高中物理动量和能量的综合应用
动量和能量的综合应用
![动量和能量的综合应用](https://img.taocdn.com/s3/m/489c1caa82d049649b6648d7c1c708a1284a0aec.png)
动量和能量的综合应用
宗吉友
【期刊名称】《高中数理化》
【年(卷),期】2015(0)8
【摘要】对高中生来说,动量守恒和机械能守恒是高考的重点和难点。
本文着重分析利用动量和能量综合应用题目的解题方法,并利用案例来帮助同学们熟练掌握两大守恒定律的应用方法。
【总页数】1页(P29-29)
【作者】宗吉友
【作者单位】江苏省东台市安丰中学
【正文语种】中文
【相关文献】
1.如何突出课堂教学目标?——高三复习课“动量和能量的综合应用”课后反思
2.浅谈高中物理中能量和动量的综合应用
3.基于自主学习与诊断的教学逆向设计实践——以“动力学、动量和能量观点在电磁感应中综合应用”专题复习为例
4.浅谈高中物理中能量和动量的综合应用
5.力、动量、能量的综合应用
因版权原因,仅展示原文概要,查看原文内容请购买。
高中物理动量守恒定律动量守恒与能量守恒的综合应用应用力学的大观点解题物理
![高中物理动量守恒定律动量守恒与能量守恒的综合应用应用力学的大观点解题物理](https://img.taocdn.com/s3/m/f9bcc8087c1cfad6185fa756.png)
(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
12/13/2021
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
12/13/2021
一般来说,用动量观点和能量观点比用力的观点解题简便, 因此在解题时优先选用这两种观点;但在涉及加速度问题时就必 须用力的观点.有些问题,用到的观点不止一个,特别像高考中 的一些综合题,常用动量观点和能量观点联合求解,或用动量观 点与力的观点联合求解,有时甚至三种观点都采用才能求解,因 此,三种观点不要绝对化.
12/13/2021
四、力学“三大观点”灵活选择 研究某一物体所受力的瞬时作用与物体运动状态的关系(或 涉及加速度)时,一般用力的观点解决问题;研究某一物体受到 力的持续作用发生运动状态改变时,一般选用动量定理,涉及功 和位移时优先考虑动能定理;若研究的对象为一物体系统,且它 们之间有相互作用时,优先考虑两大守恒定律,特别是出现相对 路程的则优先考虑能量守恒定律.
★★★★★
题型六:动量、能量、平抛综合
★ห้องสมุดไป่ตู้★
题型七:动量守恒、能量守恒、动能定理综合
★★★★
12/13/2021
题型透析
12/13/2021
动量守恒、能量守恒综合 例 1 质量 m1=1 kg 的木板放在光滑水平地面上,质量 m2 =0.2 kg 的木块置于木板的右端,木板与木块之间的动摩擦因数 μ=0.3.某时刻二者同时开始运动,木板的初速度 v01=3 m/s,水 平向右,木块的初速度 v02=1 m/s,水平向左,如图所示.已知 重力加速度 g=10 m/s2,小木块可视为质点.求:
动量与能量的综合应用PPT演示文稿
![动量与能量的综合应用PPT演示文稿](https://img.taocdn.com/s3/m/eb47ca13c5da50e2524d7f1a.png)
1 1 2 2 (2m)v2 (2m)v3 (2m) g (2l2 ) 2 2
由动能定理有
3
4
A
4.后A、B开始分离,A单独向右滑到P点停下, 由以上各式,解得
1 2 mv 3 mgl 1 2
v0 g (10l1 16l2 )
B l2
l1
P
2.用轻弹簧相连的质量均为2kg的A、B两物块 都以 的速度在光滑的水平地面 上运动,弹簧处于原长,质量为4kg的物体C 静止在前方,如图3所示,B与C碰撞后二者 粘在一起运动。求:在以后的运动中
研究某一时刻(或某一位置)的动力学 问题应使用牛顿第二定律,研究某一个 过程的动力学问题,若物体受恒力作用, 且又直接涉及物体运动过程中的加速度 问题,应采用运动学公式和牛顿第二定 律求解。
解决动力学问题的基本观点之二:
动量观点(包括动量定理和动量守恒定律) 1、对于不涉及物体运动过程中的加速度而 涉及物体运动时间的问题,特别对于打击一类 的问题,因时间短且冲力随时间变化,则应用 动量定理求解。
W其他=△E W重=-△Ep W弹=-△Ep′
重力的功 弹力的功
弹力势能
考点一 动能定理和动量定理的比较 动能定理反映的是力在空间上的积累,引起的是动能的 变化,是一个标量式;动量定理反映的是力在时间上的积 累,引起的是动量的变化,是一个矢量式,也可以说物体 在 某个方向上受到冲量的作用,则引起的是该方向上的动 量变化量.当然高中物理中一般遇见的是在一维情况下 的问题
考点二 动量守恒定律和机械能守恒定律的比较 两个守恒定律所研究的对象都是相互作用的物体所构成 的系统,且研究的都是某一个物理过程.但两者守恒的条 件不同:系统动量是否守恒,决定于系统所受合外力是否 为零;而机械能是否守恒,则决定于是否有重力以外的力(不 管是内力还是外力)做功.所以,在利用动量守恒定律处理 问题时要着重分析系统的受力情况,是否满足合外力为零; 在利用机械能守恒定律处理问题时,除了分析各力,还得分析各 力的做功情况,看是否有重力以外的力做功.所以对于一个系统所 发生的某一过程, 动量是否守恒、机械能是否守恒,两者没有必然联系,可以 出现各种不同的情况.另外,动量守恒定律为矢量表达式, 应用时必须注意方向,且 有时某个方向上合外力为零则该方向上的动量守恒;机械能 守恒定律则是标量式,对功或能量只是代数和而已.
高中物理中力学三大观点的综合应用
![高中物理中力学三大观点的综合应用](https://img.taocdn.com/s3/m/75150748fbd6195f312b3169a45177232e60e469.png)
高中物理中力学三大观点的综合应用楼㊀倩(兰州市第七中学ꎬ甘肃兰州730000)摘㊀要:本文主要对力学三大观点进行介绍ꎬ对三大观点的优选原则进行分析ꎬ并结合典型例题ꎬ探讨如何利用力学三大观点解决综合性问题.关键词:高中物理ꎻ力学三大观点ꎻ解题应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)06-0083-03收稿日期:2023-11-25作者简介:楼倩(1986.2-)ꎬ女ꎬ甘肃省兰州人ꎬ本科ꎬ中学一级教师ꎬ从事初高中物理教学研究.㊀㊀高中物理中力学三大观点ꎬ即动力学观点㊁能量观点和动量观点.是高考中必考的考点ꎬ具有综合性强㊁难度大的特征ꎬ常常作为考试的压轴题出现.本文对该部分知识进行了分析ꎬ以便加强学生对三大观点的理解和应用.1力学三大观点概述高中物理中的力学三大观点ꎬ包括动力学观点㊁能量观点和动量观点[1].其中动力学观点是结合牛顿第二定律和匀变速直线运动的规律ꎬ求解物体做匀变速直线运动时速度㊁加速度㊁位移等物理量ꎬ涉及运动的细节ꎬ可以用来处理匀变速运动的相关问题ꎻ能量观点是结合动能定理㊁功能关系㊁机械守恒定律和能量守恒定律ꎬ解决功和能之间的关系ꎬ涉及做功和能量转换ꎬ既能解决匀变速运动的相关问题ꎬ也能处理非匀变速运动问题ꎻ动量观点是涉及动量定理和动量守恒定律ꎬ解决过程只涉及物体的初末速度㊁力㊁时间或者只与初末速度有关ꎬ和能量观点一样ꎬ动量观点适用范围既包括匀变速运动ꎬ也包括非匀变速运动问题.2三大观点的选用原则力学的三大观点ꎬ针对的是不同的物理情境ꎬ解决的是不同的问题.如若误用ꎬ就会降低解题效率ꎬ甚至求出错误答案或者求解过程陷入僵局.因此ꎬ需要对三大观点的选用原则有一定的了解.(1)当物理情境为碰撞㊁爆炸㊁反冲等问题ꎬ若只涉及初㊁末速度而不涉及力㊁时间ꎬ且研究对象为一个系统ꎬ优先选用动量守恒定律ꎬ并联立能量守恒定律进行求解ꎬ需注意所研究的问题是否满足守恒的条件.(2)当涉及运动的具体细节时ꎬ考虑动力学观点进行解题ꎬ能量和动量观点均只关注初末状态ꎬ不考虑运动细节.(3)当问题涉及相对位移时ꎬ可优先考虑能量守恒定律.此时系统克服摩擦力所做的功和系统机械能的减少量相等ꎬ即转变为系统的内能.这种解法可以避免对复杂的运动过程进行分析ꎬ简化解题步骤.(4)若在求解问题时ꎬ需要求出各个物理量在某时刻的大小ꎬ则可以优先运用牛顿第二定律.(5)若研究对象为单一物体ꎬ且涉及功和位移问题时ꎬ应优先考虑动能定理.3热点题型分析3.1应用三大动力学观点解决碰撞㊁爆炸模型例1㊀如图1所示ꎬ水平地面上放置有P㊁Q两个物块ꎬ两者相距L=0.48mꎬP物块的质量为1kgꎬ38Q物块的质量为4kgꎬP物块的左侧和一个固定的弹性挡板接触.已知P物块与水平地面间无摩擦ꎬ且其和弹性挡板碰撞时无能量损失ꎬQ物块与水平地面有摩擦且动摩擦因数为0.1ꎬ重力加速度取10m/s2.某一时刻ꎬP以4m/s的初速度朝着物块Q运动并和其发生弹性碰撞ꎬ回答以下问题:图1㊀例1题图(1)P物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小各为多少?(2)P物块与Q物块第二次碰撞后ꎬ物块Q的瞬间速度大小为多少?解析㊀(1)第一次弹性碰撞后瞬间两物块的速度分别为v1和v2ꎬ有m1v0=m1v1+m2v2ꎬ12m1v02=12m1v21+12m2v22ꎬ求解得v1=-125m/sꎬv2=85m/s.因此ꎬP物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小分别为125m/s㊁85m/s.(2)设碰后Q的加速度为aꎬ则有μmg=ma.假设第二次碰撞前Q没有停止运动ꎬ有x+2L=|v1|t1ꎬx=v2t1-12at21ꎬ解得t1=0.8s.假设第二次碰撞前Q已经停止运动ꎬ有v2=at2ꎬ解得t2=1.6s.所以第二次碰撞前Q没有停止运动.设第二次碰撞前的瞬间ꎬP的速度为vPꎬQ的速度为vQ.碰撞后瞬间ꎬP的速度为vPᶄꎬQ的速度为vQᶄꎬ则:vQ=v2-at1m1vP+m2vQ=m1vPᶄ+m2vQᶄ12m1vP2+12m2vQ2=12m1vPᶄ2+12m2vQᶄ2vP=-v1解得vQᶄ=3625m/s.例2㊀有一组机械组件ꎬ由螺杆A和螺母B组成ꎬ因为生锈难以分开ꎬ图2为装置剖面示意图.某同学将该组件垂直放置于水平面上ꎬ在螺杆A顶端的T形螺帽与螺母B之间的空隙处装入适量火药并点燃ꎬ利用火药将其 炸开 .已知螺杆A的质量为0.5kgꎬ螺母的质量为0.3kgꎬ火药爆炸时所转化的机械能E=6JꎬB与A的竖直直杆间滑动摩擦力大小恒为f=15Nꎬ忽略空气阻力ꎬ重力加速度g=10m/s2.图2㊀例2题图(1)求火药爆炸瞬间螺杆A和螺母B各自的速度大小ꎻ(2)忽略空隙及螺母B的厚度影响ꎬ要使A与B能顺利分开ꎬ求螺杆A的竖直直杆的最大长度L.解析㊀(1)设火药爆炸瞬间螺杆A的速度大小为v1ꎬ螺母B的速度大小分别为v2ꎬ以竖直向下为正方向ꎬ根据能量守恒定律和动量守恒定律ꎬ有0=m1v1+m2v2E=12m1v21+12m2v22求解得v1=-3m/sꎬv2=5m/sꎬ因此杆A的速度大小为3m/sꎬ方向竖直向上ꎻ螺母B的速度大小为5m/sꎬ方向坚直向下.(2)A相对B向上运动ꎬ所受摩擦力f向下ꎬ则对螺杆A由牛顿第二定律可得m1g+f=m1a1ꎬ解得a1=40m/s2ꎬ方向竖直向下.对螺母B由牛顿第二定律可得f-m2g=m2a2ꎬ解得a2=40m/s2ꎬ方向竖直向上.火药爆炸后ꎬA向上做匀减速直线运动ꎬ其减速至零的时间为t1=v1a1=340s.B向下做匀减速直线运动ꎬ其减速至零的时间为t1=v2a2=540s.所以B一直做匀减速运动ꎬA则先做匀减速将速度减至为0而后做匀加速运动ꎬ当两者速度相等时刚好分开ꎬ此时直杆的长度最大.取向下为正方向ꎬ可得v2-a2t3=-v1+a1t3ꎬ解得t3=0.1s.则直杆长度的最大值为L=(v1+v2)t32ꎬ解得L=0.4m.3.2应用三大动力学观点解决多过程问题例3㊀竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接ꎬ小物块B静止48于水平轨道的最左端ꎬ如图3(a)所示.t=0时刻ꎬ小物块A在倾斜轨道上从静止开始下滑ꎬ一段时间后与B发生弹性碰撞(碰撞时间极短)ꎻ当A返回到倾斜轨道上的P点(图中未标出)时ꎬ速度减为0ꎬ此时对其施加一外力ꎬ使其在倾斜轨道上保持静止.物块A运动的v-t图像如图3(b)所示ꎬ图中的v1和t1均为未知量.已知A的质量为mꎬ初始时A与B的高度差为Hꎬ重力加速度大小为gꎬ不计空气阻力.(a)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀(b)图3㊀示意图(1)物块B的质量为多少?(2)物体A在图3(b)所描述的运动过程中ꎬ克服摩擦力做了多少功?(3)已知A物块和B物块和轨道间的摩擦因数是相等的.当物块B停止运动后ꎬ将物块和轨道间的摩擦因数改变ꎬ然后从P点释放物块Aꎬ其运动一段时间后ꎬ刚好能和物块B正好碰上.求改变前后摩擦因数的比值.解析㊀(1)根据图3(b)ꎬ可以得出在t1时刻ꎬ两物块发生了碰撞ꎬ物块A的速度由碰撞前的v1变为碰撞后的v12.碰撞问题ꎬ运用动量守恒和能量守恒观点进行分析ꎬ设物块B的质量为mBꎬ其碰撞后的瞬间速度大小为vB.则有mv1=m(-v12)+mBvB12mv21=12m(-12v1)2+12mBv2B解得mB=3m.(2)求物体A在运动过程中克服摩擦力所做的功的大小ꎬ需要结合能量观点和动力学观点进行求解.设物体A和轨道之间的滑动摩擦力为fꎬP点距地面的高度为hꎬ碰撞前物体A走过的路程为s1ꎬ碰撞之后走过的路程为s2.碰撞之前ꎬ物体A的速度由0加速至v1ꎬ该过程重力做正功ꎬ摩擦力做负功ꎬ根据动能定理ꎬ有mgH-fs1=12mv21-0碰撞之后ꎬ物体A的速度由v12减速至0ꎬ该过程重力和摩擦力均做负功ꎬ根据动能定理ꎬ有-(fs2+mgh)=0-12m(-v12)2在整个过程中ꎬ物体克服摩擦力做功的大小为W=fs1+fs2由图3(b)的v-t图像可知s1=12v1t1s2=12ˑv12ˑ(1.4t1-t1)且s1和s2存在几何关系s2s1=hH联立可得W=215mgH.(3)设轨道和地面之间的夹角为θꎬ改变前的动摩擦因数为μ有W=μmgcosθH+hsinθ设物块B在水平轨道上能够滑行的距离为sᶄꎬ由动能定理有-μmᶄgsᶄ=0-12mᶄvᶄ2设改变后的动摩擦因数为μᶄꎬ依据动能定理有mgh-μᶄmgcosθ hsinθ-μᶄmgsᶄ=0联立可得μμᶄ=119.4结束语总之ꎬ当运用力学三大观点进行解题时ꎬ关键在于明确研究对象和其所经历的物理过程ꎬ并能够根据问题ꎬ应用合适的观点进行求解.该类题对学生的综合素质要求较高ꎬ教学过程切不可机械化㊁模板化ꎬ教师要引导学生多思考㊁多总结ꎬ达到 讲一题会一类 的教学效果ꎬ培养学生的解题思维.参考文献:[1]李得天.利用力学的三大观点解高考力学压轴题[J].高中数理化ꎬ2022(20):34-35.[责任编辑:李㊀璟]58。
高中物理新教材同步选择性必修第一册 主题1 微型专题 动量和能量的综合应用
![高中物理新教材同步选择性必修第一册 主题1 微型专题 动量和能量的综合应用](https://img.taocdn.com/s3/m/b92899ee05a1b0717fd5360cba1aa81144318f84.png)
微型专题 动量和能量的综合应用[学科素养与目标要求]物理观念:进一步理解动能定理、能量守恒定律、动量守恒定律的内容及其含义.科学思维:1.掌握应用动能定理、能量守恒定律、动量守恒定律解题的方法步骤.2.通过学习,培养应用动量观点和能量观点分析综合问题的能力.一、滑块—木板模型1.把滑块、木板看做一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,根据能量守恒定律,机械能的减少量等于因摩擦而产生的热量,ΔE =F f ·s 相对,其中s 相对为滑块和木板相对滑动的路程.3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多.例1 如图1所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上长木板,木板足够长.求:(重力加速度为g )图1(1)木板B 的最大速度的大小;(2)从刚滑上木板到A 、B 速度刚好相等的过程中,木块A 所发生的位移大小;(3)若物块A 恰好没滑离木板B ,则木板至少多长?答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v ,得:v =v 04(2)A 向右减速的过程,根据动能定理有-μmgx 1=12m v 2-12m v 02 则木块A 所发生的位移大小为x 1=15v 0232μg(3)方法一:B 向右加速过程的位移设为x 2.则μmgx2=12×3m v 2,解得:x2=3v0232μg木板的最小长度:L=x1-x2=3v028μg方法二:从A滑上B至达到共同速度的过程中,由能量守恒得:μmgL=12m v02-12(m+3m)v2得:L=3v028μg.[学科素养]例题可用动能定理、牛顿运动定律结合运动学公式、能量守恒定律等方法求木板的长度,通过对比选择培养了对综合问题的分析能力和应用物理规律解题的能力,体现了“科学思维”的学科素养.二、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,系统动量守恒.2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能向内能转化.3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例2如图2所示,在水平地面上放置一质量为M的木块,一质量为m的子弹以水平速度v 射入木块(时间极短且未穿出),若木块与地面间的动摩擦因数为μ,求:(重力加速度为g)图2(1)子弹射入木块的过程中,系统损失的机械能;(2)子弹射入后,木块在地面上前进的距离.答案(1)Mm v22(M+m)(2)m2v22(M+m)2μg解析(1)设子弹射入木块后,二者的共同速度为v′,取子弹的初速度方向为正方向,则由动量守恒得:m v=(M+m)v′①射入过程中系统损失的机械能ΔE=12m v2-12(M+m)v′2②由①②两式解得:ΔE=Mm v22(M+m).(2)子弹射入木块后,二者一起沿地面滑行,设滑行的距离为x,由动能定理得:-μ(M+m)gx=0-12(M+m)v′2③由①③两式解得:x=m2v22(M+m)2μg.子弹打木块模型与滑块—木板模型类似,都是通过系统内的滑动摩擦力相互作用,系统所受的外力为零(或内力远大于外力),动量守恒.当子弹不穿出木块或滑块不滑离木板时,两物体最后有共同速度,相当于完全非弹性碰撞,机械能损失最多.三、弹簧类模型1.对于弹簧类问题,在作用过程中,若系统合外力为零,则满足动量守恒.2.整个过程中往往涉及多种形式的能的转化,如:弹性势能、动能、内能、重力势能的转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短或弹簧拉伸最长时,弹簧连接的两物体速度相等,此时弹簧弹性势能最大.例3 如图3所示,A 、B 、C 三个小物块放置在光滑水平面上,A 紧靠竖直墙壁,A 、B 之间用水平轻弹簧拴接且轻弹簧处于原长,它们的质量分别为m A =m ,m B =2m ,m C =m .现给C 一水平向左的速度v 0,C 与B 发生碰撞并粘合在一起.试求:图3(1)A 离开墙壁前,弹簧的最大弹性势能;(2)A 离开墙壁后,C 的最小速度的大小.答案 (1)16m v 02 (2)v 06解析 (1)B 、C 碰撞前后动量守恒,以水平向左为正方向,则m v 0=3m v ,弹簧压缩至最短时弹性势能最大,由机械能守恒定律可得:E pm =12×3m v 2 联立解得:E pm =16m v 02 (2)A 离开墙壁前,在弹簧恢复原长的过程中,系统机械能守恒.设弹簧恢复原长时,B 、C 的速度为v ′,有E pm =32m v ′2,则v ′=v 03. A 离开墙壁后,在弹簧弹力的作用下速度逐渐增大,B 、C 的速度逐渐减小,当弹簧再次恢复原长时,A 达到最大速度v A ,B 、C 的速度减小到最小值v C .在此过程中,系统动量守恒、机械能守恒.以水平向右为正方向,有3m v ′=m v A +3m v C ,E pm =12m v A 2+32m v C 2, 解得:v C =v 06. 针对训练 如图4所示,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连.将弹簧压紧到不能再压缩时用细线把B 和C 相连,使弹簧不能伸展,以至于B 、C 与弹簧可视为一个整体.现A 以初速度v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起以后,细线突然断开,弹簧伸展,从而使C 与A 、B 分离.已知C 离开弹簧后的速度恰为v 0.求弹簧释放的弹性势能.图4答案 13m v 02 解析 设碰后A 、B 和C 的共同速度的大小为v ,以v 0的方向为正方向,由动量守恒定律得m v 0=3m v ①设C 离开弹簧时,A 、B 的速度大小为v 1,由动量守恒得3m v =2m v 1+m v 0②设弹簧释放的弹性势能为E p ,从细线断开到C 与弹簧分开的过程中机械能守恒,有 12(3m )v 2+E p =12(2m )v 12+12m v 02③ 由①②③式得,弹簧所释放的弹性势能为E p =13m v 02.1.(滑块—木板模型)如图5所示,质量为M 、长为L 的长木板放在光滑的水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上最多能滑行的距离为( )图5A.LB.3L 4C.L 4D.L 2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v0=2M v,μMgs=12-12×2M v2,得s=L2,D项正确,A、B、C2M v0项错误.2.(子弹打木块模型)(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m的子弹以速度v0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图6所示,则上述两种情况相比较,下列说法正确的是()图6A.子弹的末速度大小相等B.系统产生的热量一样多C.子弹对滑块做的功相同D.子弹和滑块间的水平作用力一样大答案ABC解析以v0的方向为正方向,由动量守恒定律得:m v0=(m+M)v,可得滑块最终获得的速度:v=m v0,可知两种情况下子弹的末速度是相同的,故A正确;子弹嵌入下层或上层过M+m程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(两种情况下子弹初、末速度都相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B正确;根据动能定理,滑块动能的增量等于子弹对滑块做的功,所以两次子弹对滑块做的功一样多,故C正确;由Q=F f·x相对知,由于相对位移x相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D错误.3.(弹簧类问题)如图7所示,木块A、B的质量均为2 kg,置于光滑水平面上,B与一水平轻质弹簧的一端相连,弹簧的另一端固定在竖直挡板上,当A以4 m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,弹簧具有的弹性势能大小为()图7A.4 JB.8 JC.16 JD.32 J答案 B解析 由碰撞过程中动量守恒得:m A v A =(m A +m B )v ,代入数据解得v =2 m/s ,所以碰后A 、B 及弹簧组成的系统的机械能为12(m A +m B )v 2=8 J ,当弹簧被压缩至最短时,系统的动能为0,只有弹性势能,由机械能守恒得此时弹簧的弹性势能为8 J.4.(动量与能量的综合)(2018·广东省实验中学、广雅中学、佛山一中高二下期末)如图8所示,一质量为M B =6 kg 的木板B 静止于光滑的水平面上,物块A 的质量M A =6 kg ,停在B 的左端,一质量为m =1 kg 的小球用长为l =0.8 m 的轻绳悬挂在固定点O 上.将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A 发生碰撞后反弹,反弹所能达到的最大高度h =0.2 m ,物块与小球均可视为质点,A 、B 达到共同速度后A 还在木板上,不计空气阻力,g 取10 m/s 2.图8(1)球和物块A 碰后瞬间A 物块的速度大小.(2)A 、B 组成的系统因摩擦损失的机械能.答案 (1)1 m/s (2)1.5 J解析 (1)对于小球,在运动的过程中机械能守恒,则有mgl =12m v 12,得v 1=2gl =4 m/s , mgh =12m v 1′2,得v 1′=2gh =2 m/s 球与A 碰撞过程中,系统的动量守恒,以向右为正方向,则有:m v 1=-m v 1′+M A v A ,解得v A =1 m/s(2)物块A 与木板B 相互作用过程中:M A v A =(M A +M B )v 共,解得v 共=0.5 m/s.A 、B 组成的系统因摩擦而损失的机械能ΔE =12M A v A 2-12(M A +M B )v 共2 代入数据,得出ΔE =1.5 J一、选择题1.如图1所示,在光滑水平面上,有一质量M=3 kg的薄板和质量m=1 kg的物块都以v =4 m/s的初速度相向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.9 m/s时,物块的运动情况是()图1A.做减速运动B.做加速运动C.做匀速运动D.以上运动都有可能答案 A解析开始阶段,物块向左减速,薄板向右减速,当物块的速度为零时,设此时薄板的速度为v1,规定向右为正方向,根据动量守恒定律得:(M-m)v=M v1代入数据解得:v1≈2.67 m/s<2.9 m/s,所以物块处于向左减速的过程中.2.(多选)如图2所示,与水平轻弹簧相连的物体A停放在光滑的水平面上,物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰.在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()图2A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减少D.物体A的速度最大时,弹簧的弹性势能为零答案ABD解析物体B与弹簧接触时,弹簧发生形变,产生弹力,可知B做减速运动,A做加速运动,当两者速度相等时,弹簧的压缩量最大,故A正确.A、B和弹簧组成的系统动量守恒,压缩量最大时,弹性势能最大,根据能量守恒,知此时A、B的动能之和最小,故B正确.弹簧在压缩的过程中,A、B和弹簧组成的系统动量守恒,故C错误.当两者速度相等时,弹簧的压缩量最大,然后A继续加速,B继续减速,弹簧逐渐恢复原长,当弹簧恢复原长时,A的速度最大,此时弹簧的弹性势能为零,故D正确.3.如图3所示,位于光滑水平桌面上的小滑块P和Q质量相等,都可视作质点.Q与水平轻质弹簧相连.设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个碰撞过程中,弹簧具有的最大弹性势能等于( )图3A.P 的初动能B.P 的初动能的12C.P 的初动能的13D.P 的初动能的14答案 B解析 把小滑块P 和Q 以及弹簧看成一个系统,系统的动量守恒.在整个碰撞过程中,当小滑块P 和Q 的速度相等时,弹簧的弹性势能最大.设小滑块P 的初速度为v 0,两滑块的质量均为m ,以v 0的方向为正方向,则m v 0=2m v ,得v =v 02所以弹簧具有的最大弹性势能E pm =12m v 02-12×2m v 2=14m v 02=12E k0,故B 正确. 4.质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图4所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图4A.12m v 2B.μmgLC.12NμmgLD.mM v 22(m +M )答案 D解析 由于箱子M 放在光滑的水平面上,则由箱子和小物块组成的系统动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1系统损失的动能是因为摩擦力做负功ΔE k =-W f =μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误. 5.(多选)如图5所示,木块静止在光滑水平桌面上,一子弹水平射入木块的深度为d 时,子弹与木块相对静止,在子弹入射的过程中,木块沿桌面移动的距离为L ,木块对子弹的平均阻力为F f ,那么在这一过程中下列说法正确的是( )图5A.木块的机械能增量为F f LB.子弹的机械能减少量为F f(L+d)C.系统的机械能减少量为F f dD.系统的机械能减少量为F f(L+d)答案ABC解析子弹对木块的平均作用力大小为F f,木块相对于桌面的位移为L,则子弹对木块做功为F f L,根据动能定理得知,木块动能的增加量,即机械能的增量等于子弹对木块做的功,即为F f L.故A正确.木块对子弹的阻力做功为-F f(L+d),根据动能定理得知:子弹动能的减少量,即机械能的减少量等于子弹克服阻力做功,大小为F f(L+d),故B正确.子弹相对于木块的位移大小为d,则系统克服阻力做功为F f d,根据功能关系可知,系统机械能的减少量为F f d,故C正确,D错误.6.如图6所示,质量为M的小车静止在光滑的水平面上,小车上AB部分是半径为R的四分之一光滑圆弧,BC部分是粗糙的水平面.今把质量为m的小物体从A点由静止释放,小物体与BC部分间的动摩擦因数为μ,最终小物体与小车相对静止于B、C之间的D点,则B、D 间的距离x随各量变化的情况是()图6A.其他量不变,R越大x越大B.其他量不变,μ越大x越大C.其他量不变,m越大x越大D.其他量不变,M越大x越大答案 A解析小车和小物体组成的系统水平方向的动量守恒且为零,所以当小车和小物体相对静止时,系统水平方向的总动量仍为零,则小车和小物体相对于光滑的水平面也静止,由能量守恒得μmgx=mgR,得x=R,选项A正确,B、C、D错误.μ7.(多选)(2018·福州十一中高二下期中)如图7所示,质量为M的长木板A静止在光滑的水平面上,有一质量为m的小滑块B以初速度v0从左侧滑上木板,且恰能滑离木板,滑块与木板间动摩擦因数为μ.下列说法中正确的是()图7A.若只增大v0,则滑块滑离木板过程中系统产生的热量增加B.若只增大M,则滑块滑离木板过程中木板所受到的冲量减少C.若只减小m,则滑块滑离木板时木板获得的速度减小D.若只减小μ,则滑块滑离木板过程中滑块对地的位移减小答案BCD解析滑块滑离木板过程中系统产生的热量等于滑动摩擦力与相对位移的乘积Q=F f L相=μmgL相,因为相对位移没变,所以产生的热量不变,故A错误;由极限法,当M很大时,长木板运动的位移x M会很小,滑块的位移等于x M+L很小,对滑块根据动能定理:-μmg(x M +L)=12m v12-12m v02,可知滑块滑离木板时的速度v1较大,滑块动量变化较小,由动量守恒定律知,木板动量变化也较小,再根据动量定理知,木板受到的冲量较小,故B正确;采用极限法:当m很小时,摩擦力也很小,m的动量变化很小,把长木板和小滑块看成一个系统,满足动量守恒,那么长木板的动量变化也很小,故C正确;当μ很小时,摩擦力也很小,长木板运动的位移x M会很小,滑块的位移等于x M+L也会很小,故D正确.8.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图8所示.现有一质量为m的子弹自左向右水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图8A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块瞬间子弹和木块的共同速度为m v0 M+mC.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m 2v 022g (M +m )2答案 BD解析 从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A 、C 错误;规定向右为正方向,由子弹射入木块瞬间系统动量守恒可知:m v 0=(m +M )v ′ 所以子弹射入木块后的共同速度为:v ′=m v 0M +m ,故B 正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M +m )v ′2=(M +m )gh ,可得上升的最大高度为:h =m 2v 022g (M +m )2,故D 正确.9.(多选)如图9所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧复原过程中某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图9A.弹簧被压缩时所具有的最大弹性势能为mghB.弹簧被压缩时所具有的最大弹性势能为mgh 2C.B 与A 分开后能达到的最大高度为h4D.B 与A 分开后能达到的最大高度不能计算 答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,故A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,解得B 能达到的最大高度为h ′=14h ,故C 正确,D 错误. 10.(多选)如图10所示,图甲表示光滑平台上物体A 以初速度v 0滑到上表面粗糙的水平小车上,车与水平面间的摩擦不计;图乙为物体A 与小车B 的v -t 图象,由此可知( )图10A.小车上表面长度B.物体A 与小车B 的质量之比C.物体A 与小车B 上表面间的动摩擦因数D.小车B 获得的动能 答案 BC解析 由题图乙可知,A 、B 最终以共同速度v 1做匀速运动,不能确定小车上表面长度,故A 错误;以v 0的方向为正方向,由动量守恒定律得,m A v 0=(m A +m B )v 1,解得:m Am B =v 1v 0-v 1,故可以确定物体A 与小车B 的质量之比,故B 正确;由题图乙可以知道A 相对小车B 的位移Δx =12v 0t 1,根据能量守恒得:μm A g Δx =12m A v 02-12(m A +m B )v 12,根据求得的质量关系,可以解出A 与小车B 上表面间的动摩擦因数,故C 正确;由于小车B 的质量不可知,故不能确定小车B 获得的动能,故D 错误. 二、非选择题11.如图11所示,质量m B =2 kg 的平板车B 上表面水平,在平板车左端相对于车静止着一个质量m A =2 kg 的物块A ,A 、B 一起以大小为v 1=0.5 m/s 的速度在光滑的水平面上向左运动,一颗质量m 0=0.01 kg 的子弹以大小为v 0=600 m/s 的水平初速度向右瞬间射穿A 后,速度变为v =200 m/s .已知A 与B 之间的动摩擦因数不为零,且A 与B 最终达到相对静止时A 刚好停在B 的右端,车长L =1 m ,g =10 m/s 2,求:图11(1)A 、B 间的动摩擦因数; (2)整个过程中因摩擦产生的热量. 答案 (1)0.1 (2)1 600 J解析 (1)规定向右为正方向,子弹与A 作用的过程,根据动量守恒定律得:m 0v 0-m A v 1=m 0v +m A v A ,代入数据解得:v A =1.5 m/s ,子弹穿过A 后,A 以1.5 m/s 的速度开始向右滑行,B 以0.5 m/s 的速度向左运动,当A 、B 有共同速度时,A 、B 达到相对静止,对A 、B 组成的系统运用动量守恒,规定向右为正方向,有:m A v A -m B v 1=(m A +m B )v 2, 代入数据解得:v 2=0.5 m/s.根据能量守恒定律知:μm A gL =12m A v A 2+12m B v 12-12(m A +m B )v 22,代入数据解得:μ=0.1.(2)根据能量守恒得,整个过程中因摩擦产生的热量为: Q =12m 0v 02+12(m A +m B )v 12-12m 0v 2-12(m A +m B )v 22,代入数据解得:Q =1 600 J.12.(2018·沂南高二下期中)如图12所示,质量为M 的木块静止于光滑的水平面上,一质量为m 、速度为v 0的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F ,求:图12(1)子弹与木块相对静止时二者共同速度为多大;(2)射入过程中产生的内能和子弹对木块所做的功分别为多少; (3)木块至少为多长时子弹不会穿出.答案 (1)m v 0m +M (2)Mm v 022(M +m ) Mm 2v 022(M +m )2 (3)Mm v 022(M +m )F解析 (1)子弹与木块组成的系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得:m v 0=(m +M )v 解得:v =m v 0m +M(2)由能量守恒定律可知:12m v 02=Q +12(m +M )v 2得产生的热量为:Q =Mm v 022(M +m )由动能定理,子弹对木块所做的功为:W =12M v 2=Mm 2v 022(M +m )2(3)设木块最小长度为L ,由能量守恒定律:FL =Q 得木块的最小长度为:L =Mm v 022(M +m )F13.如图13所示,一光滑水平桌面AB 与一半径为R 的光滑半圆形轨道相切于C 点,且两者固定不动.一长L =0.8 m 的细绳,一端固定于O 点,另一端系一个质量m 1=0.2 kg 的球.当球在竖直方向静止时,球对水平桌面的作用力刚好为零.现将球提起使细绳处于水平位置时无初速度释放.当球m 1摆至最低点时,恰与放在桌面上的质量m 2=0.8 kg 的小铁球正碰,碰后m 1小球以2 m/s 的速度弹回,m 2将沿半圆形轨道运动,且恰好能通过最高点D ,g =10 m/s 2,求:图13(1)m 2在半圆形轨道最低点C 的速度大小; (2)光滑圆形轨道的半径R . 答案 (1)1.5 m/s (2)0.045 m解析 (1)设球m 1摆至最低点时速度为v 0,由机械能守恒定律知 m 1gL =12m 1v 02得v 0=2gL =2×10×0.8 m/s =4 m/sm 1与m 2正碰,两者动量守恒,设m 1、m 2碰后的速度分别为v 1、v 2 以向右的方向为正方向,则m 1v 0=-m 1v 1+m 2v 2 解得v 2=1.5 m/s(2)m 2在CD 轨道上运动时,由机械能守恒有 12m 2v 22=m 2g (2R )+12m 2v D 2由小球m 2恰好能通过最高点D 可知,重力提供向心力, 即m 2g =m 2v D 2R联立代入数据解得R =0.045 m.14.(2018·泉州五中模拟)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为12m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图14所示.物块P 与AB 间的动摩擦因数μ=0.5.用外力推动物块P ,将弹簧压缩至长度l ,然后释放,P 开始沿轨道运动,运动到B 点与Q 物块碰撞后粘在一起,P 、Q 均可看成质点,重力加速度大小为g .若P 、Q 的质量均为m ,求:图14(1)当弹簧被压缩到l 时的弹性势能;(2)P 到达B 点时速度的大小和与Q 物块碰撞后的速度大小; (3)P 、Q 整体运动到D 点时对轨道的压力大小. 答案 (1)12mgl (2)25gl5gl (3)0解析 (1)对弹簧和质量为12m 的物体组成的系统,由能量守恒定律有E p =12mgl (2)从P 释放至运动到B 点的过程中,对P 用动能定理有W 弹-μmg ·4l =12m v P 2又因为W 弹=E p -0=12mgl 解得v P =25gl由P 、Q 碰撞过程中动量守恒有m v P =2m v B 解得v B =5gl(3)B 点到D 点的过程中,P 、Q 整体的机械能守恒,则有12·2m v B 2=12·2m v D 2+2mg ·2l设在D 点时,P 、Q 整体受到轨道的压力为F N ,根据牛顿第二定律,在D 点有F N +2mg =2m v D 2l ,解得F N =0根据牛顿第三定律,P 、Q 整体运动到D 点时对轨道的压力大小F N ′=0.。
高中物理_动量和能量观点的综合运用教学设计学情分析教材分析课后反思
![高中物理_动量和能量观点的综合运用教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/502a9a85647d27284a735148.png)
动量和能量观点的综合运用一、学习目标1、熟练应用动量守恒定律解决问题2、综合应用动量和能量观点解决力学问题和电学问题二、课时安排1课时三、教学过程(一)展示高考题型、典型试题和难度(二)规律方法学生自学、教师总结。
知识回顾1、(多选)光滑水平地面上,A物体质量为m,B物体的质量为2m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图4所示,当A撞上弹簧,弹簧被压缩最短时( AC )A.A、B系统总动量仍然为mvmvB.A的动量变为2C.A、B、弹簧组成的系统机械能守恒D.A、B组成的系统机械能守恒2、如图,固定放置在同一水平面内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中.一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触.现杆在水平向左、垂直于杆的恒力作用下从静止开始沿导轨运动,当速度达到v时(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g.则此时ab杆中的电流大小为,方向,ab杆所受的安培力大小为,方向四、题型探究一、动量和能量观点在力学问题中的综合运用例题1:如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,若斜面体固定,①求推出冰块后小孩的速度大小②冰块在斜面体上上升的最大高度(斜面体足够高).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.根据思维模板小组讨论,然后小组成员独立解题思维导航:①题目中涉及几个物体?冰块上升到最大高度速度是多少?②物体受力情况如何?分别做怎样的运动?能否利用牛顿运动定律求解?是否满足动量守恒?③分析物体所受各力做功情况,谈论每个物理过程能否满足的机械能守恒。
高中物理 高三二轮专题复习:动量守恒定律应用(二)综合计算
![高中物理 高三二轮专题复习:动量守恒定律应用(二)综合计算](https://img.taocdn.com/s3/m/24ca8a59a21614791611283a.png)
v0 gt 6 m/s
细绳绷直瞬间,细绳张力远大于A、B的重力,A、B相互作用, 总动量守恒: mBv0 (mA mB )v
绳子绷直瞬间,A、B系统获得的速度:v=2m/s
之后A做匀减速运动,所以细绳绷直瞬间的速度v即为最大速度,A 的最大速度为2 m/s
mg
H
h
mg
H h tan
mB
gS
设改变后的摩擦因数为μ′ ,然后将A从P点释放,A恰好能与B再次碰上, 即A恰好滑到物块B位置时,速度减为零,以A为研究对象,根据能量守恒定律得:
mgh mg h mgS tan
又据(2)的结论可知:
Wf
2 mgH 15
mg
H h
tan
,得: tan 9
W
1 2
mv22
1 2
mv12
末状态动能 初状态动能
题型一:动量守恒定律与能量的综合应用模型(碰撞类)
(利用动能定理、机械能守恒定律、功能关系或能量守恒定律解题)
2.(2014·北京卷)如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相 切,小滑块A和B分别静止在圆弧轨道的最高点和最低点.现将A无初速释放,A与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R=0.2 m;A和 B的质量相等;A和B整体与桌面之间的动摩擦因数μ=0.2.重力加速度g取10 m/s2. 求:
解析
(3)t 时刻后 A 将继续向左运动,假设它能与静止的 B 碰撞,碰撞前速度的大小 为 vA′,由动能定理有
21mAvA′2-12mAv2A=-μmAg(2l+sB)⑩ 联立③⑧⑩式并代入题给数据得 vA′= 7 m/s⑪ 故 A 与 B 将发生碰撞。设碰撞后 A、B 的速度分别为 vA″和 vB″,由动量守 恒定律与机械能守恒定律有 mA(-vA′)=mAvA″+mBvB″⑫ 21mAvA′2=12mAvA″2+12mBvB″2⑬
高中物理(新人教版)选择性必修一课后习题:第一章 动量和能量的综合应用(课后习题)【含答案及解析】
![高中物理(新人教版)选择性必修一课后习题:第一章 动量和能量的综合应用(课后习题)【含答案及解析】](https://img.taocdn.com/s3/m/b9058758a88271fe910ef12d2af90242a895ab11.png)
习题课:动量和能量的综合应用课后篇巩固提升必备知识基础练1.如图所示,木块A 、B 的质量均为2 kg,置于光滑水平面上,B 与一轻质弹簧的一端相连,弹簧的另一端固定在竖直挡板上,当A 以4 m/s 的速度向B 撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,弹簧具有的弹性势能大小为( )A.4 JB.8 JC.16 JD.32 J、B 在碰撞过程中动量守恒,碰后粘在一起共同压缩弹簧的过程中机械能守恒。
由碰撞过程中动量守恒得m A v A =(m A +m B )v ,代入数据解得v=m A vAm A +m B=2 m/s,所以碰后A 、B 及弹簧组成的系统的机械能为12(m A +m B )v 2=8 J,当弹簧被压缩至最短时,系统的动能为0,只有弹性势能,由机械能守恒得此时弹簧的弹性势能为8 J 。
2.(多选)如图甲所示,在光滑水平面上,轻质弹簧一端固定,物体A 以速度v 0向右运动压缩弹簧,测得弹簧的最大压缩量为x 。
现让弹簧一端连接另一质量为m 的物体B (如图乙所示),物体A 以2v 0的速度向右压缩弹簧,测得弹簧的最大压缩量仍为x ,则( )A.A 物体的质量为3mB.A 物体的质量为2mC.弹簧达到最大压缩量时的弹性势能为32mv 02 D.弹簧达到最大压缩量时的弹性势能为m v 02,设物体A 的质量为M ,由机械能守恒定律可得,弹簧压缩量为x 时弹性势能E p =12Mv 02;对题图乙,物体A 以2v 0的速度向右压缩弹簧,A 、B 组成的系统动量守恒,弹簧达到最大压缩量时,A 、B 二者速度相等,由动量守恒定律有M×(2v 0)=(M+m )v ,由能量守恒定律有E p =12M×(2v 0)2-12(M+m )v 2,联立解得M=3m ,E p =12M×v 02=32mv 02,A 、C 正确,B 、D 错误。
3.如图所示,带有半径为R 的14光滑圆弧的小车的质量为m 0,置于光滑水平面上,一质量为m 的小球从圆弧的最顶端由静止释放,求小球离开小车时,小球和小车的速度。
高中物理之动量观点解决力学问题,动量定理的运用、动量守恒定律的应用、动量和能量的综合应用
![高中物理之动量观点解决力学问题,动量定理的运用、动量守恒定律的应用、动量和能量的综合应用](https://img.taocdn.com/s3/m/a60704c4941ea76e59fa043f.png)
一、“解题快手”动量定理的应用题点(一) 应用动量定理解释生活中的现象[例1] 如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( )A .减小球的动量的变化量B .减小球对手作用力的冲量C .减小球的动量变化率D .延长接球过程的时间来减小动量的变化量[解析] 选C 篮球运动员接传来的篮球时,不能改变动量的变化量,A 、D 错误;根据动量定理,也不能改变冲量,B 错误;由于延长了作用时间,动量的变化慢了,C 正确。
题点(二) 应用动量定理求作用力和冲量[例2] (2015·重庆高考)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t+mg B.m 2gh t -mg C.m gh t +mg D.m gh t -mg[解析] 选A 方法一:设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma又v =at ,解得F =m 2ght +mg 。
方法二:由动量定理得(mg -F )t =0-m v ,得F =m 2gh t+mg 。
选项A 正确。
题点(三) 动量定理和F -t 图像的综合[例3] [多选](2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动。
F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零[解析] 选AB 法一:根据F -t 图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s 、0~2 s 、0~3 s 、0~4 s 内合外力冲量分别为2 N·s 、4 N·s 、3 N·s 、2 N·s ,应用动量定理I =m Δv 可知物块在1 s 、2 s 、3 s 、4 s 末的速率分别为1 m/s 、2 m/s 、1.5 m/s 、1 m/s ,物块在这些时刻的动量大小分别为2 kg·m/s 、4 kg·m/s 、3 kg·m/s 、2 kg·m/s ,则A 、B 项正确,C 、D 项错误。
高中物理必修二第八章—动量与功能关系综合题
![高中物理必修二第八章—动量与功能关系综合题](https://img.taocdn.com/s3/m/89704b784b35eefdc8d333fa.png)
例题6:如图所示,质量均为m的三个小球A、B、C, 置于光滑的水平面上小球B、C间夹有原来已完全压紧
得不能再压缩的弹簧,两小球用细线相连,使弹簧不 能伸展。小球A以初速度V0沿小球B、C的连线方向向B 球运动,相碰后A、B粘合在—起,然后连接B、C间的 细线受到扰动而突然断开,弹簧伸展,从而使C与A、 B分离,脱离弹簧后C的速度为V0。求: (1) 弹簧所释放的弹性势能EP; (2)若使小球A以初速度V向B小球运动,小球C在脱离 弹簧后的速度为2V0,则A球的初速度V应为多大?
⑴ A、B 共同运动的速度。
⑵ A、B之间的动摩擦因数
⑶ A向左运动的最大位移。
例题10:在光滑的水平面上,静止着长为L的方木块 M,今有A、B两颗子弹沿同一轴线,以水平初速 度vA、vB从M的左右两侧同时射入木块。A、B在 木块中射入的深度分别为dA、dB,且 dA>dB,dA +dB<L。如图所示,若子弹射入过程中,木块始 终保持静AB止C,则有( )
的两倍,使他们紧挨着放在光滑的水平面上。让小
滑块仍以水平初速度v0从A的左端开始向右滑动,
如图乙所示。下列说法正确的有C( )
A、小滑块恰能滑到B的右端与B相对静止。 B、小滑块将从B的右端飞离木板。 C、小滑块滑到B的右端之前就与B相对静止。 D、小滑块在B上产生的热量是A上产生的热量的两倍。
例题12:如图所示,长木板ab的b端有固定挡板,木 板连同挡板的质量M=4.0kg,长L=2m,木板静止 在光滑水平面上,质量m=1.0kg的小物块以 v0=4.0m/s的水平初速度从a端滑上木板,并运动b 端与挡板碰撞,碰撞后小物块恰好回到a端而未脱离 木板,已知小物块与木板之间的动摩擦因素μ=0.10, g=10m/s2。求小物块与挡板碰撞过程中损失的机 械能。
动量守恒与能量守恒的综合应用
![动量守恒与能量守恒的综合应用](https://img.taocdn.com/s3/m/1d93aee5f61fb7360b4c6560.png)
动量守恒与能量守恒的综合应用100043北京市苹果园中学 岳建伟 李世凯动量守恒与能量守恒的综合应用,一直以来是高中物理学习的重点知识和解题的难点所在。
对于该知识体系,我认为用好两个方程,建立好关系等式,是解决问题的良好途径。
另外,对于能量的种类有一个详尽的了解也是解决好该问题的关键。
高中物理学中涉及的能量种类一般有:动能,重力势能,弹性势能,电势能,内能等。
这些能量的计算都可以渗透到动量守恒与能量守恒综合应用的题目中。
一、动量守恒与弹性正碰在2009年北京卷理综第24题即涉及动量守恒与弹性正碰,可以建立动量守恒与机械能守恒表达式:'12'112211v m v m v m v m +=+ 1/2m 1v 12+1/2m 2v 22=1/2m 1v 1,2+1/2m 2v 2,2例如:一个运动物体,碰撞一个静止的物体,如果满足弹性正碰,则可建立如下方程:'12'1111v m v m v m +=1/2m 1v 12=1/2m 1v 1,2+1/2m 2v 2,2通过方程求解,可以得到碰后两个物体的速度如下:v 1,=(m 1-m 2)v 1 /(m 1+m 2) v 2,= 2m 1v 1 /(m 1+m 2) 讨论有以下四点:1.如果1m 大于2m ,即有v 1,大于0,v 2,也大于0,但v 1,小于v 2,,即水平面上不可能碰撞第二次;2.如果m 1=m 2 ,则 v 1,=0 v 2,= v 1 即交换速度(动量);3.如果m 小于 m 2,即有v 1,小于0,v 2,大于0,即质量小的物体碰撞质量大的物体,质量小的物体反弹;4.如果m 1<< m 2,则v 1,= -v 1 v 2,= 0。
即如果没有动能损失,质量很小的物体碰撞质量很大的物体,质量小的物体以原速率反弹,质量很大的物体不动。
如在没有动能损失时,弹性小球碰地球。
二、动量守恒与动能和重力势能的守恒【例】一凹槽的弯曲部分为一个四分之一的光滑圆面,底边与光滑水平面相切,其质量为M ,在凹槽弯曲部分的顶部有一个质量为 m 的小球,从静止释放,问小球离开凹槽后,二者的速度各多大?分析:有已知条件可知,相互的支持力和压力为系统物体的内力,系统所受的外力的合力为0,(一维)动量守恒,属于静止反冲的题型,但二者的动能来自何方呢?通过判断得知,来自小球的重力势能。
高中物理 力学三大观点的综合应用
![高中物理 力学三大观点的综合应用](https://img.taocdn.com/s3/m/8fdd4efc4128915f804d2b160b4e767f5bcf8077.png)
第10课时 力学三大观点的综合应用命题规律 1.命题角度:(1)应用力学三大观点解决多过程问题;(2)板-块模型中力学三大观点的应用.2.常考题型:计算题.高考题型1 应用力学三大观点解决多过程问题力学三大观点对比例1 (2021·浙江6月选考·20)如图1所示,水平地面上有一高H=0.4 m的水平台面,台面上竖直放置倾角θ=37°的粗糙直轨道AB、水平光滑直轨道BC、四分之一圆周光滑细圆管道CD和半圆形光滑轨道DEF,它们平滑连接,其中管道CD的半径r=0.1 m、圆心在O1点,轨道DEF的半径R=0.2 m、圆心在O2点,O1、D、O2和F点均处在同一水平线上.小滑块从轨道AB上距台面高为h的P点静止下滑,与静止在轨道BC上等质量的小球发生弹性碰撞,碰后小球经管道CD、轨道DEF从F点竖直向下运动,与正下方固定在直杆上的三棱柱G碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q点,已知小滑块与轨道AB间的动摩擦因数μ=112,sin 37°=0.6,cos 37°=0.8,g取10 m/s2.图1(1)若小滑块的初始高度h =0.9 m ,求小滑块到达B 点时速度v 0的大小;(2)若小球能完成整个运动过程,求h 的最小值h min ;(3)若小球恰好能过最高点E ,且三棱柱G 的位置上下可调,求落地点Q 与F 点的水平距离x 的最大值x max .答案 (1)4 m/s (2)0.45 m (3)0.8 m 解析 (1)小滑块在AB 轨道上运动mgh -μmg cos θ·h sin θ=12m v 02代入数据解得v 0=43gh =4 m/s(2)设小滑块滑至B 点时的速度为v B ,小滑块与小球碰撞后速度分别为v 1、v 2,碰撞过程中动量守恒,机械能守恒,因此有m v B =m v 1+m v 2,12m v B 2=12m v 12+12m v 22解得v 1=0,v 2=v B小球沿CDEF 轨道运动,在最高点可得mg =mv E min2R从C 点到E 点由机械能守恒可得12m v E min2+mg (R +r )=12m v B min2其中v B min =43gh min ,解得h min =0.45 m(3)设F 点到G 点的距离为y ,小球从E 点到Q 点的运动,由动能定理mg (R +y )=12m v G 2-12m v E min 2由平抛运动规律可得x =v G t ,H +r -y =12gt 2联立可得水平距离为x =2(0.5-y )(0.3+y )由数学知识可得,当0.5-y =0.3+y 时,x 有最大值最大值为x max =0.8 m .高考题型2 应用力学三大观点解决板—块模型问题1.滑块和木板组成的系统所受的合外力为零时,优先选用动量守恒定律解题;若地面不光滑或受其他外力时,需选用动力学观点解题.2.滑块与木板达到相同速度时应注意摩擦力的大小和方向是否发生变化.3.应注意区分滑块、木板各自的相对地面的位移和它们的相对位移.用运动学公式或动能定理列式时位移指相对地面的位移;求系统摩擦生热时用相对位移(或相对路程).例2 如图2所示,水平面上有一长为L =14.25 m 的凹槽,长为l =334m 、质量为M =2 kg的平板车停在凹槽最左端,上表面恰好与水平面平齐.水平轻质弹簧左端固定在墙上,右端与一质量为m =4 kg 的小物块接触但不连接.用一水平力F 缓慢向左推小物块,当力F 做功W =72 J 时突然撤去力F .已知小物块与平板车之间的动摩擦因数为μ=0.2,其他摩擦不计,g 取10 m/s 2,平板车与凹槽两端的碰撞均为弹性碰撞,且碰撞时间极短,可以忽略不计.求:图2(1)小物块刚滑上平板车时的速度大小;(2)平板车第一次与凹槽右端碰撞时的速度大小;(3)小物块离开平板车时平板车右端到凹槽右端的距离.答案 (1)6 m/s (2)4 m/s (3)3518m解析 (1)由题知W =12m v 02 ,解得v 0=6 m/s(2)物块滑上平板车后,假设平板车与凹槽右端碰撞前已与物块共速,由动量守恒得m v 0=(M +m )v 1设物块在平板车上滑动的距离为l 1,对此过程由动能定理得:μmgl 1=12m v 02-12(M +m )v 12解得v 1=4 m/s ,l 1=3 m设达到共速v 1时平板车的位移为x 1,有μmgx1=12M v12-0解得x1=2 m,l+x1=414m<L=14.25 m所以共速时平板车没有到达凹槽右端,共速后做匀速直线运动,平板车第一次与凹槽右端碰撞时的速度大小为4 m/s.(3)平板车第一次与凹槽右端碰撞后,物块和平板车组成的系统总动量向右,以向右为正方向.假设物块与平板车第二次共速前未与凹槽相碰,由动量守恒有m v1-M v1=(m+M)v2碰撞后物块在平板车上滑动的距离设为l2,由动能定理得μmgl2=12(m+M)v12-12(m+M)v22解得v2=43m/s,l2=163m因为l2+l1=253m>l=334m所以物块已从平板车上滑下,不能第二次共速.设平板车向左速度减小到0时位移为x2-μmgx2=0-12M v12解得x2=2 ml+x2=414m<L=14.25 m所以平板车没有与凹槽左端相碰.即小物块离开平板车之前,未与平板车第二次共速;且平板车没有与凹槽左端相碰.所以由动量守恒得m v1-M v1=m v3+M v4碰撞后物块在平板车上实际滑动的距离设为l3,由动能定理得μmgl3=12(M+m)v12-12m v32-12M v42l=l1+l3解得v3=53m/s,v4=23m/s碰撞后,至物块离开平板车时,平板车运动的位移设为x3,由动能定理得-μmgx3=12M v42-12M v12解得x 3=3518m小物块离开平板车时平板车右端到凹槽右端的距离为x 3=3518m.1.(2021·山东滨州市高三期末)某电视台一档闯关节目中,沙袋通过轻质细绳悬挂于A 点正上方的O 点,闯关者水平向左速度为v =10 m/s ,在A 点抱住沙袋一起向左摆动,细绳摆到与竖直方向成角度θ=37°时松手,闯关者恰好落到另一侧平台的B 点,A 、B 在同一水平面上,如图3所示,沙袋到悬点O 的距离为L =5 m ,闯关者的质量为M =60 kg ,沙袋质量为m =40 kg ,当地重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,沙袋和闯关者视为质点.求:图3(1)闯关者刚抱住沙袋时的共同速度大小;(2)闯关者抱住沙袋向左摆动过程中,细绳的最大拉力大小;(3)A 、B 两点间的距离.(结果保留两位有效数字)答案 (1)6 m/s (2)1 720 N (3)5.4 m解析 (1)设闯关者刚抱住沙袋时的共同速度为v 1,由动量守恒定律可得M v =(M +m )v 1代入数据可得v 1=6 m/s(2)在A 点刚抱住沙袋时,绳子拉力最大,设最大拉力为F T F T -(M +m )g =(M +m )v 12L 代入数据可得F T =1 720 N(3)细绳与竖直方向夹角为θ时,闯关者与沙袋的速度大小为v 2,由机械能守恒定律可知12(M +m )v 12=12(M +m )v 22+(M +m )g (L -L cos θ)闯关者松手后做斜抛运动,设经过时间t 落到另一侧平台的B 点,AB 间距离为s ,由运动学公式可得-(L-L cos θ)=v2t sin θ-12gt2,x=v2t cos θA、B之间距离为s=x+L sin θ代入数据解得s≈5.4 m.2.(2021·辽宁葫芦岛市高三期末)如图4所示,有一倾角θ=37°的固定斜面,斜面底端固定有一垂直斜面的挡板P,将质量m 1=1 kg的“”形木板(前端挡板厚度忽略)单独从斜面上端由静止释放,木板与挡板P发生碰撞后,沿斜面上升的最大距离为s=0.15 m;若将光滑物块(视为质点)放在木板最上端并同时由静止释放(木板位置与上次释放时初位置相同).已知:物块的质量m2=2 kg,释放时木板下端到挡板P的距离L1=3 m,木板长L2=0.75 m,g=10 m/s2,sin θ=0.6,cos θ=0.8,木板与挡板P碰后速率均为碰前速率的一半,物块与木板前端挡板碰撞后立刻粘合在一起,最大静摩擦力等于滑动摩擦力,求:图4(1)木板与斜面间的动摩擦因数;(2)物块与木板前端挡板碰撞过程中系统损失的机械能;(3)物块与木板前端挡板碰撞后开始计时,到木板第2次速度减为零时,这个过程中木板滑行的总路程.答案 (1)0.5 (2)3 J (3)3.41 m解析 (1)木板单独下滑,由能量守恒定律得m1gL1sin θ=μm1g cos θ·L1+12m1v2木板与挡板碰撞后上升,由能量守恒定律得1 2m1(12v)2=m1gs·sin θ+μm1g cos θ·s解得μ=0.5.(2)木板与物块同时释放,木板与斜面间的最大静摩擦力F f1=μ·(m1+m2)g cos θF f1>m1g sin θ故开始时木板静止不动.物块下滑至与木板下端碰撞前过程中,由动能定理有m2gL2sin θ=12m2v02碰撞前物块速度v0=3 m/s,碰撞后物块与木板整体速度设为v′,由动量守恒定律得m2v0=(m1+m2)v′损失的机械能ΔE =12m 2v 02-12(m 1+m 2)v ′2解得ΔE =3 J.(3)设木板与物块一起在斜面上向下运动的加速度大小为a 1,向上运动的加速度大小为a 2,则(m 1+m 2)g sin θ-μ(m 1+m 2)g cos θ=(m 1+m 2)a 1(m 1+m 2)g sin θ+μ(m 1+m 2)g cos θ=(m 1+m 2)a 2a 1=2 m/s 2,a 2=10 m/s 2木板与物块粘合后一起加速下滑v 12-v ′2=2a 1L 1第一次撞击后木板上滑的距离(v 12)2=2a 2s 1解得s 1=0.2 m第二次撞击木板时速度v 2,则v 22=2a 1s 1第二次撞击后木板上滑的距离(v 22)2=2a 2s 2s 2=0.01 m物块与木板前端挡板碰撞后开始计时,到木板第2次速度减为零时,这个过程中木板滑行的总路程s 总=L 1+2s 1+s 2=3.41 m.专题强化练1.(2021·辽宁省1月适应性测试·13)如图1所示,水平圆盘通过轻杆与竖直悬挂的轻弹簧相连,整个装置处于静止状态.套在轻杆上的光滑圆环从圆盘正上方高为h 处自由落下,与圆盘碰撞并立刻一起运动,共同下降h2到达最低点.已知圆环质量为m ,圆盘质量为2m ,弹簧始终在弹性限度内,重力加速度为g ,不计空气阻力.求:图1(1)碰撞过程中,圆环与圆盘组成的系统机械能的减少量ΔE ;(2)碰撞后至最低点的过程中,系统克服弹簧弹力做的功W .答案 (1)23mgh (2)116mgh解析 (1)碰撞前,圆环做自由落体运动,有v 12=2gh 碰撞时由动量守恒定律得m v 1=(m +2m )v 2系统机械能减少量:ΔE =12m v 12-12(m +2m )v 22解得ΔE =23mgh(2)对系统碰撞后至最低点过程中,由动能定理得(m +2m )g ·h 2+W =0-12(m +2m )v 22解得W =-116mgh 故系统克服弹簧弹力做的功为116mgh .2.(2021·山东德州市一模)如图2所示,可看作质点的小物块A 的质量m =1 kg ,右端带有竖直挡板的足够长的木板B ,它的质量M =2 kg ,木板B 上M 点左侧与小物块A 间的动摩擦因数μ=0.5,M 点右侧光滑,M 点与木板右侧挡板的距离L 1=1.5 m ,水平地面光滑.初始时木板B 静止,A 在木板B 上M 点的左侧,与M 点的距离L 2=1.8 m ,现使A 获得一水平向右的初速度,初速度大小v 0=6 m/s ,A 与B 右侧挡板碰撞的时间和能量损失都不计,重力加速度g =10 m/s 2.求:图2(1)A 第一次到达M 点时,A 和B 各自的速度大小;(2)A 和B 达共同速度时,A 距M 点的距离;(3)自初始时至A 、B 碰撞,A 的平均速度大小;(4)自初始时至A、B达共同速度,A向右运动的位移大小.答案 (1)4 m/s 1 m/s (2)0.6 m (3)4.44 m/s (4)4.4 m解析 (1)自初始时至A第一次到达B上的M点,由动量守恒得m v0=m v1+M v2由能量守恒定律有12m v02=12m v12+12M v22+μmgL2联立两式代入数据解得v1=4 m/s,v2=1 m/s(2)自初始时至A和B达共同速度,由动量守恒得m v0=(m+M)v由能量守恒定律得12m v02=12(m+M)v2+μmgLΔL=L-L2联立解得,A距M点的距离ΔL=0.6 m(3)自初始时至A第一次到达B上的M点,由动能定理得-μmgx1=12m v12-12m v02,解得x1=2 m又x1=v0+v12t1,解得t1=0.4 s自A第一次到达B上的M点至到达右侧挡板,L1=(v1-v2)t2,解得t2=0.5 s,则x2=v1t2=2 m自初始时至A、B碰撞,A的平均速度v=x1+x2 t1+t2解得v=409m/s≈4.44 m/s(4)A与B右侧挡板碰撞过程,由动量守恒得m v1+M v2=m v1′+M v2′由能量守恒定律得1 2m v12+12M v22=12m v1′2+12M v2′2解得v1′=0,v2′=3 m/sA第二次经过M点后,有μmgx3=12m v2-12m v1′2解得x3=0.4 m自初始时至A、B达共同速度,A向右运动的位移x=x1+x2+x3=4.4 m.3.(2021·福建厦门市一模)如图3所示,一质量m1=0.1 kg的物块甲静止在A点,物块甲与墙壁间有一压缩状态的水平轻弹簧,物块甲从静止状态释放后被弹簧弹出,沿水平面向左运动与另一质量m 2=0.3 kg 的物块乙碰撞(时间极短)后粘在一起滑出B 点,滑上半径R =0.5 m 的半圆弧轨道(直径CD 竖直),两物块经过半圆弧轨道的最低点D 时对D 点的压力大小F N =84 N .木板质量M =0.4 kg 、长度L =6 m ,上表面与半圆弧轨道相切于D 点,木板与右侧平台P 等高,木板与平台相碰后瞬间静止.已知两物块与木板间的动摩擦因数μ=0.5,其余摩擦不计,两物块均可视为质点,木板右端与平台P 左侧的距离为s ,取重力加速度大小g =10 m/s 2.求:图3(1)两物块经过D 点时的速度大小v D ;(2)释放物块前弹簧的弹性势能E p 和碰撞过程中损失的能量E ;(3)物块滑上平台P 时的动能E k 与s 的关系.答案 (1)10 m/s (2)64 J 48 J (3)见解析解析 (1)两物块经过D 点时受到半圆弧轨道的支持力、重力,有F N -(m 1+m 2)g =(m 1+m 2)v D 2R ,得v D =10 m/s(2)两物块由C 点运动到D 点,由动能定理有2(m 1+m 2)gR =12(m 1+m 2)v D 2-12(m 1+m 2)v C 2解得v C =45 m/s两物块发生碰撞时粘在一起说明发生了完全非弹性碰撞,有(m 1+m 2)v C =m 1v 0,得v 0=165 m/s弹簧的弹性势能全部转化为物块甲的动能,有E p =12m 1v 02=64 J碰撞过程中损失的能量E =12m 1v 02-12(m 1+m 2)v C 2得E =48 J(3)若两物块与木板能达到共同速度,由动量守恒定律得(m 1+m 2)v D =(m 1+m 2+M )v 共得v 共=5 m/s对两物块,由动能定理有-μ(m 1+m 2)gx =12(m 1+m 2)v 共2-12(m 1+m 2)v D 2解得x =7.5 m对木板有μ(m 1+m 2)gx ′=12M v 共2,得x ′=2.5 m由于L +x ′>x ,所以两物块有与木板达到共同速度的必要条件,若s ≥x ′=2.5 m ,说明两物块能和木板达到共同速度,由能量守恒定律有E k =12(m 1+m 2)v 共2-μ(m 1+m 2)g (L +x ′-x )=3 J 若s <x ′=2.5 m ,说明两物块不能和木板达到共同速度,由能量守恒定律有E k =12(m 1+m 2)v D 2-μ(m 1+m 2)g (L +s )=(8-2s ) J.4.(2021·山东日照市高三一模)如图4所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在水平地面上方,B 球距地面的高度h =1.8 m ,A 球在B 球的正上方,距地面的高度H =4.2 m .同时将两球释放,经过一段时间后两球发生第一次弹性正碰.所有碰撞时间忽略不计,已知m B =3m A ,重力加速度g =10 m/s 2,忽略空气阻力和球的大小及所有碰撞中的动能损失.求:图4(1)第一次碰撞点距地面的高度;(2)第一次碰后A 球上升的最大距离;(3)两球第二次相碰时距地面的高度(计算中取6≈2.45,结果保留两位有效数字).答案 (1)1 m (2)5 m (3)0.89 m解析 (1)设释放后t 1时刻B 球落地h =12gt 12,t 1=2hg =0.6 s ,B 球速度大小v 1与A 球速度大小相等v 1=gt 1,v 1=6 m/s ,此时A 球距离地面H 1=H -h =2.4 m设B 球反弹后再经过t 2时间相遇,有v 1t 2-12gt 22+v 1t 2+12gt 22=H 1,解得t 2=0.2 s 第一次碰撞点距地面的高度h 1=v 1t 2-12gt 22,解得h 1=1 m(2)碰撞前A 球的速度v A =v 1+gt 2=8 m/sB 球的速度大小v B =v 1-gt 2=4 m/sA 、B 碰撞过程动量守恒,机械能守恒,规定竖直向上为正方向3m v B -m v A =3m v B 1′+m v A 1′12×3m v B 2+12m v A 2=12×3m v B 1′2+12m v A 1′2联立得v B 1′=-2 m/s ,v A 1′=10 m/s球A 上升的最大距离h ′=v A 1′22g=5 m (3)第一次碰后B 球再经t 3时间与地面第二次相碰,碰撞前速度v B 2=v B 1′2+2gh 1=26m/s =4.9 m/s第一次碰撞后B 球下落时间t 3=v B 2-|v B 1′|g =0.29 s 第一次碰后经过t 3′=v A 1′g =1 s ,A 球运动到最高点.B 球在t 3+v B 2g=0.78 s 末到达最高点,高度为1.2 m ,在1.27 s 时刻落地,反弹速度为4.9 m/s ,A 球从最高点下落t A =0.27 s 时离地面高度为5.635 5 m ,此时速度v A 2=gt A =2.7 m/s设再经时间t 4相遇,有v B 2t 4-12gt 42+v A 2t 4+12gt 42=5.635 5 m ,解得:t 4≈0.74 s ,第二次相碰点距地面的高度为H 2=v B 2t 4-12gt 42,代入数据解得H 2≈0.89 m.。
能量和动量的综合应用(超详细)
![能量和动量的综合应用(超详细)](https://img.taocdn.com/s3/m/9895a6114431b90d6c85c78a.png)
【本讲主要内容】能量和动量的综合应用相互作用过程中的能量转化及动量守恒的问题【知识掌握】【知识点精析】1. 应用动量和能量的观点求解的问题综述:该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。
要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。
因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。
2. 有关机械能方面的综述:(1)机械能守恒的情况:例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。
等等……(2)机械能增加的情况:例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。
等等……(3)机械能减少的情况:例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析:如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。
滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。
因水平面光滑,合外力为零,以A 、B 为系统,动量守恒。
(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。
由动量守恒定律可求出共同速度0v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。
由图可知,s A ≠s B ,且s A =(s B +Δs ),根据动能定理:对A :W fA =2020202B 21)(212121)(mv m M mv m mv mv s s f -+=-=∆+- 对B :202B fB )(21021mM mv M Mv fs W +=-== 以上两式表明:滑动摩擦力对A 做负功,对B 做正功,使A 的动能减少了,使B 的动(1)撤去力F 后木块B 能够达到的最大速度是多大?(2)木块A 离开墙壁后,弹簧能够具有的弹性势能的最大值多大?分析:本题第一问,撤去力F 后木块B 只在弹簧弹力作用下运动,木块A 不动,弹簧的弹性势能转化为木块B 的动能,弹簧第一次恢复原长时,木块B 有最大速度。
高中物理高考 第7章 第1讲 动量定理及应用 2023年高考物理一轮复习(新高考新教材)
![高中物理高考 第7章 第1讲 动量定理及应用 2023年高考物理一轮复习(新高考新教材)](https://img.taocdn.com/s3/m/45c8b006effdc8d376eeaeaad1f34693dbef1070.png)
汽车剧烈碰撞瞬间,安全气囊弹出,立即跟司机身体接触.司机在很 短时间内由运动到静止,动量的变化量是一定的,由于安全气囊的 存在,作用时间变长,据动量定理Δp=FΔt知,司机所受作用力减 小;又知安全气囊打开后,司机受力面积变大,因此减小了司机单 位面积的受力大小;碰撞过程中,动能转化为内能.综上可知,选项 D正确.
生活实践类
安全行车(安全气囊)、交通运输(机车碰撞、喷气式飞机)、体育运动(滑冰接力、球类运动)、火箭发射、爆 炸、高空坠物
学习探究类
气垫导轨上滑块碰撞、斜槽末端小球碰撞
第1讲 动量定理及应用
目标 1.能用动量定理解释生活中的有关现象.2.能利用动量定理解决相关问题,会在流体力学中建立 要求 “柱状”模型.
大一轮复习讲义
第七章 动量
考 情 分 析
试题 情境
考查内容 动量 动量定理
动量守恒定律
动量和能量的综合 实验:验证动量定理
自主命题卷
2021·湖南卷·T2 2019·北京卷·T24
2021·山东卷·T11 2021·广东卷·T13 2021·河北卷·T13 2020·江苏卷·T12(3) 2020·北京卷·T13 2019·江苏卷·T12(1) 2018·天津卷·T9(1) 2018·海南卷·T14 2020·天津卷·T11 2020·山东卷·T18 2021·江苏卷·T11
考向2 应用动量定理处理微粒类问题
例8 宇宙飞船在飞行过程中有很多技术问题需要解决,其中之一就是 当飞船进入宇宙微粒尘区时,如何保持速度不变的问题.假设一宇宙飞船 以v=2.0×103 m/s的速度进入密度ρ=2.0×10-6 kg/m3的微粒尘区,飞船 垂直于运动方向上的最大横截面积S=5 m2,且认为微粒与飞船相碰后都 附着在飞船上,则飞船要保持速度v不变,所需推力多大? 答案 40 N
高中物理:《动量和能量的综合应用》教案
![高中物理:《动量和能量的综合应用》教案](https://img.taocdn.com/s3/m/c8cdaf0d80eb6294dc886cbb.png)
动量和能量的综合应用一. 教学内容:动量和能量的综合应用二. 重点、难点:1. 重点:分过程及状态使用动量守恒和能量规律2. 难点:动量和能量的综合应用【典型例题】[例1](1)如图,木块B 与水平桌面的接触是光滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧(质量不可忽略)合在一起作为研究对象(系统),此系统从子弹开始射入到弹簧压缩到最短的整个过程中,动量是否守恒。
(2)上述情况中动量不守恒而机械能守恒的是( )A. 子弹进入物块B 的过程B. 物块B 带着子弹向左运动,直到弹簧压缩量达最大的过程C. 弹簧推挤带着子弹的物块B 向右移动,直到弹簧恢复原长的过程D. 带着子弹的物块B 因惯性继续向右移动,直到弹簧伸长量达最大的过程答案:(1)不守恒;(2)BCD解析:以子弹、弹簧、木块为研究对象,分析受力。
在水平方向,弹簧被压缩是因为受到外力,所以系统水平方向动量不守恒。
由于子弹射入木块过程,发生剧烈的摩擦,有摩擦力做功,系统机械能减少,也不守恒。
[例2] 在光滑水平面上有A 、B 两球,其动量大小分别为10kg ·m/s 与15kg ·m/s ,方向均为向东,A 球在B 球后,当A 球追上B 球后,两球相碰,则相碰以后,A 、B 两球的动量可能分别为( )A. 10kg ·m/s ,15kg ·m/sB. 8kg ·m/s ,17kg ·m/sC. 12kg ·m/s ,13kg ·m/sD. -10kg ·m/s ,35kg ·m/s答案:B解析:① A 与B 相碰时,B 应做加速,故p B ′>p B ,即B 的动量应变大,故A 、C 不对,因A 、C 两项中的动量都不大于p B =15kg ·m/s 。
② A 、B 相碰时,动能不会增加,而D 选项碰后E k ′=BA B A m m m m 2152102352012222+>+ 故不合理。
18.2021高考物理力学三大观点的综合利用
![18.2021高考物理力学三大观点的综合利用](https://img.taocdn.com/s3/m/c17bd726f90f76c660371a86.png)
课堂精讲
(2)A、B两球碰撞后A球弹回,向左做匀减速直线运动,B球向右做匀速直线运动,A 球速度减小到零后反向向右做匀加速直线运动,当二者速度相同时,距离最远。 设从碰撞到共速经历的时间为t 对A球a=qmE=9 m/s2 v2=v1+at 解得t=23 s 对两球xA=v1t+12at2,xB=v2t 最大距离Δx=xB-xA=2 m。 答案 (1)-2 m/s 4 m/s (2)2 m
首页
课堂精讲
(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送 带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再 碰撞。则对A、B和弹簧组成的系统,从第二次碰撞后到不再碰撞,满足 2nμ1mgl=12mv2 解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5≈6(取 整数) 答案 (1)4 m/s (2)12.25 J (3)6次
A.导体棒克服安培力做的功等于导体棒上 产生的焦耳热 B.质量m=0.2 kg,加速度a=1.5 m/s2 C.前4 s内拉力F的冲量大小为9.2 N·s D.若4 s末撤去拉力F,则拉力F撤去后定值 电阻R上产生的焦耳热为3.6 J
首页
课堂精讲
解析 导体棒克服安培力做的功等于产生的电能,等于系统(导体棒和电阻)所产生的
首页
课堂精讲
1.如图所示,间距 L=1 m、电阻不计的足够长的光滑平行金属导轨水平放置,导轨右 侧接入 R=2 Ω 的定值电阻。长 L=1 m、电阻 r=1 Ω、质量为 m 的导体棒垂直导轨放 置,整个装置处于方向竖直向下的匀强磁场中,磁感应强度 B=1 T,现在导体棒上施 加水平向左的拉力 F,拉力 F 随时间变化的关系为 F=12t+130(N),导体棒从静止开始以 大小为 a 的加速度做匀加速直线运动,运动过程中始终保持与导轨垂直并接触良好。下 列说法正确的是( B )
高中物理专题【力学“三大观点”的综合应用】
![高中物理专题【力学“三大观点”的综合应用】](https://img.taocdn.com/s3/m/ce58d9ca6037ee06eff9aef8941ea76e58fa4a32.png)
14
(1)若木板长 L=1 m,在铁块上加一个水平向右的恒力 F=8 N,经过多长时间铁块运 动到木板的右端?
(2)若在木板(足够长)的右端施加一个大小从零开始连续增加的水平向左的力 F,请在 图乙中画出铁块受到的摩擦力 f 随力 F 大小变化的图象.
解析:(1)以铁块为研究对象 F-μ2mg=ma1 对木板有 μ2mg-μ1(mg+Mg)=Ma2 L=12a1t2-12a2t2 解得 t=1 s.
栏目导航
16
③当 F>10 N 时,铁块相对木板滑动,此时摩擦力 f=μ2mg=4 N 故铁块受到的摩擦力 f 随力 F 大小变化的图象如图所示.
答案:(1)1 s (2)见解析图
栏目导航
17
C 考点二
用动力学和能量观点解决多过程问题
[考点分析] 1.命题特点:动力学观点和能量观点是解答力学问题的两种重要方法,等级考题中 常把这两种方法综合起来考查,题型多为计算题,难度较大. 2.思想方法:守恒思想、全程法和分段法、模型法等.
栏目导航
32
A.物体的加速度大小为 2 m/s2 B.弹簧的伸长量为 3 cm C.弹簧的弹力做功为 30 J D.物体的重力势能增加 36 J
栏目导航
33
解析:B 根据 v-t 图象的斜率可知,物体的加速度大小为 a=ΔΔvt =1 m/s2,选项 A 错 误;对物体受力分析,受到竖直向下的重力 mg、斜面的支持力和轻弹簧的弹力 F,由牛 顿第二定律,F-mgsin 30°=ma,解得 F=6 N.由胡克定律 F=kx 可得弹簧的伸长量 x =3 cm,选项 B 正确;在 t=1 s 到 t=3 s 这段时间内,物体动能增加 ΔEk=12mv22-12mv21= 6 J,根据 v-t 图象与时间轴所围面积等于位移,可知物体沿斜面向上运动的位移 x=6 m, 物体重力势能增加 ΔEp=mgxsin 30°=30 J,根据功能关系可知,弹簧弹力做功 W=ΔEk+ ΔEp=36 J,选项 C、D 错误.
高中物理-专题六第2课时 电学中的动量和能量问题
![高中物理-专题六第2课时 电学中的动量和能量问题](https://img.taocdn.com/s3/m/a89166de0875f46527d3240c844769eae009a367.png)
第2课时电学中的动量和能量问题专题复习定位解决问题本专题主要培养学生应用动量定理、动量守恒定律、动能定理、机械能守恒定律和能量守恒定律分析与解决电学综合问题。
高考重点动量定理和动量守恒定律在电学中的理解及应用;应用动量和能量观点解决电场和磁场问题;电磁感应中的动量和能量问题。
题型难度本专题针对综合性计算题的考查,一般过程复杂,要综合利用电学知识、动量和能量观点分析问题,综合性较强,难度较大。
高考题型1电磁感应中的动量和能量问题类型1动量定理和能量观点的应用【例1】(2021·江苏省普通高等学校全国统一考试模拟)如图1所示,CD、EF是两条水平放置的阻值可忽略的平行金属导轨,其左右端都与接有阻值为R的倾斜光滑轨道平滑连接,导轨间距都为d,在水平导轨的右侧存在磁感应强度方向垂直于导轨平面向下的匀强磁场,磁感应强度大小为B,磁场区域的宽度为L1。
现将一阻值为r、质量为m的导体棒从右侧倾斜轨道上高h处由静止释放,导体棒最终停在距离磁场的左边界为L2处。
已知右侧倾斜轨道与竖直方向夹角为θ,导体棒始终与导轨垂直且接触良好,且导体棒与水平导轨动摩擦因数为μ,重力加速度为g。
求:图1(1)通过导体棒的最大电流;(2)左侧电阻R上产生的焦耳热;(3)导体棒在水平导轨上运动的时间。
答案 (1)2Bd 2gh R +2r (2)R 2(R +2r )mg (h -μL 1-μL 2) (3)1μ2h g -2B 2d 2L 1μmg (R +2r )解析 (1)质量为m 的导体棒从倾斜轨道上h 高处由静止释放,刚进入磁场时速度最大,由机械能守恒定律得mgh =12m v 2解得最大速度v =2gh产生的最大感应电动势E m =Bd v =Bd 2gh由闭合电路欧姆定律可得通过导体棒的最大电流I m =E m R 2+r =2Bd 2gh R +2r 。
(2)由能量守恒定律可知整个电路中产生的焦耳热Q =mgh -μmg (L 1+L 2)电阻R 中产生的焦耳热 Q R =R 2(R +2r )mg (h -μL 1-μL 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
mB vB2
代入数据解得vA vB 3m / s
由于A在炸药爆炸后再次追上B的时候弹簧恰好第一次恢复到原长,则在A追上B之前弹簧 已经有一次被压缩到最短(即弹性势能最大),爆炸后取B、C和弹簧为研究系统,当弹簧第一次 被压缩到最短时B、C达到共速vBC,此时弹簧的弹性势能最大,设为Ep1.
ቤተ መጻሕፍቲ ባይዱ解得vAB 1m / s
当A、B、C三者达到共同速度v
时,弹簧的
ABC
弹性势能最大为Ep2
由动量守恒,得
mA mB vAB mC vC1 mA mB mC vABC
由能量守恒,得
1
2
mA mB
v A2 B
1 2
mC vC21
1 2
mA mB mC
v2 ABC
Ep2
代入数据得Ep2 0.5J
【变式题】如图232所示,劲度系数为k=200N/m的轻弹簧一端固定在墙上,另一端连一质 量 为 M=8kg 的 小 车 a , 开 始 时 小 车 静 止 , 其 左 端 位 于 O 点 , 弹 簧 没 有 发 生 形 变 , 质 量 为 m=1kg的小物块b静止于小车的左侧,距O点s=3m,小车与水平面间的摩擦不计,小物块与 水平面间的动摩擦因数为μ=0.2,取g=10m/s2.今对小物块施加大小为F=8N的水平恒力使之 向右运动,并在与小车碰撞前的瞬间撤去该力,碰撞后小车做振幅为A=0.2m的简谐运动,
【例1】如图231所示,在足够长的光滑水平轨道上静止放置三个小木块A、B、C,质量 分别为mA=1kg,mB=1kg,mC=2kg,其中B与C用一个轻弹簧固定连接,开始时整个装置 处于静止状态;A和B之间有少许塑胶炸药,A的左边有一个弹性挡板(小木块和弹性挡板 碰撞过程没有能量损失).
图231
现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J转化为A和B沿轨道方向的动能,A 和B分开后,A恰好在B、C之间的弹簧第一次恢复到原长时追上B,并且与B发生碰撞后 粘在一起.求:
1 2
mB vB21
1 2
mC
vC2 1
代入数据解得:vB1 1m / s,vC1 2m / s
(vB1 3m / s,vC1 0m / s不合题意,舍去.)
A爆炸后先向左匀速运动,与弹性挡板碰撞以后速度
大小不变,反向弹回.当A追上B,发生碰撞瞬间达
到共速vAB
由动量守恒,得mAvA mBvB1 mA mB vAB,
已知小车做简谐运动周期公式为T 2 M ,弹簧的
k
弹性势能公式为Ep
1 2
kx2 (x为弹簧的形变量),则
(1)小物块与小车碰撞前瞬间的速度是多大?
(2)小车做简谐运动过程中弹簧最大弹性势能是多少?小车的最大速度为多大?
(3)小物块最终停在距O点多远处?当小物块刚停下时小车左端运动到O点的哪一侧?
由动量守恒,得mBvB (mB mC )vBC ?
由机械能守恒,得
1 2
mB
vB2
1 2 (mB
mC )vB2C
Ep1 ?
代入数据得Ep1 3J
2 设B、C之间的弹簧第一次恢复到原长时B、C的速度
大小分别为vB1和vC1,则由动量守恒和能量守恒:
mB vB
mBvB1 mC vC1,12 mBvB2
2.确定研究对象,分析受力情况和运动情况.选择研究对象的两个基本原则:一是要选择 已知量充分且涉及所求量的物体为研究对象;二是要优先选择能够满足某个守恒定律的物体(或 物体系)为研究对象.进行运动分析时要注意两个方面:
①运动情况变化时,找出运动量(s、a、v、t)的关系; ②运动可能出现多种可能性.
1 2
kA2
解得Epm 4J
根据机械能守恒定律可知小车的最大动能应等于弹簧
的最大弹性势能
所以 1 2
kA2
1 2
Mvm2
解得小车的最大速度vm 1m / s
3 小物块b与小车a碰撞后,小车a的速度为vm,设此时
小物块的速度为v1,设向右为正方向,由动量守恒定
图232
【解析】(1)设碰撞前瞬间,小物块b的速度为v1,小物块从静止开始运动到刚要与小车发生碰撞 的过程中,
根据动能定理可知Fs
mgs
1 2
mv12
解得v1 6m / s
2由于小车简谐运动的振幅是0.2m,所以弹簧的最大
形变量为x A 0.2m
根据弹性势能的表达式可知最大弹性势能Epm
专题二 动量和能量 第三讲
动量和能量的综合应用
一、解决力学问题的三大基本观点 1.牛顿运动定律结合运动学公式(称之为力的观点)是解决力学问题的基本思路和方 法.因牛顿第二定律是瞬时定律,此种方法适用于需求解过程中间状态(速度、加速度)的问 题.
2.动量定理和动量守恒定律.(动量观点) 3.动能定理、机械能守恒定律和能量守恒定律.(能量观点)
3.明确解题途径,正确运用规律. 4.分析解题结果,有时需做一定讨论(特别对多解问题).
类型一:碰撞、爆炸、反冲中的动量、能量守恒 在碰撞、爆炸、反冲问题中,物体间的相互作用力(内力)远大于系统受到的外力, 用牛顿运动定律求解非常复杂,甚至根本就无法求解,但用动量守恒定律求解时,只需 要考虑过程的始末状态,而不需要考虑过程的具体细节,这正是用动量守恒定律求解问 题的优势.
(1)在A追上B之前弹簧弹性势能的最大值; (2)A与B相碰以后弹簧弹性势能的最大值.
【解析】(1)塑胶炸药爆炸瞬间取A和B为研究对象,假设爆炸后瞬间A、B的速度大小分别为 vA、vB,取向右为正方向 由动量守恒:-mAvA+mBvB=0 爆炸产生的能量有9J转化为A、B的动能
E
1 2
mAv
2 A
动量定理、动能定理研究的只是物体或系统在某一过程中初、末状态动量、动能的 改变量,而无需对过程的变化细节作深入的研究.如问题不涉及物体运动过程中的加速 度,而涉及运动时间的问题,优先考虑动量定理;涉及位移的问题,优先考虑动能定 理.
二、力学综合题的基本思路 1.认真审题,弄清题意.审题时要注意: (1)挖掘隐含条件,隐含条件往往隐含在关键的词语中,题目的附图中,发生的物 理现象中和题目的所求中; (2)重视对物理过程的分析:审题时,要弄清题目中的物理过程及其得以进行的条 件,明确运动的性质,把握过程中的不变量、变量、关联量之间的相互关系,并找出与 物理过程相适应的物理规律.