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

2-3 根据组元数, 一般分为二元相图、三元相图。 三元相图
Fe-C二元相 图
2-3 同素异构转变 有些物质在固态下其晶格类型会随温度变化而发生变化,这 种现象称为同素异构转变。 锡,四方结构的白锡在13℃下转变为金刚石立方结构的灰 锡。 同素异构转变同样也遵循形核、长大的规律,但它是一个 固态下的相变过程,即固态相变。 除锡之外,铁、锰、钴、钛等也都存在着同素异构转变。
位错密度增加,能提高金属强度。
2-1
(3)面缺陷
呈面状分布的缺陷,主要是晶界和亚晶界。 晶体缺陷产生晶格畸变,使金属的强度、硬度提高,韧性下降。
2-1
二、合金的晶体结构 1.合金的基本概念
合金:两种或两种以上的金属与金属,或金属与非金属经一定方法合成的 具有金属特性的物质。 例如,钢和生铁是Fe与C的合金,黄铜是Cu和Zn的合金。 组元:组成合金最基本的物质。可以是元素,也可以是化合物。 黄铜的组元是铜和锌;青铜的组元是铜和锡。铁碳合金中的Fe3C,镁硅合 金中的Mg2Si。 合金系:组元不变,当组元比例发生变化,可配制出一系列不同成分、不 同性能的合金,这一系列的合金构成一个“合金系统”,简称合金系。
2-1
(2)金属化合物
合金组元间发生相互作用而形成一种具有金属特性的物质。
1.正常价化合物:如Mg2Si, Mg2Sn, Mg2Pb, Cu2Se等。
2.电子化合物:不遵守原子价规律,但有一定的电子浓度的化合物。
如Cu3Al, CuZn3, Cu5Zn8等。
3.间隙化合物:由过渡族金属元素与碳、氮、氢、硼等原子半径较
通常在钢中加入铝、钒,向铸铁液中加入硅铁合金。
(3)机械振动、超声振动、电磁搅拌: 使结晶过程中形成的枝晶折断裂碎,增加晶核数,达到细化晶粒的目的。

金属的晶体结构与结晶

金属的晶体结构与结晶

三、同素异构转变
▪ 某些金属在固态下的晶体结构是不固定的,而 是随着温度、压力等因素的变化而变化,如铁、 钛等,这种现象称为同素异晶转变,也称为重 结晶。
▪ 下面以铁为例子来说明同素异晶转变: α-Fe---------γ-Fe-------------δ—Fe-----------L ▪ BCC (912℃) FCC (1394℃) BCC ▪ 金属的同素异晶转变为其热处理提供基础,钢
3.密排六方晶格( HCP)
▪ 原子排列方式 ▪ 常见金属 ▪ 原子个数 ▪ 原子半径 ▪ 配位数和致密度
在晶胞的十二个角上各有一个原子, 构成六方柱体。上下底面中心各有 一个原子。晶胞内部还有三个原子, 所以叫做密排六方晶格。
具有这种晶格的金属有镁(Mg)、镉 (Cd)、锌(Zn)、铍(Be) 等。
▪ 在元素周期表一共约有110种元素,其中 80多种是金属,占2/3。而这80多种金属 的晶体结构大多属于三种典型的晶体结 构。它们分别是: 1.体心立方晶格(BCC) 2.面心立方晶格(FCC) 3.密排六方晶格(HCP)
1.体心立方晶格( BCC) ▪ 原子排列方式 ▪ 常见金属 ▪ 原子个数 ▪ 原子半径 ▪ 配位数 ▪ 致密度 ▪ 间隙半径
致密度
▪ 晶胞中所包含的原子所占有的体积与该晶胞体积 之比称为致密度(也称密排系数)。致密度越大, 原 子排列紧密程度越大。 体心立方晶胞的致密度为:
晶胞(或晶格)中有68%的体积被原子所占据, 其余为 空隙。
体心立方晶格的参数
▪ 体心立方晶格
晶格常数:a(a=b=c)
原子半径:r 3 a 4
第二章 金属与合金的晶体结构
一、金属晶体结构基础知识
金属由原子组成。原子的结合方式和 排列方式决定了物质的性能。 金属的性能是由其组织结构决定的, 其中结构指的就是晶体结构。 金属的晶体结构就是其内部原子的排 列方式,因为金属是晶体,所以称为晶 体结构。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 面心立方晶格
晶格常数:a
原子半径:r 2 a 4
原子个数:4 致密度:0.74 常见金属: -Fe(铁)、Ni(镍)、Al (铝)、Cu(铜)、Pb(铅)等
3. 密排六方晶格
晶格常数:底面边长 a 和高 c,
c/a=1.633 原子半径: r 1 a
2 原子个数:6 致密度:0.74 常见金属: Mg(镁) 、Zn(锌)、 Be(铍)、Cd(镉)等
光学金相显示的纯铁晶界
实际金属中存在着大量的晶体缺陷,按形状可分三类: ⑴ 点缺陷 ① 空位:晶格中某些缺排原子的空结点。 ② 间隙原子:挤进晶格间隙中的原子称间隙原子。 间隙原子可以是基体金属原子,也可以是外来原子。
面心立方的四面体和八面体间隙 体心立方的四面体和八面体间隙
③ 置换原子:
取代原来原子位置的外来原 子称置换原子。
匀形核。
以液体中存在的固态杂质为核心形核称非
均匀形核。非均匀形核更为普遍。
晶核的长大方式有两种,即平面长大和树枝
状长大。
当过冷度较小时,晶核主要以平面长大方式
进行,晶核沿不同方向的长大速度是不同的, 以沿原子最密排面垂直方向的长大速度最慢。
当过冷度较大时,尤其存在杂质时,晶核主要 以枝晶的方式长大。主要以树枝状长大。
点缺陷破坏了原子的平衡状
态,使晶格发生扭曲,称晶 格畸变。从而强度、硬度提高,塑性、韧性下降。
Hale Waihona Puke 空位间隙原子小置换原子
大置换原子
⑵ 线缺陷—晶体中的位错
位错:晶格中一部分晶体相对于另一部分晶体发生局部滑移, 滑移面上滑移区与未滑移区的交界线称作位错。有刃型位错 和螺型位错两种类型。
刃型位错
螺型位错
刃型位错:当一个完整晶体某晶面以上的某处多
三.金属结晶晶粒大小的控制
表示晶粒大小的尺度叫晶
粒度。晶粒度用单位面积上的 晶粒数目或晶粒的平均线长度 (或直径)来表示。
工业生产上采用晶粒度等级来表示晶粒大小。标
准晶粒度共分八级,一级最粗,八级最细。通过 100倍显微镜下的晶粒大小与标准图对照来评级。
1.晶粒大小对金属力学性能的影响
常温下,晶粒越细,晶
一、 纯金属的冷却曲线和过冷现象
1、冷却曲线与过冷度
金属结晶时温度与时间的关系曲
线称冷却曲线。曲线上水平阶段 所对应的温度称实际结晶温度T1。
纯金属的冷却曲线
曲线上水平阶段是由于结晶时放出结晶潜热引起的。
纯金属都有一个理论结晶温度T0(熔
点或平衡结晶温度)。在该温度下, 液 体和晶体处于动平衡状态。
金属的结构
晶态
非晶态
Si2O的结构
二、晶体结构的基本知识
1.晶格:用假想的直线将原子中心连接起来所 形成的三维空间格架。直线的交点(即原子中心) 称结点。由结点形成的空间点的阵列称空间点阵。
2.晶胞:能代表晶格原子排列规律的最小几何 单元.
晶 体 晶 格 晶 胞 示 意 图
3. 晶格常数
晶胞个边的尺寸 a、 b、c。
晶界的特点: ① 原子排列不规则。 ② 熔点低。 ③ 耐蚀性差。 ④ 易产生内吸附,外来原子易在晶界偏聚。 ⑤ 阻碍位错运动,是强化部位,因而实际使用的金属力
求获得细晶粒。
⑥ 是相变的优先形核部位。
第二节 纯金属的结晶
物质由液态转变为固态的过程称为凝固。 物质由液态转变为晶态的过程称为结晶。
物质由一个相转变为另一个相的过程称 为相变。因而结晶过程是相变过程。
们时聚时散,称为晶坯。在T0以下,经一段时间后 (即孕育期),一些大尺寸的晶坯将会长大,称为 晶核。
晶核形成后便向各方向生长,同时,又有新的晶
核产生。晶核不断形成,不断长大,直到液体完 全消失。每个晶核最终长成一个晶粒,两晶粒接 触后形成晶界。
晶核的形成有两种方式,即均匀形核和非
均匀形核。
由液体中排列规则的原子团形成晶核称均
第二章 金属的晶体结构 与结晶
不同的金属具有不同的
力学性能,主要是由于材 料内部具有不同的成分、 组织和结构。
第一节 金属的晶体结构
一、晶体与非晶体
晶体是指原子呈规则排列的固体。常态下金属 主要以晶体形式存在。晶体具有各向异性。
非晶体是指原子呈无序排列的固体。在一定条 件下晶体和非晶体可互相转化。
界面积越大,因而金属
的强度、硬度越高,同
时塑性、韧性也越好。
即细晶强化。
晶粒大小与金属强度的关系
高温下,晶界呈粘滞状态,在外力作用下易产生滑动,
因而细晶粒无益。但晶粒太粗易产生应力集中。因而
高温下晶粒过大、过小都不好。
2.细化晶粒的方法
晶粒的大小取决于晶核的形成速度和长大速度。
单位时间、单位体积内形成的晶核数目叫形核率(N)。
结晶只有在T0以下的实际结晶温度
下才能进行。
液态金属在理论结晶温度以下开始结晶的
现象称过冷。理论结晶温度与实际结晶温 度的差T称过冷度。
T= T0 –T1
过冷度大小与冷却速
度有关,冷速越大, 过冷度越大。
2. 纯金属的结晶过程
纯金属结晶过程由晶核不断的形成和长大两个基
本过程组成。
液态金属中存在着原子排列规则的小原子团,它
四、实际金属的晶体结构
1、单晶体和多晶体 单晶体:其内部晶格方位完 全一致的晶体。 多晶体:由许多单晶体组成的整体。 晶粒:实际使用的金属材料是由许多彼此方位不同、外形不规则 的小晶体组成,这些小晶体称为晶粒。 变形金属晶粒尺寸约1~100m,铸造金属可达几mm。
晶界:晶粒之间的交界面。 晶粒越细小,晶界面积越大。 2、晶体中的缺陷 晶格的不完整部位称晶体缺陷。
各棱间的夹角用、 、表示。
4、原子半径:
晶胞中原子密度最大方向上相邻原子间距的一半。
5、晶胞原子数:
一个晶胞内所包含的原子数目。
6、致密度:
晶胞中原子所占体积与 该晶胞体积之比。
二、常见金属的晶格类型
1. 体心立方晶格
晶格常数:a(a=b=c) 原子半径:r 3 a
4
原子个数:8x1/8+1=2 致密度:0.68 常见金属:-Fe(铁)、Cr(铬)、W(钨)、 Mo(钼)、V(钒)、Nb(铌)等
出半个原子面,该晶面象刀刃一样切入晶体,这个 多余原子面的边缘就是刃型位错。
⑶ 面缺陷—晶界与亚晶界 晶界是不同位向晶粒的过度部位,宽度为5~10个
原子间距,位向差一般为20~40°。
亚晶粒是组成晶粒的尺寸很小,位向差也很小
(10’ ~2 °)的小晶块。
亚晶粒之间的交界面称亚晶界。亚晶界也可看
作位错壁。
相关文档
最新文档