7.1~7.2-Probability 北邮 离散数学 课件 图论 算法

合集下载

离散数学ppt课件

离散数学ppt课件

02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。

离散数学——图论PPT课件

离散数学——图论PPT课件
第19页/共93页
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。

《离散数学图论》课件

《离散数学图论》课件
最短路径问题
实现方法:使用 队列数据结构, 将起始节点入队, 然后依次处理队 列中的每个节点, 直到找到目标节
点或队列为空
Dijkstra算法和Prim算法
Dijkstra算法:用于 求解单源最短路径问 题,通过不断更新最 短路径来寻找最短路 径。
Prim算法:用于求解 最小生成树问题,通过 不断寻找最小权重的边 来构建最小生成树。
图的矩阵表示
邻接矩阵的定义和性质
定义:邻接矩阵是一个n*n的矩阵,其 中n是图的顶点数,矩阵中的元素表示 图中顶点之间的连接关系。
性质:邻接矩阵中的元素只有0和1, 其中0表示两个顶点之间没有边相连, 1表示两个顶点之间有一条边相连。
应用:邻接矩阵可以用于表示图的连通 性、路径长度等信息,是图论中常用的 表示方法之一。
图像处理:优化图像分割, 提高图像质量
物流配送:优化配送路径, 降低配送成本
社交网络:优化社交网络 结构,提高用户活跃度
感谢您的观看
汇报人:PPT
数学:用于图论、组合数 学、代数拓扑等领域
物理学:用于量子力学、 统计力学等领域
生物学:用于蛋白质结构、 基因调控等领域
社会科学:用于社会网络 分析、经济模型等领域
图的基本概念
图的定义和表示方法
图的定义:由节点和边组成的数学结构,节点表示对象,边表示对象之间的关系
节点表示方法:用点或圆圈表示 边表示方法:用线或弧线表示 图的表示方法:可以用邻接矩阵、邻接表、关联矩阵等方式表示
顶点和边的基本概念
顶点:图中的基本元素,表示一个对象或事件 边:连接两个顶点的线,表示两个对象或事件之间的关系 度:一个顶点的度是指与其相连的边的数量 路径:从一个顶点到另一个顶点的边的序列 连通图:图中任意两个顶点之间都存在路径 强连通图:图中任意两个顶点之间都存在双向路径

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》PPT课件第一章:离散数学简介1.1 离散数学的定义离散数学是研究离散结构及其相互关系的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用离散数学在计算机科学、信息技术、密码学等领域有广泛应用。

学习离散数学能够为编程、算法设计、数据结构等课程打下基础。

第二章:集合与逻辑2.1 集合的基本概念集合是由明确定义的元素组成的整体。

集合的表示方法:列举法、描述法、图示法等。

2.2 集合的基本运算集合的并、交、差运算。

集合的幂集、子集、真子集等概念。

2.3 逻辑基本概念命题:可以判断真假的陈述句。

逻辑联结词:与、或、非等。

逻辑等价式与蕴含式。

第三章:图论基础3.1 图的基本概念图是由点集合及连接这些点的边集合组成的数学结构。

图的表示方法:邻接矩阵、邻接表等。

3.2 图的基本运算图的邻接、关联、度等概念。

图的遍历:深度优先搜索、广度优先搜索。

3.3 图的应用图在社交网络、路径规划、网络结构等领域有广泛应用。

学习图论能够帮助我们理解和解决现实世界中的问题。

第四章:组合数学4.1 排列与组合排列:从n个不同元素中取出m个元素的有序组合。

组合:从n个不同元素中取出m个元素的无序组合。

4.2 计数原理分类计数原理、分步计数原理。

函数:求排列组合问题的有效工具。

4.3 鸽巢原理与包含-排除原理包含-排除原理:解决计数问题时,通过加减来排除某些情况。

第五章:命题逻辑与谓词逻辑5.1 命题逻辑命题逻辑关注命题及其逻辑关系。

命题逻辑的基本运算:联结词、逻辑等价式、蕴含式等。

5.2 谓词逻辑谓词逻辑是命题逻辑的推广,引入量词和谓词。

谓词逻辑的基本结构:个体、谓词、量词、逻辑运算等。

5.3 谓词逻辑的应用谓词逻辑在计算机科学中用于描述和验证程序正确性。

学习谓词逻辑能够提高对问题本质的理解和表达能力。

第六章:组合设计6.1 组合设计的基本概念组合设计是指从给定的有限集合中按照一定规则选取元素,构成满足特定条件的组合。

《离散数学之图论》课件

《离散数学之图论》课件

二分图
二分图是指一个图中的所有顶点可 以被分成两个不相交的集合,即两 个集合内的点之间没有边。

树是一种特殊的无向图,他是一个 无环连通图。
图的表示
1
邻接矩阵
邻接矩阵是表示图的最直观的一种方法,它将图中的每个点与其他点之间的连接 关系用一个矩阵来表示。
2
邻接表
邻接表是图中比较常见的一种数据结构,用于存储有向图或无向图中顶点的邻接 关系。
Kruskal算法是一种贪心算
2 自反闭包
3 反对称闭包
在一个有向图中,如果由顶 点i到顶点j有路径,由顶点j 到顶点k有路径,则从i到k也 有路径。这种情况称为传递 闭包。
在一个有向图中,如果自己 只能到自己,则称之为自反 闭包。
在一个有向图中,如果存在 有向边从i到j,同时存在一 个从j到i的反向边,则称之 为反对称闭包。
3
关联矩阵
关联矩阵是一个图矩阵,它将图中的所有点和边都表示为元素,可以将和特定边 相关的点和总结点联系起来。
图的遍历
1 深度优先遍历
深度优先遍历是从图中的起始点开始,递归地访问所有可达的顶点。它通常用堆栈来实 现。
2 广度优先遍历
广度优先遍历是从图中的起始点开始访问每一层可达的顶点。它通常用队列来实现。
最短路径
Dijkstra算法
Dijkstra算法是一种用来求图中单个源点到其他所有点 的最短路径的平均算法。
Floyd算法
Floyd算法是一种用于发现非负权重图中所有点对之间 的最短路径的算法。
最小生成树
1
Prim算法
Prim算法用于寻找加权无向连通图的最小生
Kruskal算法
2
成树,该树包含了关键点并且保证了所有点 都连通。

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

左孝凌离散数学ppt课件

左孝凌离散数学ppt课件

第七章 图论 7.1 图的基本概念
完全图:任意两个不同的结点都是邻接的简单图称为
完全图。n个结点的无向完全图记为Kn。
图7.1.5给出了K3和K4。从图中可以看出K3有3条边,
K4有6条边。容易证明Kn有条边。
n(n 1) 2
图7.1.5K3与K4示意图
图7.1.6
第七章 图论 7.1 图的基本概念
一个图G可用一个图形来表示且表示是不唯一的。
第七章 图论 7.1 图的基本概念
【例7.1.2】设G=〈V(G),E(G)〉,其中
V(G)={a,b,c,d},E(G)={e1,e2,e3,e4,e5,e6,e7},e1=(a,b), e2=(a,c),e3=(b,d),e4=(b,c),e5=(d,c),e6=(a,d),e7=(b,b) 。
1)若e1,e2,…,ek都不相同, 则称路μ为迹;
2)若v0,v1,…,vk都不相同, 则称路μ为通路;
3)长度大于2的闭的通路(即 除v0=vk外,其余结点均不相同的 路)μ称作圈。
图7.1.1
第七章 图论
7.2 路与回路
例如在图7.2.1中,有连接v5 到v3的路v5e8v4e5v2e6v5e7v3,这 也是一条迹;路v1e1v2e3v3是一 条通路;路v1e1v2e3v3e4v2e1v1是 一条回路,但不是圈;路 v1e1v2e3v3e2v1是一条回路,也是 圈。
定 义 7.2.1 给 定 图 G = 〈V,E〉, 设 v0,v1,…,vk∈V , e1 , e2,…,ek∈E,其中ei是关联于结点vi-1和vi的边,称 交替序列v0e1v1e2…ekvk为连接v0到vk的路,v0和vk分别 称为路的起点与终点。路中边的数目k称作路的长度。 当v0=vk时,这条路称为回路。

离散数学图论路与连通PPT课件

离散数学图论路与连通PPT课件
第18页/共26页
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。

第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

离散数学教学图论【共58张PPT】

离散数学教学图论【共58张PPT】

一 、图的基本概念
• 邻接和关联 • 无向图和有向图 • 零图和平凡图 • 简单图 • 完全图(无向完全图和有向完全图) • 有环图
一 、图的基本概念
• 有限图和无限图 设图G为< V,E,Ψ>
(l)当V和E为有限集时,称G为有限图,否则称G为无限图。 (2)当ΨG为单射时,称G为单图;当ΨG为非单射时,称G为重图,又称满足
二、生成树
1、生成树定义:
若无向图的一个生成子图T是树,则称T 为G的生 成树,T中的边称为树枝,E(G)-E(T)称为树T 的补,其中的每一边称为树T 的弦。
在任何图中,结点v的度(degree)d(v)是v所关联边的数目。
第三节 生成树、最短路径和关键路径 由结点a和它所有的后代导的子图,称为T的子树.
∴ T连通且具有m=n-1的图
{e5,e4,e8} , {e7,e6,e5,e2,e4} 第四节 欧拉图和哈密顿图
第四节 特殊图(欧拉图和哈密顿图等)
第五节 树、二叉树和哈夫曼树
离散数学教学图论
(优选 欧拉图和哈密顿图
(3)2=>3 ∴W(T)≤W(T1) ∴W(ei+1)≥W(f) 二. 哈密顿图的由来—周游世界问题:
第二节 图的矩阵表示 第四节 欧拉图和哈密顿图
证明:若G中一个边割集和一生成 树无公共边,则表示该边割集所分离的结点不在生成树中,这导致与生成树的定义矛盾。 哈密顿图的由来—周游世界问题: c)对新图向下旋转45度。 ei之后将取f而不是ei+1
为该顶点的度,列之和一定为2. • 有向图的关联矩阵 ----- 以节点数为行,边数为列.节点与边无关系,为0,有关系,则起点为1,
终点为-1;列之和一定为0,每行绝对值之和等于该节点的度数;其 中1的个数为该节点的出度,-1的个数为对应节点的入度;所有元 素的和为0,1的个数等于-1的个数,都等于边数m.

离散数学中的图论与算法

离散数学中的图论与算法

离散数学中的图论与算法离散数学是研究离散对象以及它们之间的关系和性质的数学学科。

其中,图论作为离散数学的重要分支,探究的是图和网络的理论性质和组合结构,而算法则是图论中用于解决问题和优化策略的重要手段。

一、图论基础图是由边和点构成的一种抽象结构。

在图中,点用圆圈表示,边用连接两个点的线表示。

图分为有向图和无向图两类。

有向图中的边跟一个箭头表示方向,无向图中则没有方向。

图的性质包括连通性、路径、环、度数等。

其中,连通性是指图中任意两点存在一条路径相互连通,路径是一条由边相连的点序列,环是有至少一条边和至少一个点与之相邻的路径。

图的度数指的是一个点所连接的边的数目,包括入度和出度。

入度是指指向该点的边的数目,出度是指由该点指向其他点的边的数目。

无向图每个点的度数为连接该点的边的数目。

在图中,存在欧拉回路和欧拉路径,它们分别指遍历图中所有边的路径和遍历所有点和边的路径。

二、图的表示图可以用邻接矩阵、邻接链表或关联矩阵表示。

邻接矩阵用一个二维数组表示,其中行列代表点,值代表边的存在与否。

邻接链表则将每个点的连边保存在链表中,关联矩阵表示的则是点和边的关系,每列代表一个边,每行代表一个点,值代表点和边之间的关系。

三、算法在图论中,不同的算法可以用于不同的问题,包括最小生成树、最短路径、网络流等。

最小生成树是指将一个连通带权图生成一颗生成树的权值和最小。

Prim算法和Kruskal算法是常见的最小生成树算法。

其中,Prim算法是以一个点为起点,每次选取与树中其他点距离最近的点并加入树中,直到生成一颗包括所有点的生成树;而Kruskal算法则是将边按权值从小到大排序,然后每次选取能够连接两个不在同一集合中的最小边。

最短路径算法是指求解两个节点之间最短路径长度的算法,包括Dijkstra算法和Floyd算法。

其中,Dijkstra算法是从起点出发,依次确定到每个节点的最短路径长度,直到到达目标节点;而Floyd算法则是对于所有点对之间的距离进行更新,最终得到任意两点之间的最短路径长度。

离散数学图论公开课一等奖优质课大赛微课获奖课件

离散数学图论公开课一等奖优质课大赛微课获奖课件

b
c
g
d
a
h
b
c
g
d h
b
c
g
d
a
h
f (a)
f e
e
(b)
f
(c) 19
第19页
7.1 图基本概念
• (13)生成子图: 假如G子图包含G全部结点,则称 该子图为G生成子图。
• 以下图,(b)、(c)都是(a)生成子图。
(a)
(c)
20
第20页
7.1 图基本概念
(14).定义: 设图G =<V,E>及图G =<V ,E >, 假如存在一一相应映射g: vi→v i且e=(vi,vj)是G 一条边,当且仅当e =(g(vi ),g(vj))是 G 一条边,则称G与G 同构,记作G≌G 。 两个图同构充要条件是: 两个图结点和边分别存在着 一一相应关系,且保持关联关系。
7.1 图基本概念
(1)定义: 一个图G是一个三元组<V(G),E(G), ΦG>, 其 中V(G)为顶点集合, E(G)是边集合,ΦG是从边集E到 结点偶对集合上函数。
讨论定义:
(a) V(G) ={V1,V2,…,Vn}为有限非空集合,
Vi称为结点,简称V是点集。
(b) E(G)={e1,…,em}为有限边集合,ei称为边,每 个ei是连结V中某两个顶点,称E为边集。
(8)入度,出度: 在有向图中,射入一个结点边数称 为该结点入度。由一个结点射出边数称为该结点出 度。 结点出度与入度和是该结点度数。
定理: 在任何有向图中,所有结点入度和等于所有结 点出度之和。
14
第14页
7.1 图基本概念
证: ∵每一条有向边必相应一个入度和出度,若一个结点含 有一个入度或出度,则必关联一条有向边,因此,有向图 中各结点入度和等于边数,各结点出度和也是等于边数, 因此,任何有向图中,入度之和等于出度和。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1.1 离散数学的定义:研究离散结构及其相互关系的数学分支。

1.2 离散数学的应用领域:计算机科学、信息技术、运筹学、生物学等。

1.3 离散数学的重要性:为计算机科学提供数学基础,培养逻辑思维和抽象能力。

二、逻辑基础2.1 命题逻辑:概念、命题、逻辑运算符(与、或、非、蕴含、等价)、真值表。

2.2 谓词逻辑:个体、谓词、逻辑运算符(量词、连接词)、真值表。

2.3 推理规则:演绎推理、归纳推理、反证法。

三、集合与函数3.1 集合的概念:集合、元素、集合运算(并、交、补、幂集)。

3.2 集合的表示:列举法、描述法、图示法。

3.3 函数的定义:函数、域、值域、函数运算(复合函数、反函数)。

四、图论4.1 图的基本概念:图、顶点、边、无向图、有向图、图的表示(邻接矩阵、邻接表)。

4.2 图的性质:连通性、路径、圈、树、网络流。

4.3 图的应用:最短路径问题、最小树问题、网络流问题。

五、组合数学5.1 组合的概念:组合、排列、组合数、排列数。

5.2 组合数的计算:二项式定理、组合恒等式。

5.3 组合数学的应用:计数原理、概率计算、图的着色问题。

《离散数学教案》课件六、组合数学(续)6.4 排列组合问题的解决方法:插板法、捆绑法、倒置法。

6.5 鸽巢原理:鸽巢定理及其应用。

6.6 数论基础:整数、素数、最大公约数、最小公倍数。

七、数理逻辑7.1 命题逻辑的等值关系:等价、蕴涵、矛盾。

7.2 谓词逻辑的等值关系:量词、域、谓词、逻辑等值。

7.3 逻辑推理:演绎推理、归纳推理、反证法。

八、代数结构8.1 群的概念:封闭性、结合律、单位元、逆元。

8.2 环和域的概念:加法群、乘法群、环、域。

8.3 群的作用:对称性、编码理论、密码学。

九、关系与函数9.1 关系的定义:关系、有序对、自反性、对称性、传递性。

9.2 等价关系与序关系:等价类、序关系、偏序集。

9.3 函数的性质:单射、满射、双射、复合函数。

《离散数学数论》课件

《离散数学数论》课件

素数与合数的应用
素数的应用
在密码学中,大素数是生成加密密钥的 重要材料;在计算机科学中,素数的性 质被用于实现一些加密算法和散列函数 等。
VS
合数的应用
在计算机科学中,合数的性质被用于实现 一些算法和数据结构,如快速排序、堆排 序等;在数学中,合数的性质被用于证明 一些数学定理和猜想等。
04
CHAPTER
THANKS
谢谢
02
在计算机科学中,最大公约数 和最小公倍数的概念也被广泛 应用,如算法设计、数据结构 等领域。
03
在日常生活和工作中,最大公 约数和最小公倍数的概念也有 很多应用,如解决时间安排问 题、资源分配问题等。
05
CHAPTER
同余方程
同余方程的定义
同余方程
01
在数论中,同余方程是一个关于模的等式,表示两个或多个整
离散概率论的应用领域
离散概率论在计算机科学、统计学、决策理论等 领域有广泛应用。
3
离散概率论与连续概率论的联系
离散概率论是连续概率论的离散化形式,两者在 概念和方法上有许多相似之处。
离散概率论的基本概念
样本空间
样本空间是随机实验所有可能结果的集合。
概率
概率是用来描述随机事件发生可能性大小的 数值。
计算机科学
在计算机科学中,同余方程可以用于实现快速模运算,从而提高 算法的效率。
数论研究
同余方程也是数论研究中的一个重要工具,可以用于研究整数的 性质和结构。
06
CHAPTER
离散概率论基础
离散概率论简介
1 2
离散概率论的定义
离散概率论是研究离散随机现象的数学分支,主 要研究离散随机事件、离散随机变量等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上课认真听讲 学习知识并非学习英语
2014-12-28
College of Computer Science & Technology, BUPT
3
Assignments

Homework Assignments

Discussions among fellow students are encouraged, but plagiarism will be dealt with seriously. Group work Discussion in classroom
Definition

Many experiments do not yield exactly the same results when performed repeatedly.


For example, if we toss a coin, we are not sure if we will get heads or tails. If we toss a die, we have no way of knowing which of the six possible numbers will turn up.
Course Staff

Instructor

杨娟 Office: 教3楼616 Phone: 62283779 Email: yangjuan@ ?? 离散数学群:276049620

Assistants


QQ group

2014-12-28
College of Computer Science & Technology, BUPT
College of Computer Science & Technology, BUPT
5
2014-12-28
Textbook & References



Kenneth H. Rosen, Discrete Mathematics and Its Applications/7e, McGraw-Hill, 2012 Kolman B. et al, Discrete Mathematical Structures/4e, Prentice Hall, 2001 Liu, C.L. Elements of Discrete Mathematics, New York, McGrawHill, 1977 陈崇昕 等,离散数学,北京邮电大学出版社,1992 王湘浩 等,离散数学,高等教育出版社,1983 朱一清 编著,离散数学,电子工业出版社,1997 石纯一 等,数理逻辑与集合论/2e,清华大学出版社,2000 戴一奇 等,图论与代数结构,清华大学出版社,199?
2014-12-28
College of Computer Science & Technology, BUPT
15
Example


An experiment consists of drawing three coins in succession from a box containing four pennies and five dimes, and recording the sequence of results. Determine the sample space of this experiment. Solution
To:yangjuan@ College of Computer Science &
Technology
Beijing University of Posts & Telecommunications
Discrete Probability
Yang Juan
yangjuan@
2014-12-28
College of Computer Science & Technology, BUPT
12
Example

Suppose that a nickel and a quarter are tossed in the air. We describe three possible sample spaces that can be associated with this experiment.
9
2014-12-28
7.1 An Introduction to Discrete Probability
Yang Juan
yangjuan@
College of Computer Science & Technology
Beijing University of Posts & Telecommunications


Experiments (10%) Midterm examination (20%) Final examination (60%)

Need a minimum of 40% of the final exam marks to pass the course! Classroom performance/behavior will be taken into consideration in assigning the final grades(10%).
College of Computer Science & Technology, BUPT
13
2014-12-28
Note




In addition to describing the experiment, we must indicate exactly what the observer wishes to record. Then the set of all outcomes of this tБайду номын сангаасpe become the sample space for the experiment. A sample space may contain a finite or an infinite number of outcomes. In this chapter, we need only finite sample spaces.
2014-12-28
College of Computer Science & Technology, BUPT
6
Please feel free to ask questions!
(((
)))
Q&A
Yang Juan
yangjuan@
Comments Suggestions and

equally likely等概率 random variables 随机变量

7.2 Probability Theory


7.3 Bayes’ Theorem 7.4 Expected Value and Variance

expected value 数学期望值
College of Computer Science & Technology, BUPT


An outcome can be recorded as a sequence of length 3 constructed from the letters P (penny) and D (dime). Thus the sample space A is {PPP,PPD, PDP, PDD, DPP, DPD, DDP, DDD}.
1
Course Arrangement
Yang Juan
yangjuan@
College of Computer Science & Technology
Beijing University of Posts & Telecommunications
如何使用英文教材进行学习
2014-12-28
College of Computer Science & Technology, BUPT
14
Example


Determine the sample space for an experiment consisting of tossing a six-sided die twice and recording the sequence of numbers showing on the top face of the die after each toss. Solution
College of Computer Science & Technology
Beijing University of Posts & Telecommunications
7 Discrete Probability

7.1 An Introduction to Discrete Probability
11
2014-12-28
Sample Spaces(样本空间)

A set A consisting of all the outcomes of an experiment is called a sample space of the experiment.

With a given experiment, we can often associate more than one sample space, depending on what the observer chooses to record as an outcome.
相关文档
最新文档