Q系列TMA热机械分析仪 产品介绍
TMAQ400说明书
TMAQ400说明书
美国TA热机械分析仪TMAQ400/Q400EM是一款高性能、研发级的热机械分析仪(TMA),它的操作模式、测试探头、工作夹具都具有无可比拟的灵活性,增强模式后,Q400EM除了TMA基本测试,还能进行瞬态(应力/应变)、动态和调制TMATM(MTMATM)实验,实现更为完整的粘弹性材料表征,并可以解析重叠热效应(MTMA)。
产品说明
美国TA热机械分析仪TMAQ400/Q400EM
型号:TMAQ400/Q400EM
Q400EM是一款高性能、研发级的热机械分析仪(TMA),它的操作模式、测试探头、工作夹具都具有无可比拟的灵活性,增强模式后,Q400EM除了TMA基本测试,还能进行瞬态(应力/应变)、动态和调制TMATM(MTMATM)实验,实现更为完整的粘弹性材料表征,并可以解析重叠热效应(MTMA)。
Q400拥有与Q400EM相同的基本性能和数据可靠性,但是没有新的高阶EM特征,是研发、教学和质量控制的理想工具。
TMA原理/操作模式:
★TMA是在设定的力、气氛、时间和温度的条件下测量材料的形变。
施加力可采用压缩、弯曲或拉伸的形变方式
★TMA测量材料固有的性质(如热膨胀系数、玻璃化转变温度、杨氏模量)等,以及工艺/产品性能参数(如软化点)。
这些参数均具有广泛的应用价值,它们既可通过Q400也可通过Q400EM获得。
★Q400和Q400EM操作模式允许进行多种材料性质的测量。
Q400配备标准模式,而Q400EM能额外提供应力/应变、蠕变、应力松弛、DTMA和MTMATM模式的测量。
TMA热机械分析
DMA和TMA的区别:TMA(thermomechanical analysis)热机械分析:在加热过程中对试样进行力学测定的方法称为热—力法或热机械分析根据测定内容,热-力法可分为静态法和动态法两种动态力学分析DMA用于测定材料在一定条件(温度、频率、应力或应变水平、气氛与湿度等下)的刚度与阻尼,通过测定材料的刚度与阻尼随温度、频率或时间的变化,获得与材料的结构、分子运动、加工与应用有关的特征参数。
TMA测量的是样品的线性尺寸或体积随温度,时间或外力的变化。
这些数据提供了如热膨胀系数CET,粘度,材料的软化和流动,以及玻璃化转变温度等非常有用的信息。
橡胶制品尺寸甚至是微米级的变化,对配合公差要求非常严格的整个系统来说,有时都是非常重要的。
在TMA实验中,探头在样品表面施加一定的力。
根据样品的硬度和施加的力的不同,当加热时,样品尺寸会发生正的变化(膨胀)或负的变化(收缩)。
DMA施加的是交变力,力值较大;TMA主要做静态的力。
热机械分析仪TMA 402 F1/F3 Hyperion数字位移传感器(LVDT)-- TMA 402 Hyperion® 的核心这是一项经过时间考验的技术,同样也使用于热膨胀仪中。
其精度极高,最低可测量纳米级的尺寸变化(数字灵敏度为0.125nm)。
数字位移传感器(LVDT)-- TMA 402 Hyperion® 的核心这是一项经过时间考验的技术,同样也使用于热膨胀仪中。
其精度极高,最低可测量纳米级的尺寸变化(数字灵敏度为0.125nm)。
真空密闭恒温系统TMA 402 Hyperion® 的测量系统通过水浴恒温,因此,炉体的热辐射和周围环境的气温波动都不会影响到系统。
为了保证测量的纯净气氛及仪器的真空度,仪器中所有的单元均为真空密闭设计。
TMA 402 F1 中使用了涡轮分子泵,真空度可达10-4mbar,与MFC(质量流量控制器,TMA 402 F3 中为选件)结合使用,就可以在测量过程中选择测试所需纯净气氛,如惰性气体或氧化性气体。
静态热机械分析仪(TMA)设备安全操作规定
静态热机械分析仪(TMA)设备安全操作规定为了保障实验室的设施和人员的安全,规范静态热机械分析仪(TMA)的使用,特制定以下设备安全操作规定,请在使用前仔细阅读。
一、设备简介静态热机械分析仪(TMA)是一种专门用于测试材料在恒定压力下在温度变化时的形变性能的仪器。
其主要由样品支撑结构、探头传感器、振荡器、温度控制系统等组成。
二、设备安全注意事项1.TMA仪器表面禁止强行敲击、踩踏和碰撞,以免造成损坏。
2.TMA操作时应严格遵照使用手册指导操作,不得擅自更改任何参数。
3.在使用TMA设备前,需确认设备的工作状态正常,温度控制系统、传感器等标准工作指示灯及报警装置正常。
4.TMA设备通电前应确认温度控制与传感器是否连接正确。
5.需定时检查探头及熔断器是否损坏,如有损坏需及时更换。
6.避免于酸、碱或其它易腐蚀的物料放置在TMA仪器周围,以防止危险。
7.保修期内不得拆卸、修理设备,如有故障请及时通知维修人员处理。
8.实验过程中,工作场地不得乱放杂物,严禁在实验室内使用明火或电热针等易燃易爆物品。
9.实验完成后,应关闭所有设备开关,清理工作场地及设备表面并妥善存放耗材、试剂及设备。
三、操作流程1.样品制备:样品应加工成样品杆或样品管等固体或管装样品形式,并仔细检查样品质量,样品不要带有太多的杂质。
2.样品安装:在测试过程中,将样品固定在样品夹中,并注意样品夹的位置和夹角,在这个过程中要非常小心以免样品固定不良或夹角不一。
需要使用校准设备校准样品夹姿势,比如说对样品夹扭转90度测量结果,将会完全不同于正常测量结果。
3.实验操作:参数选择前应确认样品类型,选择不同的测试模式,根据测试模式选择性执行预热、线性热、等温、冷凝和恒应力等步骤。
选好后,设定参数并开始实验。
在实验过程中要观察和细心操作,避免错误和事故的发生。
4.实验报告:实验过程中需记录所选参数、温度和测试时间等数据,并加以分析和比较数据结果,最终撰写实验报告。
tma工作原理
tma工作原理
TMA(热机械分析)是一种在程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的分析方法。
其工作原理主要是在一定的温度程序控制下,对物质施加一定的负荷,然后测量其形变大小。
所采用的载荷方式有拉伸、压缩、弯曲、扭转和针入等。
TMA最初采用针入度法,用针状压杆触及试样,并施加负荷。
随着温度上升到某一温度时,针状压杆急剧变动,此温度即作为试样的软化温度点。
TMA不仅可以用于测量物质的膨胀系数和相转变温度等参数,还可以用于研究材料的应用温度、工艺条件、力学性能等。
以上信息仅供参考,如需了解更多信息,建议查阅TMA相关书籍或咨询专业人士。
利用热机械分析仪(TMA)鉴定玻璃类材料
许炎山 TA Instruments-Waters LLC
据说远在 6,000 到 7,000 年前人类就已经知道玻璃了, 但如果真正说到可以制造更轻更
透明面积更大的平板玻璃的技术, 则也只不过是百来年的经验而已. 如今玻璃的存在已经遍
布人类的生活领域了! 举凡建筑, 装潢, 车辆, 玩具, 艺品, 器具, 容器…以外, 在这多姿多采 的花花世界里头, 各式各样的显示器更是少不了她! 并且在现在这样的电子光电世界的宠幸 之下, 要能够真正应用的得心顺手, 不管是在材料资选, 最佳制程推演, 以及成品特性等等更 为深入的课题, 就非要更加明白其物理与化学特性不可! 针对物理特性方面, 热分析技术有 着极其优异的发挥空间, 以下兹以热机械分析仪(TMA)为例说明热分析技术切入玻璃类材料 的实例, 相信必定能引起有心人士高度兴趣吧!
(6) 应变点(strain point) -相应于玻璃粘度为10 exp[14.5~14.6] Poise时的温度, 在该温度下处 理若干小时后, 玻璃内应力开始消除. 可借着外差退火点试验的数据而获得.
TA Instruments-Waters LLC 8008203812 上海市钦州北路 1198 号 82 号大厦 16 楼(200233)
(4) 退火点(annealing point) -在此温度下玻璃因先前于塑造或密封作业后迅速冷却所发生 的内应力, 可以在数分钟之内消除. 目前有商品化专用测试仪(ASTM C 336)借着量 测玻璃丝在不同温度下的拉伸速率而测得.
(5) 转移温度(transformation temperature) -相应于玻璃粘度为 10 exp[13] Poise 时的温度, 在 该温度下在该温度下, 玻璃的折射率、比热、热膨胀系数发生突变. 可利用 TMA 来 测得.
热机械分析仪(TMA)
探針種類
探針種類
探針種類
壓縮法
高分子材料在玻璃化轉變區由於分子鏈段的鬆弛,使其膨脹係數出現突 變,即高分子在Tg以下時,鏈段運動被凍結,熱膨脹主要克服分子間的 次價力,膨脹係數很小,當溫度升到Tg時,鏈段開始運動,同時分子鏈 本身鏈段的擴散運動也發生膨脹,因而膨脹係數較大,如此,在Tg前後 熱膨脹曲線斜率發生轉折突變,得到拐點,就是玻璃化轉變溫度。左圖 為聚甲基丙烯酸甲酯(有機玻璃)採用膨脹探頭測定的溫度-形變曲線,由 曲線的兩個拐折處分別作出兩條直線延伸的交點,則低溫處為玻璃化轉 變溫度Tg,高溫處為流動溫度Tf,右圖為聚苯乙烯的線膨脹曲線,同樣 可求出Tg。
熱機械分析儀
(Thermomechanical analyzer, TMA)
基本原理
熱機械分析儀(TMA)和膨脹儀(Dilatometer)的原理相近,皆是量測固體和 液體尺寸隨溫度變化的儀器,膨脹法是量測待測物在無荷重下尺寸的膨脹 與收縮,而熱機械分析儀是熱分析技術的一種,主要是在程序控溫下,利 用儀器內部的linear variable differential transformer(LVDT)量測材料因熱 及機械荷重下所產生的尺寸(線性或體積)變化,獲得在不同荷重情形(如壓 力或張力)下,試片的膨脹、拉伸、壓縮、彎曲、扭轉及針入的量測等。
基本結構
溫度校正或試片量測時,熱電偶在高溫爐內的位置必須與待測物維持固定 的距離,避免因爐內氣氛的變化造成所量測試片溫度的差異。探針的位移 量和荷重量也需經由已知厚度的試片與砝碼校正。 熱機械分析儀量測時,試片的上下平面必須相互平行且光滑,視探針底面 積和高溫爐大小,製作符合量測規格的試片,目前商業化的分析儀很多, 主要差異在試片放置方式、爐溫高低、接觸探針的材質型態以及變形模式 等,不同形式的接觸探針可適用於不同的量測需求。
动态热机械分析仪
动态热机械分析仪动态热机械分析仪(DMA)是一种用于测量材料热力学和机械性能的仪器。
它结合了热分析和力学分析的原理,可以对材料的热膨胀、玻璃态转变、塑性变形等性质进行研究分析。
本文将从仪器原理、应用领域以及未来发展进行详细介绍。
首先,动态热机械分析仪的原理是通过施加一定频率和振幅的力学载荷,在一定温度范围内对材料进行热力学和动态机械分析。
其主要包括四个组成部分:1.热环境:通过热流控制装置,可以控制样品与环境之间的温度差。
这样可以在一定温度范围内精确测量材料的热膨胀系数和玻璃态转变等热力学性质。
2.力学装置:通过加载系统对样品施加力学载荷。
可以控制载荷的频率、振幅和形状,以模拟材料在不同载荷条件下的力学响应。
3.测量装置:通过传感器和检测设备,可以测量材料的热力学和机械性能。
比如测量材料的热膨胀、表面形貌、动态模量等性质。
其测量原理可以通过电阻应变计、差示扫描量热计、动态机械分析等技术实现。
4.数据处理和分析软件:通过将测量得到的数据进行处理和分析,可以得到材料的力学响应和热力学性质的参数。
如杨氏模量、损耗因子、玻璃态转变温度等。
1.聚合物材料研究:由于聚合物在温度变化下会发生膨胀和收缩,动态热机械分析仪可以测量聚合物的热膨胀性能,从而了解其材料稳定性和使用寿命。
2.不锈钢和合金腐蚀分析:动态热机械分析仪可以通过测量材料的热膨胀性能和动态模量等参数,评估不锈钢和合金在高温和腐蚀环境下的稳定性。
3.复合材料研究:动态热机械分析仪可以用于评估各种复合材料的热膨胀性能和力学强度,优化材料配方和工艺,提高材料的性能和使用寿命。
4.高分子材料研究:动态热机械分析仪可以测量高分子材料的玻璃化温度和疲劳性能,为材料设计和应用提供依据。
最后,未来发展趋势方面,动态热机械分析仪将进一步发展:1.提高测量精度和分辨率,以应对新材料和新应用的需求。
2.开发多功能和多学科结合的测试仪器,将热分析、力学分析和光学分析等多个技术相结合,提供更全面的材料性能评估和分析。
TA工具thermo机械分析器Q系列thermo机械分析器Q400说明书
The Q400EM is a high-performance, research-grade thermomechanical analyzer (TMA), with unmatched flexibility in operating modes, test probes, fixtures, and available signals. For standard TMA applications, the Q400 delivers the same performance and reliability. It is ideal f or research, teaching, and quality control applications, with perf ormance equivalent to competitive research models.Temperature Range (max)-150 to 1,000°C-150 to 1,000°CTemperature Precision + /- 1°C+ /- 1°CFurnace Cool Down Time <10 min from 600°C to 50°C <10 min from 600°C to 50°C (air cooling)Maximum Sample Size - solid 26 mm (L) x 10 mm (D)26 mm (L) x 10 mm (D)Maximum Sample Size - film/fiber 26 mm (L) x 0.5 mm (T)26 mm (L) x 0.5 mm (T)x 4.7 mm (W)x 4.7 mm (W)Measurement Precision +/- 0.1 %+/- 0.1 %Sensitivity15 nm15 nmDynamic Baseline Drift <1 µm (-100 to 500°C)<1 µm (-100 to 500°C)Force Range 0.001 to 1 N 0.001 to 1 N Force Resolution 0.001 N 0.001 N Frequency 0.01 to 2 Hz Not Available Mass Flow Control Optional Optional AtmosphereInert, Oxidizing, Inert, Oxidizing, (static or controlled flow)or Reactive Gasesor Reactive GasesNote: The Q400 can be field upgraded to the Q400EM.Operational Modes Standard Included Included Stress/Strain Included Not Available CreepIncluded Not Available Stress Relaxation Included Not Available Dynamic TMA (DTMA)IncludedNot AvailableModulated TMA ™(MTMA ™) Included Not Available1The Q400 features a rugged and reliable furnace. Its customized electronics provide excellent heating rate control and rapid response over a wide temperature range. Furnace raising and lowering is soft-ware controlled. The design ensures long life and performance consistency. The excellent heating rate control provides for superior baseline stability and improved sensitivity, while the rapid response permits Modulated TMA™operation. Furnace movementprovides operational convenience, and easy access to the sample chamber.2Located in the furnace core, the easily accessed chamber provides complete temperature and atmosphere control for sample analysis. Purge gas regulation is provided by an optional digital mass flow controller. These include enhanced data quality, ease-of-use, and productivity. The open design simplifies installation of available probes (see Modes of Deformation), sample mounting, and thermocouple placement. Data precision is enhanced by mass flow control of the purge gas.2 13Force Motor A non-contact motor provides aprecisely controlled, friction-free, calibrated force to the sample via the measurement probe or fixture. The force is programmable from 0.001 to 1 N, and can be increased to 2 N by addition of weights to a special tray. A precision sine wave generator provides a set of ten individual frequencies for use in dynamic experiments. Benefits:The motor smoothly generates the accurate and precise static, ramped, or oscillatory dynamic force necessary for quality measurementsin all modes of operation. The choice of frequencies allows optimization of dynamic TMA (DTMA) experiments in compression, 3-point bending, or tension modes of deformation.4Linear Variable Differential Transducer The heart of the Q400TMA sample measurement system is the precision, moveable-core, linear variable differential transducer (LVDT). Benefits:It generates an accurate output signal that is directly proportional to a sample dimension change. Its precise and reliable response over a wide temperature range (–150 to 1,000°C) makes for reproducible TMA results. Its location below the furnace protects it from unwanted temperature effects and ensures stable baseline performance.3421Expansion measurements determine a material’scoefficient of thermal expansion (CTE), glass transi-tion temperature (Tg), and compression modulus.A flat-tipped standard expansion probe (Figure 1)is placed on the sample (a small static force may be applied), and the sample is subjected to a temperature program. Probe movement records sample expansion or contraction. This mode is used with most solid samples. The larger surface area of the macro-expansion probe (Figure 2)better facilitates analysis of soft or irregular samples, powders, and filmsP ENETRATIONPenetration measurements use an extended tip probeto focus the drive force on a small area of the samplesurface (Figure 3). This provides precise measurementof Tg, softening, and melting behavior. It is valuablefor characterizing coatings without their removal froma substrate. The probe operates like the expansionprobe, but under a larger applied force. The hemi-spherical probe (Figure 4)is an alternate penetrationprobe for softening point measurements in solids.C OMPRESSIONIn this mode, the sample is subjected to either a static, linear ramp, or dynamic oscillatory force, while under a defined temperature program, and atmosphere. Sample displacement (strain) is recorded by either expansion / penetration experiments to measure intrinsic material properties, or dynamic tests to determine viscoelastic parameters (DTMA), to detect thermal events, and to separate overlapping transitions (MTMA™).Figure 2Figure 43-P OINT B ENDINGIn this bending deformation (also known as flexure), the sample is supported at both ends on a two-point, quartz anvil atop the stage (Figure 7). A fixed static force is applied vertically to the sample at its center, via a wedge-shaped, quartz probe. Material properties are determined from the force and the measured probe deflection. This mode is considered to represent “pure” deformation, since clamp-ing effects are eliminated. It is primarily used to determine bending properties of stiff materials (e.g., composites), and for distortion temperature measurements.Dynamic (DTMA) measurements are also available with the Q400EM, where aspecial low-friction metallic anvil replaces the quartz version.S PECIALTY P ROBE / F IXTURE K ITSAdditional sample measurement probes and fixtures are available for use with both the Q400 and Q400EM in specialty TMA applications. These include:Dilatometer Probe Kit –for use in volume expansion coefficient measurementsParallel Plate Rheometer –for the measurement of low shear viscosity of materials (10 to 107Pa.s range)under a fixed static force.The expansion, macro-expansion, and penetration probes are supplied with the Q400. These probes, plus the flexure probe, and the low-friction bending fixture, are included with the Q400EM module. Data analysis programs relevant to each of the measurements described are provided in our Thermal Advantage ™for Q Series ™software.T ENSIONTension studies of the stress/strain properties of films and fibers are performed using a Film/Fiber probe assembly (Figure 5). An alignment fixture (Figure 6)permits secure, and reproducible, sample positioning in the clamps. The clamped sample is placed in tension between the fixed and moveable sections of the probe assembly. Application of a fixed force is used to generate stress/strainand modulus information. Additionalmeasurements include Tg, softening temperatures, cure, and cross-link density. Dynamic tests (e.g. DTMA,MTMA™) in tension can be performed to determine viscoelastic parameters (e.g., E |, E ||, tan δ), and to separate overlapping transitions.Figure 6Figure 7TMA measures material deformation under controlled conditions of force, atmosphere, time, and temperature. Force can be applied in compression, flexure, or tension modes using probes previously described. TMA measures intrinsic material properties (e.g., expansion coefficient, glass transition temperature,Young’s modulus), plus processing / product performance parameters (e.g., softening points). These measure-ments have wide applicability, and can be performed by the Q400/Q400EM.TMA can also measure polymer viscoelastic properties using transient (e.g., creep, stress relaxation)or dynamic tests. These require the Q400EM module. In creep, a known stress is applied to the sample, and its deformation is monitored. After a period, the stress is removed, and strain recovery is recorded. In stress relaxation, a fixed strain is applied, and stress decay is monitored.In Dynamic TMA (DTMA), a known sinusoidal stress and linear temperature ramp are applied to the sample, and the resulting sinusoidal strain, and sine wave phase difference (δ), are measured . From this data, storage modulus (E |), loss modulus (E ||), and tan δ(E ||/E |) are calculated as functions of temperature, time, or stress.In Modulated TMA ™(MTMA ™), the sample experiences the combined effects of a linear ramp, and a sinusoidal temperature of fixed amplitude and period . The net signals, after Fourier transformation of the raw data, are total displacement and change in thermal expansion coefficient. Both can be resolved into their reversing and non-reversing component signals.The reversing signals contain events attributable to dimension changes, and are useful in detecting related events (e.g., Tg). The non-reversing signals contain events that relate to time dependent kinetic processes (e.g., stress relaxation).The Q400 and 400EM operating modes permit multiple material property measurements.The Q400 features the Standard mode, while the Q400EM additionally offers Stress/Strain,Creep, Stress Relaxation, Dynamic TMA, and Modulated ™TMA modes.Temperature (Time)Force StrainT(F o r c e )Force (Time)TFS TANDARD M ODE (Q400/Q400EM)Force is constant, and displacement is monitored undera linear temperature ramp. Provides intrinsic property measurements.Strain is constant, and the force required to maintain it ismonitored under a temperature ramp. Permits assessment of shrinkage forces in films/fibers.Force is ramped, and strain measured at constant temperature togenerate force/displacement plots, and modulus information.S TRESS /S TRAIN M ODE (Q400EM)Stress or strain is ramped, and the resulting strain or stress is measured at constant temperature. Both provide stress / strain plots and related modulus information.Strain (Stress)TStrain Stress(S t r a i n )D YNAMIC TMA M ODE (Q400EM):A sinusoidal force (stress) is applied during a temperature ramp. Analysis of the resulting strain and phase data provides viscoelastic property parameters (e.g., E |, E ||tan δ).Timet 2t 1S t r a i n / S t r e s sTemperature (time)STTemperatureTM o d u l a t e d L e n g t hM o d u l a t e d T e m p e r a t u r eC REEP /S TRESS R ELAXATION M ODES (Q400EM)In Creep, stress is held constant, and strain is monitored. In Stress Relaxation,strain is held constant, and stress decay is monitored. Both are transient tests used to assess material deformation and recovery properties.M ODULATED TMA M ODE (Q400EM):Temperature is programmed linearly, and simultaneously modulated at constant stress to generate signals relating to total displacement, CTE, and their reversing and non-reversing components. These permit detection of thermal transitions,and separation of overlapping events (e.g., Tg and stress relaxation).804020090-40-80-12050402030-1001080At a Point 127.3˚C α=25.8µm/m˚CPoint-to-Point Method α=27.6µm/m˚C Average Method α=26.8µm/m˚C230.0˚C45.0˚CAluminumExpansion Probe Size: 7.62mm Prog.: 5˚C/min Atm.: N26040140120100240220200180160260Temperature (˚C)60-20-4071.24˚C -17.48µmSize: 0.492 x 5.41 x 5.08 mm Force: 78.48 mNDeflection: -17.48 µm70605040302080Temperature (˚C)FIGURE 12D i m e n s i o n C h a n g e (µm )I NTRINSIC AND P RODUCT P ROPERTY M EASUREMENTSshows expansion and penetration probe measurements of Tg, and softening point of a synthetic rubber using a temperature ramp at constant force. The large CTE changes in the expan-sion plot indicate the transition temperatures. In penetration, they may be detected by the sharp movement of the loaded probe into the changing material structure.A CCURATE C OEFFICIENT OF T HERMAL E XPANSION (CTE) M EASUREMENTSFigure 11demonstrates the use of the expansion probe to accurately measure small CTE changes in an aluminum sample over a 200˚C temperature range. Advantage ™software permits analysis of the curve slope using an “at point”, “straight line” or “best fit” method to compute the CTE (α) at a selected temperature, or over a range.M ATERIAL P ERFORMANCE ANDS ELECTIONis an example of a 3-point bending mode (flexure probe) experiment on a polyvinyl chloride (PVC) sample, using the ASTM International T est Method E2092 to determine the distortion temper-ature. This test specifies the temperature at which a sample of defined dimensions produces a certain deflection under a given force. It has long been used for predicting material performance.-140-120-100-80-60-40-200102.54˚C-93.22 µm257.71˚C-108.0 µm50100150200250300-50350Temperature (˚C)FIGURE 13D i m e n s i o n C h a n g e (µm )202005202520202015201075250.20.10.30.0-251020304050Time (min)FIGURE 14D i m e n s i o n C h a n g e (µm )T e m p e r a t u r e (˚C )F o r c e (N )20300.0000.0150.0100.005510Slope = Modulus1520Strain (%)FIGURE 15S t r e s s (M P a )0.020M ULTILAYER F ILM A NALYSISFigure 13shows a compression mode analysis, using a penetration probe, of a double layer PE / PET film sample, supported on a metal substrate. The sample temperature was linearly ramped from ambient to 275 ˚C at 5 ˚C/min. The plot shows probe penetra-tions of the PE layer (93.22 µm) at 102 ˚C, and the PET layer (14.78 µm) at 257 ˚C respectively.F ILM P ROPERTY T ESTINGillustrates a classic isostrain experiment, in the tension mode, on a food wrapping film. The film was strained to 20% at room temperature for 5 minutes, cooled to -50 ˚C and held for 5 more minutes, then heated at 5 ˚C/min to 40 ˚C. The plot shows the force variation required to maintain a set strain in the film. The test simulates its use from the freezer to the microwave.F ILM T ENSILE T ESTINGFigure 15displays a strain ramp experiment, at a constant temperature, on a proprietary film in tension. The plot shows an extensive region where stress and strain are linearly related, and over which a tensile modulus can be directly determined. The results show the ability of the Q400EM to function as a mini tensile tester for films and fibers.01230.050.100.150.200.250.300.350.40Force (N)Yield RegionElastic Region40.40.20.60.020406080100120140160180200Temperature (˚C)As ReceivedCold Drawn0.00.20.40.60.81.0-1123456789101112Time (min)FIGURE 18CreepRecoveryS t r a i n (%)1.2F IBER S TRESS /S TRAIN M EASUREMENTSStress/strain measurements are widely used to assess,and compare, materials. shows the different regions of stress/strain behavior in a polyamide fiber (25 µm) in tension, when subjected to a force ramp at a constant temperature. The fiber undergoes instantaneous deformation, retardation,linear stress/strain response, and yield elongation.Other parameters (e.g., yield stress; Young’s modulus) can be determined.T HERMAL S TRESS A NALYSISOFF IBERSdisplays a tension mode experiment,using a temperature ramp at a constant strain (1%), to perform a stress analysis on a polyolefin fiber, as received, and after cold drawing. The plot shows the forces needed to maintain the set strain as a func-tion of temperature. The data has been correlated with key fiber industry, processing parameters, such as shrink force, draw temperature, draw ratio,elongation at break, and knot strength.C REEP A NALYSISCreep tests help in materials selection for end-uses where stress changes are anticipated. Figure 18illustrates an ambient temperature creep study on a polyethylene film in tension. It reveals the instantaneous deformation, retardation, and linear regions of strain response to the set stress, plus its recovery with time on stress removal. The data can also be plotted as compliance, and recoverable compliance, versus time.1301351401450.010.110.00110Time (min)FIGURE 19R e l a x a t i o n M o d u l u s (M P a )150050010001500200025000.100.080.060.040.02200050100150406080100120140160Temperature (˚C)FIGURE 20S t o r a g e M o d u l u s (M P a )T a n D e l t aL o s s M o d u l u s (M P a )3000-20202004000206080100120131.68˚C140160180200Temperature (˚C)FIGURE 21D i m e n s i o n C h a n g e (µm )N o n -R e v D i m e n s i o n C h a n g e (µm )R e v D i m e n s i o n C h a n g e (µm )40S TRESS R ELAXATION A NALYSISshows a stress relaxation test in tension on the same polyolefin film used for the creep study. A known strain is applied to the film, and maintained,while its change in stress is monitored. The plot shows a typical decay in the stress relaxation modulus. Such tests also help engineers design materials for end uses where changes in deformation can be expected.V ISCOELASTIC P ROPERTYD ETERMINATION – D YNAMIC TMAillustrates a dynamic test, in which a semi-crystalline polyethylene terephthate (PET) film in tension is subjected to a fixed sinusoidal stress during a linear temperature ramp. The resulting strain and phase data are used to calculate the material’s viscoelastic properties (E |, E ||, and tan δ). The plotted data shows dramatic modulus changes as the film is heated through its glass transition temperature.S EPARATING O VERLAPPINGT RANSITIONS - M ODULATED ™ TMAFigure 21shows a MTMA™ study to determine the Tg of a printed circuit board (PCB). The signals plotted are the total dimension change, plus its reversing, and non-reversing components. The total signal is identical to that from standard TMA, but does not uniquely define the Tg. The component signals, however, clearly separate the actual Tg from the stress relaxation event induced by non-optimum processing of the PCB.•conduct experiments and simultaneously analyzes data•operates up to 8 modules simultaneously•Wizards – guides and prompts in setting up experiments•provides a real-time display of the progress of the experiment •Autoqueuing– permits pre-programmed set-up of planned experiments •Autoanalysis– permits pre-programmed data analysis of planned experiments•– provides extensive, context sensitive, assistance•– terminates a test upon attaining a specified value (e.g., CTE)UNIVERSAL A NALYSIS ATA A NALYSIS•analyzes data from all TA Instruments modules•provides easy one plot analysis of large and small events•–analyzes data “as it arrives”••within UA 2000 using Microsoft Word™& Excel™templates •– for quick retrieval of previously analyzed data filesI NNOVATIVE E NGINEERINGTA Instruments is the recognized leader for supplying innovative technology,investing twice the industry average in research and development. Our new Q Series™ Thermal Analysis modules are the industry standard. The Q400TMA provides innovative technology suitable for research as well as QC laboratories. The Q400EM includes Dynamic TMA and also Modulated TMA ™, a technique unavailable from other manufacturers.T ECHNICAL S UPPORTCustomers prefer TA Instruments because of our reputation for after-sales support. Our worldwide technical support staff is the largest and most experienced in the industry. They are accessible daily by telephone, email, or via our website. Multiple training opportunities are available including on-site training, seminars in our application labs around the world, and convenient web-based courses.ALESANDERVICEWe pride ourselves in the technical competence and professionalism of our sales force, whose only business is thermal analysis and rheology. TA Instruments is recognized worldwide for its prompt, courteous, and knowledgeable service staff. Their specialized knowledge and experience are major reasons why current customers increasingly endorse our company and products to their worldwide colleagues.Q UALITY P RODUCTSAll thermal analyzers and rheometers are manufactured to ISO 9002 procedures in our New Castle, DE (USA) or our Leatherhead, UK facilities. Innovative flow manufacturing procedures and a motivated, highly skilled, work force ensure high quality products with industry leading delivery times.130******** 33130489460 3227060080 441372360363 31765087270 49602396470 390227421283 81354798418 34936009300 61395530813 46859469200。
Q系列TMA热机械分析仪 产品介绍
T G
A
TGA 创新历程
39 TGA 附件和选项 54
Q5000IR 技术参数 40 TGA 应用
58
Q5000SA 技术参数 41
Q500 技术参数 Q50 技术参数
42 热重-差热 同步热分析仪 SDT S
43 SDT 创新历程 71
D
Q5000IR 技术
44 Q600 性能参数 72
T
Q5000SA 技术
充分开放。极好的加热控制提供出
开放式设计简化了各种传感器的安
在各种测量模式中进行可靠的定量测试。在动
色的基线稳定性和高灵敏度,同时
装(参见形变模式)、装样和热电偶
态实验中有十个独立的频率可以选择。频率的
快速的信号响应便于实现调制
的安装,质量流量控制器控制吹扫
选择允许在压缩、三点弯曲和拉伸形变中进行
TMATM的 操 作 。 炉 体 上 部 的
温度范围(最大) 温度精度 炉子冷却时间(空气冷却) 最大样品尺寸-固体 最大样品尺寸-薄膜/纤维 静态测试 动态测试 测量精度 灵敏度 位移分辨率 动态基线漂移 施力范围 力的分辨率 频率 质量流量自动控制 气氛(静态或控制流量)
-150~1000℃ ±1℃ <10min(600~50℃) 26mm(L)×10mm(D)
TMA
灵活的操作模式 • 高性能 • 可信赖
热机械分析
Q400是来自于热分析业界领导者美国TA仪器公司的第六代产品,它秉承TA仪器的出色性 能、简便易用和高可靠性,充分展示了TA在很宽的温度范围内进行高灵敏度力学测量的丰 富经验。
TA创新历程
第一台商品化的TMA 传感器自动校正
调制TMA(Modulated TMATM) TMA程序加力功能
热分析仪
热分析仪热分析仪是一种常见的实验仪器,用于测量和分析样品在不同温度条件下的热性质。
它可以通过测量样品对热量的吸收或释放来研究物质的热力学性质和热行为。
在化学、材料科学、环境科学等领域,热分析仪被广泛应用于物质的热力学和热动力学研究。
热分析仪的原理基于热平衡,它通过测量样品和参比样品之间的温差来确定样品的热性质。
常见的热分析仪包括热重仪(TG),差示扫描量热仪(DSC),热膨胀仪(TMA)等。
热重仪是一种在恒定升温速率下测量样品质量变化的仪器。
它可以用于测定样品的热分解、失重和吸附性能等。
通过监测样品在升温过程中质量的变化,热重仪可以提供与样品热稳定性和热分解性质相关的信息。
差示扫描量热仪是一种用于测量样品在不同温度下热能变化的仪器。
它通过比较样品和参比样品之间的热功率差异来分析样品的热性质。
差示扫描量热仪可以用于研究样品的相变、反应热、热容量等热力学参数。
热膨胀仪是一种用于测量样品在不同温度下长度变化的仪器。
它通过测量样品在加热或冷却过程中的长度变化来分析样品的热膨胀性质。
热膨胀仪可以用于研究样品的线膨胀系数、相变、结构变化等。
热分析仪在科学研究和工业应用中都扮演着重要角色。
它可以用于研究新材料的热稳定性和热分解性质,以评估其在高温环境下的应用潜力。
在制药工业中,热分析仪可以用于分析药物的热熔性、溶解性、热稳定性等,为药物的研发和制造提供参考。
此外,热分析仪还可以用于环境污染物的研究和监测。
例如,通过热重仪可以测定废物中有机物的含量,评估其对环境的污染程度。
差示扫描量热仪可以用于分析废气中有害气体的排放,以及石油产品中的含硫量等。
热分析仪的应用还延伸到了食品、建筑材料、电子材料等领域。
在食品工业中,热分析仪可以用于分析食品的热稳定性、保存性等。
在建筑材料领域,热膨胀仪可以用于研究建筑材料的热膨胀性能,以评估其在不同温度条件下的使用寿命。
总之,热分析仪作为一种重要的实验仪器,在科学研究和工业应用中发挥着关键的作用。
tma 热机械 微球 标准
"tma 热机械微球标准" 看起来是一个具有技术性质的短语,其中包含一些专业术语。
让我解释一下:
1. TMA:TMA 可能是热机械分析(Thermomechanical Analysis)的缩写。
热机械分析是一种材料分析技术,用于研究材料在不同温度下的热膨胀和力学性能变化。
它通常涉及将材料置于热源下并施加力来观察其行为。
2. 微球:微球(Microspheres)是一种微小的球形颗粒,通常由各种材料制成,如聚合物、陶瓷或金属。
它们在多个应用中有用,包括医学、材料科学和化学工程。
3. 标准:"标准" 通常指的是一套规范或指南,用于确保产品、服务或过程的质量、安全性和性能符合特定的要求。
这些标准由各种国际、国家或行业组织制定,以确保一致性和可比性。
综合来看,"tma 热机械微球标准" 可能指的是一种用于研究微球材料在热机械方面性能的标准或测试方法。
Q DSC 操作手册(中文操作说明书)
TA(Du Pont) Instruments DSC Q 10/Q100/Q1000操作手册各款热分析与流变仪的性能及差异如下表,供读者一览:热分析及流变仪实验室的基本需求1.室温控制在20~35°C之间2.环境干净而无尘3.工作场所通风良好4.避免仪器直接接受阳光曝晒5.仪器需放置在水平,稳固且无震动的桌面上6.仪器用电的电压需稳定,最好加装稳压器7.若需使用气体洗涤或冷却时,则必须为干净、无油、无水的冷气体。
因此,决定在此气体进入仪器前之处理方式。
通常被考虑到之前处理设备有:无油无水空气压缩机、氮气产生器、冷冻式气体除湿剂、分子筛干燥器等。
8.若仪器使用的气体要求固定的压力或流量时,则可装设调压阀或流量计作精准的控制。
9.若需用到冷却水时,则需讲究清洁且无水生生物。
最好使用纯水,必要时加入抗冻剂、消泡剂或杀菌剂。
课程表…………………………………………………..0-0 第一部分P art one仪器原理与应用简介…………………………………….1-1 Part Two应用介绍……………………………………………….第二部分DSC与TGA简易保养与注意事项…………………………………2-1第三部分DSC 标准操作程序(Thermal Advantage Software)DSC校正……………………………………………………3-1 DSC实验程序………………………………………………..3-8结果分析…………………………………………………...3-11第四部分诡异的DSC图谱……………………………………………4-1DSC 标准操作程序(Thermal Advantage Software)DSC 标准操作程序(Thermal Advantage Software)DSC 校正DSC的校正型式有三种:基线校正(Balance Calibration)、Tzero Calibration-Sapphire Run及炉子常数与温度校正(Cell Constant & Temperature Calibration)。
TMA
2.TMA测量模式
2.TMA测量模式
3. TMA操作流程
开 装 机
刷卡、填写实验记录
样
建立试验方法
自己动手
样品测量
丰衣足食
数据处理
关
机
注意:TMA长年不关机!
3. 注意事项
1. 了解自己样品的热性质(熔点,热分解温度);
2. 样品在测量方向上的两个端面,必须保证平行而光滑; 3. 精确测量样品室温下长度,(样品尺寸尽量靠近标样尺寸
dL L0 dT
:单位长度某
个温度点瞬间热膨胀;
2.TMA仪器构造与测试原理
NETZSCH TMA402F3
测量单元
MFC气体控制单元
(N2/Air/Ar:50~100ml/min;真空)
2.TMA仪器构造与测试原理
(稳定传感器)
(恒定力/斜边力) (500/5000 um)
测量单元内部结构
1. 热机械分析仪(TMA)简介
测量单元结构示意图(压缩模式)
1. 热机械分析仪(TMA)简介
1.2 应用(压缩模式)
膨胀曲线 收缩曲线
L L0
1.玻璃化转变温度;
2.软化点;
3.烧结。 延伸应用 1.平均膨胀率(工程α )
L L0 T
(烧结) 起始点
:某一段温度
的平均热膨胀;
2.瞬间膨胀率(物理α )
6 17 / 25mm 、 5 4 24 mm );
4. 待炉体温度降至150℃以下后,打开炉体取样。
4.应用示例
例一 聚苯醚:膨胀--玻璃化转变--软化点的标注
1. 玻璃化转变:“打开原始文件”-->“切换横坐标为温度”-->“分析”-->“起始点” 2. 软化点: -->“分析”-->“峰值”
静态热机械分析仪(TMA)设备安全操作规程
静态热机械分析仪(TMA)设备安全操作规程前言静态热机械分析仪(TMA)是一种广泛应用于材料科学、化学、地质学等多个领域的仪器设备。
它可以用来测量材料样品在高温下的热膨胀、软化、玻璃化等参数和特性。
因此,在正常使用和操作该设备时,应当严格遵守相应规程,以确保人员安全和设备顺利运行。
本文档旨在为使用者提供一个全面的、易于理解的指南,帮助使用者安全、规范地操作TMA设备。
第一章设备安全规范1.1 设备的正确操作在进行TMA设备的操作时,请仔细阅读并遵守用户手册中的操作要求。
在正常使用过程中,应当确保所有配置均符合规范和要求,并保证操作人员已经通过培训和考核,熟练掌握了设备的操作方法和具体步骤。
1.2 安全防护装置在使用TMA设备时,应确保所有安全防护装置已经安装并处于正常工作状态。
包括但不限于安全锁、漏电保护、温度保护等装置。
1.3 操作环境操作TMA设备的环境应符合规范:设备应安置在通风、干燥且不受外界干扰的场所。
操作人员应该保持操作环境的整洁,确保周围无杂物,避免发生意外或事故。
1.4 操作顺序在进行TMA设备操作时,应牢记正确的操作顺序:先打开操作台箱盖,然后打开心电图仪,在此之后打开电脑软件,并随后打开TMA 设备开关。
当要停止使用时,应遵从相反的步骤,并始终保持安静、有序的操作过程。
第二章安全措施2.1 装置的安装、维护和检修TMA设备应由专业安装技术人员(或者设备厂家)进行安装、维护和检修。
常规的设备维护应该在设备使用前进行检查,并定期进行维护。
例如,检查设备的散热片是否被堵塞,定期检查设备更换的电源插头是否存在松动等。
2.2 存储及清洁设备的存储应遵守生产厂家要求的最佳条件。
在存储设备时,应注意防潮、防尘、防震和防腐,以防止设备损坏。
设备应保持清洁,不应长期堆积杂物,应保持机箱和仪表的干燥和整洁。
2.3 人员安全操作操作人员在使用TMA设备时必须十分谨慎,保证自己的人身安全。
在操作过程中,应注意保持专注、不要抽烟、喝饮料等。
TMA、DMA
Tg 的 工 艺 意 义
☺是非晶热塑性塑料(如PS,PMMA和硬质PVC聚 氯乙烯等)使用温度的上限。
☺是非晶性橡胶(如NR天然橡胶,BSR丁苯橡胶 等)使用温度的下限。
3.1.2 热机械曲线测试结果示例
☻热机械曲线的形状取决于聚合物的分子量、化学 结构和聚集态结构、添加剂、受热史、形变史、 升温速度、受力大小等诸多因素。
粘弹性分类
静态粘弹性 蠕变、应力松弛 动态粘弹性 滞后、内耗
静态粘弹性——固定应力或应变下的粘弹性行为。有蠕变, 应力松驰。 动态粘弹性——交变应力或应变下的粘弹性行为。有滞后 现象和力学损耗等。
粘弹性现象
➢ 1.蠕变:指在一定的T和较小的恒定应力下,材料的应 变随t的增加而增大的现象。
➢ 2.应力松弛:指在恒定T和形变保持不变的状态下,聚 合物的内部应力随t的增加而逐渐衰减的现象。
1.线形非晶态聚合物的温度-形变曲线
☺线型非晶态聚合物是指结构上无交联、聚集态无结晶
的高分子材料。
☺典型无定型的温度-形变曲线如图所示,相应的模量-
温度曲线同样用于反映分子运动(曲线形状正好倒置) 。
形变% A B C D E
T Tg T/℃ Tf
A-玻璃态;B-过渡区;C-高弹态;D-过 渡区;E-粘流态 Tg-玻璃化温度;Tf-粘流温度
弦交变的应力,同时测量其应变的变化。对于线性
粘弹性的行为而言,当达到平衡时,应力和应变二
者都按正弦形式变化,但应变曲线与应力曲线存在
一相位角。应变相对滞后于应力。
0 sint
应力
0 sin(t )
应变 储能模量
E' 0 cos 0
损耗模量
E'' 0 sin 0
静态热机械分析仪(TMA)操作保养规程
静态热机械分析仪(TMA)操作保养规程1.前言静态热机械分析仪(TMA)是用于测量材料的热膨胀和收缩行为的仪器。
它在材料科学和工程中广泛应用,为了确保TMA能正常运行,并保证测试结果的准确性,我们需要遵循一定的操作和保养规程。
2.操作规程2.1 准备工作在进行测试之前,请先进行以下准备工作:•检查TMA的外观是否正常,是否有损坏;•检查TMA的电源是否稳定;•打开仪器电源,等待其启动完成,并在下面设备窗口点击“进入”;•根据测试样品材料的特性,选择正确的样品架,并放置样品;•连接温度控制器到TMA设备;•启动温度控制器。
2.2 热膨胀测试进行热膨胀测试的步骤如下:1.在温度范围内,将样品放置于样品架上。
2.通过温度控制器设置所需的温度范围和温度变化速率。
3.点击TMA设备窗口中的“开始”按钮开始测试。
4.显示器将显示样品的热膨胀曲线。
5.测试完成后,停止测试并关闭TMA设备和温度控制器。
将样品从样品架上取下并存放在安全的地方。
2.3 热压缩测试进行热压缩测试的步骤如下:1.将样品放置于样品架上。
2.通过温度控制器设置所需的温度范围和温度变化速率。
3.点击TMA设备窗口中的“开始”按钮开始测试。
4.显示器将显示样品的热压缩曲线。
5.测试完成后,停止测试并关闭TMA设备和温度控制器。
将样品从样品架上取下并存放在安全的地方。
2.4 注意事项•操作TMA之前,请先阅读设备说明书,并全面理解仪器的功能和操作规程。
•切勿强制关闭或重启TMA设备,也不要在测试过程中插拔设备电源。
•在进行测试之前,请确保以上操作已完成,并确保样品架整洁干净。
•确保测试时温度范围内没有其他杂物或试样。
3.保养规程3.1 日常保养•每次使用后,将样品架和测试仪器清洁干净,避免样品残留在架子上。
•经常检查样品架上的螺钉是否松动或丢失。
•避免设备暴露在高温或潮湿的环境下。
3.2 定期保养•每半年进行一次设备清洁和维护。
请联系售后服务人员进行保养。
热机械分析仪测试原理及特点
热机械分析仪测试原理及特点简介热机械分析仪(Thermal Mechanical Analyzer,TMA)是一种利用恒定或变化的温度场下的体积变化或形状变化来研究材料热膨胀、收缩、软化、玻璃化转变等性质的分析设备。
它主要用于医药、橡胶、塑料、纤维、食品等材料的热学性质测试。
原理TMA主要通过施加恒定荷载或变化荷载,在恒定温度或变化温度下,通过观察测试物品在温度场作用下的形变、扩张、挠曲、收缩、体积变化等性质,分析材料的热性能参数以及相应的热转变过程。
TMA一般包括测试部分和加热部分。
测试部分包括一个载荷机构和一个探测器(引出式和非引出式探测器),以及测试物品装置。
加热部分包括加热器、热电偶、温度控制器等。
TMA的探测器可以检测微小的形变、扩张、收缩等,精度较高。
特点1.精度高:TMA可以达到微米级精度,可以精确测量材料的扩张、收缩、形变等性质。
2.温度控制精度高:TMA加热部分的温度控制器可以实现高精度的温度控制,可以测试不同温度下材料的性质参数。
3.用途广泛:TMA广泛应用于材料科学、化学等领域,可以测试材料的热膨胀系数、玻璃化转变温度、软化温度等参数。
4.可对样品进行多种形变测试:TMA可以测试样品的线性形变、扩张、回弹、异向性和转动等多种形变,检测样品特性的多样性。
5.操作简便:TMA的操作非常简便,只需要将测试物品装置好,设置好测试参数,便可以进行测试,较低的技术门槛。
应用TMA在材料研究和应用方面有着广泛的应用,下面主要介绍其在药物研究、胶体、纤维和塑料等材料科学中的应用。
药物研究中的应用TMA在药物研究中的主要应用是评估口服固体药物的热溶解性和生物相容性。
其中,TMA可用于评估药物钙化现象和与微粒的相互作用。
胶体和纤维材料中的应用TMA可以用于测量胶体和纤维材料的弹性模量、变形温度,并检测水分含量等。
它也可以用于研究胶体材料的分散性和流变性质。
塑料和聚合物中的应用在聚合物领域,TMA可用于测量塑料的玻璃化转变温度和软化温度等参数,以及聚合物在热和机械要素作用下的物理性质。
热机械分析仪的结构特点 分析仪技术指标
热机械分析仪的结构特点分析仪技术指标热机械分析仪是一种分析仪,是指在程序温度下和非震动载荷作用下;测量物质的形变与温度时间等函数关系的一种技术,主要测量物质的膨胀系数和相转变温度等参数热机械分析仪是一种分析仪,是指在程序温度下和非震动载荷作用下;测量物质的形变与温度时间等函数关系的一种技术,主要测量物质的膨胀系数和相转变温度等参数。
机器特点1、工作温度范围宽-150℃-1500℃具有熔融自保护功能;2、高精度加力马达,保证实验结果准确;3、测量范围广,最大载荷:0.01-6N;4、带液氮自动冷却系统;5、采用应力、应变控制技术;6、恒定/线型载荷模式,用以测量材料的动态力学性能;7、叠加正弦波负荷,构成DMA模式(0.001-1Hz),用以测量材料的动态力学性能;8、控制转化速率技术(CRTA),即控制材料的应变;9、高解析功能,采用Step Temp模式;10、自动读取试样尺寸;11、可在不同湿度下进行测量;12、可浸泡在液体中进行测量;13、具有大容积热重分析(TGA)功能;14、背景扣除;结构构成1、机架:刚形结构,在测试温度范围内轴线方向不发生变形;2、压头:直径4.0mm,长度10mm;;3、加荷装置:可通过压杆、压头对试样施加压强0.4MPa;4、加热装置:为程序控制系统,控温速率 1.2℃/min,控温精度0.5℃;5、致冷装置:最低温度-150℃;6、形变测量装置:探头每位移1μm输出1μV电信号。
主要由机架、压头、加荷装置、加热装置、致冷装置、形变测量装置、记录装置、温度程序控制装置等组成。
仪器网-专业分析仪器服务平台,实验室仪器设备交易网,仪器行业专业网络宣传媒体。
相关热词:等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-150~1000℃ ±1℃ <10min(600~50℃) 26mm(L)×10mm(D)
26mm(L)×1.0mm(T)×4.7mm(W)
±0.1% 15nm 0.5nm <1µm(-100~500℃) 0.001~2N 0.001N 无 标配 惰性、氧化或反应气体
T
标配
M A
无
无
无
无
无
注:TMA Q400可以升级为Q400EM
应力/应变,蠕变,应力松弛和动态操作模式
-99-
Q400EM
Q400EM是一款高性能、研发级的热机械分析仪 (TMA),它的操作模式、测试探头、工作夹具都具 有无可比拟的灵活性,同时能够得到灵敏的信号。 增强模式后,Q400EM可以进行动态实验以及调制 TMA(Modulated TMATM)测试,在调制测 试中样品尺度变化可以分离为可逆和不可逆成分。 Q400EM以其无可比拟的性能成为科研、教学和质 量控制的理想工具。
84
热机械分析仪 TMA
T M
A
TMA 创新历程
99
Q400EM 技术参数
100
Q400 技术参数
101
TMA 技术
102
夹具
104
TMA 原理 / 形变模式 106
TMA 应用
108
技术支持
客户青睐TA仪器的一个很重要的因素就是我们在售后 服务方面的良好信誉。我们拥有业界最强最有经验的技 术支持团队。您可以随时通过电话、email或网站与他 们取得联系。我们还提供多层次的培训机会,包括装机 现场培训、在全球各技术中心举行的研讨会和极为便捷 的在线培训课程。
TA Instruments
热分析系统
T-2006A
TA Instruments
热分析系统
美 国 TA 仪 器 , 鸟 瞰 全 球
全 球,越来越多的客户选择TA仪器作为首选热分析 仪器供应商。我们能赢得如此殊荣,是因为我们 始终以高科技的产品、精湛的制造工艺、迅捷的交货、 高质量的培训课程和完善的售后服务支持系统最好最 大限度地满足顾客的需求。
D
差示扫描量热仪
S
C
DSC 创新历程
9
Q2000 技术参数 10
Q200 技术参数
12
Q20 技术参数
14
Q系列TM DSC技术 16
Q系列TM DSC附件 18
温度控制选配件 26 TzeroTM DSC 30 TzeroTM 性能 31 调制DSC® 性能 33 调制DSC® 应用 34
热重分析仪
压缩
该模式中,样品能在静态力、线 性变化力或动态振荡力的情况下 在设定的温度程序和气氛下进行 测量。样品变形(应变)以膨胀或穿 透实验记录,通过样品变形的特 点来分析材料的内在性质;动态 实验(DTMA)用于测量粘弹性参 数,调制TMA检测热效应,并分 离重叠的转变(MTMATM)。
充分开放。极好的加热控制提供出
开放式设计简化了各种传感器的安
在各种测量模式中进行可靠的定量测试。在动
形变模式)、装样和热电偶
态实验中有十个独立的频率可以选择。频率的
快速的信号响应便于实现调制
的安装,质量流量控制器控制吹扫
选择允许在压缩、三点弯曲和拉伸形变中进行
TMATM的 操 作 。 炉 体 上 部 的
优点:该设计能充分保证炉子的长
质量的数据。加热速率和吹扫气体
围是0.001至1N, 并能够通过在一个特定的盘
寿命和性能的一致性。平稳的炉体
控制系统在标准加热和调制加热模
上附加砝码扩展至2N。马达能平稳地提供精
运动提供了方便的操作,使样品室
式中提供了优异的性能。
准的静态力、线性变化力和振荡动态力,从而
标配 标配 标配 标配 标配 标配
-100-
Q400
Q400作为一款研发级热分析仪,具有与 Q400EM同样出色性能的传感器和炉子。对 于 TMA的 标 准 应 用 来 说 , Q400具 有 与 Q400EM相同的质量和可靠性,并以其业界 领先的准确度、精度、灵活性和操控性成为 研究、教学和质量控制的理想工具。
TA 全球
• New Castle, DE USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1-302-427-4000 • Crawley, England . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +44-1293-658900 • Shanghai, China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +86-21-54263960 • Tokyo, Japan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +81-3-5479-8418 • Bangalore, India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +91-80-28398963 • Paris, France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +33-1-30-48-94-60 • Eschborn, Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +49-6196-400-600 • Brussels, Belgium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +32-2-706-0080 • Etten-Leur, Netherlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +31-76-508-7270 • Milano, Italy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +39-02-27421-283 • Barcelona, Spain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +34-93-600-9300 • Melbourne, Australia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +61-3-9553-0813 • Stockholm, Sweden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +46-8-59-46-92-00
穿透
穿透测量采用一个突起的针探头在 样品一块很小的表面上施力(图3)。 它能提供精确的Tg测量、软化和 熔融行为测量,十分适用于在未 清除基底的涂层测量。探头操作 与膨胀探头相似,但是采用的负 载较大。半球型探头(图4)对于固 体样品的软化点测试是一个可选 的膨胀探头。
1
3
拉伸
薄膜和纤维的应力/应变性质的拉 伸研究可通过薄膜/纤维夹具装置 实现(图5)。样品对齐的辅助工具 (图6)可以保证样品正确、重复准 确地安置在拉伸样品夹具上。实 验中采用一个固定的力来产生应力/ 应变和模量信息。其他的应用包括收 缩力、Tg、软化温度,固化和交联密 度的测量。 拉 伸 的 动 态 模 式 (如 DTMA、MTMATM)可用来测定 粘弹参数(如E’,E”,Tanδ),并且 可分离重叠的转变。
线的稳定性。
垂直运动的炉体完全由软件控制。
测试时对于温度、气氛的精确控制。
度身定制的电子电器设计能在很宽
吹扫气体由数字式质量流量控制器
4 施力马达
的温度范围内提供极好的加热控制
控制和调节。
非接触式马达通过测量探头和夹具以无摩擦损
和迅速的响应。
优点:获得灵活、易用和高效、高
耗方式对样品施加精确的力。力的程序控制范
产生一个准确的与样品尺寸变化成比例的输出
信号,它在很宽温度范围内(-150~1000℃) 具
有精确快速的响应,十分有利于提高TMA测
1 炉子
1
2 2 样品室
试数据结果的重现性。LVDT位于炉子的下方, 避免了温度效应的影响,而且保证了TMA基
Q400以可靠耐用的加热炉而著称,
位于炉子的中心,十分有利于样品
TMA
灵活的操作模式 • 高性能 • 可信赖
热机械分析
Q400是来自于热分析业界领导者美国TA仪器公司的第六代产品,它秉承TA仪器的出色性 能、简便易用和高可靠性,充分展示了TA在很宽的温度范围内进行高灵敏度力学测量的丰 富经验。
TA创新历程
第一台商品化的TMA 传感器自动校正
调制TMA(Modulated TMATM) TMA程序加力功能
温度范围(最大) 温度精度 炉子冷却时间(空气冷却) 最大样品尺寸-固体 最大样品尺寸-薄膜/纤维 静态测试 动态测试 测量精度 灵敏度 位移分辨率 动态基线漂移 施力范围 力的分辨率 频率 质量流量自动控制 气氛(静态或控制流量)