图形的旋转图形的旋转(旋转作图)

合集下载

北师大版八年级数学下册《 2. 图形的旋转 图形的旋转作图》公开课教案_12

北师大版八年级数学下册《 2. 图形的旋转  图形的旋转作图》公开课教案_12

第三章图形的平移与旋转2.图形的旋转(二)一、教材分析:“图形的旋转”是义务教育教科书北师大版(2013)八年级数学下册第三章图形的平移与旋转的第二节。

图形的旋转是图形变换的基本形式之一,是“义务教育阶段数学课程标准”中图形变换的一个重要组成部分,学习旋转和旋转作图,对发展学生的空间观念是一个很好的提升,是后续学习中心对称图形的基础。

利用旋转研究平行四边形性质、圆的性质的方式之一,因此本节内容在教材中起着承上启下的作用。

学习旋转作图,学习过程中学生就会经历观察、分析、画图和等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念。

旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。

本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形旋转问题。

二、学生起点分析学生此前已经学习了轴对称、平移,积累了一定的活动经验,基于学生已有的旋转知识、生活经验,并且已经了解了旋转的特征。

教材编者将旋转与旋转作图如此安排,目的是力求让学生从动态的角度观察图形、分析解决,画图动手操作,培养学生的能力。

由于旋转与轴对称、平移都是全等变换,在特征上既存在共性又有特性;而学生已经掌握了旋转特征,因此,旋转作图中的相对复杂一点图形——三角形的旋转就成了本节课的难点所在。

三、教学目标1.简单平面图形旋转后的图形的作法,能够按要求作出简单平面图形旋转后的图形.2.确定一个三角形旋转后的位置的条件,3.对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念.教学重点:作简单平面图形旋转后的图形及步骤的总结.教学难点:以三角形外一点为旋转中心作旋转三角形及步骤的总结.四、教学过程设计第一环节回顾旧知师:在前面我们学习了旋转,也了解了旋转的特征,今天我们来学习如何作图形的旋转。

在学习新课之前,我们先来回顾已知。

人教版九年级数学上册作业课件 第二十三章 旋 转 图形的旋转 第2课时 旋转作图

人教版九年级数学上册作业课件 第二十三章 旋 转 图形的旋转 第2课时 旋转作图

6.如图,正方形 OABC 在平面直角坐标系中,点 A 的坐标为(2,0),
将正方形 OABC 绕点 O 顺时针旋转 45°,得到正方形 OA′B′C′,则
点 C′的坐标为( A.( 2 , 2 )
A) B.(- 2 , 2 )
C.( 2 ,- 2 ) D.(2 2 ,2 2 )
7.(2020·烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6), 连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合 (点A与点C重合,点B与点D重合),则这个旋转中心的坐标为__(4_,__2_)___.
8.如图,在平面直角坐标系中,△A′B′C′由△ABC绕点P旋转得到, 则点P的坐标为__________(_1_,__-__1_)___________.
易错点:对图形的旋转方式考虑不全面 9.如图,如果正方形CDEF经过旋转后能与正方形ABCD重合,那么 图形所在的平面上可作为旋转中心的点共有_3___个.
角形.
解:如图
4.如图,△ABC绕点O旋转,顶点A的对应点为A′,请画出旋转后的
图形.
解:如图
知识点2:在平面直角坐标系中的图形旋转
5.(孝感中考)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时
针旋转90°得到点P′,则P′的坐标为(
)D
A.(3,2) B.(3,-1) C.(2,-3) D.(3,-2)
解:(1)如图所示,△A1B1C1 即为所求 (2)如图所示,△A2B2C2 即为所 求 (3)三角形的形状为等腰直角三角形 ,OB=OA1= 16+1 =
17 ,A1B= 25+9 = 34 ,即 OB2+OA12=A1B2,∴三角形的形 状为等腰直角三角形

23.1 图形的旋转 第2课时 旋转作图

23.1  图形的旋转 第2课时 旋转作图
a.旋转中心不变,旋转角改变,产生不同的旋转效果.b.旋转角不变,旋转中心改变,产生不同的旋转效果.
O
O
β
α
(1)旋转中心不变,改变旋转角(如图).
O1
α
O2
α
(2)旋转角不变,改变旋转中心.
(3)美丽的图案是这样形成的.
用旋转的知识设计图形
运用旋转作图应满足三要素:旋转中心、旋转方向、旋转角,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,选择不同的旋转中心、不同的旋转角会作出不同效果的图案.
轴对称:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
直线EF与GH相交于图形的中心O,且互相垂直,先把左边的两个“十字”作关于EF的轴对称图形,然后作这两部分关于GH的轴对称图形,这样就可以得到整个图形.
平移:
平移的方向
平移的距离
仅靠平移无法得到
旋转:
下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”绕着图案的中心旋转3次,分别旋转90°、180°、270°前后图形组成的.
平移、 旋转相结合:
先平移
后旋转
下图由四部分组成,每部分都包括两个小“十”字,红色部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?
整个图形可以看作是左边的两个小“十字”先通过一次平移成图形右侧的部分,然后左、右部分一起绕图形的中心旋转90°前后图形组成的.
B
3. 如图,在Rt△ABC中,∠ACB=90°,∠A= 40°,以直角顶点C为旋转中心,将△ABC旋 转到△A′B′C的位置,其中A′、B′分别是A、 B的对应点,且点B在斜边A′B′上,直角边C A′交AB于点D,则旋转角等于( ) A.70° B.80° C.60° D.50°

人教版九年级第二十三章 旋转

人教版九年级第二十三章 旋转

①确定旋转中心及旋转的方向、旋转角(确定旋转三要素)。
②找出构成图形的关键点。
③将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋
转一个旋转角,得到此关键点的对应点。
④按原图的顺序连接这些对应点,并标上相应的字母。
深度解读: (1)在旋转过程中,不动点即为旋转中心,一组对应边的始边与终 边的夹角即为旋转角。 (2)在旋转作图时应注意:①旋转中心到对应点的距离相等。②旋 转的角度。③旋转的方向。
例 1、如图所示,四边形 ABCD 是正方形,点 P 在边 CD 上,△ADP 旋转后能够
与△ABP′重合,则连接 PP′后,△A PP′是什么三角形?
错解:△A PP′是等腰三角形
点拨:通过旋转变换构造等边与等角。∠PAP′=90
°,
△A PP′是等腰直角三角形。 正解:∵△ADP 旋转到△ABP′的位置 ∴∠1=∠2,AP=AP′
提示:连接 CD 证△DCE≌△DBF
C
E F
A
D
B
练习 3:如图所示,已知△ABC 为等腰直角三角形,∠BAC=90°,E、F 是 BC 边上点,
且∠EAF=45°.求证: BE2 + CF 2 = EF 2 .
A
A
F'
B
E
B
FC
C
E
F
提示图
3
答案:(1)点 B ; 90°; 9
(2)略 (3)略
D
的直线分别交边 AD、BC 于 M、N,所以 M、N 关于点 O
对称,所以四边形 ABNM 与四边形 CDMN 关于点 O 中心
O
对称,可得这两个四边形面积相等。
B
点拨:判断两点关于点 O 中心对称的常用方法是:判

图形的旋转及旋转作图知识点总结和重难点精析

图形的旋转及旋转作图知识点总结和重难点精析

图形的旋转及旋转作图知识点总结和重难点精析在九年级数学中,图形的旋转及旋转作图是一个重要知识点,它不仅在几何学中有着广泛应用,也在实际生活中具有许多应用场景。

本文将对该知识点进行总结,并针对重难点进行精析,以帮助学生更好地掌握这一部分内容。

一、知识点总结1.旋转条件:图形旋转需要确定一个中心点,同时需指定绕该中心点旋转的角度。

2.旋转性质:旋转前后的图形是全等的;对应点到旋转中心的距离相等;对应点与旋转中心连线所成的角相等。

3.作图方法:先确定旋转中心和旋转角度,然后作出图形旋转后的对应点,最后连接对应点形成旋转后的图形。

二、重难点精析1.确定旋转中心:旋转中心的选择可以是图形上的任意一点,但不同的选择会影响到旋转后图形的形状和大小,因此需要学生有一定的空间感知能力。

2.旋转角度的确定:旋转角度的确定是影响旋转作图的关键因素,角度错误会导致旋转后的图形与原图形不一致。

学生需要熟练掌握角度的测量和计算方法。

3.对应点的确定:对应点的确定是旋转作图的重点之一,学生需要细心观察图形,通过对应点到旋转中心距离相等的特点,正确作出旋转后的对应点。

4.连接对应点:连接对应点时,要注意对应点与旋转中心连线所成的角相等的特点,正确作出旋转后的图形。

特别是在作较复杂的图形旋转时,需要有一定的空间思维能力。

三、题目解析【例题】如图所示,已知三角形ABC,请以点A为中心,将三角形ABC逆时针旋转90度,作出旋转后的三角形AB'C'。

【解析】1.确定旋转中心:本题中旋转中心为点A。

2.确定旋转角度:本题中要求将三角形ABC逆时针旋转90度。

3.确定对应点:根据对应点到旋转中心距离相等的性质,可以作出旋转后的对应点B'和C'。

4.连接对应点:根据对应点与旋转中心连线所成的角相等的性质,可以作出旋转后的三角形AB'C'。

具体步骤如下:(1) 画出点A的水平线和垂直线,作为辅助线。

图形旋转作图PPT课件

图形旋转作图PPT课件
线段的旋转作法:将线段两端点分别旋 转,然后将两个旋转后 的点连成线段,即为原 线段旋转后的线段.
简单的旋转作图
例1 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法
分析:
项目 源图形 源位置 旋转中心 旋转方向 旋转角度
已知 ● ● ● ● ●
B
目标图形

目标位置
作法:
未知 ●
备注 点A 点A 点O 顺时针 60˚ 点 点B (求作)
3. 点和线段的旋转根据旋转的定义与性质实现作图; 4. 一般图形的旋转首先通过选取若干个控制点化归为
点和线段的旋转;然后运用旋转的性质进行作图.
还有其它作法吗?
对应点; 5. 连接CE, DE,则△DEC即为所求作.
简单的旋转作图
开Hale Waihona Puke 旋转要素分析控制点选择 控制点旋转 旋转后控制点连线 (旋转后作图)
结束
有时,旋转中心以及旋转方向与角度不 是显式告知的,需要化未知为已知.
线段的端点、多边形顶点、折线的连接 点、线段与曲线的连接点、圆或圆弧或扇形 的圆心.
旋转中心 ●
点C
应点的位置以及旋转后的三角形.
E
M
N
旋转方向
旋转角度 目标图形 ●
● 根据A与D的对应 关系判断为顺时 针
● ∠ACD
三角形
A
D 作法二:
目标位置
● △DEC (求作)
1. 连接CD;
B
C
2. 以C为圆心,CB长为半径画圆 ;
3. 延长CA,交⊙C与M,延长CD,交⊙C与N;
4. 在⊙C上截取BE=MN,则E点为B点的
旋转方向 ●
顺时针
旋转角度 ●

《图形的旋转》旋转PPT(第2课时)

《图形的旋转》旋转PPT(第2课时)

练习
如图,将ΔABC 绕点P 顺时针旋转90°得到ΔA1B1C1,则点 P 的坐标是(__1_,__2_)_____.
旋转出等腰
如图,正方形A'B 'C 'D '是正方形
ABCD按顺时针方向旋转45°而成的
(1)若AB=4,
S 则 正方形A'B'C'D'=____1_6_____;
(2)∠BAB '= 45°
练习 图是由正方形ABCD 旋转而成. (1)旋转中心是____A______ (2)旋转的角度是___4__5_°___ (3)若正方形的边长是1,则C ’D =_________
练习
下列现象中属于旋转的有___4____个
①地下水位逐年下降;②传送带的移动; ③方向盘的转动;④水龙头开关的转动; ⑤钟摆的运动;⑥荡秋千运动.
探究 (1)线段 OA 和 OA’ 有什么关系? (2)∠AOA’ 和 ∠BOB ’有什么关系?
相等 (3)图中还有哪些类似关系的线段和角?
OB =OB ’,OC =OC ’ ∠COC ’=∠BOB ’=∠AOA’ (4)Δ ABC 和 Δ A’B ’C ’ 有什么关系? 全等
归纳 旋转的性质 1.对应点到旋转中心的距离_相__等___.
总结
确定旋转中心的步骤
1.连接两组对应点.
2.作对应点连线的垂直平分线.
O
3.交点就是旋转中心.
答案:60°,5. 总结:旋转60°会产生等边三角形.
直角绕正方形中心旋转
已知,如图正方形 EFOG 绕与之边长相等的正方形 ABCD 的 中心 O 旋转任意角度.求证图中阴影部分的面积等于正方形 面积的四分之一.

3.旋转作图课件

3.旋转作图课件

知1-讲
导引:抓住“关键点”A,B,C,D,旋转中心O,旋转 角∠AOD这些要素,按步骤“连——转——截— —连”即可得出所求作的三角形.
解:作法:(1)连接OA,OB,OC,OD; (2)分别以OB,OC为边作 ∠BOM=∠CON=∠AOD; (3)分别在OM,ON上截取 OE=OB,OF=OC; (4)依次连接DE,EF,FD; 则△DEF就是所求作的三角形,如图所示.
知1-讲
3.简单旋转作图的一般步骤: (1)找出图形的关键点; (2)确定旋转中心、旋转方向和旋转角; (3)将关键点与旋转中心连接起来,然后按旋转方向
分别将它们旋转一个角度,得到关键点的对应点; (4)按照原图形的顺序连接这些对应点,所得到的图
形就是旋转后的图形.
知1-讲
例1 在图1中,画出线段AB绕点A按顺时针方向旋转 60°后的线段.
取等于对应线段长度的线段; 五画:顺次连接所得的点,从而画出旋转得到的图形.
1.必做: 完成教材习题3.5T1-4. 2.补充: 请完成练习册剩余部分习题.
知2-讲
导引:根据图形可知∠BAE=120°,AB边绕点A顺时 针旋转120°得到AE边,所以菱形AEFG可以看 成是把菱形ABCD以A为旋转中心顺时针旋转120° 得到的.
知2-练
1 将如图所示的五边形绕点O按顺时针方向旋转90°, 画出旋转后的图形
知2-练
2 如图所示的4个图案,能通过基本图形旋转得到的 有( )
知1-练
1 在图中画出线段AB绕点O按顺时针方向旋转50° 后的线段.
知1-练
2 如图,将线段AB绕点O顺时针旋转 90°得到线段A′B′,那么点A(-2,5)的对应点 A′的坐标是________.

九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图课件人教版

九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图课件人教版
例 2 答图
(2)如答图,画出对称点 D,连接 AD,AD 可以看作是由 AB 绕着点 A 逆时针 旋转 90°得到的.
【点悟】 解答此题时应熟练掌握平移、轴对称、旋转的特征.
当堂测评
1.[2018 春·巴州区期末]如图 23-1-16,把以∠ACB 为直角的△ABC 绕点 C 按 顺时针方向旋转 85°,使点 B 转到点 E,点 A 转到点 F,得到△CEF,则下列结论 错误的是( D )
归类探究
类型之一 非网格中的旋转作图 如图 23-1-14,已知将四边形 ABCD 绕点 O 顺时针旋转一定角度后,使
点 A 落在点 A′处,试作出旋转后的图形.
图 23-1-14
解:图略. 作法:(1)连接 OA,OA′; (2)连接 OB,OC,OD,分别以 OB,OC,OD 为始边,点 O 为顶点,顺时针 作∠BOB′,∠COC′,∠DOD′,并使∠BOB′=∠COC′=∠DOD′=∠ AOA′,OB′=OB,OC′=OC,OD′=OD; (3)顺次连接 A′,B′,C′,D′四点. 故四边形 A′B′C′D′就是所要求作的图形.
出了格点三角形 ABC(顶点是网格线的交点)和点 A1. (1)画出一个格点三角形 A1B1C1,并使它与△ABC 全等且点 A 与 A1 是对应点; (2)画出点 B 关于直线 AC 的对称点 D,并指出 AD 可以看作是由 AB 绕点 A
经过怎样的旋转而得到的.
图 23-1-15
解:(1)(答案不唯一)如答图,利用△ABC≌△A1B1C1,图形平移,可得出△ A1B1C1.
图 23-1-19
3.[2018 春·金牛区期末]在平面直角坐标系中,△ABC 的位置如图 23-1-20.(每 个小方格都是边长为 1 个单位长度的正方形).

人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第2课时 旋转作图

人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第2课时 旋转作图
( C) A.(0,4) B.(1,1) C.(1,2) D.(2,1)
8.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为 A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面 直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B; (2)写出点A′,C′,D′的坐标; (3)求出线段BA旋转到BA′时所扫过的扇形的面积.
2.旋转作图的步骤: (1)首先确定___旋__转__中__心________、旋转方向和____旋__转__角_______; (2)其次确定图形的关键点; (3)将这些关键点沿指定的方向旋转指定的角度; (4)连接____对__应___点_______,形成相应的图形.
练习2:如图,△ABC在网格中,画出△ABC绕点C顺时针旋转90°后 的图形△A1B1C.
(3)∵∠AOB=110°,∠DOC=60°,∴∠AOD=360°-∠AOB- ∠BOC-∠DOC=360°-110°-α-60°=190°-α.∵∠ADO= ∠ADC-∠ODC=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)= 50°.①若使AO=AD,需∠AOD=∠ADO,∴190°-α=α-60°,∴α =125°;②若使OA=OD,需∠OAD=∠ADO,∴α-60°=50°, ∴α=110°;③若使OD=AD,需∠OAD=∠AOD,∴190°-α=50°, ∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是 等腰三角形
解:(1)图略 (2)点 A′(6,0),C′(0,-6),D′(0,0) (3)∵点 A 的 坐标为(-6,12),点 B 的坐标为(-6,0),∴AB=12,∴线段 BA 旋
转到 BA′时所扫过的扇形的面积=14 π×122=36π
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转90°、180°、
270°前后图形组成的。
知识点 2 用旋转变换设计图案
下图由四部分组成,每部分都包括两个小”十” 字,红色部分能经过适当的旋转得到其他三部分吗?
能经过平移吗?能经过轴对称吗?还有其他方式吗?
先平
平移、 旋转相结合:
后旋转

整个图形可以看作是
左边的两个小“十字”先
通过一次平移成图形右侧
图形的平移与旋转
图形的旋转
旋转作图
课前学习——知识回顾
1、“旋转”的定义: 在平面内,将一个图形绕着_一__个_定_点__沿_某_个_方__向_转动
_一_个__角_度__,这样的图形运动称为__旋_转__(变_换__) ___. 2、“旋转”的基本性质: (1)经过旋转,图形的___形_状__和_大_小_____不变; (2)经过旋转,图形上的每一点都绕_旋__转_中_心_沿相同 的方向转动了相同的__角__度__; (3)任意一对_对__应_点__与_旋_转__中_心__的连线所成的角都是 ___旋_转_角___,对应点到__旋_转__中_心___的距离相等.
独学2分钟
课前学习——知识回顾
3、作一个图形平移后的图形的方法与步骤: 1、找出__关__键_点____; 2、作出这些点平移后的__对__应_点___; 3、将所作的_对__应__点_按原来的方式连接;
独学1分钟
课前学习——回顾性训练
1、如图所示,将“小旗子”绕点O按顺时针 方向旋转90°:
(1)经过旋转,OA与OA`有什么关系? A
目标检测1:
导引:
如图,分别连接AD,CF,然后作它们的垂直平 分线,相交于P点,则旋转中心为P,易得点P的 坐标为(5,2).
目标检测1:
总结
确定旋转中心与旋转角的方法: 在图形的旋转过程中,判断谁是旋转中心,要
看旋转中心是在图形上还是不在图形上;若在图形 上,哪一点在旋转过程中位置没有改变,这一点就 是旋转中心;若不在图形上,对应点连线的垂直平 分线的交点就是旋转中心,旋转角等于对应点与旋 转中心所连线段的夹角.
把左边的两个“十字”作
O
关于EF的轴对称图形,然
后作这两部分关于GH的轴
对称图形,这样就可以得
到整个图形。
G
F
旋转图案设计欣赏
课后任务:
1、旋转作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
OA=OA`
(2)∠AOA`是什么角?它是
多少度?
∠AOA`是旋转角;
O
A`
∠AOA`=90°
1、掌握课旋堂讲转解作图的方法及作图的步骤; 2、知道旋转作图需要的几个条件 3、用旋转变换设计简单的图案
知识点 1 旋转作图 ——自主观察
1、点的旋转
试着找一找如图A点绕O点顺时
.O
针旋转30°后所在的位置A .
平移的距离?
仅靠平移 无法得到
知识点 2 用旋转变换设计图案
下图由四部分组成,每部分都包括两个小”十”字, 红色部分能经过适当的旋转得到其他三部分吗?能经 过平移吗?能经过轴对称吗?还有其他方式吗? 旋转: 旋是左
O
边的两个小“十字”绕着
图案的中心旋转3次,分别
目标检测2:
1、 如图,在4×4的正方形网格中,△MNP绕某点旋转 一定的角度,得到△M1N1P1,则其旋转中心是( ) A.点A B.点B C.点C D.点D
目标检测2:
2、如图,将正方形图案绕中心O旋转180°后,得到的 图案是( )
知识点 2 用旋转变换设计图案
做一做: 如图, 你能对甲图案进行适当的运动变化,使它 与乙图案重合吗?写出你的操作过程.
各关键点的对应点;
(4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
目标检测1:
目标检测1:
3、如图,在方格纸上,△DEF是由△ABC绕定 点P顺时针旋转得到的,如果用(2,1)表示方格 纸上A点的位置,(1,2)表示B点的位置,那么 点P的位置为( A ) A.(5,2) B.(2,5) C.(2,1) D.(1,2)
O
的部分,然后左、右部分
一起绕图形的中心旋转
90°前后图形组成的。
知识点 2 用旋转变换设计图案
下图由四部分组成,每部分都包括两个小”十”
字,红色部分能经过适当的旋转得到其他三部分
吗?能经过平移吗?能经过轴对称吗?还有其他方
式吗? 对称轴? 轴对称:
E
H
直线EF与GH相交于图形
的中心O,且互相垂直,先
知识点 2 用旋转变换设计图案
乙 怎样将甲图案变成乙图案?

B 乙
可以先还将可甲以图用案绕图
上的什A么点方旋转法,把使得
A
图案甲被图“案扶变直成”,然
甲 后,乙再图沿案AB?方向将所
得图案平移到B点位
置,即可得到乙图案
B
A
知识点 2 用旋转变换设计图案
下图由四部分组成,每部分都包括两个小”十” 字,红色部分能经过适当的旋转得到其他三部分 吗?能经过平移吗?能经过轴对称吗?还有其他方 式吗? 平移: 平移的方向?
各关键点的对应点; (4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
2、“旋转”作图的条件 : (1)图形原来的位置; (2)旋转中心; (3)旋转方向; (4)旋转角度.
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转90°后的图案 应该是( )
60o

2


A
旋转之后的图形如图:
对学3分钟
归 纳总 结
在旋转作图时,要紧扣以下三点: (1)对应点到旋转中心的距离相等; (2)旋转的角度相等; (3)旋转的方向相同.
归 纳总 结
“旋转”作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
2、线段的旋转
A
试着画一画线段AB绕O点顺时 针旋转90°后所得的线段(O点 B 在线段外).
3、图形的旋转
A'
.B' O
试着画△ABC绕O点逆时针旋转60°后
C B’
所得的三角形.
A
任务:自主观察,掌握旋转作图的方法
时间3分钟
.A .A'
C’
.O
自主学习:自主画图---合作交流
步骤:1、 2、
.X C 对
相关文档
最新文档