储罐设计

合集下载

特种基础:储罐基础

特种基础:储罐基础

1、罐底脆性破坏:罐底变形引起焊缝开裂,造成罐底脆 性破坏;
2、地震破坏:地震荷载引起;
3、罐底基础破坏:由于罐底泄漏等原因造成地基下沉, 地基承载力下降造成基础基础发生破坏。
五、储罐基础类型的选择 储罐基础的选型主要考虑储罐类型、容量、工艺要求、地 形地貌、地质条件和施工条件等因素。下表列出不同类型 储罐基础的选型要求。
环基的受力体系
(3) 环基内壁砂垫层的竖向摩擦力
主要是由于地基沉降引起的,作用方向向下。
(4) 环基底面地基反力(q3)
2、刚体假定
为便于分析,一般将环基分解为单元体进 行分析(取单位弧长),将每个单元体假 定为刚体,即不考虑单元体本身的变形, 只发生整体变形,作用在其上的分布荷载 可以用相应的等代集中荷载代替。另外, 由于环基结构及荷载的对称性,认为只有 法向力,没有切向力。根据以上原理,将 环基上的分布荷载按以下模式转换为等代 荷载。
① 当罐壁位于环墙顶面时,环墙环向力按下式计算
Ft k ( Qw w hw Qm m hx ) R
式中,Ft:环墙单位高度环拉力设计值 k:环墙侧压力系数,软土地基可取k=0.5或按1sinφ’计算 γQw、γQm:分别为水、填料的分项系数, γQw可取 1.1, γQm可取1.0 γw、γm:分别为水的容重,环梁填料的平均容重, γw取9.80,γm取18.00kN/m3计算。 hw:环墙顶面至罐内最高储液面高度 hx:环墙顶面至计算断面的高度 R:环墙中心线半径 ② 当罐壁位于环墙内侧一定距离(外环墙式),环墙环 拉力可按下式计算:
六、储罐基础的构造 储罐基础的构造主要包括基础顶面的绝缘防腐层、罐壁支 撑、边缘挡土结构、砂垫层、隔油防水层、检测信号管及 其他构造。 1、基础顶面绝缘防腐层 基础顶面铺筑的沥青砂垫层或沥青混凝土垫层,主要作用 是隔断地下毛细水、水汽等,保护底板。 沥青砂垫层一般采用中粗砂(质量比1:9),热拌合施工, 厚度80mm~100mm。沥青混凝土宜用细粒或中粒,具体 可以参照甲级路面的要求施工。 2、罐壁支撑 罐壁支撑结构主要由钢筋混凝土环梁或碎石环梁等构成,

甲醇储罐设计规范

甲醇储罐设计规范

甲醇储罐设计规范甲醇储罐是存储甲醇的设备,其设计应符合相关的规范和标准,以保证储罐的安全和可靠性。

以下是甲醇储罐设计规范的主要内容:1. 设计压力和温度:甲醇储罐应根据实际使用要求确定设计压力和温度。

设计压力通常不得低于正常操作压力的1.25倍,设计温度通常为-40°C至55°C。

2. 材料选择:储罐的材质应选择耐腐蚀性能好、耐压性能高的材料,如碳钢、不锈钢等。

对于密封性要求较高的区域,可选用外涂一层防腐胶。

3. 结构设计:甲醇储罐的结构设计应考虑内外压力、温度变化等因素对储罐的影响。

通常采用圆形、柱形或球形结构,底部应设有底阀、松散阀等安全设备。

4. 安全装置:甲醇储罐应配备安全阀、泄漏探测器、防火装置等安全设备,以保障储罐在故障情况下的安全操作和紧急处理能力。

5. 容积计算:储罐的容积应根据实际存储需求进行计算和确定。

容积计算应考虑液位变化、温度变化等因素,并预留一定的安全裕量。

6. 储罐的操作与维护:储罐应具备方便操作和维护的条件,如设有观察孔、检修门等。

同时,应定期对储罐进行维护和检查,确保其正常运行。

7. 环境保护:储罐应设有排放口,以便处理废气和废水。

同时,应定期对废气和废水进行检测和处理,以减少对环境的影响。

8. 监控系统:储罐应配备监控系统,实时监测储罐内的温度、压力、液位等参数,并与中控室相连,以便及时处理异常情况。

9. 储罐的防火设计:储罐应对火灾进行防护设计,如设有防火隔离带、防火涂层等。

同时,应定期进行消防设备检查和维护,确保其有效性。

总之,甲醇储罐的设计规范是为了保证储罐的安全运行和环境保护,设计人员在设计储罐时应严格遵守相关规范和标准,并结合实际情况进行合理设计。

液化天然气储罐区设计

液化天然气储罐区设计

液化天然气储罐区设计
首先,储罐大小和数量是储罐区设计的首要考虑因素。

液化天然气储罐的大小和数量要根据实际需求和预期储存量来确定。

通常来说,储罐的容量应该足够满足所需天然气的储存,同时要考虑到生产需求和储罐的维护周期,以便在必要时进行储罐的清洗、维修和更换。

储罐的数量也需要考虑到天然气的供应压力和储罐的使用寿命等因素。

其次,储罐区的排列和布局也是一个重要的设计考虑因素。

液化天然气储罐应该采用合适的排列方式,以便提供足够的安全间距和适当的操作空间。

储罐之间的间距应该满足法定要求,并考虑到紧急情况下的疏散和救援活动。

储罐区的布局应该便于日常操作和维护,并提供充足的通风和防火措施,以减少事故的发生和蔓延。

第三,安全防护措施是液化天然气储罐区设计中不可忽视的一部分。

储罐区应该配备适当的安全设备,如气体泄漏和火灾报警系统、灭火器、应急照明等。

此外,储罐区还应该有足够的消防水源,并设有消防车辆、灭火器和灭火剂等设备。

储罐区的工作人员应该接受足够的安全培训,并严格遵守相关操作规程和安全操作程序。

最后,液化天然气储罐区设计还应考虑到对环境的影响。

储罐区的选址应避免对周围环境和居民造成不利影响,如空气污染、噪音污染和地下水污染等。

在储罐区建设和运营过程中,应采取合适的措施,以减少对土壤、水源和生态环境的不良影响。

如果必要,还应制定应急预案,以应对可能发生的环境事故。

综上所述,液化天然气储罐区设计需要综合考虑储罐大小和数量、储罐的排列和布局、安全防护措施以及环境影响等因素。

只有在全面考虑这些因素的基础上,才能设计出安全可靠、环保合规的液化天然气储罐区。

储罐设计基础

储罐设计基础
ห้องสมุดไป่ตู้
1978年国内3000m3铝浮盘投人使用,通过测试蒸发损耗,收 到显著效果。 1985年中国从日本引进第一台10×104m3 全部执行日本标准JISB8501 同时引进原材料,零部件 及焊接设备. 目前国内对10×104m3油罐有比较成熟的设计、施工和使 用 的经验,国产 大型储罐用高强度刚材已能够批量生产。 15×104m3目前国内正在建设。 储罐的发展趋势---大型化
损耗类型与损耗量
• 石油类或液体化学品储液的损耗可分为蒸发损耗和残漏损 耗两种类型。蒸发损耗和残漏损耗分别是指储液在生产、 储存、运输、销售中由于受到工艺技术及设备的限制,有 一部分较轻的液态组分气化而造成的在数量上不可回收的 损失和在作业未能避免的滴洒、渗漏、储罐(容器)内壁的 乳黏附、车、船底部余液未能卸净等而造成的数量损失, 储液(油品)的残漏损耗不发生形态变化。 • 文献和调查资料表明,储液损失,特别是油品损耗数量是 十分惊人的。1980年,中国11个主要油田的测试结果表明, 从井口开始到井场原油库,井场油品损耗量约占采油量的 2%,其中发生于井场库的蒸发损耗约占总损耗的32%。据 1995年第四届国际石油会议报道,在美国油品从井场经炼 制加工到成品销售的全过程中,品损耗数量约占原油产量 的3%。若以总损耗为3%估算,全世界每年的油品损耗约有 1X108t,几乎相当于中国一年的原油产量。
立式圆筒形储罐按其罐顶结构可分为 锥顶储罐 固定顶储罐: 拱顶储罐 伞形顶储罐 网壳顶储罐(球面网壳) 浮顶储罐(外浮顶罐) 浮顶储罐: 浮储罐(带盖浮顶)
1.2.1锥顶储罐 • 图1-1 自支撑锥顶罐简图 • 锥顶储罐又可分为自支撑锥顶和支撑锥顶两种。 • 锥顶坡度最小为1/16,最大为3/4,锥形罐顶是一种形状 接近于正圆锥体表面的罐顶。 • 自支撑锥顶其锥顶荷载靠锥顶板周边支撑于罐壁上,自支 撑锥顶又分为无加强肋锥顶和加强肋锥顶两种结构.储罐 容量一般小于1000m3。支承式锥顶其锥顶荷载主要布梁或 镶条(架) 及柱来承担。 • 柱子可采用钢管或型钢制造。采用钢管制造时,可制成封 闭式,也可设臵放空孔和排气孔。柱子下端应插人导座内, 柱子与导座不得相焊,导座应焊在罐底板上。其储罐容量 可大于1000m3以上。 • 锥顶罐制造简单,但耗钢量较多,顶部气体空间最小.可 减少“小呼吸”损耗。自支撑。锥顶还不受地基条件限制。 支撑式锥顶不适用于有不均匀沉陷的地基或地荷载较大的 地区。除容量很小的罐( 200m3以下)外,锥顶罐在国内很 少采用,在国外特别是地震很少发生的地区,如新加坡、 英国、意大利等用得较多。

GB50341储罐设计计算

GB50341储罐设计计算
储罐设计计算书
1.设计基本参数:
设计规 范设:计压 力设:计温 度设:计风 压:
GB50341-2003《立式圆筒形钢制焊接油罐设计规范》
P
2000 Pa
-490 Pa
T
70 °C
ω0
500 Pa
设计雪压
Px
350 Pa
附加荷 载地:震烈 度罐:壁内 径罐:壁高 度充:液高 度液:体比 重罐:顶半 径焊:缝系 数腐:蚀裕 量钢:板负偏 差:
ths=0.42RsPower(Pw/2.2,0.5)+C2+
设计外载 荷
C1 Pw=Ph+Px+Pa
9.15 mm 4.98 KPa
注:按保守计算加上雪压值。
实际罐顶取用厚度为
th=
6
mm
本设计按加肋板结构
顶板及加强筋(含保温层)总质量 md=
53863 kg
罐顶固定载荷 4.2顶板计算
Pa
3429.03 N/m2
罐体总高
H'=H1+Hg
17.89 m
拱顶高度
Hg=Rs(1-COSθ)
1.89 m
7.2.2.空罐时,1.25倍试验压力产生的升举力之和:
N3=PtπD2/4
384845 N
罐体试验压力 7.2.3.储液 在最高液
7.3地脚螺栓计算:
Pt=1.25P N4=1.5PQπD2/4
2500.00 Pa 738841 N
μz—风压高度变化系数,
顶部抗风圈的实际截面模数 W=
∵ W>Wz故满足要求
0.690 KPa 0.500 KPa 1.00 1.00 1.38 500.00 cm3

钢制拱顶储罐设计

钢制拱顶储罐设计
量的公式为: 计算容量=πR2H
式中 R——储罐内半径;
H——罐壁高度。
胜利勘察设计研究院有限公司
二、储罐的容量及经济尺寸选择
2)公称容量 公称容量是指按照储罐的几何尺寸计算所得,经圆整后, 以整数表示的容量。一般情况下,公称容量均小于计算容量。
胜利勘察设计研究院有限公司
二、储罐的容量及经济尺寸选择
量的外载荷。
2.储罐的操作载荷 储罐的操作载荷是储罐在正常操作时,储罐内气相空间的
正压或负压造成的载荷,储罐气相空间的压力由储罐的操作条
件决定。
胜利勘察设计研究院有限公司
三、储罐设计参数(载荷)
一般来说,固定顶储罐的设计压力取安全阀的最大开启压
力,即:正压1960Pa(200mmH2O)
负压490Pa(-50mmH2O)。
一、储罐的种类和特点
4.外浮顶储罐 浮顶储罐的罐顶是直接漂浮在液面上的浮顶,随液面的高低上下浮动。 浮顶与罐壁之间有密封装置,从而最大限度地降低了油品的蒸发损耗。
胜利勘察设计研究院有限公司
一、储罐的种类和特点
4.外浮顶储罐 种类:浮顶按其结构分为单盘式浮顶和双盘式浮顶。 特点: ●单盘式浮顶:结构简单,材料消耗少,但易遭受雨水腐蚀,整 体稳定性较差; ●双盘式浮顶:结构比较复杂,材料用量大,但整体稳定性好, 安全性较高。浮顶储罐浮顶上部直接暴露在大气 中,不易积存油气,所以安全性最好。 大型浮顶在结构上比拱顶更容易处理,且材料消耗较少, 故大型储罐几乎全部采用浮顶储罐。由于雨水及尘土能够通过 浮顶边缘密封与罐壁的间隙进入储罐内,浮顶储罐通常用于储 存雨水等杂质对品质影响不大的油品,例如原油等。
胜利勘察设计研究院有限公司
一、储罐的种类和特点
3.无力矩顶储罐 无力矩顶由薄钢板和中心柱组成,薄钢板悬挂 在罐壁和中心柱之间,罐顶钢板只受拉力,不受弯 矩作用。由于使用很薄的钢板,所以材料消耗很少。 由于顶板过薄,容易损坏,且易遭受雨水腐蚀,安 全性差,目前已基本不使用。

液氨储罐设计

液氨储罐设计

液氨储罐设计第1.1设计任务一章绪论设计了一个液氨储罐。

工艺条件:温度40℃,氨饱和蒸气压1.55MPa,容积20m3,使用寿命15年。

1.2设计要求和结果1.确定容器材质;2.确定储罐的形状和标称厚度;3.确定封头的形状和标称厚度;4.确定支座,人孔及接管,以及开孔补强情况5.编制设计说明书以及绘制设备装配图1张(a1)。

1.3技术要求(一)本设备按gbl50-1998《钢制压力容器》进行制造、试验和验收(二)焊接材料,对接焊接接头型式及尺寸可按gb985-80中规定(设计焊接接头系数??1.0)(三)焊接采用电弧焊,焊条型号为E4303(四)壳体焊缝应进行无损探伤检查,探伤长度为100%第二章设计参数的确定2.1设计温度标题中给出的设计温度是40?c2。

2设计压力在夏季液氨储罐经太阳暴晒,随着气温的变化,储罐的操作压力也在不断变化。

通过查阅资料可知包头最高气温为40.4℃,通过查表可知,在40℃时液氨的饱和蒸汽压(绝对压力)为1.55mpa,密度为580kg/m3,而容器设计时必须考虑在工作情况下可能遇到的工作压力和相对应的温度两者相结合中最苛刻工作压力来确定设计压力。

一般是指容器顶部最高压力与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。

此液氨储罐采用安全法,依据《化工设备机械基础》若储罐采用安全法时设计压力应采用最大工作压力pw的1.05?1.1倍,取设计压力p?1.05pw(已知pw?1.55mpa表压)那么p?1.05pw?1.6mpa.2.3腐蚀裕量查《腐蚀数据手册》16mnr耐氨腐蚀,其??0.1mm/y,若设计寿命为15年,则c215? 0.1? 1.5毫米2.4焊缝系数该容器为中压储存容器。

根据《压力容器安全技术监察规程》,氨是一种中等毒性的介质。

容器筒体的纵向焊接接头和封头基本上采用双面焊或相当于双面焊的全熔透焊接接头,那么?取1.0或0.85。

?下表用于选择:表2.1焊接接头系数1.焊接接头结构的所有无损检测和相当于双面焊接的双面焊接或全熔透对接焊接接头的部分无损检测。

储油罐设计规范

储油罐设计规范

储油罐设计规范储油罐设计规范是为了确保储油罐在储存和运输过程中的安全性和可靠性而制定的一系列标准和规范。

下面是储油罐设计规范的一些基本要求:1. 抗震设计:储油罐必须满足的基本要求是在地震、风压等外力作用下能够保持安全稳定,不发生破裂或倾覆。

因此,在储油罐的设计中必须考虑地震、风压等外力的作用,并进行相应的抗震设计。

2. 安全阀装置:储油罐必须装备安全阀装置,以防止内部压力超过设计压力,避免发生爆炸事故。

安全阀需能自动启闭,确保储油罐压力在安全范围内。

3. 密封设计:储油罐的密封性能直接影响到储油罐的安全性和环保性。

储油罐必须具备良好的密封设计,能够防止油品泄漏和外界潮湿空气的进入,以保护油品的质量。

4. 材料选用:储油罐的材料选择要符合相关标准和规范。

常用的材料包括低合金构件钢、耐热耐腐蚀钢等。

材料必须具备一定的强度和耐腐蚀性能,能够承受长期储存和运输过程中的各种力和环境的侵蚀。

5. 定期检测和维护:储油罐必须进行定期的检测和维护,以确保储油罐的运行状态和安全性。

定期检测包括储油罐的机械性能检测、防腐蚀层检测等,维护工作包括清洗储油罐、修补漏点等。

6. 设备安装:储油罐设备在安装过程中要符合相关的安全规范和标准。

设备要安装在固定的基础上,以保证设备的稳定性和牢固性。

在设备安装过程中还要注意与周围设备和管道的连接,确保连接的牢固性和密封性。

7. 安全设施:储油罐周围必须设置安全设施,包括消防器材、监控设备等,以应对突发事件和保护储油罐的安全。

消防器材要配备在适当的位置,能够在事故发生时及时控制火灾和扑灭火源。

总之,储油罐设计规范是为了保证储油罐的安全运行和油品质量的保持而制定的一系列标准和要求。

其目的是减少事故的发生,保护人员的生命财产安全,同时保护环境,确保储油罐的安全和可靠性。

课程设计(论文)-5000m3立式储油罐结构设计

课程设计(论文)-5000m3立式储油罐结构设计

课程设计任务书设计题目5000m3立式储油罐结构设计技术参数:直径26600mm长度9000mm材质16MnDR壁厚11.3mm,13.6mm,16.02mm设计任务:1.写出该结构的几种设计方案2.强度计算及尺寸选择3.绘制结构设计图4.撰写主要工艺过程5.撰写设计说明书工作计划与进度安排:1.查阅资料2天2.设计计算并撰写设计说明书5天3.上机绘图4天4.答辩1天指导教师(签字):年月日专业负责人(签字):年月日学院院长(签字):年月日1 储罐及其发展概况油品和各种液体化学品的储存设备—储罐是石油化工装置和储运系统设施的重要组成部分。

由于大型储罐的容积大、使用寿命长。

热设计规范制造的费用低,还节约材料。

20世纪70年代以来,内浮顶储油罐和大型浮顶油罐发展较快。

第一个发展油罐内部覆盖层的施法国。

1955年美国也开始建造此种类型的储罐。

1962年美国德士古公司就开始使用带盖浮顶罐,并在纽瓦克建有世界上最大直径为187ft(61.6mm)的带盖浮顶罐。

至1972年美国已建造了600多个内浮顶罐。

1978年国内3000m3铝浮盘投入使用,通过测试蒸发损耗标定,收到显著效果。

近20年也相继出现各种形式和结构的内浮盘或覆盖物[1]。

世界技术先进的国家,都备有较齐全的储罐计算机专用程序,对储罐作静态分析和动态分析,同时对储罐的重要理论问题,如大型储罐T形焊缝部位的疲劳分析,大型储罐基础的静态和动态特性分析,抗震分析等,以试验分析为基础深入研究,通过试验取得大量数据,验证了理论的准确性,从而使研究具有使用价值。

近几十年来,发展了各种形式的储罐,尤其是在石油化工生产中大量采用大型的薄壁压力容器。

它易于制造,又便于在内部装设工艺附件,并便于工作介质在内部相互作用等。

2 设计方案2.1 选择设计方法2.1.1 正装法此种方法的特点是指把钢板从罐底部一直到顶部逐块安装起来,它在浮顶罐的施工安装中用得较多,即所谓充水正装法,它的安装顺序是在罐低及二层圈板安装后,开始在罐内安装浮顶,临时的支撑腿,为了加强排水,罐顶中心要比周边浮筒低,浮顶安装完以后,装上水除去支撑腿,浮顶即作为安装操作平台,每安装一层后,将上升到上一层工作面,继续进行安装。

液氨储罐设计

液氨储罐设计

(6)安全阀接管
安全阀接管尺寸由安全阀泄放量决定。 本贮罐选用f32×2.5mm旳无缝钢管, 法兰为 HG20592 法兰 SO25-2.5 RF 16MnR。
7.设备总装配图
附有贮罐旳总装配图,技术特征表, 接管表,各零部件旳名称、规格、 尺寸、材料等见明细表。
本贮罐技术要求
1.本设备按GBl50-1998《钢制压力容器》进 行制造、试验和验收
(3)充水质量m3 m3=Vg V=V对+V筒=30.42m3, m3=30420 Kg (4)附件质量m4
人孔约200Kg,其他接管总和按300Kg
计,m4=500Kg
设备总重量
m=m1+m2+m3+m4=6202+2750+30420+50
0=40t 使用两个鞍座,每个鞍座约承受196KN负荷,
2.焊接材料,对接焊接接头型式及尺寸可按 GB985-80中要求(设计焊接接头系数=1.0)
3.焊接采用电弧焊,焊条型号为E4303
本贮罐技术要求
4.壳体焊缝应进行无损探伤检验, 探伤长度为100%
5.设备制造完毕后,以2.6MPa表压 进行水压试验
6.管口方位按接管表
技术特性表
名称 设计压力 工作温度 物料名称
故取p=1.1x(2.0-0.1)=2.1MPa (表压);
Di=2600mm;[]t=163MPa(附录6);
=1.O(双面对接焊100%探伤,表(4-9)
C2=2mm
dd
pDi
2 t
p
C2
dd
2.1 2600 21631.0 1.6
2.0 18.8
取Cl=0.8mm(表4-10),圆整取dn=20mm

外压储罐设计

外压储罐设计

外压储罐设计B.1 一般规定B.1.1 本附录适用于设计负压大于0.49kPa ,且不大于6.9kPa 的承受均匀外压的固定顶储罐。

B.1.2 当设计负压不大于0.49kPa 时,顶部承压环的截面面积应按本标准第7.1.5条的规定确定;当设计负压大于0.49kPa 时,顶部承压环的截面面积尚应符合本附录的规定。

B.2 固定顶B.2.1 储罐固定顶的设计总外压应按下式计算。

{}e max ,0.4r L r P e L e r P D L F P D P L =++++ (B.2.1) 式中:r P —— 固定顶设计总外压(kPa);L D —— 固定顶固定荷载(kPa),包括罐顶板及其上附件重量,当有隔热层时,尚应计入隔热层的重量;e P —— 设计负压(kPa),取值不应小于0.25kPa ;r L —— 固定顶活荷载(kPa),指水平投影面上的固定顶活荷载,取值不应小于1.0kPa 。

当雪荷载S 大于1.0kPa 时,超过部分应计入;e P F —— 设计负压组合系数。

B.2.2 柱支撑锥顶设计应符合下列规定:1 当顶板支撑在檩条上时,可视为连续梁或薄膜;2 应同时考虑膜应力和弯曲应力;3 应考虑板和板连接时的焊接接头系数;4 应设定支撑处为刚性节点;5 应给定许用挠度值;6 应考虑顶板支撑之间及焊缝的应力转换和疲劳荷载的可能性。

B.2.3 自支撑锥顶设计应符合下列规定:1 顶板的计算厚度应按下式确定,但不应低于本标准7.3.2条的规定。

EP D t r c 72.1sin 83θ= (B.2.3-1) 式中:c t —— 锥顶罐顶板的计算厚度(mm);D —— 储罐内径(m);r P —— 罐顶设计总外压(kPa);θ —— 罐顶与罐壁连接处罐顶板与水平面之间的夹角(°)。

E —— 弹性模量(MPa);2 在固定顶外压作用下,自支撑锥顶罐承压环所需的截面积应按下式确定:23108[]tan r r P D A σθ⨯= (B.2.3-2) 式中:r A —— 自支撑锥顶罐承压环所需的截面积(mm 2);D —— 储罐内径(m);r P —— 罐顶设计总外压(kPa);][σ —— 承压环材料最小许用应力(MPa);应取0.6倍承压环所用材料标准屈服强度下限值,且不应低于140MPa ;θ —— 罐顶与罐壁连接处罐顶板与水平面之间的夹角(°)。

储油罐设计规范

储油罐设计规范

储油罐设计规范1. 引言储油罐是储存和运输石油及其产品的重要设备,在石油工业中起着至关重要的作用。

为了确保储油罐的安全运行和有效储存,制定一系列的设计规范是非常必要的。

本文将介绍储油罐的设计规范和要求,包括钢板的选择、结构安全、防腐蚀措施等。

2. 钢板选择储油罐的主体结构通常由钢板制成,因此正确选择钢板材质对于储油罐的安全性至关重要。

以下是钢板选择的几个关键因素:•技术要求:钢板必须符合国家或国际相关标准的技术要求,如GB/T 3274-2017《热轧碳素结构钢板和钢带技术条件》等。

•厚度:根据设计要求和储油罐的容量确定合适的钢板厚度。

•钢材牌号:选择合适的钢材牌号,如Q235B、Q345R等,保证其机械性能和耐蚀性能。

•检测方法:确保钢板材质的质量,如采用超声波检测等方法。

3. 结构设计与安全考虑储油罐的结构设计必须充分考虑安全因素,确保罐体的稳定性和可靠性。

下面是几个常见的结构设计要求和安全考虑:•底板和壁板:底板和壁板的设计要满足相关设计标准的要求,如底板的设计必须考虑承载能力和防渗漏等因素。

•支撑结构:对于较大容量的储油罐,需要有合理的支撑结构来保证罐体的稳定。

•对接接缝:对接接缝必须符合相关标准,确保接缝的强度和密封性,防止泄漏发生。

•底座设计:底座的设计要考虑储油罐的重量和压力分布,确保底座的稳定性和安全性。

4. 防腐蚀措施储油罐长期暴露在恶劣的环境中,容易受到腐蚀的影响。

为了保护罐体的完整性和延长使用寿命,必须采取有效的防腐蚀措施。

以下是常见的防腐蚀措施:•内部防腐层:在储油罐的内部涂上防腐层,以防止油品对钢板的腐蚀。

常用的内部防腐层包括环氧涂层、玻璃钢内衬等。

•外部防腐层:在储油罐的外部涂上防腐层,以防止大气、水分和土壤等对钢板的腐蚀。

常用的外部防腐层包括环氧涂层、聚氨酯涂层等。

•阴极保护:通过在罐体上安装阴极保护设备,通过电流干扰的方式减少钢材的腐蚀。

5. 安全附件和设备为了确保储油罐的安全运行,还需要在储油罐上安装一些安全附件和设备。

储罐设计基础范文

储罐设计基础范文

储罐设计基础范文一、引言储罐是一种用于储存液体、气体或粉末物品的容器,广泛应用于石油、化工、食品等工业领域。

储罐设计的目标是确保其安全可靠地储存所需物品,并满足相关法规和标准的要求。

本文将介绍储罐设计的基本原则、设计参数以及设计过程。

二、储罐设计的基本原则1.安全性原则:储罐设计必须优先考虑安全性,确保储罐在使用过程中不会发生泄漏、爆炸或其他危险事故。

设计应符合相关法规、规范和标准的要求。

2.结构强度原则:储罐设计应根据储存物品的性质、重量以及环境条件等因素确定合适的结构强度,以确保储罐能够承受内外部力的作用而不发生变形或破裂。

3.材料选择原则:储罐所选材料应满足储存物品的特性要求,具有足够的耐腐蚀性、耐高温性和耐压性。

常用材料包括碳钢、不锈钢、玻璃钢等。

4.密封性原则:储罐设计应确保储存物品的密封性,防止泄漏。

关键部件如罐体焊缝、法兰连接等应有良好的密封性能。

5.环保原则:储罐设计应考虑环境保护,减少对周围环境的污染。

例如,在储罐设计中考虑废气排放和废水处理等问题。

三、储罐设计的基本参数1.容量:储罐容量的确定应根据储存物品的需求确定。

容量的计算通常包括物品的体积、储存周期、储存量的变化等因素。

2.罐体形状:常见的储罐形状包括圆柱形、圆锥形、球形等。

罐体形状的选择应根据储存物品的性质、流动特性以及工艺要求进行合理选择。

3.壁厚计算:储罐的壁厚计算是确保储罐结构强度的重要参数。

壁厚的计算通常包括内压、外压、内外径尺寸和材料的破坏压力等因素。

4.底部设计:储罐底部设计的目的是确保储存物品的平稳排放和储罐的固定稳定。

常见的底部设计形式包括平底、锥底、球底等。

五、储罐设计的基本流程1.方案设计:根据储存物品的需求、工艺要求、容量等参数,确定储罐设计方案。

方案设计需要考虑储罐的结构形式、材料选择、密封设计等关键因素。

2.详细设计:在方案设计的基础上,进行储罐的详细设计。

详细设计包括储罐的尺寸计算、结构强度计算、焊缝设计等。

储罐设计基础范文

储罐设计基础范文

储罐设计基础范文储罐设计是指对储罐进行设计和分析,以确保其结构安全、功能完善和使用寿命长久。

储罐广泛应用于工业生产和储存领域,主要用于储存液体或气体物质。

储罐设计基础包括储罐类型、结构设计、材料选择、防腐措施和安全保护等方面。

首先,储罐设计需要根据储存物质的性质来确定储罐类型。

常见的储罐类型包括钢质储罐、玻璃钢储罐、塑料储罐和混凝土储罐等。

钢质储罐是最常见的储罐类型,具有强度高、密封性好的特点,适用于储存高温、高压或腐蚀性的物质。

玻璃钢储罐具有良好的耐腐蚀性能,适用于储存酸、碱等强腐蚀性物质。

塑料储罐具有轻质、易成型等特点,适用于储存一般腐蚀性物质。

混凝土储罐适用于储存大量液体或气体物质,具有较好的结构稳定性。

其次,储罐的结构设计是储罐设计的重要环节。

储罐的结构设计应考虑结构强度、稳定性和一致性等方面。

结构强度是指储罐能承受外部负荷的能力,需要根据储存物质的重量、压力和温度等因素进行合理计算。

结构稳定性主要包括稳定性分析和受力分析,以确保储罐在使用过程中不会发生倒塌或折断等事故。

一致性是指储罐的整体形状和大小是否符合设计要求,包括储罐底部的斜度、出口位置和尺寸等。

材料选择是储罐设计中的重要环节,储罐的材料应具备一定的强度、耐腐蚀性和耐磨性等特点。

常用的储罐材料包括碳钢、不锈钢、合金钢和玻璃钢等。

碳钢是最常用的材料,具有强度高和耐腐蚀性能好的特点。

不锈钢是一种常用的耐腐蚀材料,适用于储存腐蚀性物质。

合金钢适用于耐高温和高压的场合。

玻璃钢储罐具有良好的耐腐蚀性能,但需要注意防止其受到机械损伤。

防腐措施是储罐设计中的重要一环。

储罐的防腐措施主要包括外涂防腐、内衬防腐和阴极保护等方面。

外涂防腐是指在储罐外表面涂覆一层防腐涂料,以防止外部环境的腐蚀。

内衬防腐是指在储罐内表面涂覆一层防腐涂料,以防止储存物质对储罐内壁的侵蚀。

阴极保护是通过向储罐施加电流,以防止金属表面的腐蚀。

最后,储罐设计需要考虑安全保护措施。

液化石油气储罐设计

液化石油气储罐设计

液化石油气储罐设计液化石油气储罐是一种用于储存液化石油气(LPG)的设备,其设计是为了确保安全、高效地储存和输送石油气至最终用户。

液化石油气储罐的设计需要考虑罐体结构、安全措施以及运输和使用的方便性等因素。

下面将对液化石油气储罐的设计进行详细说明。

首先,液化石油气储罐的罐体结构需要具备足够的强度和耐久性。

罐体通常由高强度低合金钢制成,以承受内部压力和外部环境的荷载。

罐体的结构应采用圆柱形设计,有利于承受内部压力和降低应力集中。

此外,罐体需要具备良好的防腐蚀性能,可通过涂覆耐腐蚀涂层或使用不锈钢等材料来实现。

为了确保罐体的安全性,液化石油气储罐的设计还需要包括多种防爆和泄漏措施。

首先,罐体应设计成双壁结构,内外壁之间的空间可用于泄漏检测和泄漏液体的收集。

罐体还应配备安全阀,以保证内部压力不超过设计压力,从而避免爆炸的危险。

此外,罐体应设置泄漏报警装置和自动灭火系统,及时检测并处理泄漏情况,确保现场安全。

液化石油气储罐的设计还应考虑运输和使用的便利性。

罐体应具有一定的可移动性,方便在不同地点进行储气和输送。

此外,罐体应设置便于连接输送管道的接口,以便快速且安全地将石油气输送至用户。

为了方便用户使用,储罐的设计还应包括方便的计量和计量系统,确保用户能够准确地测量和购买所需的石油气量。

在液化石油气储罐的设计中,还需要综合考虑地震、超压、温度变化等外部条件的影响。

罐体应具备一定的抗震能力,以防止在地震发生时发生破坏。

此外,储罐的设计应考虑到不同环境温度对石油气的影响,采取隔热措施以保持石油气的低温状态。

总之,液化石油气储罐的设计是一个涉及多个因素的复杂过程。

它需要考虑罐体结构、安全措施、便利性以及外部条件等多个方面的要求,以确保储罐的安全、高效运行。

通过综合考虑这些因素,可以设计出适应不同环境和用途要求的液化石油气储罐。

GB50341储罐设计计算

GB50341储罐设计计算

注:此处的设计压力应为设计内压,不可等同于按液柱所确定的设计压力。

463.1cm 30.745KPa 0.540KPa1.001.001.38500.00cm 3罐壁筒体的临界压力:5.611KPat min =7.2mm H E =∑H ei=3.48mH ei ——罐壁各段当量高度,m ;H ei =H i (t min /t i )2.5罐壁各段当量高度如下:罐壁段号实际高度Hi (m )有效壁厚ti (mm )当量高度Hei(m )1223.20.112221.20.133219.20.174215.20.315213.20.446 1.59.20.8171.57.21.50罐壁设计外压: 2.2767KPa 0.60KPa如果:按6.4.9的规定选用。

P 0/3>[P Cr ]≥P 0/4应设置2个中间抗风圈于H E /3,2HE/3处。

6.1.2.中间抗风圈计算顶部抗风圈的实际截面模数 W=按图实际尺寸计算(近似为T 型钢计算)∵ W>Wz故满足要求应设置3个中间抗风圈于HE/4,2HE/4,3HE/4处。

风载荷标准值P 0=2.25ωk +q=q---罐顶呼吸阀负压设定值的1.2倍∵[Pcr]>P0,故不需要设置中间抗风圈。

W z =0.083D 2H 1ωkP 0/2>[P Cr ]≥P 0/3ω0—基本风压值(<300时取300Pa)βz—高度Z处的风振系数,油罐取μs —风荷载体型系数,取驻点值μz—风压高度变化系数,ωk =βz μs μs ω0P 0>[P Cr ]≥P 0/2应设置1个中间抗风圈于H E /2处。

以此类推=⎪⎪⎭⎫⎝⎛=5.2m in 48.16][Dt E H D cr P8.771392MPa1罐底部垂直载荷 1.8009613MN A1=πDt 1.7492388m 2翘离影响系数取C L 1.4底部罐壁断面系数10.495433m 358.038423MN.m 9.921098MN.m 综合影响系数C z一般取0.4α=0.450.1404s R=D/212mKc 0.000432δ30.0192m αmax=0.45罐体影响系数Y 1一般取1.1m=m 1Fr5107701.9kg 罐内储液总质量8821592.2kg Fr 0.579其中:D/H1.846153828.98188MPa 199875MPa t------罐底圈壁板有效厚度0.0232mσ1<[σcr]合格0.472794m 0.026266Tg 0.35s储液晃动基本周期5.3643825sKs=1.095晃动周期系数(据D/H 按表D.3.3选取)m 1=0.25ρπD 2H动液系数(由D/H ,查D.3.4确定)6.2.2.罐壁许用临界应力[σcr ]=0.15Et/D储罐内半径储液耦连振动基本周期Q 0=10-6C z αY 1mg 地震影响系数(据Tc ,Tg ,αmax 按图D.3.1选取)地震影响系数(据Tw ,αmax 按图D.3.1选取)Tw=KsD 0.5α最大地震影响系数E-----设计温度下材料的弹性模量6.2.3.应力校核条件反应谱特征周期(按表D.3.1-1)耦连振动周期系数(据D/H 按表D.3.2选取)距底板1/3高度处罐壁有效厚度6.2.4.罐内液面晃动高度计算:罐内液面晃动高度h v =1.5αR竖向地震影响系数C v (7,8度地震区取1;9度地震区取1.45) N1=(m d +m t )gZ1=πD 2t/4总水平地震力在罐底部产生的地震弯矩M L =0.45Q 0H 罐壁横截面积(其中t 为底部罐壁有效厚度)总水平地震力在罐底部产生的水平剪力6.2.地震载荷计算:6.2.1.地震作用下罐壁底产生的最大轴向应力T c =K c H (R/δ3)0.5=产生地震作用力的等效储液质量M 56mm 地脚螺栓根径:d 150.67mm D b 24.256m n 48个σs235MPa1920647N16248039N 563479N 3416935N.m 15343260N迎风面积389.70m 2罐体总高16.24m 拱顶高度3.24m1130973N 2500.00Pa 7.2.3.储液在最高液位时,1.5倍计算破坏压力产生的升举力:2171239N16248039N 1800961N300981N A=2016.47mm 2单个地脚螺栓应力:σ=N b /A=149.26MPa每个地脚螺栓的承压面积:σ<2/3σs,合格7.4.地脚螺栓(锚栓)校核条件:N b =N/n d -W/n dN=Max[N 1,N 2,N 3,N 4]7.2.1.空罐时,1.5倍设计压力与设计风压产生的升举力之和:7.2.2.空罐时,1.25倍试验压力产生的升举力之和:设计风压产生的升举力N w =4M w /D b 设计风压产生的风弯矩M w =ω0A H H’N 2=PπD 2/4+Ne7.3地脚螺栓计算:N 3=P t πD 2/47.2罐体抗提升力计算:地脚螺栓圆直径:地脚螺栓个数:N 1=1.5PπD 2/4+N w 空罐时,设计压力与地震载荷产生的升举力之和地脚螺栓许用应力:地震载荷产生的升举力N e =Aσ7.3.2.单个地脚螺栓所承受的载荷:A H =H'D H'=H 1+H g Hg=Rs(1-COSθ)7.3.1.罐体总的锚固力为7.2.1,7.2.2.,7.2.3所计算升举力中的最大值W <N ,由于罐体自重不能抗倾覆力,故需要设置地脚螺栓W=(m t +m d )g罐体试验压力P t =1.25PN 4=1.5P Q πD 2/47. 地脚螺栓(锚栓)计算地脚螺栓直径:7.1地脚螺栓参数:罐体总重量。

储罐设计计算

储罐设计计算

Ph
D H1 H ρ Rs Φ C2 C1
1200 Pa 8度 24 m 13 m 13 m
1.5 24 m 0.9 0 mm 0.8 mm
0.2g
Ⅱ类第一组
2. 罐壁分段及假设壁厚: 罐壁尺寸
、材料及
从下至上 分段号
高度(m)
1
2
2
2
3
2
4
2
5
2
6
1.5
7
1.5
厚度 (mm)
24
材料
设计[σ]d (MPa)
PQ=1.6P-0.047th= 3.20 KPa
其中:
g= 9.81 m/s2
满足连接要求
6. 风载荷及地震载荷计算 6.1.风载荷计算: 6.1.1.顶部抗风圈计算
顶部抗风圈所需的最小截面模数 Wz=0.083D2H1ωk
463.1 cm3 第4页
风载荷标准值
ωk=βzμsμsω0 ω0—基本风压值(<300时取300Pa) βz—高度Z处的风振系数,油罐 取 μs—风荷载体型系数,取驻点值
0.17
4
2
15.2
0.31
5
2
13.2
0.44
6
1.5
9.2
0.81
7
1.5
罐壁设计
外压:
P0=2.25ωk+q=
7.2
1.50
2.2767 KPa
q---罐顶呼吸阀负压设定值的1.2倍 0.60 KPa
∵[Pcr]>P0,故不需要设置中间抗风圈。 如果: P 0 > [P Cr ] ≥ P 0 /2 应设置 1 个中间抗风圈于 H E /2 处。 P 0 /2 > [P Cr ] ≥ P 0 /3 应设置 2 个中间抗风圈于 H E /3 , 2HE/3 处。 P 0 /3 > [P Cr ] ≥ P 0 /4 应设置 3 个中间抗风圈于 HE/4 , 2HE/4 , 3HE/4 处。

毕业论文储罐的设计

毕业论文储罐的设计

目录摘要 (1)关键词 (1)1 绪论 (1)1.1贮罐的应用及意义 (1)2 设计概述 (1)2.1设计任务书 (1)2.2设计思想 (2)2.3设计特点 (2)3 材料及结构的选择与论证 (2)3.1材料选择 (2)3.2结构选择与论证 (3)3.2.1封头的选择 (3)3.2.2 入孔的选择 (3)3.2.3 容器支座的选择 (4)3.2.4 法兰型式 (4)3.2.5 液面计的选择 (4)4 机械计算 (5)4.1筒体厚度设计 (5)4.2封头壁厚设计 (5)4.3水压试验及强度校核 (6)4.4人孔并核算开孔补强 (6)4.5核算承载能力并选择鞍座 (7)5 附件的选择 (8)5.1液面计选择 (8)5.2压力表选择 (8)5.3接口管选择 (9)6 设计结果一览表 (10)7 设计小结 (10)主要参考资料 (11)致谢 (12)Φ5000大型贮罐机械设计化学化工专业学生黄克旺指导教师赵慧敏摘要:压力容器广泛应用于化工生产中的传热、传质、化学反应、物料贮存等各个方面,约占工厂装备的百分之八十。

本文首先介绍容器的基本知识,包括压力容器的分类与结构;封头的种类与选择;容器的零部件(法兰、支座、接口管、手孔、人孔等)。

然后以液化石油气贮罐的设计为例,讲述了内压薄壁圆筒和标准椭圆形封头的强度设计,以及容器主要零部件的选用。

关键词:容器;零部件;封头;强度设计Φ5000mm mechanical design of liquid ammonia storage tank Student majoring in Chemical Engineering and Technology Hang Ke-wangTutor Zhao Hui-minAbstract:Pressure vessels are widely used in heat and mass transfer, chemical reaction, material storage, and other aspects of chemical production.And they account for about 80 percent of the factory equipment. This paper first introduces the basics of container, including the classification and structure of pressure vessels; the types of sealing head and how to select it; the parts of container (flange, bearing, interface tube, hand hole, manhole, etc.). Then take the design of liquid liquefied pentroeum gas(LPG) storage tank for example, tells the strength design of cylinder of internal pressure and standard-elliptical head, and the selection of the main components of container.Key words: Containers; Parts; Sealing head; Strength design1 绪论1.1 贮罐的应用及意义贮罐是储存或盛装气体、液体、液化气体等介质的设备,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用。

储罐的设计

储罐的设计
储罐的设计 温度:20℃ 压力:1atm 组成:甘油 乙酸 水 流量:9375kg/h 储罐设计要求: 容积:流量:9375kg/h=7.435 立/时,10 天流量所用储罐,设计容积:2000 立 储罐的种类:圆筒形立式储罐,自支撑式拱形顶,平板底。 本体材料选择:一般结构用轧制钢材 SS41,Q235 高径计算:选择高径比:2,直径:10.83 8m,高:21.676m。直径圆整至 11m,高 22m。 壁板的厚度: Q235 计算公式: 94.5% 5% 0.5% 7.435 立/时
t
D( H 0.3) C 2f
其中: 屈服限标准值 s 235MPa 23.97 kgf mm2 许用应力 f 0.6 s 14.38 kgf mm2 负偏差 C1 0.8mm 腐蚀裕度 C2 1.0mm 制造减薄量 C3 1.0mm 总壁厚附加量 C C1 C2 C3 2.8mm 则壁厚 t
D( H 0.3) C 10.458 2.8 13.258mm 计,最下段取 t 16mm 自支撑拱形顶 罐顶半径 0.8D R 1.2D ,取 R 11m
拱形顶的厚度 t 0.42R 4.62mm ,圆整取 t 6mm 顶部角钢及罐壁与顶板有效部位所需接触面积 A 4.6DR 556.6mm2 ,可以满足。 底板厚度取 t 9mm 顶部包边角钢的规格: L65 65 8 其他: 甘油火灾危险性分类:丙 B 根据国标 GB50160-92,可然液体的地上储罐应采用钢罐,罐区防火距离:5m

丙类液体储罐区设计要求

丙类液体储罐区设计要求

丙类液体储罐区设计要求随着工业化的快速发展,丙类液体储罐区的设计要求也越来越重要。

丙类液体是指易燃、易爆、有毒或有腐蚀性的液体,因此其储存和使用具有高风险性。

为了确保人员和环境的安全,以下是丙类液体储罐区设计的一些建议和要求。

储罐区应位于远离居民区和其他易燃物的地方,以降低事故发生的风险。

储罐区应与其他设施保持一定的距离,以防止事故蔓延。

此外,储罐区应具备足够的空间,以容纳所需的储罐数量,并预留足够的逃生和应急通道。

储罐的选择和布局也是设计要求的重要部分。

在选择储罐时,应考虑液体的性质和储存量,并确保储罐具备耐腐蚀和防爆等特性。

储罐的布局应尽量避免相邻储罐之间的相互干扰,并保证操作人员可以方便地进行监控和维护。

在储罐区的设计中,安全设施是不可或缺的。

应设置足够数量和容量的消防设备,包括灭火器、喷淋系统和消防栓等。

此外,应设立安全警示标识,明确指示储罐区的危险性和安全注意事项,以提醒人员注意安全。

储罐区的排水系统也需要特别关注。

排水系统应能够有效地收集和处理溢漏的液体,以防止其对环境造成污染。

同时,排水系统还应具备防火和防爆的能力,以确保在应急情况下的安全排水。

储罐区的周边安全措施也应得到重视。

应设置围墙或栅栏,限制非工作人员的进入,并确保储罐区的安全性。

此外,应建立安全管理制度,包括定期的培训和演习,以提高员工的安全意识和应急能力。

储罐区的设计应考虑环境保护。

应采取有效的措施,防止液体泄漏和扩散,以减少对环境的影响。

此外,应定期进行环境检测和监测,确保液体储存和使用过程中不会对周围环境造成污染。

丙类液体储罐区的设计要求涉及多个方面,包括储罐选择和布局、安全设施、排水系统、周边安全措施和环境保护等。

通过合理的设计和有效的管理,可以降低事故发生的风险,确保人员和环境的安全。

在设计过程中,应注重细节和安全性,并充分考虑各种可能的风险和应对措施。

只有这样,才能建立一个安全可靠的丙类液体储罐区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《化工容器设计》课程设计说明书题目: 学号: 专业: 姓名:I目录1 设计 (1)1.1工艺参数的设定 .............................................................................................................. 1 1.1.1设计压力 ...................................................................................... 1 1.1.2筒体的选材及结构 .......................................................................... 1 1.1.3封头的结构及选材 .......................................................................... 2 1.2 设计计算 ......................................................................................................................... 2 1.2.1 筒体壁厚计算 ................................................................................ 2 1.2.2 封头壁厚计算 . (3)1.3压力实验 (4)1.3.1水压试验 (4)1.3.2水压试验的应力校核: (4)1.4附件选择 (4)1.4.1 人孔选择及人孔补强 (4)2.4.3 进出料接管的选择 (6)1.4.4 液面计的设计 (8)1.4.5 安全阀的选择 (8)1.4.6 排污管的选择 (8)1.4.7 鞍座的选择 (8)1.4.8鞍座选取标准 (9)1.4.9鞍座强度校核 (10)1.4.10容器部分的焊接 (11)1.5 筒体和封头的校核计算 (11)1.5.1 筒体轴向应力校核 (11)1.5.2 筒体和封头切向应力校核 (13)2 液氨储罐的泄漏及处理方法............................................................. 错误!未定义书签。

2.1 液氨泄漏的危害 .............................................................................. 错误!未定义书签。

2.2 泄漏的危害 ...................................................................................... 错误!未定义书签。

2.2 .1 生产运行过程中危险性分析······································错误!未定义书签。

2.2.2 设备、设施危险性分析 ············································错误!未定义书签。

2.3液氨储罐泄漏事故的应急处置措施 .............................................. 错误!未定义书签。

2设计2.1 工艺参数的设定2.1.1 设计压力由于储罐是置于室外的,因此它的温度和压力受外界影响,很趋近于大气的温度,通过给定的数据,要设计的储罐温度在夏季是50℃,温度随季节的变化,储罐的操作压力也会发生变化。

通过查阅资料,夏季气温最高不会超过50℃,因此液氨储罐的操作温度通常最高可取夏季气温50℃,查表可得,在50℃时液氨的饱和蒸汽压是2.03Mpa。

《压力容器安全监察规程》规定液化气体储罐必须安装安全阀,设计压力可取最大操作压力的1.05-1.10倍。

通过公式P1.1P1.1 2.03 2.3MPa,因此我们=⨯=⨯=设的设计压力P 2.3 MPa=。

表2-1 设计参数设计要求参数设计压力 2.3Mpa设计温度50 ℃储存物料液氨储罐体积50 m32.1.2 筒体的选材及结构mm年根据液氨的物性选择罐体材料,碳钢对液氨有良好的耐蚀性腐蚀在0.1/以下,且又属于中压储罐,可以考虑20R和16MnR这两种钢材。

如果纯粹从技术角度看,建议选用20R类的低碳钢板,16MnR钢板的价格虽比20R贵,但在制造费用方面,同等重量设备的计价,16MnR钢板为比较经济。

所以在此选择16MnR钢板作为制造筒体和封头材料。

钢板标准号为GB6654-1996。

常温储罐有两种形式:球形贮罐和圆筒形贮罐。

球形储罐具有投资少,金属耗量少,占地面积少等优点,但是加工制造及安装复杂,焊接工作量大,因此安装费用m或单罐容积大于2003m时;圆筒形贮罐具有较高。

一般用于储存总量大于5003加工制造安装简单,承压能力较好,安装费用少等优点,但是金属耗量大占地面积m,单罐容积小于1003m时选用卧式贮罐比较经济。

由大,所以在总贮量小于5003于圆筒形贮罐按安装方式可分为卧式和立式两种。

根据工艺要求,液氨储量为12503m ,因此,液氨储罐可设计为卧式圆筒形[1]。

2.1.3 封头的结构及选材封头有多种形式,半球形封头就单位容积的表面积来说为最小,需要的厚度是同样直径圆筒的二分之一,从受力来看,球形封头是最理想的结构形式,但缺点是深度大,直径小时,整体冲压困难,大直径采用分瓣冲压其拼焊工作量也较大。

椭圆形封头的应力情况不如半球形封头均匀,但对于标准椭圆形封头与厚度相等的筒体连接时,可以达到与筒体等强度。

它吸取了蝶形封头深度浅的优点,用冲压法易于成形,制造比球形封头容易,所以选择椭圆形封头,结构由半个椭球面和一圆柱直边段组成。

查椭圆形封头标准(JB/T4737-95)以内直径为公称直径的封头封头取与筒体相同材料[4]。

表2-2 椭圆封头标准内径曲面高度h 1直边高度h 2内面积F i /m 2容积V/m 32600 650407.632.51图2-1 封头2.2 设计计算2.2.1 筒体壁厚计算确定容器的公称直径、筒体长度已知:设计的液化石油气储罐的理论体积为3=50m V 理论 2i V /4D L 2V π=+封实际装量系数 0.9V /V ζ==理论实际 设:容器的公称直径为i D 筒体的长度为L3当2i 50=4D L π则推出92i5010=0.785L D ⨯⨯估 根据GB/9019-2001查表可知:容器的公称直径DN=2600长度L =8500mm 查《压力容器材料使用手册-碳钢及合金钢》得16MnR 的密度为7.85t/m 3,熔点为1430℃,许用应力 列于下表:表2-3 16MnR 许用应力钢号板厚/㎜在下列温度(℃)下的许用应力/ Mpa16MnR 20 100 150 200 250 300 6~16 70 170 170 170 156 144 16~3663 163 163 159 147 134 36~6057 157 157 150 138 125 >60~10053153150141128116圆筒的计算压力为2.3Mpa,容器筒体的纵向焊接接头和封头的拼接接头都采用双面焊或相当于双面焊的全焊透的焊接接头,取焊接接头系数为1.0,全部无损探伤。

取许用应力为170 Mpa ,则:筒体计算厚度为:[] 2.32600t 17.65621701 2.32c itcp D mm p σ⨯===⨯⨯-⨯Φ-钢板厚度负偏差10.8C =mm,查材料腐蚀手册得50℃下液氨对钢板的腐蚀速率小于0.1 mm/y ,所以双面腐蚀取腐蚀裕量。

22C = mm所以设计厚度为:2t 19.656d t C mm =+=圆整后取名义厚度为:t 24n d t C mm =++=圆整值图2-2 筒体的相关尺寸2.2.2 封头壁厚计算根据标准椭圆形封头得a:b=2:14封头计算公式[] 2.32600t =17.648217010.5 2.320.5c itcp D mm p σφ⨯==⨯⨯-⨯-故封头厚度近似等于筒体厚度,取同样厚度,则名义厚度t n1=24 mm 。

因为封头壁厚≥20mm 则标准椭圆形封头的直边高度h 0=40mm 。

2.3 压力试验2.3.1 水压试验试验方法:试验时容器顶部应设排气口,充液时应将容器内的空气排尽,试验过程中,应保持容器外表面的干燥。

试验时压力应缓慢上升,达到规定试验压力后,保压时间一般不少于30min 。

然后将压力降至规定试验压力的80%,并保持足够长的时间以便对所有焊接接头和连接部位进行检查。

如有渗漏,修补后重新试验。

水压试验时的压力[][]T p 1.25 1.25 2.3 2.875t pMpa σσ==⨯=2.3.2 水压试验的应力校核:水压试验时的应力()()()2.8752600241163.93822241T i e T ep D t Mpa t σ⨯+-⎡⎤+⎣⎦===⨯-查《化工容器设计》得16MnR 钢板的常温强度指标MPa s 325=σ,水压试验时的许用应力为0.90.9 1.00325292.5s Mpa φσ=⨯⨯=故σT <0.9ФσS 筒体满足水压试验时的强度要求。

2.4 附件选择2.4.1 人孔选择及人孔补强人孔的作用:为了检查压力容器在使用过程中是否产生裂纹、变形、腐蚀等缺陷。

人孔的结构:既有承受压力的筒节、端盖、法兰、密封垫片、紧固件等受压元件,也有安置与启闭端盖所需要的轴、销、耳、把手等非受压件。

相关文档
最新文档