接触网与受电弓的主要作用
受电弓与接触网相互作用综述
![受电弓与接触网相互作用综述](https://img.taocdn.com/s3/m/6daf24660b1c59eef8c7b48d.png)
受电弓与接触网相互作用综述吴积钦,李岚摘要:不同类型的受电弓和接触网组合会产生不同的相互作用性能。
这些性能主要体现在两者之间的几何相互作用、材料接口、弓网电接触及动态相互作用等方面,这些方面相互独立又相互依存。
几何相互作用是弓网系统的基本矛盾,当列车运行到一定速度时,弓网动态相互作用成为弓网系统的主要矛盾。
受电弓与接触网的相互作用性能是弓网系统方案设计及相关标准制订的依据。
关键词:受电弓;接触网;相互作用受电弓与接触网的相互作用(俗称弓网关系),不同类型的受电弓—接触网组合会产生不同的相互作用性能。
这些性能主要体现在两者之间的几何相互作用、材料接口、弓网电接触及动态相互作用等方面。
1几何相互作用接触线是受电弓的滑道,接触线不离开受电弓弓头的工作范围才能使受电弓沿接触网顺利滑行。
接触线在线路上方的几何特征值须与受电弓的几何特征相适应。
1.1受电弓的几何特征受电弓的几何外型越小,对线路的结构限界要求就越低,但接触网的跨距就越小;几何外型越大,接触网可以采用的跨距就越大,但对线路的结构限界要求高。
各国铁路部门根据各自情况确定受电弓的弓头几何外型。
中国铁路受电弓弓头的几何外型遵循UIC608附4a规定,弓头总长度为1950mm。
受电弓的工作范围等于其上部工作位置与下部工作位置之差,通常为2000mm左右。
1.2架空接触网的几何特征接触线在线路上方的几何特征值可用横向与垂向2个方向的参数表征。
垂向特征值主要有接触线高度、接触线坡度、接触线在定位点处的抬升等;横向特征值主要有接触线拉出值、侧风作用下的横向偏移值等。
垂向参数应保证受电弓在工作范围内的正常运行;相对于轨道平面垂直中心线的横方参数应确保任何情况下有一支接触线在弓头工作范围内。
弓网接触压力的测量已经表明,接触线空间位置的不连续性会引起接触压力瞬间的较大变化。
2弓网材料接口接触线和滑板的磨耗以及弓网接触点的允许电流很大程度上依赖于两部件的材料组合。
2.1滑板滑板应满足弓网系统的机械及电气要求,通常要求滑板接触电阻小、熔点高、导热性良好、质量小、机械强度高、弹性好、与铜或铜合金接触线之间的摩擦系数小、便于实现轻量化和标准化等。
受电弓
![受电弓](https://img.taocdn.com/s3/m/bdc90bfe1b37f111f18583d049649b6648d709bd.png)
受电弓受电弓是一种用于电气化铁路系统的关键设备。
它的作用是实现列车与接触网之间的电能传输,为电力机车或电动列车提供所需的动力。
在现代铁路运输中,受电弓发挥着重要的作用,为列车的正常运行提供了可靠的电力支持。
受电弓通常由导电的联系线、设备支撑系统和电气控制系统组成。
导电的联系线负责与接触网的导线进行接触,从而实现电能的传输。
通过设备支撑系统将受电弓与列车的车顶连接,确保受电弓能够跟随列车的运动,始终保持与接触网的良好接触。
电气控制系统则负责控制受电弓的升降和伸缩,以及与列车的电力系统进行连接。
在电气化铁路系统中,受电弓的设计和制造非常重要。
首先,受电弓需要具备良好的导电性能和机械强度,能够承受列车高速行驶时的强风压和空气动力荷载。
其次,受电弓的设计需要考虑与接触网的适配性,确保接触点始终保持良好的接触,以减少能量传输的损耗和电弧形成的可能性。
同时,受电弓还需要具备可靠的升降和伸缩机构,以满足不同线路和桥梁的要求。
受电弓的运行和维护也至关重要。
为了确保受电弓能够正常工作,铁路运营公司需要定期对受电弓进行检查和维护,包括清洁接触点、检查弓头磨损情况、调整受电弓高度等。
这些工作的目的是保持受电弓与接触网之间的良好接触,并及时发现和解决可能存在的故障和问题,以确保列车的正常供电。
受电弓在铁路运输中的作用不可忽视。
它为列车提供了稳定可靠的电力供应,保证了列车的正常运行。
受电弓的优化设计和高效运行是现代电气化铁路系统的重要组成部分。
随着技术的发展和创新,受电弓的性能将不断得到提升,为铁路运输带来更高的效率和更优质的服务。
在我国快速发展的高铁网中,受电弓更是发挥了重要的作用。
高铁的速度和运行频率要求受电弓具备更高的稳定性和可靠性。
因此,对受电弓的设计和制造提出了更高的要求。
通过技术创新和工艺改进,我国受电弓制造水平不断提高,已经能够满足高铁运行的需求。
总之,受电弓是电气化铁路系统中不可或缺的重要设备。
它为列车的正常运行提供了可靠的电力支持。
受电弓原理介绍
![受电弓原理介绍](https://img.taocdn.com/s3/m/cb89f58e49649b6648d7476f.png)
受电弓原理介绍Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT第三节受电弓原理介绍受电弓主要功能是从额定电压DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。
受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。
它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。
B2型车采用的是SBF920型单臂式受电弓。
(1)受电弓结构图10 SBF920型单臂式受电弓结构示意图单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。
底架:底架由封闭的矩形空心钢管焊接而成。
底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。
下支架:下支架由无缝钢管焊接而成,其底板位于底架上。
下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,减震器,上支架安装座。
上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。
上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。
连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。
通过转动连接管,可调节和微调受电弓的几何形状。
弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。
平行导向滑环确保碳滑板与接触网的平行工作。
每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。
悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。
和谐号受电弓工作原理
![和谐号受电弓工作原理](https://img.taocdn.com/s3/m/c472195858eef8c75fbfc77da26925c52cc59104.png)
和谐号受电弓工作原理
和谐号受电弓是一种用于电力牵引列车的设备,其工作原理可以描述如下:
1. 导电杆:和谐号受电弓的顶端装有一个导电杆,其主要作用是与接触网建立电气联系。
导电杆通常由导电材料制成,如铜或铝合金,具有良好的电导性能。
2. 弹簧装置:受电弓内部安装有弹簧装置,用于驱动导电杆与接触网之间保持合适的接触力。
通过调整弹簧的张力,可以确保导电杆与接触网之间始终保持压力适中的接触状态。
3. 牵引装置:和谐号受电弓通过牵引装置与列车的电力传输系统相连,将接触网上的电能传递给列车的牵引装置。
牵引装置通常由电流传感器和电缆组成,能够将受电弓接收到的电能有效地传输到列车内部的动力装置。
4. 自动控制系统:和谐号受电弓通常配备有自动控制系统,用于监测受电弓与接触网之间的电气状态,并根据需要调整受电弓的高度和倾角。
这样可以确保受电弓始终保持与接触网的良好接触,并在列车高速行驶时保持稳定的电力传输。
总之,和谐号受电弓通过导电杆与接触网建立电气联系,并通过弹簧装置保持适当的接触力。
通过牵引装置,受电弓将接触网上的电能传输给列车的动力装置,实现电力牵引。
自动控制系统可以监测和调整受电弓的工作状态,确保电力传输的稳定性和可靠性。
接触网名词解释
![接触网名词解释](https://img.taocdn.com/s3/m/31d310b185868762caaedd3383c4bb4cf7ecb7b2.png)
接触网名词解释
接触网是供电系统中的一种设备,用于向电力机车或电动列车提供电力。
它由一组金属导线组成,安装在铁路上方的支架上。
接触网的主要功能是通过与电力机车上的受电弓接触,将电能传输到机车上,以供机车的牵引和辅助系统使用。
接触网的工作原理很简单。
当电力机车行驶在铁路上时,受电弓与接触网之间会建立电气连接。
电力通过接触网的导线传输到受电弓,然后进入电力机车的牵引系统,用于驱动机车的电动发动机。
另外,接触网还会提供电力给机车的辅助系统,如照明、空调、制动等。
为了确保电力的传输效率和安全性,接触网需要具备一些特点。
首先,接触网的导线必须具有足够的导电能力,以便承载电力机车的牵引需求。
其次,接触网需要保持与受电弓之间的良好接触,以减少电阻和能量损耗。
此外,接触网还需要具备一定的弹性,以适应电力机车在铁路上的运动和振动。
在设计和建设接触网时,需要考虑多种因素。
例如,铁路的供电方式、电力机车的功率需求、线路的形状和坡度等。
此外,接触网还需要进行定期的检修和维护,以确保其正常运行和安全性。
总结来说,接触网是一种供电系统设备,用于向电力机车或电动列车提供电力。
它通过与电力机车上的受电弓接触,将电能传输到机车上,以供机车的牵引和辅助系统使用。
受电弓工作原理
![受电弓工作原理](https://img.taocdn.com/s3/m/94da9a25a88271fe910ef12d2af90242a995ab4f.png)
受电弓工作原理受电弓是电力机车、电力动车组和有轨电车等电气牵引车辆上的重要部件,它的作用是通过接触网吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电,下面将从接触网、受电弓结构和工作过程等方面详细介绍受电弓的工作原理。
接触网是电气牵引车辆供电系统的重要组成部分,它一般由一根或多根导线组成,悬挂在架空设备上,为电气牵引车辆提供电能。
接触网一般由铜、铝等材料制成,具有良好的导电性能和机械强度。
电气牵引车辆行驶时,受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。
受电弓的结构一般由受电弓支架、受电弓杆、受电弓头、接触板等部件组成。
受电弓支架一般安装在电气牵引车辆的车顶上,通过受电弓杆与受电弓头相连接,受电弓头上安装有接触板。
当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电。
当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
接触板与接触网之间的接触面积较大,接触压力较大,能够保证良好的导电性能。
受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。
受电弓的工作过程一般分为接触、牵引和分离三个阶段。
在接触阶段,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
在牵引阶段,受电弓吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
在分离阶段,受电弓通过受电弓支架和受电弓杆与接触网分离,完成电能的传输。
总之,受电弓是电气牵引车辆上的重要部件,它通过与接触网保持接触,吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电,具有良好的导电性能和机械强度。
受电弓结构原理及应用
![受电弓结构原理及应用](https://img.taocdn.com/s3/m/3838f415195f312b3169a5e2.png)
目录1. 概述 (2)2. 弓网动力学 (2)3. 工作特点 (2)4. 受电弓结构 (3)5. 受电弓分类 (4)6. 受电弓的工作原理 (6)7. 受流质量 (6)7.1. 静态接触压力 (7)7.1.1. 额定静态接触压力 (7)7.1.2. 同高压力差 (7)7.1.3. 同向压力差 (7)7.2. 最高升弓高度 (7)7.3. 弓头运行轨迹 (8)1.概述受电弓是电力牵引机车从接触网取得电能的电气设备,安装在机车或动车车顶上。
2.弓网动力学弓网动力学研究电气化铁道机车(动力车)受电弓与接触网动态作用关系与振动问题的学科领域。
电力机车是通过受电弓滑板与接触网导线间的滑动接触而获取电能的,当运动的受电弓通过相对静止的接触网时,接触网受到外力干扰,于是在受电弓和接触网两个系统间产生动态的相互作用,弓网系统产生特定形态的振动。
当振动剧烈时,可以造成受电弓滑板与接触导线脱离接触,形成离线,产生电弧和火花,加速电器的绝缘损伤,对通信产生电磁干扰,更严重的是直接影响受流,甚至会造成供电瞬时中断,使列车丧失牵引力和制动力。
而弓网之间接触力过大时,虽可大大降低离线率,但接触导线与受电弓滑板磨耗增大,使用寿命缩短。
因此,良好的弓网关系是确保列车稳定可靠地受流的基本前提。
弓网动力学的主要任务就是要研究并抑制弓网系统有害振动,确保受电弓与接触网系统相互适应、合理匹配,为不同营运条件(特别是高速运行)下的受电弓与接触网结构选型和参数设计提供理论指导。
评价弓网关系和受流质量,一般采用弓网接触压力、离线率、接触导线抬升量、受电弓振幅、接触网弹性系数、接触导线波动传播速度和受电弓追随性等指标。
弓网动力学的研究,通常以理论研究为主,并结合必要试验,通过建立受电弓与接触网振动模型来预测上述性能指标,从而改进或调整系统设计。
弓网系统最初的动态设计只是基于一些简化的数学模型而进行的,随着列车运行速度的提高,弓网系统的模型越来越复杂,从20世纪70年代开始,计算机作为一种辅助模拟工具被用于弓网系统动力学仿真和优化设计,从而使得弓网动力学研究领域得到极大丰富和发展。
接触网原理
![接触网原理](https://img.taocdn.com/s3/m/d4a222052f3f5727a5e9856a561252d380eb208c.png)
接触网原理
接触网是电气化铁路供电系统的一部分,是铁路电气化牵引系统中的重要组成
部分。
它通过接触网与列车上的受电弓之间的接触,将电能传输到列车上,从而实现列车的牵引和供电。
接触网原理主要包括接触网的构成、工作原理和相关设备等内容。
首先,接触网由接触线、支柱、横梁、绝缘子等部分组成。
接触线是接触网中
的主要部分,它负责传输电能,支柱和横梁则起到支撑和固定接触线的作用,而绝缘子则用于隔离接触线与支柱、横梁之间的电气连接。
其次,接触网的工作原理是利用列车上的受电弓与接触网之间的接触来实现电
能的传输。
当列车行驶时,受电弓与接触网之间形成一定的接触压力,从而使接触线上的电能传输到列车上,为列车提供牵引和供电。
在列车行驶过程中,接触网会根据列车的运行速度和位置进行自动调节,以保证列车始终能够获取到足够的电能。
除了以上的基本原理外,接触网还涉及到一些相关设备,如接触网检测系统、
接触网维护设备等。
接触网检测系统用于监测接触网的工作状态,及时发现和排除故障,确保接触网的正常运行。
而接触网维护设备则用于对接触网进行定期的检修和维护,保证接触网的安全和可靠性。
总的来说,接触网作为电气化铁路供电系统的重要组成部分,其原理和工作机
制对于铁路运输的安全和高效至关重要。
只有深入理解接触网的构成和工作原理,才能更好地保障铁路运输的正常运行,为乘客提供更加便利和舒适的出行体验。
因此,加强对接触网原理的学习和研究,对于提高铁路运输的安全性和效率性具有重要的意义。
受电弓名词解释
![受电弓名词解释](https://img.taocdn.com/s3/m/e6353a114a73f242336c1eb91a37f111f1850dd0.png)
受电弓名词解释
一、概念
受电弓是一种用于从接触网收集电能的装置,主要由弓架、弓头、弹簧装置和电气系统等组成。
在高速运行时,受电弓与接触线之间产生摩擦力和振动力,因此受电弓的设计需要考虑机械和电气性能的稳定性和可靠性。
二、分类
受电弓按照不同的分类标准可以分为多种类型,以下是常见的几种分类方式:
1. 按弓架形式分类:受电弓可以分为单臂弓、双臂弓和多臂弓等类型。
2. 按弓头形式分类:受电弓可以分为 V 型弓、A 型弓、X 型弓等类型。
3. 按工作方式分类:受电弓可以分为单极受电弓和双极受电弓。
4. 按应用领域分类:受电弓可以分为电力机车受电弓、电力动车组受电弓等类型。
三、原理
受电弓的工作原理是利用弓头与接触线之间的电磁感应原理,将接触线上的交流电转换成弓架上的直流电,并向车辆供电。
受电弓弓头的材质需要具备良好的导电性能和耐磨性能,通常采用碳滑条、铜滑条等材料制成。
四、应用
受电弓广泛应用于电力机车、电力动车组、有轨电车等领域。
在电力机车中,受电弓通过收集接触网上的电能,为机车提供动力。
在电力动车组中,受电弓同样起到为车辆提供电能的作用。
受电弓的应用使得电力机车和电力动车组具有高效、环保、节能等优点,成为现代交通运输领域的重要装备。
受电弓原理介绍
![受电弓原理介绍](https://img.taocdn.com/s3/m/c1d6036649649b6649d7470c.png)
受电弓原理介绍Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第三节受电弓原理介绍受电弓主要功能是从额定电压DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。
受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。
它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。
B2型车采用的是SBF920型单臂式受电弓。
(1)受电弓结构图10 SBF920型单臂式受电弓结构示意图单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。
底架:底架由封闭的矩形空心钢管焊接而成。
底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧,升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。
下支架:下支架由无缝钢管焊接而成,其底板位于底架上。
下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,减震器,上支架安装座。
上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。
上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。
连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。
通过转动连接管,可调节和微调受电弓的几何形状。
弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。
平行导向滑环确保碳滑板与接触网的平行工作。
每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。
悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。
受电弓原理介绍
![受电弓原理介绍](https://img.taocdn.com/s3/m/ebb9613a854769eae009581b6bd97f192279bff0.png)
第三节受电弓原理介绍受电弓主要功能是从额定电压DC1500V接触网上获取电源,向整个列车电气系统供电,同时还通过列车的再生制动系统将列车的动能转换为电能回馈给接触网供给其它在线列车的使用,起到双向传递枢纽的作用。
受电弓在刚性接触网和柔性接触网的线路上均能适用,在整个车辆速度范围内,受电弓有良好的动力学特性能,能够保证在各种轨道和速度下与接触网具有良好的接触状态和接触稳定性。
它在气路上的特别设计保证了它降弓时有明显的迅速下降和平稳下降两个阶段。
B2型车采用的是SBF920型单臂式受电弓。
1)受电弓结构图10SBF920型单臂式受电弓结构示意图单臂式受电弓主要特性有:重量轻,设计简单,维护少,卓越的接触性能以及安全的操作。
底架:底架由封闭的矩形空心钢管焊接而成。
底架上装有以下部件:支撑下支架轴承座,上支架及下支架缓冲垫,运输挂钩,降弓后支撑弓头的支撑弹簧升弓装置,连接杆,气动降弓机构,绝缘子,高压连接板,休息位置指示器,锁钩支撑座,气动设备。
下支架:下支架由无缝钢管焊接而成,其底板位于底架上。
下支架上装有以下部件:装有升弓装置钢绳驱动的凸轮,气动降弓机构驱动的杠杆,平行导杆,减震器,上支架安装座。
上支架:上支架为无缝铝管的焊接结构,十字形钢缆连接结构使框架具有一定的横向稳定性。
上支架装有以下部件:弓头,连接杆,减振器,上升限位装置,受电头支撑轴。
连接杆:连接杆由一根用碳钢圆管制成的连接管和两个分别带有左旋及右旋螺纹的轴承座和两套绝缘轴承组成。
通过转动连接管,可调节和微调受电弓的几何形状。
弓头:弓头安装在一根位于上支架上的轴上,叶片弹簧用于悬承被固定在托架盒内的集电板。
平行导向滑环确保碳滑板与接触网的平行工作。
每个碳滑板的单个悬承可实现最大的接触特性,将磨损尽量减至最小。
悬承架在水平和竖直力异常大时保护弓头的叶片弹簧,防止其毁坏。
整体的平衡使得弓头能够在接触网上自由转动。
平行导杆:当受电弓进行升弓或降弓时,平行导杆可防止弓头失稳翻转。
受电弓工作原理
![受电弓工作原理](https://img.taocdn.com/s3/m/80396a6d443610661ed9ad51f01dc281e53a560f.png)
受电弓工作原理
受电弓是电力机车和电动车辆等电气化交通工具中常用的接触网供电系统。
其工作原理如下:
1. 受电弓的基本原理是通过受电弓与接触网之间的接触,将接触网上的电能传递给电动车辆,以供其驱动电动机运行。
2. 受电弓通常由一个弓形的金属构架和一个绝缘材料做成。
弓形金属构架可以沿着车辆运行方向调整高度,以适应不同高度的接触网。
3. 当电动车辆行驶时,受电弓与接触网接触,形成电路闭合。
电流经过受电弓进入车辆,供电给车辆上的电动机。
4. 接触网上的电能是由供电系统提供的,通常是通过变电站将高压电能转换为接触网上的直流电。
5. 为了保证接触的稳定性和安全性,受电弓和接触网之间需要保持一定的接触压力。
这通常通过弹簧机构来实现,使受电弓能够自动对接触网进行上下运动调整。
总的来说,受电弓工作原理是通过受电弓与接触网之间的接触,将接触网上的电能传递给电动车辆,实现供电供能的功能。
简述受电弓的工作原理
![简述受电弓的工作原理](https://img.taocdn.com/s3/m/92f5fc2f11a6f524ccbff121dd36a32d7375c706.png)
简述受电弓的工作原理
受电弓是电气化铁路机车车辆上的一种重要设备,其作用是将电网上的电能传输到机车车辆上,为其提供动力。
受电弓的工作原理可以简单地归纳为三个步骤:接触、导流、传输。
首先是接触。
受电弓的主体部分是由一根导电杆组成,它安装在机车车辆的屋顶上,通过一个可伸缩的机构与电线接触。
在机车车辆行驶过程中,导电杆不断地与电线接触,从而建立起机车车辆与电网之间的电气连接。
接下来是导流。
当导电杆与电线接触时,电能通过导电杆进入机车车辆内部的接触网系统。
接触网系统是由一组导电线构成的,它们悬挂在铁路轨道的两侧,与导电杆接触后,电能就可以通过接触网系统进入机车车辆内部。
最后是传输。
一旦电能进入机车车辆内部,它就需要通过转换器和控制器进行处理,最终驱动机车车辆行驶。
转换器主要负责将高压直流电转换为低压直流电,并将电能传输给机车车辆的牵引电机,从而使机车车辆产生牵引力。
控制器则负责监控电能的传输和牵引力的产生,保证机车车辆能够稳定、高效地运行。
受电弓的工作原理虽然看似简单,但其背后涉及到了众多的电学、机械学等知识。
为了保证受电弓的正常工作,需要对其进行定期的检修和维护,以确保其各个部件的良好运行。
同时,还需要对铁路
电气化系统进行严格的管理和监控,保证电能的传输和使用安全可靠。
受电弓结构原理及应用
![受电弓结构原理及应用](https://img.taocdn.com/s3/m/10b626d8be23482fb4da4cf4.png)
受电弓结构原理及应用一、概述受电弓是电力牵引机车从接触网取得电能的电气设备,安装在机车或动车车顶上。
二、弓网动力学弓网动力学研究电气化铁道机车(动力车)受电弓与接触网动态作用关系与振动问题的学科领域。
电力机车是通过受电弓滑板与接触网导线间的滑动接触而获取电能的,当运动的受电弓通过相对静止的接触网时,接触网受到外力干扰,于是在受电弓和接触网两个系统间产生动态的相互作用,弓网系统产生特定形态的振动。
当振动剧烈时,可以造成受电弓滑板与接触导线脱离接触,形成离线,产生电弧和火花,加速电器的绝缘损伤,对通信产生电磁干扰,更严重的是直接影响受流,甚至会造成供电瞬时中断,使列车丧失牵引力和制动力。
而弓网之间接触力过大时,虽可大大降低离线率,但接触导线与受电弓滑板磨耗增大,使用寿命缩短。
因此,良好的弓网关系是确保列车稳定可靠地受流的基本前提。
弓网动力学的主要任务就是要研究并抑制弓网系统有害振动,确保受电弓与接触网系统相互适应、合理匹配,为不同营运条件(特别是高速运行)下的受电弓与接触网结构选型和参数设计提供理论指导。
评价弓网关系和受流质量,一般采用弓网接触压力、离线率、接触导线抬升量、受电弓振幅、接触网弹性系数、接触导线波动传播速度和受电弓追随性等指标。
弓网动力学的研究,通常以理论研究为主,并结合必要试验,通过建立受电弓与接触网振动模型来预测上述性能指标,从而改进或调整系统设计。
弓网系统最初的动态设计只是基于一些简化的数学模型而进行的,随着列车运行速度的提高,弓网系统的模型越来越复杂,从20世纪70年代开始,计算机作为一种辅助模拟工具被用于弓网系统动力学仿真和优化设计,从而使得弓网动力学研究领域得到极大丰富和发展。
三、工作特点(1)受电弓无振动而有规律地升起,直至最大工作高度;(2)靠滑动接触而受流。
要求滑板与接触导线接触可靠,受电弓和接触网特别是接触网要磨耗小,升、降弓不产生过分冲击。
(3)升弓时滑板离开底架要快,贴近接触导线要慢,防弹跳。
受电弓与接触网相互作用综述
![受电弓与接触网相互作用综述](https://img.taocdn.com/s3/m/6daf24660b1c59eef8c7b48d.png)
受电弓与接触网相互作用综述吴积钦,李岚摘要:不同类型的受电弓和接触网组合会产生不同的相互作用性能。
这些性能主要体现在两者之间的几何相互作用、材料接口、弓网电接触及动态相互作用等方面,这些方面相互独立又相互依存。
几何相互作用是弓网系统的基本矛盾,当列车运行到一定速度时,弓网动态相互作用成为弓网系统的主要矛盾。
受电弓与接触网的相互作用性能是弓网系统方案设计及相关标准制订的依据。
关键词:受电弓;接触网;相互作用受电弓与接触网的相互作用(俗称弓网关系),不同类型的受电弓—接触网组合会产生不同的相互作用性能。
这些性能主要体现在两者之间的几何相互作用、材料接口、弓网电接触及动态相互作用等方面。
1几何相互作用接触线是受电弓的滑道,接触线不离开受电弓弓头的工作范围才能使受电弓沿接触网顺利滑行。
接触线在线路上方的几何特征值须与受电弓的几何特征相适应。
1.1受电弓的几何特征受电弓的几何外型越小,对线路的结构限界要求就越低,但接触网的跨距就越小;几何外型越大,接触网可以采用的跨距就越大,但对线路的结构限界要求高。
各国铁路部门根据各自情况确定受电弓的弓头几何外型。
中国铁路受电弓弓头的几何外型遵循UIC608附4a规定,弓头总长度为1950mm。
受电弓的工作范围等于其上部工作位置与下部工作位置之差,通常为2000mm左右。
1.2架空接触网的几何特征接触线在线路上方的几何特征值可用横向与垂向2个方向的参数表征。
垂向特征值主要有接触线高度、接触线坡度、接触线在定位点处的抬升等;横向特征值主要有接触线拉出值、侧风作用下的横向偏移值等。
垂向参数应保证受电弓在工作范围内的正常运行;相对于轨道平面垂直中心线的横方参数应确保任何情况下有一支接触线在弓头工作范围内。
弓网接触压力的测量已经表明,接触线空间位置的不连续性会引起接触压力瞬间的较大变化。
2弓网材料接口接触线和滑板的磨耗以及弓网接触点的允许电流很大程度上依赖于两部件的材料组合。
2.1滑板滑板应满足弓网系统的机械及电气要求,通常要求滑板接触电阻小、熔点高、导热性良好、质量小、机械强度高、弹性好、与铜或铜合金接触线之间的摩擦系数小、便于实现轻量化和标准化等。
受电弓工作原理
![受电弓工作原理](https://img.taocdn.com/s3/m/6243067da22d7375a417866fb84ae45c3b35c2ff.png)
受电弓工作原理
受电弓是电力机车和电动列车的重要部件,它通过与接触网接触,将接触网上的电能传输到电动车辆上,为车辆的牵引和辅助设备提供电能。
受电弓的工作原理主要包括受电弓的结构和工作过程两个方面。
首先,受电弓的结构主要由受电弓架、受电弓臂、受电弓头、接触板等部件组成。
受电弓架是受电弓的支撑结构,受电弓臂是受电弓的伸缩部分,受电弓头是受电弓与接触网接触的部位,接触板是受电弓头与接触网之间的传导部件。
这些部件通过复杂的机械传动系统和电气控制系统相互配合,实现受电弓的伸缩和接触网的接触,从而完成电能的传输。
其次,受电弓的工作过程可以分为接触、牵引和辅助三个阶段。
在接触阶段,受电弓通过机械传动系统将受电弓头与接触网接触,建立电气连接。
在牵引阶段,电能从接触网传输到电动车辆上,为电动机提供动力,实现车辆的牵引运行。
在辅助阶段,电能还可以为车辆的辅助设备提供供电,如空调、照明等。
受电弓的工作原理是通过受电弓的结构和工作过程相互配合,实现电能的传输和利用。
在实际运行中,受电弓需要具有良好的机械性能和电气性能,能够适应各种复杂的运行环境和工况要求。
同时,受电弓的工作原理也需要与接触网、电动车辆和供电系统相互匹配,确保电能的有效传输和利用。
总的来说,受电弓作为电力机车和电动列车的重要部件,其工作原理涉及到机械传动、电气控制和电能传输等多个方面,需要具有良好的结构和工作性能,确保车辆的安全、稳定和高效运行。
通过不断的技术创新和改进,受电弓的工作原理将得到进一步完善和提升,为铁路运输的发展做出更大的贡献。
受电弓工作原理
![受电弓工作原理](https://img.taocdn.com/s3/m/d2db8f620622192e453610661ed9ad51f11d5440.png)
受电弓工作原理
受电弓是电力机车或电动列车的重要部件,它通过接触轨道上的电气设备,将
电能传输给车辆,从而驱动车辆行驶。
受电弓的工作原理是怎样的呢?接下来我们将详细介绍受电弓的工作原理。
首先,受电弓的基本结构包括接触网、受电弓杆、受电弓头、受电弓臂等部件。
接触网是安装在轨道上方的一根导线,它通过供电系统提供电能,受电弓杆则是连接接触网和受电弓头的部件,受电弓头是受电弓的关键部件,它负责与接触网接触,并将电能传输给受电弓臂,最终传输给车辆。
其次,受电弓的工作原理是利用接触网提供的电能,通过受电弓头与接触网的
接触,将电能传输给受电弓臂。
当电力机车或电动列车行驶时,受电弓头与接触网保持接触,电能通过受电弓臂传输到车辆,从而驱动车辆行驶。
在行驶过程中,受电弓头需要保持与接触网的良好接触,以确保电能传输的稳定性和可靠性。
受电弓的工作原理还涉及到一些关键技术,如受电弓的自动调节技术、接触网
的动态调整技术等。
受电弓的自动调节技术能够根据列车的速度和轨道的高低变化,自动调节受电弓头与接触网的接触力,以确保电能传输的稳定性和安全性。
接触网的动态调整技术则能够根据列车的行驶速度和方向,动态调整接触网的高度和位置,以确保受电弓头与接触网的良好接触。
总的来说,受电弓的工作原理是通过接触网提供的电能,通过受电弓头与接触
网的接触,将电能传输给车辆,从而驱动车辆行驶。
受电弓的工作原理涉及到多个关键部件和关键技术,它对电力机车和电动列车的安全性和可靠性有着重要影响。
希望本文能够帮助读者更好地理解受电弓的工作原理。
接触网与受电弓
![接触网与受电弓](https://img.taocdn.com/s3/m/123ca9d34128915f804d2b160b4e767f5acf8049.png)
接触网与受电弓1概述接触网与受电弓是一个整体,在接触网的研究中受电弓是不可抛弃的;受电弓不得离开接触网。
为保证接触线与受电弓间的相互作用不出现故障、受电弓滑板与接触线匹配、降低弓线间的磨损,接触线的布置必须横向偏移于线路中心线。
为了尽量减少接触线和受电弓滑板的磨损,应提出接触线和受电弓滑板的要求,在受电弓和接触网的设计中应予以考虑。
受电弓的作用是将电能传输到电动牵引装置上。
对于辅助设施、生活设施的固定用电与牵引车辆运行的移动用电两方面来说,电力传输都应安全可靠。
受电弓包括主架、臂、弓头和传动装置。
受电弓与接触网相互作用的基本要求是:由于受电弓在运行过程中相对于接触网横向移动,受电弓头部必须始终超过接触线的最不利位置,因此只有在运行过程中接触线不离开受电弓头部的工作范围时,系统才能顺利运行。
在正常运行期间,接触线在滑板上的滑动是最重要的。
受电弓有上、下两个工作位置,这两个位置之间的范围便是工作范围。
1.1对业主立案法团的要求接触网设备必须能可靠地将电流传输给牵引车辆,机械设计尺寸一定要特别适合于运行速度。
接触线是接触网的重要成份。
1.1.1接触线受电弓沿其行走的预张力线称为接触线,刚性接触网的接触线由于汇流排的作用,几乎无张力。
接触线充当接触滑轨,确保电能不间断地传输到车辆受电弓。
为了使受电弓滑板均匀磨损,接触线与受电弓中心线呈之字形或S形相交字形布置。
由于铜或铜合金具有较高的导电性、硬度以及耐温度变化和耐腐蚀的能力,冷拔电解铜和铜合金已成为世界各地使用的导体材料。
暴露在空气中的铜表面形成一层坚硬的氧化层,可以导电,不会阻止电流的流动。
这就是为什么铜比铝更适合滑动接触。
银(0.1%)或镁(0.5%)的合金添加剂用来进一步改善铜线的机械和热性能,从而使用较高张力的铜线。
接触线被滑动受电弓磨损。
此外,受电弓和接触线之间接触所用材料的组合也会影响这些零件的磨损率。
铜接触线和碳滑板的组合将磨损率降至最低。
接触网与受电弓
![接触网与受电弓](https://img.taocdn.com/s3/m/9a10c66859eef8c75fbfb3ed.png)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
受电弓与接触网电接触特性
![受电弓与接触网电接触特性](https://img.taocdn.com/s3/m/6bf236cd370cba1aa8114431b90d6c85ec3a88cd.png)
受电弓与接触网系统电接触特性研究1引言电气化铁路的牵引供电系统中,接触网是电气化铁道的主要供电设备,电力机车通过接触网取得电能。
弓网关系对整个电气化铁路系统的正常运营起着非常重要的作用,保证受电弓与接触网导线的良好接触是弓网关系中亟需解决的关键问题[1]。
近年来,弓网系统不良电接触引起的材料烧损及接触线断线事故占弓网事故的比例呈逐年上升之势,专家学者对弓网系统的火花与燃弧现象存在不同见解。
随着旅客列车高速化及货物列车重载化的实施,有必要依据电接触理论,对弓网系统电接触特性进行研究,对弓网系统运行中出现的一些现象做出合理解释,为解决这些问题提供理论依据[2]。
2弓网系统电接触的特征在弓网的运输系统中,电接触主要指滑板与接触线相互接触并通过接触界面实现电流传输的一种物理、化学现象[3]。
电接触形式包括点接触、线接触和面接触,如图2-1所示。
弓网系统相对静止不动时,受电弓与接触网接触区域表现为滑板平面与接触线圆弧面之间的线接触。
无论接触部分如何加工、打磨及运行过程中的相互磨损,在微观上总是凸凹不平的,如图2-2所示。
即使有很大的接触压力使滑板与接触线相互压紧,也只有少数的点(或小面)实际发生了真正的接触,这些实际接触的点(或小面)承受着全部的弓网接触压力。
由于接触线和滑板表面一般都覆盖着一层导电不良的氧化膜或其它种类的杂质,因而在实际接触点(或小面)内,只有少部分膜被压破的地方才能形成电的直接接触,电流实际上只能从这些更小的接触点中通过,如图2-3所示。
把实际发生机械接触的点(或小面)称为接触斑点,接触斑点中那些形成金属或准金属接触的更小面(实际传导电流的面)称为导电斑点。
(a )点接触(b )线接触(c )面接触图2-1电接触形式图图2-2滑板与接触线接触斑点图2-3电流收缩现象图3 弓网系统静态接触电阻电气列车所需的电流通过导电斑点从接触网流向受电弓,电流线在导电斑点附近发生收缩,使电流流过的路径增长,有效导电面积减小,会出现局部附加电阻,称为收缩电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加
动
时速300公里以上
车
(
提
高
牵
引 功
时速250公里
率
)
Page 7
时速200公里
SWJTU
OCS 2006.11.15
(2) CRH2动车组概况(4)
SWJTU OCS
2006.11.15
动车组由4动4拖(总牵引功率4800kW) 改为6动2拖(总牵引功率7200kW)
非动力轴 动力轴
4动4拖 6动2拖
Page 8
(2) CRH2动车组概况(5)
SWJTU
OCS 2006.11.15
胶济线试验采用原型车,受 电弓型号为DSA250。
每列动车组编组8辆,两架 受电弓用高压母线相连。
两列动车组重联时,每辆动车组各升一架受电弓,受电弓 间距201m。
Page 9
(2) CRH2动车组概况(6)
Page 10
Page 15
(5) 试验结论(3)
SWJTU
OCS 2006.11.15
7月3日,进行了两列动车组的联挂试验,在上行方向试验时, 被测受电弓处于后弓开口方向,试验速度为220km/h,测试结 果表明,弓网火花很多,发生几次机车失压现象,分析表明, 被测受电弓在动车组联挂双弓受流工况下,处于最恶劣受流状 态。
悬挂类型:全补偿简单链形悬挂 正线线索及张力:THJ-95(15kN)+CTHA-120(15kN) 结构高度:1400mm 接触线高度:6450mm(最低6330mm) 线岔形式:交叉 锚段关节:五跨(绝缘)、四跨(非绝缘) 电分相:七跨(四跨绝缘+四跨绝缘) 锚段长度:2×750m(困难时不大于2×800m )
T=15k N
T=15k N
Page 20
T=15k N
T=20k N
(6) 整改方案(接触网方案4)
SWJTU
OCS 2006.11.15
Page 21
(6) 整改方案(动车组方面)
方案1 弓头横杆加
SWJTU
OCS 2006.11.15
DSA250型受电弓
1——底架组装 2——阻尼器 3——升弓装置 4——下臂 5——托架 6——下导杆 7——上臂 8——上导杆 9——弓头 10——碳滑板 11——绝缘子
(2) CRH2动车组概况(7)
SWJTU
OCS 2006.11.15
Page 11
(3) 胶济线接触网概况
Page 18
SWJTU OCS
2006.11.15
T=15k N
T=15k N
T=15k N
T=15k N
(6) 整改方案(接触网方案2)
SWJTU
OCS 2006.11.15
T=15k N
T=15k N
Page 19
T=15k N
T=17k N
(6) 整改方案(接触网方案3)
SWJTU
OCS 2006.11.15
主要内容
SWJTU
OCS 2006.11.15
1. CRH2动车组胶济线试验情况 2. CRH2动车组环形铁道试验情况 3. 长白山动车组遂渝线试验情况 4. 中华之星动车组秦沈客专试验情况
Page 2
1. CRH2动车组胶济线试验情况
SWJTU
OCS 2006.11.15
(1) 胶济线试验录像(弓网) (2) CRH2动车组概况 (3) 胶济线接触网概况 (4) 弓网间存在的问题 (5) 试验结论 (6) 整改方案 (7) 整改后的试验结论
直线区段拉出值:± 200mm
Page 12
SWJTU
OCS 2006.11.15
(4) 弓网间存在的问题
SWJTU
OCS 2006.11.15
CRH2动车组使用的DSA250 型受电弓有效工作高度 2000mm,最高工作高度为2480mm,本动车组车顶高度为 3700mm左右,受电弓落弓位滑板距车顶800mm,则受电弓落 弓高度(距轨面)位3700+800=4500mm,受电弓有效工作 高度为4500+2000=6500mm。
Page 14
(5) 试验结论(2)
SWJTU
OCS 2006.11.15
动车组下行运行时,被测受电弓处于闭口方向,200km/h以 下时弓网离线火花为断续火花,单程火花次数最高达140次, 平均约300米一次,弓网受流状态正常,200 km/h以上时弓 网火花次数没有明显增加,弓网接触力比较稳定。240km/h 以上时上行方向弓网接触力平均值分布在50~60N,下行方向 弓网接触力分布在140~150N之间,上下行弓网接触力差异 较大,下行方向运行时,弓网受流性能满足提速至250km/h 的安全运行要求;
动车组联挂双弓受流的运行工况在我国铁路属于首次试验,从 分析试验结果知,双弓运行的受流性能还需进一步试验研究, 以对动车组联挂运行工况下的受电弓状态和弓网受流性能做出 评定。
Page 16
(6) 整改方案(接触网方面)
SWJTU
OCS 2006.11.15
Page 17
(6) 整改方案(接触网方案1)
方 股
份
庞巴迪
B
Regina
S
引进
P
阿尔斯通
长 客
SM3
股
份
唐
西门子
山
Velaro-E
工 厂
Page 5
消化 吸收
SWJTU OCS
2006.11.15
中 国 品 牌
(2) CRH2动车组概况(2)
Page 6
CRH2动车组
SWJTU
OCS 2006.11.15
(2) CRH2动车组概况(3)
增
Page 3
(1) 胶济线试验录像(弓网)
SWJTU
OCS 2006.11.15
VIDEO (703)双弓重联后弓(>) VIDEO (704)上行后弓(>) VIDEO (708)上行后弓(>) VIDEO (708)下行后弓(<)
Page 4
(2) CRH2动车组概况(1)
川崎重工
四
E2-1000
胶济线接触网最低高度为6330mm,悬挂点高度约为 6450mm,弓网运行时,如果接触线抬高60~80mm,受电弓 将工作在有效工作高度的上限
Page 13
(5) 试验结论(1)
SWJTU
OCS 2006.11.15
动车组上行运行时,被测受电弓处于开口方向,200km/h以 下,弓网离线火花为断续火花,单程火花次数最高达416次, 平均约110米一次,弓网接触力较小,受电弓滑板所受冲击加 速度超过50g 的点数约5~6个。当试验速度超过210km/h 时, 弓网发生连续的离线火花,火花拉得较大。为保证试验安全, 在试验过程中,除在道岔测试点提速到250km/h,上行试验区 段限速220km/h;