热线型酒精传感器MR513

合集下载

热线型酒精传感器MR513

热线型酒精传感器MR513

产品说明书 热线型气敏元件系列MR513 热线型气敏元件MR513型气敏元件通过气体吸附在金属氧化物半导 体表面而产生热传导变化及电传导变化的原理,由白金 线圈电阻值变化测定气体浓度。

MR513由检测元件和补 偿元件配对组成电桥的两个臂,遇可燃性气体时检测元 件电阻减小,桥路输出电压变化,该电压变化随气体浓 度增大而成比例增大,补偿元件起参比及温度补偿作用。

特点 元件外形结构 *高灵敏度,大信号输出 *初期稳定时间短,响应速度快*良好的重复性,工作稳定可靠 *功耗低、微型化设计应用适于民用、工业现场的便携式酒精探测器和汽车点火控 制系统等。

技术指标 基本测试电路电桥输出测试电压: 2.5V灵敏度、响应恢复特性输出信号随环境温度、湿度的变化长期稳定性在空气中每年漂移小于10mV ,在100ppm 乙醇中每年漂移小于10mV 。

短期储存(两周内)30分钟即可稳定,如长期储存(一年),则需老化5小时才可稳定。

使用注意事项 1 必须避免的情况1.1 暴露于有机硅蒸气中如果传感器的表面吸附了有机硅蒸气,传感器的敏感材料会被包裹住,抑制传感器的敏感性,并且不可恢复。

传感器要避免暴露其在硅粘接剂、发胶、硅橡胶、腻子或其它含硅塑料添加剂可能存在的地方。

1.2 高腐蚀性的环境气氛中传感器暴露在高浓度的腐蚀性气体(如H2S,SOX,Cl2,HCl等)中,不仅会引起加热材料及传感器引线的腐蚀或破坏,并会引起敏感材料性能发生不可逆的改变。

1.3 碱、碱金属盐、卤素的污染传感器被碱金属尤其是盐水喷雾污染后,若暴露在卤素,如氟中,也会引起性能劣变。

1.4 接触到水溅上水或浸到水中会造成敏感特性下降。

1.5 结冰水在敏感元件表面结冰会导致敏感材料碎裂而丧失敏感特性。

1.6 施加电压过高如果给敏感元件或加热器施加的电压高于规定值,即使传感器没有受到物理损坏或破坏,也会造成引线和/或加热器损坏,并引起传感器敏感特性下降。

2 尽可能避免的情况2.1 凝结水在室内使用条件下,轻微凝结水会对传感器性能会产生轻微影响。

MQ-3酒精传感器的介绍

MQ-3酒精传感器的介绍

2.3.1酒精传感器的介绍酒精传感器MQ-3 的基本原理可简述为将探测到的酒精浓度转换成有用电信号的器件,并根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息[11]。

MQ-3 型气敏传感器由陶瓷管和二氧化硅敏感层、测量电极和加热器构成的敏感元件固定在塑料或不锈钢的腔体内,加热器为气敏元件的工作提供了必要的工作条件。

气敏传感器的外观和相应的结构形式如图2.4 所示,它是由微型氧化铝陶瓷管、氧化锌敏感层,测量引脚电极和温度加热器组成[12]。

敏感元件固定在塑料或不绣钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。

封装好的气敏元件有六个管脚输出,其中四个用于信号的取出,二个用于提供加热的电流。

图2.4 酒精传感器的外观和相应的结构形式图中①、②、③分别表示MQ-3 乙醇传感器的引脚排列图、引脚功能图、使用接线图。

其中H-H 表示加热极(5V),A-A、B-B 传感器表示敏感元件的两个极,图③中框图中“V”为传感器的工作电压,同时也是加热的电压。

在工作时,气敏传感器的加热电压选取交流或直流5V 均可。

当其被受热后,加温室环境中的可燃气体浓度迅速增大,传感器的内阻阻值将会迅速降低,利用该特性并结合电路分析中的分压原理,分析便得知Vout 的值将逐渐增大,当超过预设定的阈值时,可产生相应的操作[13]。

经过处理后检测信号由电阻值转变成电压值,就可用于后续电路进行A/D 转换和处理。

传感器的标准回路有两部分组成。

其一为加热回路,其二为信号输出回路,它可以准确反映传感器表面的电阻值变化。

传感器表面电阻Rs 的变化,是通过与其串联的负载电阻R L 上的有效电压信号U RL输出获得的。

二者之间的关系表述为:R S/R L= (V-U RL )/U RL……………………………(2-1)其中,V 为回路电压,电压为10V,负载电阻R L可调为0.5—200KΩ。

负载电阻R L可调,加热电压一般为5V。

mq3酒精传感器原理

mq3酒精传感器原理

mq3酒精传感器原理酒精传感器是一种能够检测空气中酒精浓度的传感器。

mq3酒精传感器是一种常见的酒精传感器,它具有高灵敏度、快速响应和稳定性好的特点,被广泛应用于酒驾检测、酒精检测仪器等领域。

mq3酒精传感器的原理是基于半导体气体传感器的工作原理。

半导体气体传感器通过氧化物敏感层的电阻变化来检测目标气体的浓度。

mq3酒精传感器的敏感层通常由铂、二氧化锡和氧化铝等混合物组成。

当酒精气体进入传感器,它会与敏感层发生反应,使得敏感层的电阻发生变化。

mq3酒精传感器的工作过程可以分为两个阶段:加热和检测。

在加热阶段,传感器内部的加热元件会产生热量,使得敏感层达到工作温度。

在检测阶段,当酒精气体进入传感器,它会与敏感层发生化学反应,导致敏感层的电阻发生变化。

传感器会根据电阻的变化来输出相应的电信号,从而实现对酒精浓度的检测。

mq3酒精传感器的灵敏度取决于敏感层的材料和结构。

敏感层的设计可以使其对酒精具有高选择性,从而减少对其他气体的干扰。

此外,传感器还可以通过调整敏感层的厚度和微结构来改变其灵敏度和响应速度。

mq3酒精传感器的输出信号通常是模拟信号。

为了方便使用,传感器通常会与微控制器或模数转换器相连,将模拟信号转换为数字信号。

通过对数字信号的处理和分析,可以得到目标酒精浓度的数值。

酒精传感器在酒驾检测、酒精检测仪器等领域起着重要的作用。

它可以帮助人们检测出空气中的酒精浓度,从而保障交通安全和公共秩序。

此外,酒精传感器还可以应用于工业生产中,用于监测酒精溶剂的浓度,以防止事故的发生。

mq3酒精传感器是一种基于半导体气体传感器原理的酒精检测传感器。

它通过敏感层的电阻变化来检测酒精浓度,并输出相应的电信号。

酒精传感器在酒驾检测、酒精检测仪器等领域具有广泛的应用前景。

通过不断的研究和改进,相信酒精传感器将在未来发挥更大的作用,为人们的生活和工作带来更多的便利和安全。

酒精传感器的介绍

酒精传感器的介绍

酒精传感器得介绍酒精传感器 MQ-3 得基本原理可简述为将探测到得酒精浓度转换成有用电信号得器件,并根据这些电信号得强弱就可以获得与待测气体在环境中得存在情况有关得信息[11]。

MQ-3 型气敏传感器由陶瓷管与二氧化硅敏感层、测量电极与加热器构成得敏感元件固定在塑料或不锈钢得腔体内,加热器为气敏元件得工作提供了必要得工作条件。

气敏传感器得外观与相应得结构形式如图 2、4 所示,它就是由微型氧化铝陶瓷管、氧化锌敏感层,测量引脚电极与温度加热器组成[12]。

敏感元件固定在塑料或不绣钢制成得腔体内,加热器为气敏元件提供了必要得工作条件。

封装好得气敏元件有六个管脚输出,其中四个用于信号得取出,二个用于提供加热得电流。

图2、4 酒精传感器得外观与相应得结构形式图中①、②、③分别表示 MQ-3 乙醇传感器得引脚排列图、引脚功能图、使用接线图。

其中 H-H 表示加热极(5V),A-A、B-B 传感器表示敏感元件得两个极,图③中框图中“V”为传感器得工作电压,同时也就是加热得电压。

在工作时,气敏传感器得加热电压选取交流或直流 5V 均可。

当其被受热后,加温室环境中得可燃气体浓度迅速增大,传感器得内阻阻值将会迅速降低,利用该特性并结合电路分析中得分压原理,分析便得知 Vout 得值将逐渐增大,当超过预设定得阈值时,可产生相应得操作[13]。

经过处理后检测信号由电阻值转变成电压值,就可用于后续电路进行 A/D 转换与处理。

传感器得标准回路有两部分组成。

其一为加热回路,其二为信号输出回路,它可以准确反映传感器表面得电阻值变化。

传感器表面电阻 Rs 得变化,就是通过与其串联得负载电阻 RL上得有效电压信号 URL输出获得得。

二者之间得关系表述为:R S /RL= (V-URL)/URL……………………………(2-1)其中,V 为回路电压,电压为 10V,负载电阻 RL可调为 0、5—200KΩ。

负载电阻RL可调,加热电压一般为 5V。

MR511 热线型半导体气敏元件说明书

MR511 热线型半导体气敏元件说明书

MR511 热线型半导体气敏元件MR511型气敏元件通过气体吸附在金属氧化物半导体表面而产生热传导变化及电传导变化的原理,由白金线圈电阻值变化测定气体浓度。

MR511由检测元件和补偿元件配对组成电桥的两个臂,遇可燃性气体时检测元件电阻减小,桥路输出电压变化,该电压变化随气体浓度增大而成比例增大,补偿元件起参比及温度补偿作用。

特点高灵敏度,大信号输出初期稳定时间短,响应速度快良好的重复性,工作稳定可靠优良的抗烟雾、乙醇蒸气干扰能力功耗低、微型化设计、应用民用、工业现场的天然气、液化气、煤气、烷类等可燃性气体的浓度检测。

可燃性气体泄漏报警器可燃性气体探测器元件结构基本测试电路技术指标项目技术参数工作电压 3.0±0.1 V工作电流@80±10mA0.3%甲烷>100 mV0.2%丁烷>80 mV 灵敏度0.1%氢气>30 mV线形度0~5 % 响应时间 (90%) 小于10秒恢复时间 (90%)小于30秒使用环境-20-+60℃低于95%RH储存环境-30—+80℃低于95%RH外形尺寸Φ12mmX10mm灵敏度特性及响应恢复特性长期稳定性在空气中每年漂移小于10mV ,在0.3%CH4中每年漂移小于10mV 。

短期储存(两周内)30分钟即可稳定,如长期储存(一年),则需老化5小时才可稳定。

注意事项 △元件的灵敏度要定期用标准气样校准。

△应尽量避免接触浓度为5%以上的可燃性气体。

当偶然接触到高浓度的可燃性气体时, 应重新校准零点和灵敏度。

△在调试过程中, 应严格控制加热电压或电流, 不得超过4.0V 以免烧毁元件。

△长期停止使用要放置在干燥、无腐蚀性气体的环境中。

△元件谨防振动、跌落及机械损伤。

使用元件前请详细参看本说明。

元件测试步骤1、试验装置:a、试验箱材料为金属或玻璃,不吸附气体,箱体积为每对元件大于1升。

b、推荐红外气体分析仪测量气体浓度。

c、箱内气体应搅拌,但不可直接对着元件。

单片机常用外围器件及芯片

单片机常用外围器件及芯片

常用MCS-51系列(8位)单片机内部硬件资源表更强功能的MCS-51系列(8位)单片机内部硬件资源表 公司型号 片内ROM 片内RAM I/O 口线 中断源 A/D 定时器Intel80C51GA 4K 128 32 7 4*8bit 280C51GB 8K 256 32 7 4*8bit 2 ATMEL 89LV51 Flash 4K 128 32 6 /289LV52 Flash 8K 256 32 8 3 SiemensSAB80512 4K 128 56 6 8*8bit 2SAB80515 8K 256 48 12 8*8bit 3 AMD 80C525/325 8K 256 42 2 8*8bit380C515/535 8K 256 32 4 2Philips/ Signetics 83C552 8K 256 40 15 8*8bit 2 83C752 2K 64 19 6 4*8bit 1常用PIC 单片机系列(8位)单片机内部硬件资源 型号 管脚 片内ROM(位) 片内RAM I/O口线说明PIC12C508A 8 512*12 256 每个I/O 口吸收、驱动电流25mAPIC12C509A 512*12 41PIC12C671 1024*12 128PIC12C671 2048*12 128每个I/O 口吸收、驱动电流25mA ,4路8位ADCPIC16C54C 18 512*12 25 12一个定时器,片内WDT ,每个I/O 口吸收25mA 电流、驱动电流20mAPIC16C55 28 512*12 24 20PIC16C56 18 1024*12 25 12PIC16C57 28 2048*12 72 20公司型号 片内ROM片内RAM I/O 口线中断源 定时/计数器 Intel8031/128 32 5 2 8751 4K EPROM 128 32 5 2 8051 4K 128 32 5 2 8752 8K EPROM 256 32 6 3 ATMEL 89C1051 1K FLASH 128 15 3 1 89C2051 2K FLASH 128 15 5 2 89C51 4K FLASH 128 32 5 2 89C52 8K FLASH2563283常用74系列门电路芯片型号和简单功能描述名称(74XX)特征描述00 四2输入端与非门01 四2输入端与非门(OC)02 四2输入端或非门03 四2输入端或非门(OC)04 六反相器05 六反相器(OC)06 六高压输出反相器(OC,30V)07 六高压输出缓冲驱动器(OC,30V)08 四2输入端与门10 三2输入端与非门11 三2输入端与门13 双4输入端与非门14 六反相器16 六高压输出反相器(OC,15V)17 六高压输出缓冲驱动器(OC,15V)128 四2输入端或非线驱动器常用4000系列门电路芯片型号和简单功能描述型号器件名称厂家名称CD4000 双3输入端或非门+单非门TICD4001 四2输入端或非门HIT/NSC/TI/GOL CD4002 双4输入端或非门NSCCD4011 四2输入端与非门HIT/TICD4012 双4输入端与非门NSCCD4023 三3输入端与非门NSC/MOT/TI CD4025 三3输入端或非门NSC/MOT/TI CD4068 八输入端与非门/与门NSC/HIT/TICD4069 六反相器NSC/HIT/TICD4073 三3输入端与门NSC /TICD4075 三3输入端或门NSC/ TICD4081 四2输入端与门NSC/HIT/TICD4082 双4输入端与门NSC/HIT/TI常用的功率MOSFET驱动器型号配置输出电流(A)最大输入电压(V)封装TC4421 单通道、反相9 18 8-Pin,PDIP,5-Pin TC429 单通道、反相 6 18 8-Pin PDIPTC1413 单通道、反相 3 16 8-Pin PDIP,8-Pin TC4427A 双通道 1.5 18 8-Pin PDIP,8-PinTC4428A 双通道、正反/相1.5 188-Pin PDIP,8-PinSOICTC1426 双通道、反相 1.2 16 8-Pin PDIP,8-Pin SOICTC4467 四通道、反相 1.2 18 14-Pin PDIP,16-Pin SOIC(W)TC4468 四通道 1.2 18 14-Pin PDIP,16-Pin SOIC(W)电流/电压转换芯片型号封装电流大小电源电压最大工作电流(µA)简单描述MAX471 8/PDIP/SO 0~3A +3~+36 50 精密,高端电流传感放大器MAX472 8/PDIP/SO 外部电阻+3~+36 20 精密,高端电流传感放大器MAX4073 5-SC706-SOT23外部电阻+3~+28 500低成本,电压输出高端电流传感放大器MAX4172 8/µMAX/SO 外部电阻+3~+32 800 低成本,精密,H输出高端电流传感放大器MAX4173 6-SOT23 外部电阻+3~+28 420 低成本,电压输出高端电流传感放大器MAX4372 5-SOT238-SO外部电阻+2.7~+28 30低成本,微功耗电压输出高端电流传感放大器+比较器,含电压基准MAX4373 8/µMAX/SO 外部电阻+2.7~+28 50 低成本,微功耗电压输出高端电流传感放大器+比较器,含电压基准MAX4374 8/µMAX/SO 外部电阻+2.7~+28 50 低成本,微功耗电压输出高端电流传感放大器+比较器,含电压基准MAX4375 8/µMAX/SO 外部电阻+2.7~+28 50 低成本,微功耗电压输出高端电流传感放大器+比较器,含电压基准MAX4376 14-TSSOP5-SOT238/µMAX/SO外部电阻+3~+28 1000单高变电流传感放大器带外部增益多路模拟开关型号仪表放大器型号 传感器类型 输出形式 输出阻抗 典型器件 热敏电阻 随温度电阻发生变化 50到1M Ω AD524、AD620 热电偶电压变化 20~20k Ω AD624、AD620电阻温度探测(RTD ) (桥式电路) 随温度电阻发生变化 20~20k Ω AD624、AD625、AD620 水位传感器热型、浮标型 电阻变化500~2k Ω100~2k Ω AD624、AD625、AD620、AMP-01负载传感器应变桥、测重仪电阻变化120~1k Ω AD624、AD625、AD620、 AMP-01 光敏二极管光强度增加,电流增加 10Ω AMP-05磁场传感器 5mv/kg ~120mv/kg 1~ 1k Ω AD624、AD625、AD620、 AMP-02加速度传感器 1~100mv/g500ΩAD624、AD625、AD620、 AMP-02AD 公司DAC 器件 极性型号封装 位数 输出信号 线性 外部基准 接口方式 单极性AD5300BμSOIC8 0~+VDD 1 +VDD SPI AD7523 DIP 8 I 1/2 ±VREF P8 AD7524 DIP 8 I 1/2 ±VREF P8 AD7533 DIP10 I 1/2~2 ±VREF P10 AD5310BμSOIC10 0~+VDD 1 +VDD SPI AD7397 DIP 10 0~+VDD 1 +VREF P12 AD7541A DIP 12 I 1/2 ±VREF P12 AD7545 DIP 12 I 1/2 ±VREF P12 AD7845 DIP 12V1/2~1±VREFP12型号 通道数 最小电压最大电压最大关电流最大开时间 最大关时间 MAX324 2 2.7 16 0.1 150 100 MAX323 2 2.7 16 0.1 150 100 MAX307 8 4.5 30 0.75 200 150 MAX306 16 4.5 30 0.75 200 150 MAX322 2 Dual-Supply Dual-Supply 0.1 150 100 MAX321 2 Dual-Supply Dual-Supply 0.1 150 100 MAX320 2Dual-Supply Dual-Supply 0.1 150100AD7564 DIP 12 I1/2 4路+VREF S AD7393 DIP 12 +1.2(V) 1.6 +1.2(内部) P10 AD7394 DIP 12 +VREF(V) 1 +VREF SPI AD5320B DIP 12 0~+VDD 1 +VDD SPI AD7538 μSOIC 14 I1 ±VREF P14AD420 DIP 16 I(0~20mA/ 0~24mA/ 4~24mA) / 内/外 SPI/Microwire AD421 DIP 16 I(4~24mA) / 内/外 SPI 双极性AD7225 DIP 8 V ±5(V ) I 5mA±2 4路 外 P8 AD7226 DIP 8 V ±5(V ) I 5mA±2 1路 外 P8 AD7243 DIP 12 V ±5(V ) I 5mA±1 +5 S AD7840 DIP14V ±3(V ) I 5mA±2+3P14TI 公司的双极性DAC 器件 器件 管脚数 分辨率 输出 通道数 基准 电源电压 TLV5620 14 8 V 4 外部 2.7~5.5 TLC5628 16 8 V 8 外部 5TLV5604 16 10 V 8 外部 2.7~5.5 TLV5614 16 12 V 8 外部 2.7~5.5 TLC5615 8 10 V 1 外部 5TLC5616 8 12 V 1 外部 2.7~5.5 TLC5617 8 10 V 2 外部 5 TLC5618 8 12 V 2 外部 5TLV5636 8 12 V 1 外部 2.7~5.5 TLV5637 8 10 V 2 外部 2.7~5.5 TLV5638 8 12 V 2外部 2.7~5.5TLV5613 20 12 V 1 外部 2.7~5.5 TLV56192012 V1外部 2.7~5.5型号 通道 分辨率 输出阻抗线性 封装MAX5621 16 16 50 0.0015 64-TQFP 68-QFN MAX5622 16 16 500 0.0015 64-TQFP 68-QFN MAX5623 16 16 1000 0.0015 64-TQFP 68-QFN MAX5631 32 16 50 0.0015 64-TQFP 68-QFN MAX5632 32 16 500 0.0015 64-TQFP 68-QFN MAX5633 32 1610000.0015 64-TQFP 68-QFNTLV5633 20 12 V 1 内部 2.7~5.5 TLV5639 20 12 V 11 内部 2.7~5.5 THS5641 28 8 I 1 内部 3.0~5.0 THS5651 28 10 I 1 内部 3.0~5.0常用的光耦器件型号品牌描述4N25 QTC 晶体管输出4N30 QTC 达林顿管输出4N33 QTC 达林顿管输出4N35 QTC 晶体管输出6N135 FSC 高速光耦晶体管输出6N136 FSC 高速光耦晶体管输出6N137 FSC 高速光耦晶体管输出T1L113 FSC 达林顿管输出T1L117 - 达林顿管输出MOC3041 - 过零\触发\可控制输出MOC3061 - 过零\触发\可控制输出升/降压电压变换器件型号最小输出电压最大输出电压典型电流特征MAX1672 1.25 5.5 0.3 低电压检测MAX1729 2.5 16 0.0025 低噪声MAX710 - - 0.25 低噪声低电压检测MAX711 2.7 5.5 0.25 低噪声低电压检测升压电压变化器件型号最小输出电压最大输出电压典型电流MAX1675 2 5.5 0.3MAX1676 2 5.5 0.3MAX1678 2 5.5 0.09MAX1687 1.25 6 2MAX1688 1.25 6 2MAX1700 2.2 5.5 0.8MAX1703 2.5 5.5 1.5MAX1705 2.5 5.5 0.8降压电压变换器件型号典型输出值最小输出电压最大输出电压典型电流MAX1672 1.25 5.5 0.3 低电压检测MAX1734 1.5,1.8 - - 0.25MAX1742 1.5,1.8,2.5 1.1 5.5 1 MAX1744 3.3,5 - - 10 MAX1745 - 1.25 18 10 MAX1762 1.8,2.5 0.5 5.5 0.6 MAX1776 5 1.25 24 0.6 MAX1791 3.3,5 0.5 5.5 3 MAX1809 - 1.1 5.5 3 MAX1813 - 0.6 2 22 MAX1830 1.5,1.8,2.5 1.1 5.5 3低压差线性稳压器型号典型输出值最小输出电压最大输出电压典型电流(mA)MAX8873 2.80、2.84、3.15 - - 280MAX8874 2.80、2.84、3.15 - - 280MAX8875 2.5~5 - - 150MAX8877 2.5~5 - - 150MAX8878 2.5~5 - - 150MAX8880 - 1.25 5 200MAX8881 1.8、2.5、2.85、5.0 - - 200MAX8882 1.8、2.5、2.85、3.3 - - 160MAX8883 1.8、2.5、2.85、3.3 - - 160MAX8885 2.5~5 - - 150精密电压基准IC型号输出电压精度最小电压最大电压MAX6191A 2.048 0.1 2.5 12.6MAX6191B 2.048 0.244 2.5 12.6MAX6191C 2.048 0.5 2.5 12.6MAX6192A 2.5 0.08 2.7 12.6MAX6192B 2.5 0.2 2.7 12.6MAX6192C 2.5 0.4 2.7 12.6MAX6193A 3 0.066 3.2 12.6MAX6193B 3 0.166 3.2 12.6MAX6193C 3 0.333 3.2 12.6MAX6194A 4.5 0.04 4.7 12.6MAX6194B 4.5 0.11 4.7 12.6MAX6194C 4.5 0.22 4.7 12.6MAX6195A 5 0.04 5.2 12.6MAX6195B 5 0.1 5.2 12.6 MAX6195C 5 0.2 5.2 12.6 MAX6198A 4.096 0.05 4.3 12.6 MAX6198B 4.096 0.12 4.3 12.6 MAX6198C 4.096 0.24 4.3 12.6看门狗器件型号最小复位时间(ms)最大复位时间(ms)标准看门狗设置MAX690 35 70 可调1.6s MAX691 可调35 可调70 可调1.6s MAX692 可调35 可调70 可调1.6s MAX693 可调35 可调70 可调1.6s MAX694 可调140 可调280 可调1.6s MAX695 可调140 可调280 可调1.6s 单片机常用外围器件单片机常用外围器件************************************一、74系列常用器件1.常用与非门及与非门器件MM54HC08/MM74HC08MM54HC11/MM74HC12.常用或门有或非门器件MM54HC32/MM74HC32MM54HC02/MM74HC023常用与或门及与或非门器件MM54HC58/MM74HC58MM5(7)4HC514.常用总线驱动及收发器件54LS244/DM74LS244DM54LS235/DM74LS24574HC5955.常用计数器DM74LS90/DM74LS93DM54LS193/DM74LS1936.常用编码译码器件MM5(7)4HC148MM5(7)4HC138************************************二、存储器件1.SRAM-IS61C256AH2.EPRAM-M2764A3.EEPRAM24LC256X2816C4.FLASH存储器AT29C2***********************************三、A/D1.逐次比较型A/DADC0809/0804AD78102.并行比较型ADAD90483.半闪烁型高速A/DTLC5510MAX1134.Σ-△型高精度A/DAD7710ADS1100***********************************四、输出及显示1.LED驱动芯片ICM7218MAX7219MCI144892.LCD器件FYD128643.D/A************************************五、传感器1.温度LM35DS18B202.语音芯片ISD25003.时钟芯片DS1302PCF85834.其他热线型半导体气敏元件MR513酒精传感器 MQ-303A可燃性气体传感器 M007*************************************六、常用可编程器件1.可编程并行接口芯片 8255A2.可编程中断控制器 82C59A3.可编程计数器MSM82C53-2MSM82C54-24.可编程键盘、显示控制器件TMP82C79*****************************************七、常用通信器件1.RS-232总线接口芯片 MAX2322.RS-422总线接口芯片 MAX4913.RS-485总线接口芯片 MAX4854.异步收发器 MAX3100B控制器件 ISP15186.以太网接口器件 RTL8019AS*****************************************八、电源相关器件1.DC-DC电压变换器MAX1676MAX6822.电源监控器件MAX791MAX7053.电流传感器MAX471/472。

MQ-3酒精传感器的介绍

MQ-3酒精传感器的介绍

2.3.1酒精传感器的介绍酒精传感器MQ-3 的基本原理可简述为将探测到的酒精浓度转换成有用电信号的器件,并根据这些电信号的强弱就可以获得与待测气体在环境中的存在情况有关的信息[11]。

MQ-3 型气敏传感器由陶瓷管和二氧化硅敏感层、测量电极和加热器构成的敏感元件固定在塑料或不锈钢的腔体内,加热器为气敏元件的工作提供了必要的工作条件。

气敏传感器的外观和相应的结构形式如图 2.4 所示,它是由微型氧化铝陶瓷管、氧化锌敏感层,测量引脚电极和温度加热器组成[12]。

敏感元件固定在塑料或不绣钢制成的腔体内,加热器为气敏元件提供了必要的工作条件。

封装好的气敏元件有六个管脚输出,其中四个用于信号的取出,二个用于提供加热的电流。

图2.4 酒精传感器的外观和相应的结构形式图中①、②、③分别表示MQ-3 乙醇传感器的引脚排列图、引脚功能图、使用接线图。

其中H-H 表示加热极(5V),A-A、B-B 传感器表示敏感元件的两个极,图③中框图中“V”为传感器的工作电压,同时也是加热的电压。

在工作时,气敏传感器的加热电压选取交流或直流5V 均可。

当其被受热后,加温室环境中的可燃气体浓度迅速增大,传感器的内阻阻值将会迅速降低,利用该特性并结合电路分析中的分压原理,分析便得知Vout 的值将逐渐增大,当超过预设定的阈值时,可产生相应的操作[13]。

经过处理后检测信号由电阻值转变成电压值,就可用于后续电路进行A/D 转换和处理。

传感器的标准回路有两部分组成。

其一为加热回路,其二为信号输出回路,它可以准确反映传感器表面的电阻值变化。

传感器表面电阻Rs 的变化,是通过与其串联的负载电阻R L上的有效电压信号U RL输出获得的。

二者之间的关系表述为:R S/R L= (V-U RL )/U RL……………………………(2-1)其中,V 为回路电压,电压为10V,负载电阻R L可调为0.5—200KΩ。

负载电阻R L可调,加热电压一般为5V。

酒精气体传感器(型号:MQ-3)说明书

酒精气体传感器(型号:MQ-3)说明书

Alcohol Gas Sensor(Model:MQ-3)ManualVersion: 1.3Valid from: 2014-05-01Zhengzhou Winsen Electronics Technology Co., LtdStatementThis manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can’t spread through electronic, copying, record ways.Thanks for purchasing our product. In order to let customers use it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.The specific such as color, appearance, sizes &etc, please in kind prevail.We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users’ comments on optimized using way are welcome.Please keep the manual properly, in order to get help if you have questions during the usage in the future.Zhengzhou Winsen Electronics Technology CO., LTDMQ-3 Semiconductor Sensor for Alcohol GasProfileSensitive material of MQ-3 gas sensor is SnO 2, which with lower conductivity in clean air. When the target alcohol gas exist, t he sensor’s conductivity gets higher along with the gas concentration rising. Users can convert the change of conductivity to correspond output signal of gas concentration through a simple circuit.MQ-3 gas sensor has high sensitivity to alcohol gas and can resistant to the interference of gasoline, smoke and vapour. It is with low cost and suitable for various applications of detecting alcohol at differentconcentration.FeaturesIt has good sensitivity to alcohol in wide range, and has advantages such as long lifespan, low cost and simple drive circuit &etc.Main ApplicationsIt is widely used in domestic alcohol gas alarm, industrial alcohol gas alarm and portable alcohol detector.Technical Parameters Stable.1Fig1.Sensor S tructureUnit: mm NOTE: Output voltage (Vs) is V RL in test environment.Basic CircuitFig2. MQ-3 Test CircuitInstructions: The above fig is the basic test circuit of MQ-3.The sensor requires two voltage inputs: heater voltage (V H ) and circuit voltage (V C ). V H is used to supply standard working temperature to the sensor and it can adopt DC or AC power, while V RL is the voltage of load resistance R L which is in series with sensor. Vc supplies the detect voltage to load resistance R L and it should adopt DC power.Description of Sensor CharactersC 2H 5OHAir CO H 2Gas Concentration(ppm)Cautions1 .Following conditions must be prohibited1.1 Exposed to organic silicon steamSensing material will lose sensitivity and never recover if the sensor absorbs organic silicon steam. Sensors must avoid exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment. 1.2 High Corrosive gasIf the sensors are exposed to high concentration corrosive gas (such as H 2S, SO X , Cl 2, HCl etc.), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation. 1.3 Alkali, Alkali metals salt, halogen pollutionThe sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorine.Gas Concentration(ppm)Time(s)125ppm C 2H 5OH(RL=4.7k)125ppm C 2H 5OH(RL=4.7k)1.4 Touch waterSensitivity of the sensors will be reduced when spattered or dipped in water.1.5 FreezingDo avoid icing on sensor’s surface, otherwise sensing material will be broken and lost sensitivity.1.6 Applied higher voltageApplied voltage on sensor should not be higher than stipulated value, even if the sensor is not physically damaged or broken, it causes down-line or heater damaged, and bring on sensors’ sensitivity characteristic changed badly.1.7 Voltage on wrong pinselectrodes (Pin 1 connects with Pin 3, while Pin 4 connects with Pin 6).Ifapply voltage on Pin 1&3 or 4&6, it will make lead broken; and no signalputout if apply on pins 2&4.Fig8. Lead sketch2 .Following conditions must be avoided2.1 Water CondensationIndoor conditions, slight water condensation will influence sensors’ performance lightly. However, if water condensation on sensors surface and keep a certain period, sensors’ sensitiv e will be decreased.2.2 Used in high gas concentrationNo matter the sensor is electrified or not, if it is placed in high gas concentration for long time, sensors characteristic will be affected. If lighter gas sprays the sensor, it will cause extremely damage.2.3 Long time storageThe sensors resistance will drift reversibly if it’s stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof bag without volatile silicon compound. For the sensors with long time storage but no electrify, they need long galvanical aging time for stability before using. The suggested aging time as follow:Stable2.2.4 Long time exposed to adverse environmentNo matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc., it will influence the sensors’ performance badly. 2.5 VibrationContinual vibration will result in sensors down-lead response then break. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.2.6 ConcussionIf sensors meet strong concussion, it may lead its lead wire disconnected.2.7 Usage Conditions2.7.1For sensor, handmade welding is optimal way. The welding conditions as follow:●Soldering flux: Rosin soldering flux contains least chlorine●homothermal soldering iron●Temperature:250℃●Time:less than 3 seconds2.7.1If users choose wave-soldering, the following conditions should be obey:●Soldering flux: Rosin soldering flux contains least chlorine●Speed: 1-2 Meter/ Minute●Warm-up temperature:100±20℃●Welding temperature:250±10℃●One time pass wave crest welding machineIf disobey the above using terms, sensors sensitivity will be reduced.Zhengzhou Winsen Electronics Technology Co., LtdAdd: No.299, Jinsuo Road, National Hi-Tech Zone,Zhengzhou 450001 ChinaTel: +86-371-67169097/67169670Fax: +86-371-60932988E-mail:*******************Website:。

常用传感器件

常用传感器件

1:各种传感器件: PTC 、NTC热敏电阻,人体感应模块,无线红外报警探头,有线红外探头,超声波探头模块,微波探头模块,气体压力传感器件.2:各种高频红外数传模块,RX3310A TX4915 RX3400 RX3930 TX4930 NRF系列模块 TX系列短波模块音频视频模块 100万组系列编码IC解码芯片如:TDH6300 TDH6301 TDH6302 TDH2172 TDH2327 EV1527 EV1529 HCS301PT2272-L4 PT2272-M4 PT2272-L6 PT2272-M6 SC2272-L4 SC2272-M4 SC2272-L6 SC2272-M6 SC2262 PT2262 HS2272-L4 HS2272-M4 HS2272-L6 HS2272-M6 HS22623:各种开关模块:六开六关模块,八开八关模块,十开十关模块,定时开关模块,时间控制模块,多功能钟控模块。

4:各种模块成品:温度计,湿度计,温控器,计步器,计算器,万年历,电子表,石英钟,红外测温仪模块及成品。

三各种传感器及配套电路:1:各种红外感应IC: CS9803、 BISS0001 、M7612、 RT1072 、WT8072 、HS0001 、OT0001 、RE200B HT7610A/B、 HT2811/2812、 CS306、 KDS209、 PIS-209S、 LHI778 、RE03B 、PRE05B、LHI878 LHI1148 、LHI958、 LHI968 、PD532 、PD632 GH-718 GH-311 GH310 GH312 LP8072 CSC98032:各种火焰紫外线器件:R2868日本火焰探测传感器用于火灾报警装置,C3704火焰探测模块,G5842紫外线探测3:微波多普勒无线探测模块:HB100物体移动探测10。

525HZ 用于自动门、报警器等自动化产品 HB200 HB510物体移动探测10。

MQ-2,MQ-4,MQ-5,MQ-6.MQ-8半导体式烟雾传感器

MQ-2,MQ-4,MQ-5,MQ-6.MQ-8半导体式烟雾传感器

MQ-2,MQ-4,MQ-5,MQ-6.MQ-8半导体式烟雾传感器烟雾传感器的一般检测目标及检测范围MQ-2可燃气体、烟雾300 to 10000ppmMQ-4天然气、甲烷300 to 10000ppmMQ-5液化气、甲烷、煤制气300 to 5000ppmMQ-6液化气、异丁烷、丙烷100 to 10000ppmMQ-8氢气、煤制气50 to 10000ppm其它电化学传感器ME2-C0 一氧化碳CO 0-1000ppmME3-CO 一氧化碳CO 0-500ppm,0-1000ppm,0-2000ppmME4-CO 一氧化碳CO 0-500ppm,0-1000ppm,0-2000ppmME3-H2S 硫化氢H2S 0-200ppmME4-H2S 硫化氢H2S 0-200ppmME3-H2 氢气H2 0-200ppmME4-H2 氢气H2 0-1000ppmME3-NH3 氨气NH3 0-1000ppmME4-NH3 氨气NH3 0-50ppmME3-CL2 氯气CL2 0-50ppmME4-CL2 氯气CL2 0-20ppmME3-PH3 磷化氢PH3 0-20ppmME4-PH3 磷化氢PH3 0-20ppmME3-O2 氧气O2 0-25% max:30%ME2-O2 氧气O2 0-25% max;30%ME3-C2H5OH 酒精C2H5OH 0-1000ppmME4-C2H5OH 酒精C2H5OH 0-1000ppm催化燃烧式可燃气体MC101 甲烷、液化气、丙烷等可燃性气体 0-100%LELMC102 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC105 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC106 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC108 氢气、可燃气体 0-100%LELMC112 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC112D 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC113 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC114 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MJC4/3.OL 甲烷、瓦斯 0-4%VOLMJC4/3.OJ 甲烷、瓦斯 0-4%VOLMJC4/2.8J 甲烷、瓦斯 0-4%VOLMJC4/2.5L 甲烷、瓦斯 0-4%VOLMC201 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC115 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC116 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC117 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC118 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC202 甲烷、液化气、丙烷等可燃性气体 0-100%LEL 半导体式传感器MQ-2 可燃气体、烟雾 300 to 10000ppmMQ-4 天然气、甲烷 300 to 10000ppmMQ-5 液化气、甲烷、煤制气 300 to 5000ppmMQ-6 液化气、异丁烷、丙烷 100 to 10000ppmMQ-8 氢气、煤制气 50 to 10000ppmMQ306A 液化气、甲烷、煤制气 300 to 5000ppmMQ214 甲烷 300 to 5000ppmMQ216 液化气、甲烷、煤制气 100 to 10000ppmMQ-7 一氧化碳CO 10 to 1000ppmMQ307A 一氧化碳CO 10 to 500ppmMQ217 一氧化碳CO 10-1000ppmMQ-9 一氧化碳、可燃气体 10 to 1000ppm CO、100 to 10000ppm可燃气体MQ309A 一氧化碳、可燃气体 10 to 500ppm CO、300 to 5000ppm可燃气体臭氧O3 0.01-2ppmO3/10-500ppmO3氨气、苯、酒精、烟雾 10-300ppmNH3、10-1000ppm苯、10-600ppm酒精、1%/-10%/m3烟雾MQ136 硫化氢 1-200ppmMQ137 氨气 10-300ppmMQ138 醇类、苯类、醛类、酮类、酯类等有机挥发物 5-5000ppm酒精(乙醇) 10 to 1000ppmMQ303A 酒精(乙醇) 20 to 1000ppmMQ213 酒精 10-1000ppmMP-4 天然气 300 to 10000ppmMP-6 液化气 300 to 5000ppmMP-7 一氧化碳 10 to 1000ppmMP-8 氢气 50 to 10000ppmMP135 氢气、酒精、CO一氧化碳 10-100ppmH2、10-500ppm CO、10-1000ppm酒精离子烟雾传感器 HIS-07二氧化碳气体敏感元件 MG811 0 to 10000ppm热传导气体敏感元件 MD61 天然气、液化气、煤气、烷类等可燃气体及汽油、醇、酮、苯、四氟化碳、氟里昂 0-100%VOL热传导气体敏感元件 MD62 二氧化碳CO2 0-100%VOL热线型酒精气体敏感元件 MR513 酒精(乙醇) 0 to 1000ppm热线型可燃气体敏感元件 MR511 甲烷、丁烷 0 to 10000ppm。

电化学传感器(气体)

电化学传感器(气体)

电化学传感器ME2-C0 一氧化碳CO 0-1000ppmME3-CO 一氧化碳CO 0-500ppm,0-1000ppm,0-2000ppm ME4-CO 一氧化碳CO 0-500ppm,0-1000ppm,0-2000ppm ME3-H2S 硫化氢H2S 0-200ppmME4-H2S 硫化氢H2S 0-200ppmME3-H2 氢气H2 0-200ppmME4-H2 氢气H2 0-1000ppmME3-NH3 氨气NH3 0-1000ppmME4-NH3 氨气NH3 0-50ppmME3-CL2 氯气CL2 0-50ppmME4-CL2 氯气CL2 0-20ppmME3-PH3 磷化氢PH3 0-20ppmME4-PH3 磷化氢PH3 0-20ppmME3-O2 氧气O2 0-25% max:30%ME2-O2 氧气O2 0-25% max;30%ME3-C2H5OH 酒精C2H5OH 0-1000ppmME4-C2H5OH 酒精C2H5OH 0-1000ppm催化燃烧式可燃气体MC101 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC102 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC105 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC106 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC108 氢气、可燃气体 0-100%LELMC112 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC112D 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC113 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC114 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MJC4/3.OL 甲烷、瓦斯 0-4%VOLMJC4/3.OJ 甲烷、瓦斯 0-4%VOLMJC4/2.8J 甲烷、瓦斯 0-4%VOLMJC4/2.5L 甲烷、瓦斯 0-4%VOLMC201 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC115 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC116 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC117 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC118 甲烷、液化气、丙烷等可燃性气体 0-100%LEL MC202 甲烷、液化气、丙烷等可燃性气体 0-100%LEL半导体式传感器MQ-2 可燃气体、烟雾 300 to 10000ppmMQ-4 天然气、甲烷 300 to 10000ppmMQ-5 液化气、甲烷、煤制气 300 to 5000ppmMQ-6 液化气、异丁烷、丙烷 100 to 10000ppmMQ-8 氢气、煤制气 50 to 10000ppmMQ306A 液化气、甲烷、煤制气 300 to 5000ppmMQ214 甲烷 300 to 5000ppmMQ216 液化气、甲烷、煤制气 100 to 10000ppmMQ-7 一氧化碳CO 10 to 1000ppmMQ307A 一氧化碳CO 10 to 500ppmMQ217 一氧化碳CO 10-1000ppmMQ-9 一氧化碳、可燃气体 10 to 1000ppm CO、100 to 10000ppm可燃气体MQ309A 一氧化碳、可燃气体 10 to 500ppm CO、300 to 5000ppm可燃气体臭氧O3 0.01-2ppmO3/10-500ppmO3氨气、苯、酒精、烟雾 10-300ppmNH3、10-1000ppm苯、10-600ppm酒精、1%/-10%/m3烟雾MQ136 硫化氢 1-200ppmMQ137 氨气 10-300ppmMQ138 醇类、苯类、醛类、酮类、酯类等有机挥发物 5-5000ppm酒精(乙醇) 10 to 1000ppmMQ303A 酒精(乙醇) 20 to 1000ppmMQ213 酒精 10-1000ppmMP-4 天然气 300 to 10000ppmMP-6 液化气 300 to 5000ppmMP-7 一氧化碳 10 to 1000ppmMP-8 氢气 50 to 10000ppmMP135 氢气、酒精、CO一氧化碳 10-100ppmH2、10-500ppm CO、10-1000ppm酒精离子烟雾传感器 HIS-07二氧化碳气体敏感元件 MG811 0 to 10000ppm热传导气体敏感元件 MD61 天然气、液化气、煤气、烷类等可燃气体及汽油、醇、酮、苯、四氟化碳、氟里昂 0-100%VOL热传导气体敏感元件 MD62 二氧化碳CO2 0-100%VOL热线型酒精气体敏感元件 MR513 酒精(乙醇) 0 to 1000ppm热线型可燃气体敏感元件 MR511 甲烷、丁烷 0 to 10000ppmQMZC型系列载体催化元件专用于检测甲烷、丁烷、氢气的传感元件MQ-KY型半导体气敏元件用于液石油气、气体浓度的检测、检漏、临控等设备中NQ--KR型半导体气敏元件用于天然气(甲烷)气体浓度的的检测检漏、监控等NQ--KR型半导体气敏元件用于天然气(甲烷)气体浓度的的检测检漏、监控等MQ-KT型半导体气敏元件用于天然气(甲烷)气体浓度的的检测检漏、监控等MQ-J1型半导体气敏元件用于对乙醇气体检漏、监控等MQ-K1型半导体气敏元件可燃性气体及可燃性液体蒸汽的检测NQ-Y型一氧化碳气敏元件是对一氧化碳气体具有较好选择性的气-电转CO 气体检测、报警检漏等设备MQ-KC型低功耗气敏元件用于天然气、煤气、液化石油气、烟雾等检漏、监控、报警装置TP-3A常温型酒敏传感器测量气体:酒精TP-3B常温型酒敏传感器测量气体:酒精TP-2常温低功耗CO传感器 COTP-5催化甲烷传感器甲烷紫外线传感器 UV-A/UV-BTP-3D口气传感器传感器对空气中的低浓度口气有极高的灵敏度TP-1.1A 非加热低功耗甲烷气体传感器TP-3C直热式酒敏传感器酒精TP-4空气污染物传感器混合气体GHS-20 湿敏电阻HU-10S 温湿度传感器模块HSM-40 温湿度传感器模块HM1500 / HM1520 高精度湿度传感器TH485 网络型温湿度变送器DS-10 凝露传感器UV-A S10 紫外线传感器。

酒精传感器实验报告

酒精传感器实验报告

课程:传感器应用班级:12物联网姓名:学号:指导老师:一、实验名称:酒精传感器二、实验目的:1、能够读懂电子产品原理图,了解气敏传感器以及各电子元件的作用。

2、能够具备电子产品的焊接技能以及故障分析、判断能力。

三、功能描述:本设计介绍了一种酒精浓度检测仪的设计方法,主要利用MQ3还原性气体传感器作为酒精气体传感器,通过分压电阻转换为成比例的电压,再利用线性显示驱动LM3914驱动不同颜色的发光二极管和蜂鸣器提示检测得到的酒精浓度大小。

根据自动检测系统的组成结构,该酒精浓度检测仪包含酒精气体传感器,信号处理电路和执行指示机构等部分。

对于酒精气体传感器,只要是一般性的还原性气体传感器都能够使用。

具体的信号传递与结构如下图所示。

四、硬件电路设计:电路的前端部分MQ3传感器和分压电路按照常规设计即可,执行驱动声光指示的电路需要驱动多个发光管以及一个蜂鸣器,即需要将分压电路得出的电压转换成LED线段显示同时在某点驱动蜂鸣器发声。

因此本设计拟采用LED通用电平显示驱动芯片LM3914作为执行机构。

1、MQ-3气敏电阻传感器本设计采用的是表面电阻控制型气敏传感器MQ-3,该气体传感器的敏感材料是活性很高的金属氧化物半导体,最常用的如SnO2。

金属氧化物半导体在空气中被加热到一定温度时,氧原子被吸附在带负电荷的半导体表面,半导体表面的电子会被转移到吸附氧上,氧原子就变成了氧负离子,同时在半导体表面形成一个正的空间电荷层,导致表面势垒升高,从而阻碍电子流动,电阻较大。

当N 型半导体的表面在高温下遇到离解能力较小(易失去电子)的还原性气体时,气体分子中的电子将向气敏电阻表面转移,使气敏电阻中的自由电子浓度增加,电阻率降低,电阻减小。

其应用于家庭、工厂、商业场所的气体泄漏监测装置,防火/安全探测系统。

气体泄漏报警器,气体检漏仪。

特点:高灵敏度、快速响应恢复、优异的稳定性、长寿命、驱动电路简单、电信号输出强。

如下图所示。

酒精传感器原理及应用教案

酒精传感器原理及应用教案

酒精传感器原理及应用教案酒精传感器原理及应用教案一、酒精传感器原理酒精传感器是一种用于检测酒精浓度的传感器,其原理通常基于化学反应。

常见的酒精传感器采用了电化学传感技术或气敏传感技术。

1. 电化学传感技术电化学传感技术基于电化学反应原理,通过电极和电解液的化学反应来实现酒精浓度的测量。

一般情况下,传感器内部有两个电极,一个被称为工作电极,另一个被称为参比电极。

工作电极与酒精发生氧化反应,参比电极则提供一个稳定的基准电势。

当酒精浓度发生变化时,工作电极上的电化学反应也会发生改变,通过测量电流或电压的变化,就可以推算出酒精的浓度。

2. 气敏传感技术气敏传感技术则是通过测量酒精与传感器表面之间的电气性质变化来检测酒精浓度。

这种传感器一般由一个金属氧化物薄膜组成,例如锡二氧化物、氧化锌等。

当酒精分子与传感器表面产生相互作用时,会引起薄膜电阻的变化,通过测量电阻变化的幅度,就可以确定酒精浓度。

二、酒精传感器应用酒精传感器由于其灵敏度高、反应速度快、结构简单等优点,已经广泛应用于以下领域:1. 环境监测酒精传感器可以用于室内和室外的酒精测量,例如酒精测量仪、酒精检测仪等。

在室内环境监测中,酒精传感器可以检测车内或办公室等封闭空间中的酒精浓度,用于提醒人们是否超量饮酒。

在室外环境监测中,酒精传感器可以用于检测酒吧、夜店等场所的酒精浓度,以保障公共安全。

2. 酒驾检测酒精传感器广泛应用于酒驾检测领域,如呼气式酒精测试仪。

这种测试仪通过检测呼出气体中酒精的浓度来判断驾驶员的酒精含量是否超过法定限值。

酒精传感器可以快速、准确地检测酒精浓度,并且结构便携、易于操作,非常符合交通安全的需求。

3. 工业生产酒精传感器还可以应用于工业生产中的酒精测量。

例如,在酿酒行业中,酒精传感器可以用于监测酵母发酵过程中产生的酒精浓度,以控制发酵的过程和品质。

在食品加工行业中,酒精传感器可以用于检测酒精浓度,以掌握酒精溶液的浓度,保证食品的生产质量。

基于MQ-3的酒精检测系统设计

基于MQ-3的酒精检测系统设计

基于MQ-3的酒精检测系统设计酒精检测系统是一种利用传感器技术和微处理器技术来检测空气中酒精浓度的系统。

该系统可以实时检测空气中的酒精浓度,并根据设定的阈值进行报警或其他处理。

本文将介绍一种基于MQ-3酒精传感器的酒精检测系统设计。

一、系统原理介绍MQ-3酒精传感器是一种半导体型气体传感器,可以用于检测空气中的酒精浓度。

传感器工作原理是通过酒精与空气中氧气发生化学反应,使传感器电阻发生变化,从而实现对酒精浓度的检测。

酒精检测系统的设计思路是将MQ-3传感器与微处理器相连接,通过采集传感器输出的模拟电压信号,并经过模数转换后,通过微处理器进行数据处理和判断。

当检测到酒精浓度超过设定的阈值时,系统进行报警。

二、系统硬件设计酒精检测系统的硬件设计主要包括传感器模块、模数转换模块、微处理器模块和报警模块。

传感器模块:采用MQ-3酒精传感器作为酒精检测的核心部件。

传感器模块与微处理器通过模数转换模块相连接。

模数转换模块:将传感器输出的模拟电压信号转换为数字信号,供微处理器处理。

模数转换模块可以采用一种模数转换芯片,如ADC0804。

微处理器模块:用于接收并处理模数转换模块输出的数字信号,实现对酒精浓度的检测和判断。

微处理器模块可以选择一种适合的单片机,如STM32系列。

报警模块:当检测到酒精浓度超过设定的阈值时,报警模块可以发出声光信号进行报警。

数据采集:微处理器通过模数转换模块对传感器输出的模拟电压信号进行采集和转换,得到相应的数字信号。

数据处理:微处理器对采集到的数字信号进行处理和判断,根据设定的阈值判断酒精浓度是否超过,以及超过程度,从而决定是否报警。

四、实现效果和应用场景该酒精检测系统可以实现对空气中酒精浓度的实时检测和报警。

该系统可以应用于酒驾预防、工地安全等场景,及时提醒人们注意酒精浓度超标的危险。

通过对MQ-3酒精传感器的应用,可以有效实现对空气中酒精浓度的检测。

该酒精检测系统的设计简洁、成本低廉、功能实用,可以在多个领域中得到广泛应用,并为相关领域的安全保障提供技术支持。

热线式传感器的工作原理

热线式传感器的工作原理

热线式传感器的工作原理热线式传感器是一种常用的温度测量设备,它的工作原理基于热传导和电阻变化的关系。

在热线式传感器中,热线是指由金属材料制成的细丝,通常是铂金或镍铬合金。

它的主要作用是将温度转换为电阻信号,从而实现温度的测量和监控。

热线式传感器的工作原理可以分为两个主要步骤:热传导和电阻变化。

首先是热传导。

当热线式传感器置于被测物体中时,热线与被测物体之间会发生热传导。

被测物体的温度会通过热线传导到传感器中。

热线的导热性能决定了它能够迅速响应温度的变化。

其次是电阻变化。

随着被测物体温度的变化,热线的电阻也会发生相应的变化。

这是因为金属材料的电阻与温度呈正相关关系。

当热线受到热传导影响时,它的温度会发生变化,进而导致电阻值的变化。

通过测量热线的电阻变化,就可以得到被测物体的温度。

为了实现温度测量,热线式传感器通常与电桥电路相结合。

电桥电路是由四个电阻组成的电路,其中一个电阻是热线。

通过调整电桥电路中其他电阻的阻值,可以使得电桥电路平衡,即电桥两侧的电压相等。

当电桥电路平衡时,可以通过测量电桥两侧的电压差,来确定热线的电阻值,从而得到被测物体的温度。

为了提高热线式传感器的测量精度和稳定性,通常会采取一些措施。

首先是对热线进行精确的制造和加工,以确保其电阻-温度特性的准确性。

其次是在热线的周围设置保护层,以提高其耐高温和耐腐蚀性能。

此外,还可以采用补偿电路来消除电桥电路中的温度漂移,从而提高传感器的稳定性和准确性。

总结起来,热线式传感器的工作原理基于热传导和电阻变化的关系。

通过测量热线的电阻变化,可以得到被测物体的温度。

热线式传感器通常与电桥电路相结合,通过测量电桥两侧的电压差来确定热线的电阻值。

为了提高测量精度和稳定性,可以采取一些措施,如精确制造热线、设置保护层和使用补偿电路等。

热线式传感器在工业和科学领域中有着广泛的应用,可以实现对温度的准确测量和监控。

MQ-3酒精传感器电路图

MQ-3酒精传感器电路图
便携式酒精探测器
• 要 求: • ①设计并制作一个便携式酒精探测器,要求电路简
单实用、节能环保,外观精美,体积不宜太大。 • ②探测器使用10个LED发光二极管排成一排从低到
高分别代表不同的酒精浓度,LED随着酒精浓度呈 柱状点亮显示。
• ③具有醉酒驾驶提示功能,当酒精含量大于或者等 于80mg/100ml时,红色报警LED点亮,并发出报 警信号。
• ④整个系统采用两节1.5V干电源自串联供电便携式酒精探测器• 要 求: • ①分析题目要求查找资料(LM3914); • ②在PROTEL软件中画出电路原理图; • ③焊接调试电路
便携式酒精探测器参考电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

产品说明书 热线型气敏元件系列
MR513 热线型气敏元件
MR513型气敏元件通过气体吸附在金属氧化物半导 体表面而产生热传导变化及电传导变化的原理,由白金 线圈电阻值变化测定气体浓度。

MR513由检测元件和补 偿元件配对组成电桥的两个臂,遇可燃性气体时检测元 件电阻减小,桥路输出电压变化,该电压变化随气体浓 度增大而成比例增大,补偿元件起参比及温度补偿作用。

特点 元件外形结构 *高灵敏度,大信号输出 *初期稳定时间短,响应速度快
*良好的重复性,工作稳定可靠 *功耗低、微型化设计
应用
适于民用、工业现场的便携式酒精探测器和汽车点火控 制系统等。

技术指标 基本测试电路
电桥输出
测试电压: 2.5V
灵敏度、响应恢复特性
输出信号随环境温度、湿度的变化
长期稳定性
在空气中每年漂移小于10mV ,在100ppm 乙醇中每年漂移小于10mV 。

短期储存(两周内)30分钟即可稳定,如长期储存(一年),则需老化5小时才可稳定。

使用注意事项 1 必须避免的情况
1.1 暴露于有机硅蒸气中
如果传感器的表面吸附了有机硅蒸气,传感器的敏感材料会被包裹住,抑制传感器的敏感性,并且不可恢复。

传感器要避免暴露其在硅粘接剂、发胶、硅橡胶、腻子或其它含硅塑料添加剂可能存在的地方。

1.2 高腐蚀性的环境
气氛中
传感器暴露在高浓度的腐蚀性气体(如H
2S,SO
X
,Cl
2
,HCl等)中,不仅会引起加热材料及传感器引
线的腐蚀或破坏,并会引起敏感材料性能发生不可逆的改变。

1.3 碱、碱金属盐、卤素的污染
传感器被碱金属尤其是盐水喷雾污染后,若暴露在卤素,如氟中,也会引起性能劣变。

1.4 接触到水
溅上水或浸到水中会造成敏感特性下降。

1.5 结冰
水在敏感元件表面结冰会导致敏感材料碎裂而丧失敏感特性。

1.6 施加电压过高
如果给敏感元件或加热器施加的电压高于规定值,即使传感器没有受到物理损坏或破坏,也会造成引线和/或加热器损坏,并引起传感器敏感特性下降。

2 尽可能避免的情况
2.1 凝结水
在室内使用条件下,轻微凝结水会对传感器性能会产生轻微影响。

但是,如果水凝结在敏感元件表面并保持一段时间,传感器特性则会下降。

2.2 处于高浓度气体中
无论传感器是否通电,在高浓度气体中长期放置,都会影响传感器特性。

2.3 长期贮存
传感器在不通电情况下长时间贮存,其电阻会产生可逆性漂移,这种漂移与贮存环境有关。

传感器应贮存在有清洁空气不含硅胶的密封袋中。

经长期不通电贮存的传感器,在使用前需要长时间通电以使其达到稳定。

2.4 长期暴露在极端环境中
无论传感器是否通电,长时间暴露在极端条件下,如高湿、高温、或高污染等极端条件,传感器性能将受到严重影响。

2.5振动
频繁、过度振动会导致敏感元件引线产生共振而断裂。

在运输途中及组装线上使用气动改锥/超声波焊接机会产生这种振动。

2.6 冲击
如果传感器受到强烈冲击会导致其引线断线。

2.7 使用
对传感器来说手工焊接是最理想的焊接方式。

使用波峰焊是应满足以下条件:
2.7.1 助焊剂:含氯最少的松香助焊剂
2.7.2 速度:(1-2)米/分钟
2.7.3 预热温度:(100±20)℃
2.7.4 焊接温度:(250±10)℃
2.7.5 1次通过波峰焊机
违反以上使用条件将使传感器特性下降。

附:元件测试步骤
1、试验装置:
a、试验箱材料为金属或玻璃,不吸附气体,箱体积为每对元件大于1升。

b、推荐红外气体分析仪测量气体浓度。

c、箱内气体应搅拌,但不可直接对着元件。

气流速度低于0.5m/s。

d、室外新鲜空气。

e、直流稳压电源。

毫伏表阻抗大于100KΩ。

f、每次试验前,用排风扇换气,每分换气量大于10倍箱体积。

g、元件安装在试验箱内,在水平方向,姿态相同。

改变姿态将产生不同的热对流。

2、气体浓度调节:
箱内气体浓度用体积法调节,体积法可用下式计算:
V(ml)=V1×C×10-6×(273+T R)/(273+T C)
V:注入气体体积(ml);V1:箱内体积(ml);C:要调节的气体浓度(ppm)
T R:室温(℃);T C:箱内温度(℃)。

3、测量:
A、老化,测量之前,用额定电压通电大于5小时,如果元件经过长期储存,建议老化24小时以上。

B、测量,预老化后,测量空气中的输出电压Va。

试验气体注入试验箱内,令其扩散到全箱,通常需1min
以上。

测量试验气体中元件的输出电压Vg。

气体灵敏度表示为:
S=(Vg-Va)/C。

其中:C为气体浓度。

注:如果说明书版本发生变动,本公司不另行通知。

相关文档
最新文档