《遗传学讲义》PPT课件

合集下载

遗传学PPT6ppt(共50张PPT)

遗传学PPT6ppt(共50张PPT)
顶端缺失:缺失的区段为某臂的外端
某一整臂缺失了就成为 顶端着丝粒染色体
中间缺失:缺失的区段为某臂的内段
图 6-1 缺失的的类型与形成
顶端缺失染色体很难定型,因而较少见
(1)断头很难愈合,断头可能同另一 有着丝粒的染色体的断头重接, 成为双着粒染色体
(2)顶端缺失染色体的两个姊妹染色
单体可能在断头上彼此接合,形 成双着丝粒染色体
第六节 染色体结构变异的应用
一、基因定位
1、利用缺失造成的假显性现象,可以进行 基因定位 →使载有显性基因的染色体发生缺失,
让其隐性等位基因表现“假显性”
→对表现假显性的个体进行细胞学鉴定
,发现某染色体缺失了某一区段,就 说明该显性基因位于该染色体的缺失 区段上
用常规的连锁研究方法,不能测 定基因与着丝粒之间的距离,但 使用顶端着丝粒染色体能测定一 个基因(如A)与着丝粒之间的 距离。试图示这一方法。
体末端不等长突出
段可能影响末端区段配对,可能形成二价 直果曼陀罗的许多品系是不同染色体的易位纯合体 →臂内杂合体在倒位圈内外非姊妹染 (1)断头很难愈合,断头可能同另一 的显性遗传基因(T),正常染色体与易位接合点相对的等位点,则相当于一个可育的隐性遗传基因(t)。 →使载有显性基因的染色体发生缺失, 中间缺失:缺失的区段为某臂的内段 → ClB测定法(Crossover suppress–letha1–Bar technique)正是根据这一点提出的 中间缺失:缺失的区段为某臂的内段 重复:染色体多了自身的某一区段 一个臂内(少见) 三、重复的遗传效应 图 6-9 倒位的类型与形成 →若重复区段很短,则联会时重复染色体区 (1)断头很难愈合,断头可能同另一
1,2/12,21 交替式,正常/易位-可育,1/2

遗传学--ppt课件全篇

遗传学--ppt课件全篇
真核生物一个mRNA只编码一个基因;原核生 物一个mRNA编码多个基因
遗传密码与蛋白质的翻译
遗传密码
遗传密码的基本特性
• 遗传密码为三联体 • 遗传密码不重叠(少数例外),在一个mRNA上每个核苷
三点测交
干扰与并发
一个单交换发生后,在它邻近再发生第二个单交换的 机会就会减少,这种现象称为干扰或干涉 (interference,I )
对于受到干扰的程度,通常用并发系数或符合系数 (coefficient of coincidence,C )来表示
并发系数 = 实际双交换值 / 理论双交换值
非整倍体
超倍体(hyperploidy)
指体细胞中多若干条染色体的个体 超倍体的来源
• 由于减数分裂时个别染色体行为异常所致 n +1 配子与 n 配子结合形成三体(trisomy)
• 两个相同的 n + 1 配子结合形成四体(tetrasomy) 两个不同的 n + 1 配子结合形成双三体(double trisomy)
X三体综合征 Klinefelter (克氏)综合征
(又称小睾丸症)
超Y综合征
典型核型
45,X 47,XXX 47,XXY
47,XYY
主要特征
卵巢发育不全,呈索条状,不育,乳房不发育,蹼颈, 肘外翻 大多患者外表正常,内外生殖器、性功能一般正常,少 数卵巢功能异常。有生育能力或不育等
先天性睾丸不发育,智力低下,乳房发育等
Cy + +S
+S ×
Cy +
Cy +
Cy +
Cy +
+S
Cy - 果蝇翘翅基因
+S

《遗传学》幻灯片PPT

《遗传学》幻灯片PPT

化、表
3
二、遗传学的开展历史
〔一〕、遗传学的萌芽(~1900)
拉马克(Lamark): “用进废退〞学说和“获 得性状遗传〞:
长颈鹿?
魏斯曼(Weisman): “种质论〞:
〞和“体质〞
小鼠截尾实验:“种质
达尔文(C.R.Darwin):“泛生论〞:泛生粒
4
〔二〕、 遗传学的诞生(1900)
(1). 孟德尔 (Gregor Mendel) 〔1822-1884〕: 奥地利的一个修道士,他从1856年开场进展了8年的豌
➢ 鲍维里(Boveri T.) 1902 、萨顿(Sutton W.) 1903 ➢ 发现遗传因子的行为与染色体行为呈平行关系,是
染色体遗传学说的初步论证。 ➢ 贝特生(Bateson,W.〕 1906 ➢ 从香豌豆中发现性状连锁; ➢ 创造“genetics〞一字。 ➢ 詹森斯(Janssens, F. A.) 1909 ➢ 观察到染色体在减数分裂时呈穿插现象,为解释基
上,都证实了孟德尔定律。开场他们都以为是自己发现了这 一重要定律,可后来发现早在35年以前,孟德尔就已经发现 并证明了别离定律和自由组合定律,这就是遗传学历史上孟 德尔定律的重新发现,标志着遗传学的诞生。
1910年起将孟德尔遗传规律改称为孟德尔定律,公认孟 德尔是遗传学的奠基人。
6
〔三〕经典遗传学时期 〔1900-1939年〕
➢ 1973首次用质粒克隆DNA
18
人类基因组方案〔HGP〕
✓ 1986 年5 月 提出
✓ 1990 年10 月1 日美国国会正式批准启动人类基因组方 案,方案投入30亿美元的资金在15 年内完成人类基因 组的分析研究
✓ 2000 年6 月26 日,国际人类基因组测序联盟与Celera 公司联合发布了“人类基因组工作草图〞 (work

《遗传学》课件ppt课件

《遗传学》课件ppt课件
Lamarck: 获得性遗传 达尔文:泛生论 Weismann: 种质论 Galton: 融合遗传论 Mendel: 豌豆杂交实验;发现遗传学基本
定律,建立了颗粒式遗传的机制(1866年 ) De Vries, Correns, Von Tschemak: 孟德尔 2011/1 定律再发现(1900年)
2. 遗传与环境对B性状的相对作用如何 ?
3. 如何解释同卵双生子中,两个性状 2011/1 之间符合度的差异?
性状的多基因决定与基因的多效性 表现度、外显率——基因表达的变异
表现度:一定环境下,某一突变个体基因型表 达的差异程度,果蝇Lobe Eyes小眼基因
外显率:一个基因型,有些个体表现一定表型 而另外一些不表现。
2011/1
1940-1952:细胞向分子水平过渡时期, 以微生物为研究对象,采用生化方法研 究遗传物质的本质及功能
1941,Beadle & Tatum* 一个基因一个酶 1944,Avery 细菌转化实验,证明DNA是遗
传物质 1952,Hershey* 噬菌体感染实验
2011/1
2011/1
一个细胞经减数分裂产生4个配子。在粗线期这个细 胞的细胞核含有5pg的DNA,则每个配子的DNA含量 为 pg。
2011/1
2011/1
被子植物有性生殖过程中由大孢子发育为 胚囊需要经过( ) A.1次减数分裂和2次有丝分裂形成8个核
B.减数分裂形成4核 C .3次有丝分裂形成8个核 D. 2次有丝分裂形成4个核
2011/1
2011/1
减数分裂特征
连续进行两次核分裂,而染色体只复制一次,结果形
成四个核,每个核含有单倍数染色体,即染色体减半 前期特别长,且变化复杂,重要事件包括同源染色体配对(联会

《遗传学》课件ppt

《遗传学》课件ppt

谢谢聆听
长发育异常、生殖障碍以及多种躯体畸形等问题。对于染色体疾病的诊断,通常需要进行遗传学咨询、家族史 调查、临床表现观察以及遗传学检测等综合评估。治疗方面,目前尚无根治方法,但可以通过对症治疗、康复 训练以及社会心理支持等手段,提高患者的生活质量和社会适应能力。
03 基因表达调控与表观遗传学
基因表达调控机制
阐述基因歧视的概念、表现形式 和危害,包括在就业、保险、教 育等领域的歧视现象。
原因分析
分析基因歧视产生的社会、文化 和心理等方面的原因,以及现有 法律法规在防止基因歧视方面的 不足。
应对措施建议
提出防止基因歧视的政策建议, 包括完善法律法规、加强宣传教 育、推动基因科技合理应用等。
辅助生殖技术中伦理道德问题思考
染色体的形态结构
染色体的功能
染色体是遗传物质的主要载体,通过 复制、转录和翻译等过程,控制生物 体的遗传性状。
染色体在细胞分裂的不同时期呈现不 同的形态,包括染色质丝、染色单体、 四分体等。
染色体数目异常及遗传效应
1 2
染色体数目异常的类型 包括整倍体和非整倍体,如单体、三体、多倍体 等。
染色体数目异常的原因 主要是由于细胞分裂过程中染色体的不分离或丢 失所致。
高通量测序技术
利用微流控边测序。
第三代测序技术
基于单分子荧光测序或纳米孔测序,无需PCR扩增,具有读长长、速 度快、成本低等优点。
生物信息学在分子遗传学中应用
基因组组装与注释 利用生物信息学方法对基因组序列进行组装、拼接和注释, 解析基因结构和功能。
个性化医疗
基于患者的基因组信息, 制定个性化的治疗方案 和用药指导,提高治疗 效果和减少副作用。
基因治疗

遗传学(全套课件752P)ppt课件

遗传学(全套课件752P)ppt课件

遗传学(全套课件752P)ppt课件目录•遗传学基本概念与原理•基因突变与修复•基因重组与染色体变异•遗传规律与遗传图谱分析•分子遗传学技术与应用•细胞遗传学技术与应用CONTENTSCHAPTER01遗传学基本概念与原理遗传学定义及研究领域遗传学定义研究生物遗传信息传递、表达和调控的科学。

研究领域包括基因结构、功能、表达调控,基因突变、重组、进化,以及遗传与发育、免疫、疾病等方面的关系。

遗传物质基础:DNA与RNADNA脱氧核糖核酸,是生物体主要的遗传物质,由碱基、磷酸和脱氧核糖组成。

RNA核糖核酸,在蛋白质合成过程中起重要作用,由碱基、磷酸和核糖组成。

遗传信息传递过程DNA复制在细胞分裂间期进行,以亲代DNA为模板合成子代DNA的过程。

转录以DNA为模板合成RNA的过程,发生在细胞核或细胞质中。

翻译以mRNA为模板合成蛋白质的过程,发生在细胞质中的核糖体上。

基因表达调控机制基因表达基因携带的遗传信息通过转录、翻译等过程转变为具有生物活性的蛋白质分子的过程。

调控机制包括转录水平调控(如转录因子、启动子等)、转录后水平调控(如RNA剪接、修饰等)和翻译水平调控(如蛋白质磷酸化、去磷酸化等)。

这些调控机制使得生物体能够适应不同的环境条件并维持正常的生理功能。

CHAPTER02基因突变与修复点突变包括碱基替换、插入和缺失。

染色体畸变包括染色体结构变异和数目变异。

03生物因素如某些病毒和细菌。

01物理因素如紫外线、X 射线等。

02化学因素如亚硝酸、碱基类似物等。

直接修复切除修复重组修复SOS 修复DNA 损伤修复机制01020304针对某些特定类型的DNA 损伤,通过特定的酶直接进行修复。

通过核酸内切酶将损伤部位切除,再利用DNA 聚合酶和连接酶进行修复。

在复制过程中,当遇到无法直接修复的DNA 损伤时,可通过重组机制进行修复。

当DNA 受到严重损伤时,细胞会启动SOS 修复机制,通过易错复制方式快速完成复制过程。

遗传学PPTppt(共43张PPT)

遗传学PPTppt(共43张PPT)
一、雌雄配子的形成 高等动植物雌雄配子形成
图 1-14 高等动物性细胞形成过程
图 1-15 高等植物 雌雄配子 形成过程
二、植物授粉与受精
自花授粉:同一花朵或同株异花
授粉方式 异花授粉:不同植株间
受精:雄配子+雌配子 → 合子 精核(n)+卵细胞(n) →胚 (2n)
双受精 精核(n)+2极核(n) →胚乳(3n)
基因控制
细胞周期
第二类基因直接控制
细胞进入各个时期
(控制点-失控-肿瘤)
图 1-10 细胞周期的遗传控制
二、细胞无丝分裂与有丝分裂
细胞分裂
无丝分裂(直接) 有丝分裂
有丝分裂过程
前期
中期
后期
末期
DNA量 的变化
图 1-1 原核细胞的结构 非组蛋白:少量 多核细胞:核分裂、质不分裂 染色单体—1DNA+pro — 花粉直感(胚乳直感):3n胚乳 与真核生物相比,原核生物的染色体要简单得多,其染色体通常只有一个核酸分子(DNA或RNA) 。 图1-17 种子植物的生活周期 保证染色体数目恒定性、物种相对 (由母体发育而来) 第一类基因主要控制 染色体组型分析(核型分析):根据染色体长度、着丝粒位置、臂比、随体有无等特点,对各对同源染色体进行分类、编号,研究一个细胞的整套 染色体 细胞周期中的关键蛋 (1)染色质的基本结构 图 1-9 细胞有丝分裂周期 图 1-15 高等植物雌雄配子形成过程
图 1-5 人类染色体核型
三、 染色体分子结构
1、原核生物染色体
与真核生物相比,原核生物 的染色体要简单得多,其染 色体通常只有一个核酸分子 (DNA或RNA) 。
大肠杆菌的染色体
DNA分子伸展有1100µm长,细菌直径1-2µm

遗传学--第一章-绪论-PPT课件

遗传学--第一章-绪论-PPT课件
遗传学 第一章 绪论
第一章 绪论
第一节 什么是遗传学 (genetics): 遗传学就是研究生物的遗传与变异的科学
世代间相似的现象就是“遗传” (heredity, inheritance) “ 种瓜得瓜,种豆得豆。”
生物个体间的差异叫做“变异”(variation) “一母生九子,九子各不同。”
2、微生物和生化遗传学时期遗传学 (1940-对 象从真核转到了原核,更为深入地研究了 基因的精细结构和生化功能。 重大成果有“一基因一酶”(Beadle and Tatum,1941)的建立.
遗传物质确定为DNA,而不是蛋白(Avery, 1944);
双螺旋模型的建立(Watson和Crick 1953)以及中心法 则的提出(Crick,1958)。
Frankling and wilkins
分子遗传学时期。(1953-现在)
此期是遗传学发展的第三次高潮,可以说成果累累, 月新年异,而且趋向于应用,大大缩短了转化为生 产力的周期。
乳糖操纵子模型的建立(Jacob and Monod,1961)
青山衬托之下,是一片金灿灿 的中国水稻梯田。2002年4月5 日以中国梯田为封面的« Science»杂志以14页篇幅率先 发表了一个重大成果—中国人 独立完成的论文《水稻(籼稻) 基因组的工作框架序列》,显 示对中国科学家成就充分肯定。
第三节遗传学在国民经济中的作用 一、 遗传学与农牧业的关系 无论是农林还是畜牧水产业都是和国计民生
遗传学:研究遗传物质(基因)结构、 功能、 传递和表达规律。
遗传与变异的关系
遗传与变异现象在生物界普遍存在,是生命活 动的基本特征之一。
没有变异生物界就失去进化的素材,遗传只的 是简单的重复

《遗传学课件》课件

《遗传学课件》课件
基因表达调控
基因表达调控是指细胞通过一系列复 杂的机制调节基因的表达水平,包括 转录水平的调控和翻译水平的调控等 。基因表达调控对于生物体的正常发 育和生理功能至关重要。
03
CHAPTER
孟德尔遗传定律
孟德尔的生平简介
孟德尔的出生和家庭背景
出生于奥地利的一个农民家庭,从小对植物学 和园艺学产生了浓厚兴趣。
染色体的结构和数目变异
染色体结构变异
染色体发生断裂、倒位、重复、缺失等结构变异,可能导致基因表达异常或产 生遗传疾病。
染色体数目变异
染色体数目异常,如非整倍性变异(如三体综合征)和多倍性变异(如三倍体 、四倍体等),可能导致生长发育异常或遗传疾病。
基因突变和表观遗传学
基因突变
基因序列发生改变,导致基因表达异常或产生遗传疾病。基因突变可分为点突变 、插入和缺失等类型。
孟德尔的教育和职业发展
在维也纳大学学习自然科学,成为一名中学教 师,并开始进行遗传学研究。
孟德尔的成就和影响
通过豌豆实验发现了遗传定律,为现代遗传学奠定了基础。
孟德尔的实验方法和发现
实验材料和方法
选择豌豆作为实验材料,通过人工授粉和统计分析进 行研究。
遗传定律的发现
提出了分离定律、独立分配定律和显性与隐性定律, 揭示了遗传的基本规律。
性状。
未来发展方向
未来,表观遗传学将进一步深入研究表观遗传修饰的机制和功能,以及它们在生物体发 育和疾病发生中的作用。同时,随着技术的不断发展,将会有更多的表观遗传修饰被发
现和鉴定。
合成生物学和基因编辑技术的发展
合成生物学
基因编辑技术
合成生物学是利用工程学原理和方法 来研究和改造生命系统的学科。它通 过设计和构建人工生物系统,来探索 生命本质和实现特定功能。

遗传学幻灯ppt课件

遗传学幻灯ppt课件
遗传学定义
包括基因结构、功能、表达调控, 以及生物遗传变异、进化等方面。
遗传物质基础:DNA与RNA
03
DNA
RNA
脱氧核糖核酸,是生物体主要的遗传物质, 存在于细胞核中。
核糖核酸,在蛋白质合成过程中起重要作 用,存在于细胞质中。
DNA与RNA的关系
DNA通过转录过程合成RNA,RNA再指 导蛋白质的合成。
染色体的形态结构
包括着丝粒、端粒、次缢 痕等结构,不同物种的染 色体形态各异。
染色体的功能
在细胞分裂过程中,染色 体通过复制、分离和重组 等过程,确保遗传信息的 准确传递。
染色体数目变异及意义
染色体数目变异类型
染色体数目变异的意义
包括整倍体和非整倍体变异,如单体、 三体、多倍体等。
对生物进化、物种形成和遗传育种等 方面有重要意义。
染色体数目变异的原因
可能是由于细胞分裂异常、基因突变 或环境因素等导致。
性别决定与性染色体遗传
性别决定机制
生物体内存在性别决定基 因,通过不同机制控制性 别分化。
性染色体类型
包括XY型和ZW型两种类 型,不同生物采用不同的 性染色体类型。
性染色体遗传规律
性染色体上的基因遵循特 定的遗传规律,如分离定 律和自由组合定律等。
详细介绍多基因风险评分(PRS)等风险预测模型的原理和应用。
实际应用举例
通过具体实例,如糖尿病、高血压等,展示如何利用风险预测模型 进行多基因遗传病的风险评估和预防。
染色体异常导致疾病诊断治疗
染色体异常概述
简要介绍染色体异常的概念、类型和常见疾病。
诊断方法
详细介绍染色体核型分析、荧光原位杂交(FISH)等染色体异常的 诊断方法。

遗传学课件 (1)_PPT幻灯片

遗传学课件 (1)_PPT幻灯片
摩尔根是遗传学史上的巨人,一生共写了22本书和大约370 篇文章,是第一个获得诺贝尔奖的遗传学家……
(2). 数量遗传学与群体遗传学基础 (1920-) 费希尔等:数理统计方法在遗传分析中的应用
1918年, 费希尔发表了重要文献“根据孟德尔遗传假设的亲属间相 关
的研究” ,成功运用多基因假设分析资料,首次将数量变 异
划分为各个分量,开创了数量性状遗传研究的思想方法。 1925年,首次提出了方差分析(ANOVA)方法, 为数量遗传学的发展
奠定了基础。
(3). 微生物遗传学及生化遗传学 (1940-1953)
➢ 1901-1903年,狄·弗里斯发表“突变学说”,认为,突变是生物进化的因素。 ➢ 1903年,Sutton和Boveri分别提出染色体遗传理论,认为:遗传因子位于细
胞核内染色体上(即萨顿-鲍维里假说),从而将孟德尔遗传规律与 细胞学研究结合起来 ➢ 1906年,贝特森(英国的遗传学家)首创“遗传学(Genetics)”,并引入了F1 代F2代、等位基因、合子等概念 ➢ 1909年,约翰生(丹麦的遗传学家)发表“纯系学说”,并提出“gene”、 “基 因型(genotype)”、和“表现型(phenotype)”等概念,以代替孟 德 尔所谓的“遗传因子” ➢ 1908年,哈德和温伯格分别推导出群体遗传平衡定律
崭新的科学 - 古老的问题
繁殖方式多样性和幼体发育差异性 遗传现象的纷杂
神话传说和权威对科学的臆测 误导学科的发展
“桂实生桂,桐实生桐 ” “橘生淮南则为橘,生于淮北则为枳 ”
公元前4000年的伊拉 克古代巴比伦石刻上记 载了马头部性状在五个 世代的遗传
古代学者对遗传现象的看法
希波克拉底 (Hippocrates,前460—— 前377,古希腊医师 ,“医 学之父” )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 遗传学基本概念
(1)遗传学(genetics) 英国遗传学家贝特森(Bateson.W)1909
年首先提出. (2)遗传(heredity, inheritance) (3)变异(variation) (4)遗传和变异现象在生物中的世代交替
过程:
有性生殖:亲代(Parent generation) :精子 (spermatozoa) 和 卵 子 (ovum)—— 配 子 (gametes) —— 受 精 (fertilization)—— 受 精 卵 (oosperm), 即 合 子 (zygote), 受 精 卵 —— 卵 裂 (cleavage)—— 胚 胎 (embryo)—— 新 的 个 体 即 子 代(Filial generation)。
开, 进入不同的性细胞中,否则就无法 解释杂种二代所得到的结果” 1865年格里高·孟德尔(Gregor Johann Mendel) “植物杂交实验” “ 等着瞧吧,我的时代总有一天要来临”
7.1869年高尔顿(Galton,F.) “ 天才遗传(Hereditary
genius)” 即 “融合遗传论”。
(二).遗传学的诞生
1797年英国 奈特(Knight,T)
豌豆杂交实验: P 灰色×白色
F1
灰色
F2 灰色 白色
但未统计分析,只发现了这一现象。
1863年诺丹(Nauding): (1)正交和反交结果是相同的; (2) “ 负责遗传性状的要素互相分
2.100年后,亚里斯多德(Aristotle): 精液不是提供胚胎组成的元素,而是
提供后代的蓝图。生物的遗传不是通过身 体各部分样本的传递,而是个体胚胎发育 所需的信息传递 3.1809年拉马克(Lamarck, J.B) “ 用进废退”
获得性状(acquiredcharacteristics)
表达调控 (regulation)
基因纵向转递 转化 (transformation)
基因横向转递 转导 (transduction)
转染 (transfection)
无性繁殖
接合 (conjugation)
保持物种稳定 转基因(transgene)
变异(variation)
基因重组(Recombination) 染色体间- 减数分裂中染色体的自由组合 染色体内- 染色体的重排(Rearrangements) 转基因-体外重组
按研究范畴分类: 发生遗传学 (Developmental
genetics) 行为遗传学 ( Behavioral genetics) 免疫遗传学 (Immunogenetics) 药物遗传学 (Pharmacogenetics)
毒理遗传学 (Toxicogenetics) 辐射遗传学 (Radiation genetics) 肿瘤遗传学 (Cancer genetics) 医学遗传学 (Medical genetics) 血型遗传学 (Blood group genetics) 生化遗传学 (Biochemical genetics) 应用学科:
4.1866年 达尔文(Darwin) 泛生论(hypothesis of pangenesis) 泛子(pangens)
5.1883年 鲁.威廉(Roux.W) 染色体——遗传物质
遗传单位沿着染色体丝作直线排列。 6.1883,1885 魏斯曼(Weismann A)
种质论(germplasm theory): 种质(germ plasm) 体质(somatoplasm)
子代与亲代总是具有大体相似的形态结构和 生物学特性,但是一般不会完全相同,也就是既 有遗传,又有变异。
(5)遗传和变异是生物的本质属性之一,是生物 物种延续和进化的源泉。遗传是一种生命活动。
二、遗传学的研究内容
遗传学是研究生物体的遗传信息的组成、传递和表达作用规 律的一门科学。基因的结构和功能是遗传学研究的中心主题。因 而,遗传学其实就是研究基因的结构、功能、传递和表达规律的 科学。遗传学研究的内容大致可分为以下四个方面: 1) 基因和基因组的结构,基因与基因组的核苷酸序列与其生物学功 能之间的关系,这也包括突变与异常性状之间的关系
遗 传 学 讲 义
遗传学
GENETICS
山东师范大学 邵群
第一章 绪论
遗传现象是生物的一个本质属性, 遗传学是非常重要的一门科学,是生物学 的中心学科,也是生物专业共同的必修课。 同学们经过中学生物学和大学细胞生物学、 生物化学、普通生物学等课程的学习,已 经掌握了一些遗传学知识,但是还缺乏系 统性和深刻性,因此很有必要再深入系统 地学习遗传学这门课程
2) 基因在世代之间传递的方式与规律。 3) 基因转化为性状所需的各种内外条件,也就是基因表达调节的规
律。
4)根据上述三方面研究所获得的知识,能动地改造生物,使之符 合人类的利益和要求
遗传 ( Heredity,inheretance):
基因的结构
DNA的复制 (replication),
基因表达 (gene expression)
核外遗传学 (Extranuclear G.)
微观 即细胞质遗传学(Cytoplasmic G.)
染色体遗传学(Chromosomal G.)
分子遗传学(Molecular genetics)

按研究对象分类: 人类遗传学 (Human genetics) 动物遗传学 (Animal genetics) 植物遗传学 (Plant genetics) 微生物遗传学 (Microbial genetics)
生物工程学 (Biotechnology) 优生学(Eugenics) 育种学(工业微生物、农、牧和水 产)
四、遗传学的发展历史
(一).在孟德尔以前及同时代 的一些遗传学说
1. 希波克拉底(Hippocrates): 子代具有亲代的特性那是
因为在精液或胚胎里集中了来 自身体各部分的微小代表元素 (elememt)。
突变(Mutation) 基因突变 染色体畸变(Aberration)
有性繁殖 物种进化
三、遗传学的分支
按研究的层次分类:
群体遗传学(Population genetics)
宏观
即进化遗传学或种群遗传学
数量遗传学(Quantitative gentics)
细胞遗传学 (Cytogenetics)
相关文档
最新文档