指数函数及其图像与性质完整版.ppt

合集下载

指数函数的图象及性质 完整课件PPT

指数函数的图象及性质 完整课件PPT

(2)若0<a<1,则函数y=ax在区间[-1,2]上是递减的,
当x=-1时,f(x)取得最大值f(-1)=2a-1-4=10,∴a=1 .
7
综上所述,a的值为
7或
1 7
.
答案:
7或
1 7
【误区警示】
【防范措施】 1.加强分类讨论的意识 在解含字母的指数函数的有关问题时,(x)=ax在a>1和0<a <1两种情况下,最大值和最小值的取值情况是不同的. 2.重视指数函数单调性的应用 对一些常用的指数函数的性质要记准、记牢,的大小,确定 指数函数的单调性,就可以得到最大值、最小值,进而列方 程求解.
10 5 3 4 , 3, 1 , 3. 3 10 5
>0且a≠1时,总有 f(2)=a2-2-3=a0-3=1-3=-2, 所以函数f(x)=ax-2-3必过定点(2,-2). 答案:(2,-2)
【互动探究】若题1中的“a>1”改为“a>0,且a≠1”, “y=(a-1)x2”改为“ y=x+a”,则图象可能是( )
22
2
【易错误区】指数函数中忽视分类讨论致误 【典例】(2013·淮安高一检测)函数f(x)=ax(a>0,且a≠1)在 [0,1]上的最大值与最小值的差为 1,则a=______.
2
【解析】(1)当a>1时,函数f(x)=ax在[0,1]上是增函数.所以
当x=1时,函数f(x)取最大值;当x=0时,函数f(x)取最小值.
【解析】>1时,函数y=ax的图象过点(0,1),分布在第一、 二象限,且从左到右是上升的. 直线y=x+a过第一、二、三象 限,与y轴的交点为(0,a),在点(0,1)的上方. A,B,C,D四 项均不符合此要求.当0<a<1时,函数y=ax的图象过点 (0,1),分布在第一、二象限,且从左到右是下降的. 直线 y=x+a过第一、二、三象限, 与y轴的交点为(0,a),在点(0,1) 和点(0,0)项符合此要求.

指数函数图像和性质_完整ppt课件

指数函数图像和性质_完整ppt课件

-1.5
-1
-0.5
-0.2
-0.4
0.5
1
1.5
2
2.5
3.2
3
2.8
2.6
2.4
2.2
2 1.8
f x = 0.9 x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.5 -0.2
-0.4
0.5
1
1.5
2
2.5
3
3.5
4
13
练习: 1、已知下列不等式,试比较m、n的大小:
(2)m (2)n
ppt精选版
1
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 的增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 的增大而减小,即在
解 :根据指数函数的性质, 由图像得,
1.70.3 1 且 0.93.1 1 从而有
1.70.3 > 0.93.1
或者
1.70.3 > 1.7 0 > 0.90 > 0.93.1
ppt精选版
f x = 1.7
3.2
3
2.8
2.6
2.4
2.2
2
1.8
x
1.6

《指数函数》PPT课件

《指数函数》PPT课件

商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。

工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随

人教版指数函数图象及其性质-高中数学(共40张PPT)教育课件

人教版指数函数图象及其性质-高中数学(共40张PPT)教育课件

• 【答案】C
13
探究一 指数函数的概念
• 【练】已知指数函数y=(2b-3)ax经过点(1,2),求a,b的值.
14
解析:
• 【解析】由指数函数定义可知2b-3=1,即b=2.

将点(1,2)代入y=ax,得a=2.
15
探究二 指数函数的图象问题
• 【例】若函数y=ax+b-1(a>0且a≠1)的图象经过第二、三、四象限,则一定有( )













:














?










■电 你 是 否有 这 样 经历 , 当 你在 做 某 一项 工 作 和学 习 的 时候 , 脑 子里 经 常 会蹦 出 各 种不 同 的 需求 。 比 如你 想 安 心 下来 看 2 小时 的 书 ,大 脑 会 蹦出 口 渴 想喝 水 , 然后 喝 水 的时 候 自 然的 打 开 电视 。 。 。。 。 。 ,一 个 小 时过 去 了 , 可能 书 还 没看 2 页 。很 多 时 候甚 至 你 自己 都 没 有意 思 到, 你 的 大脑 不 停地 超 控你 的 注 意力 , 你就 这 么 轻易 的 被你 的大 脑 所 左右 。 你已 经 不知 不 觉 地变 成 了大 脑 的 奴隶 。 尽管 你 在 用它 思 考, 但 是你 要 明 白你 不 应该 隶 属 于你 的 大 脑, 而 应 该是 你 拥有 你 的大 脑 , 并且 应 该是 你 可 以控 制 你的 大 脑 才对 。 一切 从 你意 识 到 你可 以 控制 你 的 大脑 的 时 候, 会 改 变你 的 很多 东 西。 比 如 控制 你 的情 绪 , 无论 身 处何 种 境 地, 都 要明 白 自己 所 面 临的 痛 苦并 没 有 自己 所 感 受的 那 么 强烈 , 我们 当 前再 痛 苦 ,在 目 前这 个 阶 段自 己 也不 是 最 痛苦 的 人, 尝 试着 运 用 心智 将 注意 力 转 移到 其 他 的地 方 , 痛苦 就 会自 动 消失 , 在 你重 新 注意 到 它 的时 候 ,它 不 会 回来。

指数函数及其图像与性质_图文

指数函数及其图像与性质_图文

小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x

-3

8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1


性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5

指数函数性质图像及其规律ppt课件

指数函数性质图像及其规律ppt课件
1.4 1.4
1.121.2.2 1.2 1.2
111
1
1
0.080.8.8
sx = 2x-1(x<1) 0.8 0.8 0.060.6.6 0.6 0.6
hhhhxxxx====12121212xx-xx(-1x(--((1x1≥x1x≥≥≥111)1)))
0.040.4.4 0.4 0.4
0.020.2.2 0.2 0.2
函数值域为 {y|y>0且y≠1}
0.4t
(t 0)
6 5 4 3 2 1
1 t x 1
-4
-2
-1
2
4
6
9
⑵ y 3 5x1
解:(2) 由5x-1≥0得
x1 5
所以,所求函数定义域为
x
|
x
1 5

5x 1 0 得y≥1
所以,所求函数值域为{y|y≥1}
10
⑶ y 2x 1
解:(3)所求函数定义域为R
表达式有意义的自变量x的取值范围。
解:(1)由x-1≠0得x≠1所以,所求函数定义域为
6
{x|x≠1} 5
由 1 0 ,得y≠1
x 1
所以,所求函数值域为
4
1
3
fx = 0.4x-1
2
{y|y>0且y≠1}
1
-6
-4
-2
2
4
6
-1
-2
8
说明:对于值域的求解,可以令
考察指数函数y=
并结合图象 直观地得到:
a a
2
4
复习上节内容
指数函数的图象和性质:
在同一坐标系中分别作出如下函数的图像:

指数函数及其图像与性质完整版.ppt

指数函数及其图像与性质完整版.ppt
实例1:某种细胞分裂时,由1个 分裂成2个,2个分裂成4个,4个 分裂成8个…… ,那么1个这样 的细胞经过x次分裂后,能得到y 个细胞,试写出y与x的关系式?
6
一、创设情境 引入新课
分裂次数 1次 2次 3次 4次
x次
y 2x, x N
………
细胞总数 2个 4个
21 22
8个 16个
23
24
2x
A.y 3x
B.y 5x
C.y 10x
D.y
4
x
六、拓展深化 高考练兵
问题6:大显身手
A (1)下列函数是指数函数的是( ).(2014年对口升学高考试题)
A. y 2x B. y x3
C. y 3 x
D.y x
B (2)若 a3 a2 ,则 a 的取值范围是( ).(2015年对口升学高考试题)
随堂 1.判断下列指数函数在 , 的单调性
练习
1
y
0.9x ;
2
y
10 x ;
3
y
1 5
x
;
4
y
1 2
3x
.
1Q a 0.91 y 0.9x 在 x, 内是减函数
2Q a 101 y 10x 在 x, 内是增函数
3Q
y
1 5
-x
1 5
-1
x
5x
Q
a
5
1
在 x, 内是增函数
y
问题5:小试牛刀
利用指数函数的图像和性质解题。
例1 判断下列指数函数在 , 内的单调性
1 y 5x;2 y 0.35x;3 y 3x;4 y 22x.
解:(1)因为a 5 1 y 5x 在(- ,)内是增函数。

指数函数的性质与图像ppt课件

指数函数的性质与图像ppt课件

资料下载:./ziliao/
个人简历:./j ia nli/
试卷下载:./shiti/
教案下载:./j ia oa n/
手抄报:./shouchaobao/
P P T课件:./ke j ia n/
语文课件:./kejian/y uwen/ 数学课件:./kejian/shuxue/
英语课件:./kejian/y ingy u/ 美术课件:./kejian/meishu/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./ke j ia n/dili/
历史课件:./ke j ia n/lishi/
第四章 指数函数、对数函数与幂函数
■名师点拨 底数 a 与 1 的大小关系决定了指数函数图像的“升”与“降”.当 a>1 时,指数函数的图像是“上升”的;当 0<a<1 时,指数函数 的图像是“下降”的.
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./ke j ia n/dili/
历史课件:./ke j确的打“√”,错误的打“×”) (1)y=x2 是指数函数.(× )
栏目 导引
⑤指数函数的图像.
P P T模板:./m oba n/
PPT素材:./sucai/
P P T背景:./be ij ing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
资料下载:./ziliao/
个人简历:./j ia nli/

2024版高一数学指数函数及其性质PPT课件图文

2024版高一数学指数函数及其性质PPT课件图文

学习方法建议
深入理解指数函数的概念
掌握指数函数的定义、图像和性质, 理解底数、指数和幂的含义。
多做练习题
通过大量的练习题,加深对指数函数 的理解和掌握,提高解题能力。
系统学习指数函数的运算
学习指数函数的四则运算,掌握运算 规则和技巧。
解题技巧分享
换元法
通过将指数函数中的变量 进行换元,简化问题,使 问题更容易解决。
指数函数在数学模 型中的应用举例
在经济学中,指数函数被用来描 述复利、折旧等问题;在物理学 中,指数函数被用来描述放射性 元素的衰变等问题;在工程学中, 指数函数被用来描述材料的疲劳 寿命等问题。
数学模型在解决实际问题中的价值
提高解决问题的效率
揭示问题的本质和规律
通过建立数学模型,可以将实际问题转化为 数学问题,利用数学方法和技术进行求解, 从而提高解决问题的效率。
05
指数函数与数学模型
数学模型简介
01
数学模型的定义
数学模型是描述客观事物或它的本质和本质的一系列数学形 式。它或能利用现有的数学形式如数学公式、数学方程、数 学图形等加以表述,或能抽象出数学的基本概念和基本结构。
02
数学模型的分类
根据研究目的,可以将数学模型分为描述性模型和预测性模 型。
03
数学模型的作用
指数方程求解
通过对方程两边取相同的底数的对数或者 利用换元法等方法求解指数方程。
指数函数性质应用
利用指数函数的单调性、奇偶性、周期性 等性质解决相关问题。
03
指数函数性质探究
单调性
01
指数函数的单调性取决于底数a的 大小
02
当a>1时,指数函数在整个定义 域上是增函数;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例1:某种细胞分裂时,由1个 分裂成2个,2个分裂成4个,4个 分裂成8个…… ,那么1个这样 的细胞经过x次分裂后,能得到y 个细胞,试写出y与x的关系式?
6
一、创设情境 引入新课
分裂次数 1次 2次 3次 4次
x次
y 2x, x N
………
细胞总数 2个 4个
21 22
8个 16个
23
24
2x
y 23x
y x
y (4)x
y x3
y 3x
y 3-x
y 1 a x a 0且a 1
三、理解概念 探求新知
问题3:看谁最美
利用“描点法”作出指数函数y 1 x 和y 2x的图像,看谁的图像最美。
y
1
x
2
y
y 2x
2
14
xy
-3 8
-2 4
-1 2
01
1 1
2
2
1
4
1
3
- 10
>
1
53
(4)
1 1.2 2
<
1
分析:题中每个数都可看做是指数函数y=ax对于x的每一个 实数值所对应的函数值,而且它们的底数相同,所以可以 利用指数函数的单调性来比较它们的大小。
x天
y
1 2
x
,
x
N
棍子剩余 1 尺 2
1 1 2
1尺 4
1
2
2
1尺 8
1
3
2
1尺 16
1
4
2
1 x
2
9
一、创设情境 引入新课
y 2x
y
1 2
x
思考: 以上两个函数表达式有何共同特征?
(1)均为幂的形式; (2)底数是一个正实数;
y ax
(3)自变量x在指数的位置上; (4)指数幂的系数和自变量x的系数均为1.
一、创设情境 引入新课 实例2:一尺之棰,日取其半 ,万世不竭。--庄子
一尺长的棍子,第一天截去其 一半,第二天截去其剩余的一半, 第三天截去第二天剩余部分的一 半,依次截下去……,那么经过 x天后,剩余棍子的长度y尺,试 写出y和x之间的关系?
(庄子)
8
一、创设情境 引入新课
截取天数 1天 2天 3天 4天
1 y 5x;2 y 0.35x;3 y 3x;4 y 22x.
解:(2)因为a 0.35 1 y 0.35x 在(- ,)内是减函数。
五、强化训练 巩固双基
问题5:小试牛刀
利用指数函数的图像和性质解题。
例1 判断下列指数函数在, 内的单调性
1 y 5x;2 y 0.35x;3 y 3x;4 y 22x.
--55
0
--22
55
x
1100
3
汇报展示(课前微课学习,完成导学案)
4
学习目标
1.掌握指数函数的定义; 2.理解指数函数的图像与性质; 3.了解指数函数图像与性质的简单应用; 4.体会数形结合的数学思想; 5.感悟生活中处处蕴含着数学.
5
一、创设情境 引入新课 问题1:大千世界
“大千世界,无奇不有”从下面2个实例中,你能得出怎样 的函数关系式?它们形式上有什么特点?你能得到什么结论?
问题5:小试牛刀
利用指数函数的图像和性质解题。
例1 判断下列指数函数在 , 内的单调性
1 y 5x;2 y 0.35x;3 y 3x;4 y 22x.
解:(1)因为a 5 1 y 5x 在(- ,)内是增函数。
五、强化训练 巩固双基
问题5:小试牛刀
利用指数函数的图像和性质解题。
例1 判断下列指数函数在 , 内的单调性
8
12
10
8
y
1 2
x
6 4 2
-5
0
y 2x
5
xy
1 -3
8 -2 1
4
-1 1 2
01
12
24
x
3 10
183
四、自主探究 归纳总结
问题4:火眼金睛
比较函数y 2x (x R)和y 1 x (x R)图像有什么特点? 2
并归纳指数函数的性质。
14
y
y
1.函数图像都在 x 轴的 上方,
解:(3)因为 y 3x (31)x (1)x,则a 1 1
3
3
y 3-x 在(- ,)内是减函数。
五、强化训练 巩固双基
问题5:小试牛刀
利用指数函数的图像和性质解题。
例1 判断下列指数函数在 , 内的单调性
1 y 5x;2 y 0.35x;3 y 3x;4 y 22x.
解:(4)因为y 22x (22 )x 4x,则a 4 1 y 22x 在(- ,)内是增函数。
L/O/G/O
永切隔数形数焉数
远莫离形少无能与
,
,
——
联忘分结数形分形
华 罗 庚
系 莫 分 离
几 何 代 数 统
家 万 事 休
合 百 般 好
时 难 入 微
时 少 直 觉
作 两 边 飞
本 是 相 倚 依


指数函数及其图像与性质
y 14
12
y ax
10

0 a 1 8 6
4
2
y ax
a 1
--1100
10
一、创设情境 引入新课
一般地,形如y=ax (a>0且a≠1)的函数叫做指数函数, 其中x是自变量,函数的定义域是R.
底数是不为1 正常数
幂指数x为自变量, 其系数为1
y 1 a x a 0且a 1
指数幂的系数为1
11
二、发现问题 强化概念
问题2:谁是奸细
找出混在指数函数队伍中的“奸细”.
14
12
12
向上无限伸展 , 向下无限接近X轴;
10
10
8
y
1 2
x
6 4 2
-5
0
-2
- 10
5
x
-5 10
8
6
2.函数图像都经过点(0,1);
4 y 2x
2
3.函数 y= 2 x 的图像自左至右呈上升 趋势;
5
10
0
x
-2
函数 y= (1)x 的图像自左至右呈下降 趋势.
2
软件演示 14
五、强化训练 巩固双基 问题5:小试牛刀
随堂 1.判断下列指数函数在 , 的单调性
练习
1
y
0.9x ;
2
y
10 x ;
3
y
1 5
x
;
4
y
1 2
3x
.
1Q a 0.91 y 0.9x 在 x, 内是减函数
2Q a 101 y 10x 在 x, 内是增函数
3Q
y
1 5
-x
1 5
-1
x
5x
Q
a
5
1
在 x, 内是增函数
y
1 5
-x
4Q
y
1 2
3x
1 2
3
x
1 8
x
Q
a
1 8
<1
y
1 2
3x
在 x, 内是减函数
20
五、强化训练 巩固双基
问题5:小试牛刀
例2 利用指数函数的单调性,比较每组数的大小 ,
用“<”或“>”填空。
> (1) 1.70.5
1.70.4
(2) 0.96
<
0.92
1
(3) 5 2
利用指数函数的图像和性质解题。
例1 判断下列指数函数在 , 内的单调性 1 y 5x;2 y 0.35x;3 y 3x;4 y 22x.
分析 判定指数函数单调性的关键在于判断底a的情况:
当 a>1时,函数在 , 内是增函数; 当 0<a<1时,函数在 , 内是减函数.
15
五、强化训练 巩固双基
相关文档
最新文档