第六讲·直线与曲线的平移,翻折(对称),旋转

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲·直线与曲线的平移,翻折(对称),旋转

平移:

规律:上加下减,左加右减。

翻折:本质是轴对称。

解决方法:垂直平分。垂直,121-=k k ,平分,中点公式⎪⎭⎫

⎝⎛++2,2

2121y y x x

对称:轴对称和点对称

轴对称:设A ()11,y x 关于直线l:b kx y +=对称点为B ()22,y x 这AB 两点和直线的处理方式为垂直平分。

点对称:设A ()11,y x 关于点P ()00,y x 对称点为B ()22,y x 这AB 两点和P 点的处理方式为中点公式。

旋转:中考一般只会考90°或者180°旋转。处理方式一般为旋转坐标轴,改变坐标。

例1、

例2、

在平面直角坐标系x O y 中,抛物线

2

22--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B 。 (1)求点A ,B 的坐标;

(2)设直线l 与直线AB 关于该抛物线的对称

轴对称,求直线l 的解析式; (3)若该抛物线在12-<<-x 这一段位于直

线l 的上方,并且在32<

式。

例3、

已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等.

(1)求二次函数的解析式;

(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(﹣3,m),求m和k的值;

(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围.

例4、如图1,抛物线C1:y=ax2+bx+2与直线AB:y=x+交于x轴上的一点A,和另一点B(3,n).

(1)求抛物线C1的解析式;

(2)点P是抛物线C1上的一个动点(点P在A,B两点之间,但不包括A,B 两点),PM⊥AB于点M,PN∥y轴交AB于点N,在点P的运动过程中,存在某一位置,使得△PMN的周长最大,求此时P点的坐标,并求△PMN周长的最大值;

(3)如图2,将抛物线C1绕顶点旋转180°后,再作适当平移得到抛物线C2,已知抛物线C2的顶点E在第四象限的抛物线C1上,且抛物线C2与抛物线C1交于点D,过D点作x轴的平行线交抛物线C2于点F,过E点作x轴的平行线交抛物线C1于点G,是否存在这样的抛物线C2,使得四边形DFEG为菱形?若存在,请求E点的横坐标;若不存在请说明理由.

例5、如图①,抛物线y=ax2+bx+5交x轴于A、B,交y轴于C,抛物线的顶点

D的横坐标为4,OA•OC=OB.

(1)求抛物线的解析式;

(2)如图②,若P为抛物线上一动点,PQ∥y轴交直线l:y=+9于点Q,以PQ为对角线作矩形且使得矩形的一边在直线l上,问是否存在这样一点P使得

矩形的面积最小?若存在,求其最小值;若不存在,请说明理由

(3)如图③,将直线向下平移m个单位(m>9),设平移后的直线交抛物线于M、N两点(点M在点N左边),M关于原点的对称点为M′,连接M′N,问M′N在x轴上的正投影是否为定值?若为定值,求其值;若不是定值,请说明理由.

相关文档
最新文档