平面向量及其应用专题(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、多选题
1.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知
cos cos 2B b
C a c
=-,
4
ABC S =
△,且b = )
A .1cos 2
B =
B .cos 2
B =
C .a c +=
D .a c +=2.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列
ABC 有关的结论,正确的是( ) A .cos cos 0A B +>
B .若a b >,则cos2cos2A B <
C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径
D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 3.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >
D .
sin sin sin +=+a b c
A B C
4.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭
,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫
⎪⎝⎭
B .97,2⎛
⎫ ⎪⎝⎭
C .14,33⎛⎫
-
- ⎪⎝⎭
D .(7,9)
5.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角
B .向量a 在b
C .2m +n =4
D .mn 的最大值为2
6.下列关于平面向量的说法中正确的是( )
A .已知A 、
B 、
C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =
C .若点G 为ΔABC 的重心,则0GA GB GC ++=
D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 7.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )
A .2OA OD ⋅=-
B .2OB OH OE +=-
C .AH HO BC BO ⋅=⋅
D .AH 在AB 向量上的投影为2-
8.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =
B .a b =
C .a 与b 的方向相反
D .a 与b 都是单位向量
9.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐
标为( ) A .(0,1)-
B .(6,15)
C .(2,3)-
D .(2,3)
10.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=
B .a d b +=
C .b d a +=
D .a b c +=
11.给出下面四个命题,其中是真命题的是( ) A .0AB
BA B .AB BC AC C .AB AC BC += D .00AB +=
12.下列命题中,正确的有( )
A .向量A
B 与CD 是共线向量,则点A 、B 、
C 、
D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2
α
为第二或第四象限角 C .函数1
cos 2
y x =+
是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形 13.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-
C .若||||||a b a b +=+,则a 在b 方向上的投影为||b
D .若存在实数λ使得a b λ=,则||||||a b a b +=- 14.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,
且满足,3
B a c π
=+=,则
a
c
=( ) A .2
B .3
C .
12 D .
13
15.下列命题中正确的是( ) A .单位向量的模都相等
B .长度不等且方向相反的两个向量不一定是共线向量
C .若a 与b 满足a b >,且a 与b 同向,则a b >
D .两个有共同起点而且相等的向量,其终点必相同
二、平面向量及其应用选择题
16.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( )
A .
B .
C .12
D .183
17.已知非零向量AB 与AC 满足
0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪
⎝⎭
且1
2AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形
D .以上均有可能
18.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )
A .a 与b 的夹角为αβ-
B .a b ⋅的最大值为
1 C .2a b +≤
D .()()
a b a b +⊥-
19.在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若
lg lg lg sin a c B -==-,且0,2B π⎛⎫
∈ ⎪⎝⎭
,则ABC 的形状是( )
A .等边三角形
B .锐角三角形
C .等腰直角三角形
D .钝角三角形
20.若△ABC 中,2
sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形
B .等腰三角形
C .等边三角形
D .等腰直角三角形
21.三角形ABC 所在平面内一点P 满足PA PB PB PC PC PA ⋅=⋅=⋅,那么点P 是三角形ABC 的( ) A .重心
B .垂心
C .外心
D .内心
22.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形
ABCD 的形状是( )
A .矩形
B .梯形
C .平行四边形
D .以上都不对