九年级数学相似三角形
初三数学相似知识点
初三数学相似知识点
1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的对
应边长成比例,对应角度相等。
2. 相似比例:相似三角形的边长比值称为相似比例。
如果两个三角形的对应边长分别
为a:b:c和ka:kb:kc,那么它们的相似比例为a:b:c。
3. 相似三角形定理:包括AAA相似定理、AA相似定理和对应角边比相等定理。
其中,AAA相似定理指出如果两个三角形的对应角度相等,那么它们相似;AA相似定理指出如果两个三角形的两个对应角度相等,那么它们相似;对应角边比相等定理指出如果
两个三角形的两个对应角度相等,并且对应边长之比相等,那么它们相似。
4. 相似三角形的性质:相似三角形的相似比例等于对应边长之比;相似三角形的相似
比例等于对应角度的正弦值、余弦值或正切值;相似三角形的高线、中线等与对应边
长成等比例;相似三角形的面积与边长平方成比例。
5. 相似三角形的应用:相似三角形的定理在解决实际问题中有很多应用,如利用相似
三角形进行测量、解决影子问题、求解高度、求解距离等。
6. 图形的相似:除了三角形,其他图形(如矩形、圆、椭圆等)也有相似的概念和相
似关系,可以利用相似关系解决相关问题。
这些内容是初三数学中关于相似的主要知识点,希望对你有帮助!如有其他问题,请
随时提问。
九年级数学下册272《相似三角形》PPT课件
3. 解等式求出三角形的面积。
注意事项:在解题过程中,要确保已知的三边长度是准 确的,避免因为数据不准确而导致错误。同时,要注意 选择合适的公式或方法进行计算。
典型例题四:综合应用举例
• 解题思路:综合运用相似三角形的性质和判定方法,解决 复杂的实际问题。
典型例题四:综合应用举例
解题步骤 1. 分析问题,确定需要使用的相似三角形的性质和判定方法;
利用相似三角形的面积比等于相似比的平 方性质,求解面积问题 通过已知三角形的面积和相似比,计算另 一个三角形的面积 结合图形变换和面积公式,利用相似三角 形解决复杂面积问题
利用相似三角形解决综合问题
综合运用相似三角形 的性质,解决涉及线 段、角度和面积的复 杂问题
结合多种数学方法, 如代数运算、方程求 解等,提高解决问题 的效率
通过分析问题的条件 ,选择合适的相似三 角形性质和定理进行 求解
04
典型例题分析与解题思路展示
典型例题一:已知两边求第三边长度
解题思路:利用相似三角形的性质, 即对应边成比例,可以通过已知的两
边长度求出第三边的长度。
解题步骤
2. 利用相似三角形的性质列出比例式 ;
3. 解比例式求出第三边的长度。
1. 确定已知的两边和夹角;
注意事项:在解题过程中,要确保已 知的两边和夹角是对应的,避免因为 数据不对应而导致错误。
典型例题二:已知两角求第三角大小
01
解题思路:根据三角形内角和为180°的性质,可以通过 已知的两角求出第三角的大小。
04
2. 利用三角形内角和为180°的性质列出等式;
02
解题步骤
对应角相等,对应边成比例的两 个三角形叫做相似三角形。
4.3 相似三角形九年级上册数学浙教版
[解析] , , . , .
(2)结合图形确定.
(1)通过“”确定.用“”连结的两个三角形对应顶点是确定的.
例题点拨
确定相似三角形对应关系的两种方法
中考常考考点
难度
常考题型
考点:相似三角形的概念及性质.
★★★
选择题、填空题
考点 相似三角形的性质
典例3 (2022·绍兴中考)将一张以 为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片 ,其中 , , , , ,则剪掉的两个直角三角形的斜边长不可能是 ( )
依据定义判断两个三角形是否相似时,对应边成比例,对应角相等,两者缺一不可
(2) 在上边的网格内再画一个三角形,使它与 相似,并求出其相似比.
解:如图, 与 相似,它们的相似比是 .
知识点2 相似三角形的性质 重点
1.性质:相似三角形的对应角相等,对应边成比例.
2.几何语言:如图.
, , ,பைடு நூலகம் , .
链接教材 本题取材于教材第128页例2,主要考查了利用相似三角形的性质求线段的长.教材例题考查得很基础,直接利用对应边成比例列出比例式求解即可,而中考真题考查难度较大,需要先画出各种情况的草图,再列比例式求线段长,不仅情况多样,计算难度也较大.得分的关键是:①分析出三种情况;②列出比例式;③正确解方程组.
2.几何语言:如图, , , , , 与 的相似比是 或 , .
,点 的对应点是点 ,点 的对应点是点 ,点 的对应点是点
注意 (1)在用符号“ ”表示两个三角形相似时,都把对应顶点写在对应位置上;(2)相似比具有顺序性,若 与 的相似比是 ,则 与 的相似比是 .
人教版九年级数学下册相似三角形的周长与面积
练习
1.判断 (1)一个三角形的各边长扩大为原来的5倍,这个 三角形的周长也扩大为原来的5倍; (2)一个四边形的各边长扩大为原来的9倍,这个 四边形的面积也扩大为原来的9倍.
(1)一个三角形各边扩大为原来5倍,相似比为1:5
扩大5倍周长=5原周长
(2)一个四边形的各边长扩大为原来的9倍,这个四边 形的面积也扩大为原来的9倍. 解: 一个三角形各边扩大为原来9倍,相似比为1:9
S S A'B'C'
A'C ' D'
C'
S四边形ABCD =k2 S四边形A'B'C'D'
相似多边形面积的比等于相似比的平方.
例题分析
例6.如图,在△ABC和△DEF中,AB=2DE,AC=2DF, ∠A=∠D,△ABC的周长是24,面积是48,求△DEF的周长 和面积.
解:在△ABC和△DEF中,
1.三角形相似的判定方法有那些? 定义三个对应角相等,三条对应边的比相等。 (不常用) 预备定理平行线构成的三角形与原三角形相似。 常 三边对应成比例的两个三角形相似。 用 两边对应成比例且夹角相等的两个三角形相似。 两个角对应相等的两个三角形相似。
2. 相似三角形的有哪些性质? 相似三角形的对——应—角——相—等—, 各对应边——成——比—例—。
B
C
3.两个相似三角形的一对对应边分别是35厘米和14 厘米,
(1)它们的周长差60厘米,这两个三角形的周长分别是
——————。
(2)它们的面积之和是58平方厘米,这两个三角形的面积分 别是_____________。
4.如图,△ABC∽△A'B'C',他们的周长分别为60cm和72cm,
九年级数学相似的知识点
九年级数学相似的知识点1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的性质包括对应角相等、对应边成比例等。
通过相似三角形,可以解决一些几何问题,如计算不可测量的长度或距离。
2. 比例与相似:比例是指两个量之间的相对关系。
在相似三角形中,对应边的长度之比等于对应角的边之比。
比例与相似问题常用于解决物体的放大缩小、图形的变换等。
3. 相似多边形:相似多边形是指具有相同形状但大小不同的多边形。
相似多边形的性质包括对应角相等、对应边成比例等。
通过相似多边形,可以解决一些面积和体积比较的问题。
4. 黄金分割:黄金分割是指一条线段分割成两部分,较长部分与整体的比例等于整体与较短部分的比例。
黄金分割在艺术、建筑、设计等领域中广泛应用。
5. 图形的相似性变换:图形的相似性变换是指通过平移、旋转、镜像和缩放等变换操作使两个图形成为相似图形。
相似性变换常用于解决图形的构造、定位和证明问题。
6. 相似三角形的勾股定理:相似三角形的勾股定理是指在两个相似三角形中,两个直角边的平方的比等于两个斜边的平方的比。
7. 外接圆和内切圆:在相似三角形和相似多边形中,外接圆和内切圆分别是能够通过所有顶点(或顶点所在的边)的圆和能够被所有边(或边上的顶点)所切的圆。
外接圆和内切圆之间存在着一定的关系,如半径比例等。
8. 相似三角形的角平分线定理和中线定理:相似三角形的角平分线定理是指两个相似三角形中,两个对应角的角平分线也相似;相似三角形的中线定理是指两个相似三角形中,两个对应中位线也相似。
这些是九年级数学中与相似有关的知识点,希望对你有帮助!。
九年级数学相似三角形知识点
九年级数学相似三角形知识点咱来唠唠九年级数学里的相似三角形知识点哈。
一、相似三角形是啥玩意儿呢?简单来说,相似三角形就像是三角形家族里的“克隆兄弟”,它们形状相同,但大小可能不一样。
就好比你用放大镜看一个小三角形,放大后的三角形和原来的小三角形就是相似的。
二、相似三角形的判定方法1. 两角对应相等- 如果两个三角形有两个角分别相等,那这两个三角形就相似。
这就像是两个人,只要他们在两个关键的地方(角度)长得一样,那他们就有相似之处。
比如说三角形ABC和三角形DEF,要是∠A = ∠D,∠B = ∠E,那这两个三角形就相似啦。
2. 两边对应成比例且夹角相等- 想象一下,两个三角形的两条边的长度比例是一样的,而且这两条边所夹的角也相等。
就像两根一样比例的小棍,它们夹着相同角度的话,那这两个三角形也是相似的。
比如在三角形ABC和三角形DEF中,AB/DE = AC/DF,并且∠A = ∠D,那这两个三角形就相似喽。
3. 三边对应成比例- 这个就更好理解啦,三个边的长度比例都一样的两个三角形肯定相似。
就好比三个小伙伴,他们的身高、臂长、腿长的比例都相同,那他们就是相似的三角形啦。
如果AB/DE = BC/EF = AC/DF,那么三角形ABC和三角形DEF就是相似三角形。
三、相似三角形的性质1. 对应边成比例- 相似三角形的对应边的比例是相等的。
就像前面说的那些判定方法里的边的比例一样。
如果三角形ABC相似于三角形DEF,那么AB/DE = BC/EF = AC/DF,这个比例是固定的哦。
2. 对应角相等- 因为相似三角形形状相同嘛,所以它们的对应角肯定是相等的。
∠A = ∠D,∠B = ∠E,∠C = ∠F。
3. 相似三角形的周长比等于相似比- 相似比就是对应边的比例。
比如说相似三角形ABC和DEF的相似比是k (AB/DE = k),那么它们的周长比也是k。
就好比两个相似的图形,一个大一个小,大的图形的周长是小的图形周长的k倍。
九年级数学相似三角形的判定及证明技巧讲义
相似三角形是中学数学中的一个重要内容,对于九年级学生来说,掌握相似三角形的判定及证明技巧是必不可少的。
本文将详细讲解相似三角形的判定及证明技巧,帮助学生更好地理解和运用这一知识点。
一、相似三角形的判定:1.AAA相似判定法:如果两个三角形的对应角度相等,则这两个三角形是相似的。
例如,在△ABC和△DEF中,∠A=∠D,∠B=∠E,∠C=∠F,那么这两个三角形相似。
2.AA相似判定法:如果两个三角形的一个角对等于另一个角,且两个角的对边成比例,则这两个三角形是相似的。
例如,在△ABC和△DEF 中,∠A=∠D,∠C=∠F,且AB/DE=BC/EF,那么这两个三角形相似。
3.SSS相似判定法:如果两个三角形的对应边成比例,则这两个三角形是相似的。
例如,在△ABC和△DEF中,AB/DE=BC/EF=AC/DF,那么这两个三角形相似。
4.平行线判定法:如果两个三角形的对应边平行,则这两个三角形是相似的。
例如,在△ABC和△DEF中,AB∥DE,BC∥EF,AC∥DF,那么这两个三角形相似。
二、相似三角形的证明技巧:1.用平行线证明相似:如果两个三角形的对应边平行,则这两个三角形是相似的。
证明时,可以使用平行线的性质,如同位角相等、内错角互补等。
2.用角度证明相似:如果两个三角形的对应角度相等,则这两个三角形是相似的。
证明时,可以根据已知信息,使用角度的性质进行推导。
3.用边长比证明相似:如果两个三角形的对应边长比相等,则这两个三角形是相似的。
证明时,可以根据已知的边长比,通过等式推导得出结论。
4.用等腰三角形证明相似:如果两个三角形分别为等腰三角形,且对应的顶角相等,则这两个三角形是相似的。
以上是常用的相似三角形的判定及证明技巧,希望对九年级的数学学习有所帮助。
在学习过程中,要多加练习,掌握不同方法的应用,提高解题能力。
同时,要注重理论与实践相结合,灵活运用知识,培养自己的思维能力和推理能力。
祝每位同学在数学学习中取得优异成绩!。
(完整word版)九年级数学相似三角形知识点及习题
相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
人教版九年级数学下册《相似三角形》
相似三角形
1
回顾与反思
判定两个三角形相似的方法:
1.定义:三角对应相等,三边对应成比例的两个三 角形相似。 2.平行三角形一边的直线和其他两边相交(或两边的延 长线),所构成的三角形与原三角形相似. 3.三边对应成比例的两个三角形相似。 4.两边对应成比例且夹角相等的两个三角形相似。 5. 两角对应相等的两个三角形相似。
(2) BC是圆O的切线,切点为C.
(3) 移动点A,使AC成为⊙O的直径,你还能 得到哪些结论?
8
BF=4
结论:1、⊿ACF∽ ⊿ABC∽ ⊿CBF 2、CD²=AD×BD BC²=BD×AB AC²=AD×AB
9
用一用
(1)请在x轴上找一点D,使得⊿BDA与⊿BAC相似 (不包含全等),并求出点D的坐标;
C
DE∥BC
C
(5)
BD ∠BAD=∠C
C
A
DB
∠ACB=90°,
AB2=BD·BC
CD⊥AB
B
C
E
(6)
D
A
C B ∠D=∠C
12
问题:
如图,在正方形ABCD中,E为BC上任意一点 (与B、C不重合)∠AEF=90°.观察图形:
((12))若△EA为BEBC与的△中E点CF,是连否结相AF似,图?中并有证哪明些你相的似结论。
即:
m 5
3 13 m 4
3 13
4
解得: m
25 9
有公共角∠B, “A”型相似
(2)当PQ⊥BD时,⊿BPQ∽ ⊿BDA
则 BP BQ
BD 即:
3
BA
m 13 m
3
13
4 5
九年级数学相似三角形的判定
目
CONTENCT
录
• 相似三角形的定义与性质 • 相似三角形的判定方法 • 相似三角形的应用 • 相似三角形的变式与拓展
01
相似三角形的定义与性质
相似三角形的定义
02
01
03
两个三角形如果对应角相等,则它们是相似的。
相似三角形对应边的比值相等,即它们的边长比例相 等。 相似三角形的对应角相等,对应边成比例。
物理学
在物理学中,相似三角形经常被 用来解决与力、运动相关的问题 。
80%
工程设计
在工程设计中,相似三角形可以 帮助设计师确定建筑物的结构稳 定性。
在数学竞赛中的应用
奥林匹克数学竞赛
在奥林匹克数学竞赛中,相似 三角形是解决几何问题的重要 工具之一。
数学竞赛培训
在数学竞赛培训中,相似三角 形是培训内容的重要组成部分 ,用于提高学生的几何思维能 力。
具体来说,如果$angle A = angle A'$、且$frac{AB}{A'B'} = frac{AC}{A'C'} = k$ ($k$为常数),则$triangle ABC sim triangle A'B'C'$。
03
相似三角形的应用
在几何图形中的应用
确定未知量
通过相似关系,我们可以确定一些未知量,如角度 、长度等。
相似三角形的性质
相似三角形的对应角相等,对 应边成比例。
相似三角形的面积比等于相似 比的平方。
相似三角形对应高的比等于相 似比,对应中线的比也两组对应角分别相等,则这两个 三角形相似。
如果两个三角形的两组对应边的比值相等,则这两 个三角形相似。
新浙教版九年级数学相似三角形
新浙教版九年级数学相似三角形相似三角形是九年级数学中的一个重要知识点,它不仅在数学领域有着广泛的应用,也为我们解决实际问题提供了有力的工具。
首先,我们来了解一下相似三角形的定义。
相似三角形是指对应角相等,对应边成比例的三角形。
简单来说,如果两个三角形的形状相同,但大小不一定相同,那么它们就是相似三角形。
相似三角形具有许多重要的性质。
例如,相似三角形的对应边成比例,对应角相等。
这意味着,如果我们知道两个相似三角形中一组对应边的比例以及其中一个三角形的边长,就可以求出另一个三角形中相应边的长度。
同时,相似三角形的周长之比等于相似比,面积之比等于相似比的平方。
在判断两个三角形是否相似时,我们有多种方法。
其中,最为常见的是“两角对应相等的两个三角形相似”。
因为三角形的内角和为 180 度,当两个角对应相等时,第三个角也必然相等。
另外,“两边对应成比例且夹角相等的两个三角形相似”以及“三边对应成比例的两个三角形相似”也是常用的判定方法。
相似三角形在实际生活中的应用非常广泛。
比如,在测量建筑物的高度时,如果我们无法直接测量建筑物的高度,可以通过测量建筑物的影子长度以及一根已知长度的标杆的影子长度,利用相似三角形的原理来计算建筑物的高度。
假设我们要测量一座高楼的高度,在同一时刻,我们测量出标杆的高度为 2 米,其影子长度为 1 米,同时测量出高楼的影子长度为 20 米。
由于太阳光线的角度相同,所以标杆和其影子以及高楼和其影子构成的两个三角形相似。
设高楼的高度为 x 米,根据相似三角形对应边成比例的性质,可以列出方程:2/1 = x/20,解得 x = 40 米,即高楼的高度为 40 米。
在地图绘制中,相似三角形也发挥着重要作用。
地图是对实际地理区域的缩小表示,地图上的图形与实际地理区域的图形是相似的。
通过测量实际距离和地图上的距离,利用相似三角形的知识,可以计算出地图的比例尺,从而更准确地反映实际地理情况。
在数学解题中,相似三角形常常与其他几何图形相结合。
九年级数学相似三角形
如果两个多边形的对应角相等且对应 边成比例,则这两个多边形相似。
06
总结回顾与练习题解答
本节课重点知识点总结回顾
• 相似三角形的定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
利用角平分线构造
角平分线将角平分,并且与对边相交,将对边分 为两段,这两段与角的两边构成的两个三角形与 原三角形相似。
05
拓展:高级几何中相似三角形相关知识点介绍
射影几何中相似三角形概念及性质
01
相似三角形的定义:在射影几何中,如果两个三角形的对 应角相等,则称这两个三角形相似。
04
对应角相等。
02
相似比:相似三角形的对应边之间的比值称为相似比。
05
对应边成比例。
03
相似三角形的性质
06
面积比等于相似比的平方。
解析几何中相似三角形表示方法
解析几何中的表示方法
在解析几何中,可以使用向量 或坐标来表示三角形,并通过 比较对应向量或坐标之间的关 系来判断两个三角形是否相似 。
向量表示法
通过三角形的三个顶点可以确 定三个向量,如果两个三角形 的对应向量之间的比值相等, 则这两个三角形相似。
1. 题目
解答
2. 题目
已知△ABC和△DEF中,∠A = ∠D, ∠B = ∠E,AB = 6,AC = 8,DE = 3。求DF和EF的长。
根据相似三角形的性质,我们有 $frac{AB}{DE} = frac{AC}{DF} = frac{BC}{EF}$。代入已知条件, 得$frac{6}{3} = frac{8}{DF} = frac{BC}{EF}$。解得$DF = 4$, $EF$可以通过勾股定理求得, $EF = sqrt{DE^2 + DF^2} = 5$。
九年级数学相似三角形相似的判定
∠ACP=∠B
或∠APC=∠ACB
AC AB 或 AP AC
A
P B C
练习: 1.要做两个形状相同的三角形框架, 其中一个三角形框架的三边的长分别 是4、5、6,另一个三角形框架的 一边长为2,怎样选料最少且使这两 个三角形相似?
2.如图,已知△ABC和△DEF均为等边 三角形,D、E分别在AB、BC上.请找出 一个与△DBE相似的三角形,并说明理 由. A
复 习
1.判定三角形相似的判定方法: 定义、预备定理、 定理1、定理2、定理3.
全等三角形 的判定方法
•定义 •边角边公理
相似三角形 的判定方法
•定义 •预备定理 •两角对应相等,两 个三角形相似 •两边对应成比例且 夹角相等,两三角 形相似. •三边对应成比例, 两三角形相似.
图 形
•角边角公理
•角角边定理
•边边边公理
•斜边、直角 边公理
2.基本图形: (1)平行线型: ①∵DE∥BC B
A
E
E C …… B 理由?
D
D A C
上 上 上 上 ∴ 下下 , 全 全
②∵DE∥BC ∴△ADE∽△ABC
AD AE DE ∴ AB AC BC
2.基本图形: (2)垂直线型:
A
C
ysh61zvb
主殿下恕罪……”慕容凌娢很麻溜的跪下了,毕竟膝盖什么的,能有命重要?宫斗大戏里的套路就是一言不合就掌嘴,一点不爽就一丈红,还 是小心为好。“奴婢并非有意冒犯公主殿下,还望公主殿下开恩。”“哼!”傲娇的小公主得意的哼了一声,把头扬地更高了,“说,你是哪 个宫的。”“……”还问我的工作单位?这是要告状告到顶头上司那儿的节奏啊。慕容凌娢很郁闷,她抬起头来想要继续用主角的嘴炮技能, 却发现那位公主根本就没有再正眼看她,她的嘴炮就是再厉害,对着别人的鼻孔也说不出什么好词好句,所以她又把头低了下去。“亦清这是 怎么了,居然因为一个下人这么生气?”皇宫之中能还能听到这种平和的语调实数难能可贵。韩哲轩!慕容凌娢激动的眼睛放光,感觉自己有 救了。“八哥~”韩亦清很不满的跺跺脚,指着慕容凌娢说道,“不知道这是哪个宫的奴婢,没规矩没教养,见到我居然装作没看见!还鬼鬼 祟祟的,指不定是偷了什么东西……”韩亦清喋喋不休的说着慕容凌娢犯下的滔天大罪,慕容凌娢却脑洞大开。八哥……是那种“少年老成” 满脸皱纹眼睛又大又圆还闪烁着天真光芒的狗狗,还是那种会学人说话的小黑鸟?韩哲轩虽然有的时候眼神很像呆萌的八哥狗,但实际上,他 绝对没有八哥狗那么老实。所以说,他还是更像八哥鸟。“晓白是我那儿的人。今天早上我的玉佩丢在这附近了,所以才让她来帮我找。”韩 哲轩冲着慕容凌娢使了个眼色。“玉佩找到了吗?”尼玛,居然给我乱起外号!而且怎么听都像是宠物的名字。慕容凌娢虽然心里不爽,但口 头上也回答的很好。“回殿下……还没有找到。”慕容凌娢装出一副十分紧张的样子。“那就继续去找。”“是。”慕容凌娢起身行了个礼, 拔腿就走。“八哥~”韩亦清拽着韩哲轩的衣袖,用她常用的方式高声埋怨道,“这奴婢实在是没大没小,你这样纵容她,指不定哪天她就不 把你放在眼里了!”“亦清。”韩哲轩摸摸韩亦清的头,笑道,“晓白不守规矩是我管教的不好,八哥在这里给你赔罪,回去之后我一定替你 好好惩罚她。我们亦清公主大人有大量,就别为一个奴婢的事而生气了。”“那好吧,八哥你一定要好好罚她。”……快步走了一会儿,到了 安全地带,慕容凌娢才敢放慢速度往宫外走。她不紧不慢,也可以说是闲散的晃悠着,突然听到背后有人在叫自己。“晓白——”“干嘛啊? 搞事情啊!”慕容凌娢愤怒的回头,如果她手里有板砖的话,一定直接就扔上去了。“没人教过你表随便给人起外号吗?最主要的是如果外号 多到一定程度,我就记不住了!”“并没有。”韩哲轩扬唇一笑,说道“不过老师教过我要见义勇为。”“那好吧,非常非常感谢你救了我。” 慕容凌娢转
九年级数学第6讲:相似三角形的性质-教师版
相似三角形的性质是九年级数学上学期第一章第三节的内容,本讲主要讲解相似三角形的3个性质定理.重点是灵活应用相似三角形的性质,难点是相似三角形的性质与判定的互相结合.1、相似三角形性质定理1相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比.相似三角形的性质内容分析知识结构模块一:相似三角形性质定理1知识精讲【例1】 已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,1132AB A B =,BE 、 B 1E 1分别是它们的对应中线,且6BE =.求B 1E 1的长. 【难度】★ 【答案】4.【解析】解:111ABC A B C ∆∆Q ∽,BE 、11B E 分别是对应中线,1111AB BE A B E B ∴=即11362E B =,114E B ∴= 【总结】本题考查相似三角形对应中线的比等于相似比.【例2】 已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,12AC =,119AC =,1A ∠的平分线A 1D 1的长为6,求A ∠的平分线的长. 【难度】★ 【答案】8.【解析】解:111ABC A B C ∆∆Q ∽,AD 、11A D 分别是A ∠、1A ∠的平分线,1111AC AD AC A D ∴=即1296AD=,8AD ∴=即A ∠的平分线的长为8. 【总结】本题考查相似三角形对应角平分线的比等于相似比.【例3】 求证:相似三角形对应高的比等于相似比. 【难度】★★ 【答案】略【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BC 、11B C 的高.求证:11ADk A D =. 证明:111ABC A B C ∆∆Q ∽,1B B ∴∠=∠,11ABk A B =; 又Q AD 、11A D 分别是BC 、11B C 的高, 11190BDA B D A ∴∠=∠=o ,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==. 【总结】本题考查相似三角形的判定和性质.例题解析【例4】 求证:相似三角形对应中线的比等于相似比. 【难度】★★ 【答案】略【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是边BC 、11B C 的中线. 求证:11ADk A D =. 证明:111ABC A B C ∆∆Q ∽, 1B B ∴∠=∠,1111AB CBk A B C B ==; 又Q AD 、11A D 分别是边BC 、11B C 的中线,12BD BC ∴=,111112B D BC =,∴11DB k D B =,1111AB BD A B B D ∴=,111ABD A B D ∴∆∆∽,1111AB AD k A B A D ∴==. 【总结】本题考查相似三角形的判定和性质的运用.【例5】 求证:相似三角形对应角平分线的比等于相似比. 【难度】★★ 【答案】略【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BAC ∠、111B AC ∠的角平分线.求证:11ADk A D =.证明:111ABC A B C ∆∆Q ∽, 1B B ∴∠=∠,111BAC B AC ∠=∠,11ABk A B =; 又Q AD 、11A D 分别是BAC ∠、111B AC ∠的角平分线,11111111,22BAD BAC B A D B AC ∴∠=∠∠=∠,111BAD BA D ∴∠=∠,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==.【总结】本题考查相似三角形的判定和性质.ABEA 1E 1D 1 C 1B 1 ABCDEF 【例6】 如图,ABC ∆和111A B C ∆中,AD 和BE 是ABC ∆的高,11A D 和11B E 是111A B C ∆的高,且1C C ∠=∠,1111AD ABA D AB =. 求证:1111AD BEA DB E =【难度】★★ 【答案】略 【解析】 证明:1111AB ADA B A D =Q ,又Q 111ADB A D B ∠=∠,111ABD A B D ∴∆∆∽, 111ABD A B D ∴∠=∠,又Q 1C C ∠=∠,111ABC A B C ∴∆∆∽,又Q BE 、11B E 分别是ABC ∆、111A B C ∆的高,1111BE AB E B A B ∴=,1111BE ADE B A D ∴=. 【总结】本题考查相似三角形的判定和性质的综合运用.【例7】 如图,D 是ABC ∆的边BC 上的点,BAD C ∠=∠,BE 是ABC ∆的角平分线,交AD 于点F ,1BD =,3CD =,求BF :BE . 【难度】★★【答案】12.【解析】 解:Q BE 是ABC ∆的角平分线,∴ABF EBC ∠=∠,又Q BAD C ∠=∠,ABF CBE ∴∆∆∽,AB BFCB BE∴=,又Q BAD C ∠=∠,ABD ABC ∠=∠ BAD BCA ∴∆∆∽,AB BD BC BA ∴=,14AB AB ∴=,2AB ∴=,12AB BC ∴=,1:2BF BE ∴=. 【总结】本题考查相似三角形的判定和性质的综合运用.AB CDEF GHKAB CE FGDH P【例8】 如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩 形DEFG 的周长为76cm ,求矩形DEFG 的面积. 【难度】★★ 【答案】2360cm .【解析】解:设DG xcm =,()38FG x cm =-Q 矩形DEFG ,//90GF BC GDB ∴∠=o ,, GF AGBC AB∴=,又Q AH 是高,90AHB ∴∠=o , GDB AHB ∴∠=∠//DG AH ∴, DG BG AH AB ∴=,1DG GFAH BC∴+=,3813248x x -∴+=,20x ∴=,∴20DG cm =,18FG cm =,2360DEFG S cm ∴=矩形. 【总结】本题考查三角形一边的平行线定理,矩形的周长面积等知识.【例9】 如图,矩形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 为BC 边上的高,AH 交DG 于点P ,已知3AH =,5BC =,设DG 的长为x ,矩形DEFG 的面积为y ,求y 关于x 的函数解析式及其定义域. 【难度】★★★【答案】()233055y x x x =-+<<.【解析】解:Q 矩形DEFG ,//,90GD BC DEC ∴∠=o ,GD ADBC AB∴=,又Q AH 是高,90AHC ∴∠=o , DEC AHC ∴∠=∠,//DE AH ∴, DE BD AH AB ∴=,1DG DEBC AH∴+=,153x DE ∴+=,又Q DEFG S y x DE ==•矩形,20x ∴=,∴y DE x =,153x y x ∴+=,∴()233055y x x x =-+<<. 【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.【例10】 一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,现需把它加工成一个面积最大的正方形桌面,请甲、乙两位同学设计加工方案,甲设计方案如图(1),乙设计方案如图(2).你认为哪位同学设计的方案较好?请说明理由(加工损耗忽略不计,计算结果中可保留分数).【难度】★★★【答案】甲同学方案好,理由略.【解析】解:211.52ABC S AB BC m ∆=•=,又Q 1.5AB m =,2CB m ∴= ∴在Rt ABC ∆中, 2.5AC m =.① 按甲的设计:设DE x =,Q 正方形DEFB ,//,//ED BF EF CB ∴, DE CE AB CA ∴=,EF AE CB AC =,1DE EF BA CB ∴+=,11.52x x∴+=,67x m ∴=,23649DEFB S m ∴=正;②按乙的设计:过点B 作BH AC ⊥交AC 于点H ,得//DG BH ,DG ADBH AB∴=, 设DE x =,则DG x =,Q 正方形DGFE ,//ED AC DE DG ∴=,,DE BD AC BA ∴=,1DE DGCA HB∴+=,Q 1122ABC S AB BC AC BH ∆=•=•,65BH m ∴=,162.55x x ∴+=, 3037x m ∴=,29001369DGFE S m ∴=正; 综上,甲设计方案好.【总结】本题考查了三角形一边的平行线,正方形的面积等知识,本题考查了最优化问题.BCDEF1、相似三角形性质定理2相似三角形周长的比等于相似比.【例11】若ABC ∆∽DEF ∆,ABC ∆与DEF ∆的相似比为1:2,则ABC ∆与DEF ∆的周长比为( ) (A )1:4(B )1:2(C )2:1(D )1:2【难度】★ 【答案】B 【解析】略【总结】相似三角形的周长比等于相似比.【例12】 ABC ∆∽111A B C ∆,它们的对应的中线比为2:3,则它们的周长比是.【难度】★ 【答案】2:3 【解析】略【总结】相似三角形对应中线的比等于相似比,周长比等于相似比.模块二:相似三角形性质定理2知识精讲例题解析AD EF【例13】已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,它们的周长分别为48和60,且12AB =,1125B C =,求BC 和A 1B 1的长.【难度】★【答案】112015BC A B ==,. 【解析】解:111ABC A B C ∆∆Q ∽,1111111ABC A B C C AB CBC A B C B ∆∆∴==; 又Q111484605ABC A B C C C ∆∆==,∴1120,15BC A B ==. 【总结】本题考查相似三角形的性质.【例14】如果两个相似三角形的最长边分别为35厘米和14厘米,它们的周长相差60厘米,那么大三角形的周长是.【难度】★★ 【答案】100cm .【解析】两三角形的相似比为5:2,则周长比为5:2,设大三角形周长为5acm ,小三角形周长为2acm ,则5260a a -=,所以20a =,所以大三角形的周长为100cm . 【总结】相似三角形的周长比等于相似比.【例15】如图,在ABC ∆中,12AB =,10AC =,9BC =,AD 是BC 边上的高.将ABC∆沿EF 折叠,使点A 与点D 重合,则DEF ∆的周长为. 【难度】★★ 【答案】312.【解析】由折叠得EF 垂直平分AD ,Q AD 是BC 上的高,//EF BC ∴,AEF ABC ∴∆∆∽,12AEF ABC C C ∆∆∴=,9101231ABC C ∆=++=Q ,312AEF C ∆∴=. 【总结】本题考查相似三角形的性质和判定.A BCD PACP Q 【例16】 如图,梯形ABCD 的周长为16厘米,上底3CD =厘米,下底7AB =厘米,分别延长AD 和BC 交于点P ,求PCD ∆的周长.【难度】★★【答案】152cm .【解析】解:Q 梯形ABCD ,//CD AB ∴,AEF ABC ∴∆∆∽,37PDC PAB C CD C AB ∆∆∴==,即327PDC PDC ABCD C C C CD ∆∆=+-梯形,31667PDC PDC C C ∆∆∴=+-,152PDC C cm ∆∴=.【总结】本题考查相似三角形的性质和判定.【例17】如图,在ABC ∆中,=90C ∠︒,5AB =,3BC =,点P 在AC 上(与点A 、C不重合),点Q 在BC 上,PQ //AB .当PQC ∆的周长与四边形P ABQ 的周长相等时,求CP 的长. 【难度】★★ 【答案】247.【解析】解:Q CPQ PABQ C C ∆=四边形,CP CQ PQ BQ PQ AP AB ∴++=+++, CP CQ BC CQ AC CP AB ∴+=-+-+,5AB =Q ,3BC =,90C ∠=o ,4AC ∴=,345CP CQ CQ CP ∴+=-+-+,6CP CQ ∴+=,//PQ AB Q ,CP CQCA CB∴=, ∴643CP CP -=,247CP =. 【总结】本题考查了三角形一边的平行线性质,主要考查了学生的推理能力.ACDEF【例18】 如图,等边三角形ABC 边长是7厘米,点D 、E 分别在AB 和AC 上,且43AD AE =,将ADE ∆沿DE 翻折,使点A 落在BC 上的点F 上. (1)求证:BDF ∆∽CFE ∆; (2)求BF 的长. 【难度】★★★【答案】(1)略;(2)5.【解析】(1)证明:ADE ∆翻折成FDE ∆.ADE FDE ∴∆≅∆,A EFD ∴∠=∠,Q ABC ∆是等边三角形,60A B C ∴∠=∠=∠=o ,60EFD B C ∴∠=∠=∠=o ,DFC DFE EFC ∠=∠+∠Q ,DFC B BDF ∠=∠+∠, EFC BDF ∴∠=∠, BDF CFE ∴∆∆∽.(2)由(1)知BDF CFE ∆∆∽,BDF CFE C DFC EF∆∆∴=,又ADE FDE ∆≅∆Q , AD DF AE EF ∴==,,43BDF CFE C AD C AE ∆∆∴==,43BF BD DF BF AB CE FC EF CF AC +++∴==+++, 74773BF BF +∴=-+,5BF ∴=.【总结】本题考查相似三角形的性质及判定,轴对称的性质,应用相似三角形周长比等 于相似比是解决本题的关键.模块三:相似三角形性质定理3知识精讲1、相似三角形性质定理3:相似三角形的面积的比等于相似比的平方.例题解析【例19】(1)如果把一个三角形的三边的长扩大为原来的100倍,那么这个三角形的面积扩大为原来的倍;(2)如果一个三角形保持形状不变但面积扩大为原来的100倍,那么这个三角形的边长扩大为原来的倍.【难度】★【答案】(1)10000;(2)10.【解析】略【总结】相似三角形的面积比等于相似比的平方.【例20】两个相似三角形的面积分别为5cm2和16cm2,则它们的对应角的平分线的比为()(A)25:256(B)5:16(C)5:4(D)以上都不对.【难度】★【答案】C【解析】相似三角形对应角平分线的比等于相似比,对应面积的比等于相似比的平方.【总结】本题考查相似三角形的性质.AB CD EAB CD EAB CD【例21】 如图,点D 、E 分别在ABC ∆的边AB 和AC 上,DE //BC ,6DE =,9BC =,16ADE S ∆=.求ABC S ∆的值.【难度】★ 【答案】36.【解析】解://DE BC Q ,ADE ABC ∴∆∆∽,226499ADE ABC S DE S BC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,36ADE S ∆∴=. 【总结】本题考查相似三角形的判定及性质.【例22】如图,在ABC ∆中,D 是AB 上一点,若B ACD ∠=∠,4AD cm =,6AC cm =,28ACD S cm ∆=,求ABC ∆的面积.【难度】★ 【答案】218cm .【解析】解:B ACD ∠=∠Q ,A A ∠=∠,ACD ABC ∴∆∆∽,222439ACD ABC S AD S AC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭, 又28ACD S cm ∆=Q ,218ABC S cm ∆∴=. 【总结】本题考查相似三角形的判定及性质. 【例23】如图,在ABC ∆中,点D 、E 在AB 、AC 上,DE //BC ,ADE ∆和四边形BCED的面积相等,求AD :BD 的值. 【难度】★★1.【解析】解://DE BC Q ,ADE ABC ∴∆∆∽,2ADE ABC S AD S AB ∆∆⎛⎫∴= ⎪⎝⎭,ADE BCED S S ∆=Q 四边形, 12ADE ABC S S ∆∆∴=,AD AB ∴=1AD DB ∴=. 【总结】本题考查相似三角形的判定及性质.A BCEF【例24】 如图,在正三角形ABC 中,D 、E 、F 分别是BC 、AC 、AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF ∆的面积与ABC ∆的面积之比等于() (A )1:3 (B )2:3 (C2 (D【难度】★★ 【答案】A【解析】解:Q ABC ∆是等边三角形,60A B C ∴∠=∠=∠=o ,又DE AC ⊥Q ,EF AB ⊥,FD BC ⊥, 90AFE FDB DEC ∴∠=∠=∠=o , 30AEF BFD EDC ∴∠=∠=∠=o , 60EFD FDE FED ∴∠=∠=∠=o,12BD BD BF DF ==, ∴FDE ∆是等边三角形,AFE BDF ∴∆≅∆, AF BD ∴=, FDE ABC ∴∆∆∽,2DEF ABC S DF S AB ∆∆⎛⎫∴= ⎪⎝⎭, 设AF x =,则BD x =,2BF x =,DF =,DF AB ∴=13DEF ABC S S ∆∆∴=.【总结】本题考查相似三角形的性质及判定,直角三角形的性质,等边三角形的性质等知识.AB CDF【例25】 如图,在ABC ∆中,AD BC ⊥,BE AC ⊥,D 、E 分别为垂足.若60C ∠=︒,1CDE S ∆=,求四边形DEAB 的面积.【难度】★★ 【答案】3.【解析】解:AD BC BE AC ⊥⊥Q ,,90CDA BEC ∴∠=∠=o . 90CDA BEC ∴∠=∠=o ,CBE CAD ∴∆∆∽,CD CACE CB∴=.90CDA BEC ∴∠=∠=o ,CBE CAD ∴∆∆∽,CD CACE CB∴=,DCE ACB ∴∆∆∽,2DCE ACB S CD S CA ∆∆⎛⎫∴= ⎪⎝⎭,又60C ∠=oQ ,30CBE CAD ∴∠=∠=o ,12CD CA =,14DCE ACB S S ∆∆∴=,13DCE BDEA S S ∆∴=四边形,1CDE S ∆=Q ,3DEAB S ∴=四边形.【总结】本题考查相似三角形的性质及判定,直角三角形的性质等知识.【例26】 如图,BE 、CD 是ABC ∆的边AC 、AB 上的中线,且相交于点F ,联结DE .求ADE BFC SS ∆∆的值.【难度】★★ 【答案】43. 【解析】分别过点A 、F 作AH BC ⊥、FG BC ⊥,交BC 分别于点H 、G ,得//FG AH ,FG KFAH AK=. 联结AF 并延长交BC 于点K .CD Q 、BE 是ABC ∆的中线,//DE BC ∴,12DE BC =, F Q 是重心,13KF AK ∴=,13GF AH ∴=. 11113322444ADES DE AH DE AH DE FG DE FG ∆====Q g g g g , 11222BFC S BC FG DE FG DE FG ∆===g g g ,34ADE BFC S S ∆∆∴=.【总结】本题考查三角形一边的平行线,重心的意义,三角形中位线及三角形的面积等.A BCDEF OA BCDEFG【例27】 如图,在矩形ABCD 中,AB = 2cm ,BC = 4cm ,对角线AC 与BD 交于点O ,点E 在BC 边上,DE 于AC 交于点F ,EDC ADB ∠=∠.求:(1)BE 的长; (2)CEF ∆的面积.【难度】★★【答案】(1)3cm ;(2)215cm .【解析】解:(1)Θ矩形ABCD ,2AB DC cm ∴==,且//AD BC ,ADB DBC ∴∠=∠,EDC ADB ∠=∠Q ,EDC DBC ∴∠=∠,CDE CBD ∴∆∆∽,CD CECB CD∴=,242CE∴=,1CE cm ∴=,3BE cm ∴=; (2)//AD BC Q ,∴4AD DFEC EF ==,5DCE CFES DE S EF ∆∆∴==,又11212CDE S ∆=⨯⨯=Q ,215CFE S cm ∆∴=. 【总结】本题考查相似三角形的判定及性质,矩形的性质,同高三角形的面积比等于底边的比等知识.【例28】 如图,Rt ABC ∆中,点D 是BC 延长线上一点,直线EF //BD 交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S ∆=四边形,求CF AD 的值.【难度】★★ 【答案】21. 【解析】解://EF BD Q ,AEG AEC ∴∆∆∽,AE AFAB AD∴=,2AEG ABC S AE S AB ∆∆⎛⎫∴= ⎪⎝⎭,13AEGEBCG S S ∆=Q 四边形,14AEG ABC S S ∆∆∴=,12AE AF AB AD ∴==,Rt ABC ∆Q ,90ACD ACB ∴∠=∠=o ,CF ∴是中线,12CF AD ∴=,12CF AD ∴=. 【总结】本题考查相似三角形的性质,直角三角形的性质,三角形一边的平行线等知识.ABCDEOABC DEF 【例29】 如图,在ABC ∆中,BD AC ⊥于点D ,CE AB ⊥于点E ,EC 和BD 相交于点O ,联结DE .若16EOD S ∆=,36BOC S ∆=,求AEAC 的值.【难度】★★★ 【答案】23. 【解析】解:BD AC CE AB ⊥⊥Q ,, 90BEO CDO ∴∠=∠=o ,A A ∠=∠Q ,AEC ADB ∴∆∆∽,AE ADAC AB∴=, ADE ABC ∴∆∆∽,AE DEAC BC∴=.EOB DOC ∠=∠Q ,EOB DOC ∴∆∆∽,EO BOOD OC∴=,EOD BOC ∠=∠Q ,EOD BOC ∴∆∆∽,2164369EOD BOC S ED S CB ∆∆⎛⎫∴=== ⎪⎝⎭,23ED BC ∴=,23AE AC ∴=. 【总结】本题考查相似三角形的性质及判定知识. 【例30】 如图,90ACB ∠=︒,DF AB ⊥于点F ,45EF BE =,14DCE BFE S S ∆∆=,且CE = 5,求:(1)BC 的长;(2)CEF S ∆.【难度】★★★【答案】(1)352;(2)15.【解析】解:(1)FD AB ⊥Q ,90EFB ∴∠=o , 90ACB ∠=o Q ,90BCD ∴∠=o ,EFB BCD ∴∠=∠,FEB CED ∠=∠Q ,BFE DCE ∴∆∆∽,2BFE DCE S EF S CE ∆∆⎛⎫∴= ⎪⎝⎭,又14DCE BFE S S ∆∆=Q ,2FE CE ∴=,45FE BE =Q ,25CE BE ∴=.5CE =Q ,252BE ∴=,352BC ∴=; (2)45FE BE =Q,10EF ∴=,152BF =,17522BEF S BF EF ∆∴==g , 又52BFE FEC S EB S CE ∆∆==Q ,15FEC S ∆∴=.【总结】本题考查相似三角形的性质及判定,直角三角形的性质等知识.【习题1】 已知ABC ∆∽'''A B C ∆,AD 、''A D 分别是ABC ∆和'''A B C ∆的角平分线,且3''2AD A D =,9AB =,则''A B =. 【难度】★ 【答案】6.【解析】解:'''ABC A B C ∆∆Q ∽,AD 、''A D 分别是对应角平分线,''''32AB AD A B A D ∴==,9AB =Q ,''6A B ∴=.【总结】本题考查相似三角形对应角平分线的比等于相似比.【习题2】 若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21厘米,则其余两边长的和为.【难度】★ 【答案】24.【解析】解:设三角形的三边长为3a ,5a ,7a ,由题知,721a =,3a ∴=, 35824a a a ∴+==.【总结】本题考查相似三角形的性质.【习题3】 两个相似三角形的周长分别为5cm 和16cm ,则它们的对应角的平分线的比为()(A )25:256(B )5:16(C )5:4(D )以上都不对【难度】★ 【答案】B 【解析】略【总结】本题考查相似三角形对应周长的比、对应角平分线的比都等于相似比.随堂检测【习题4】 已知:D 、E 、F 分别是ABC ∆的边BC 、CA 、AB 的中点.求证:=4ABC DEF S S ∆∆. 【难度】★★ 【答案】略.【解析】解:D Q 、E 、F 分别是ABC ∆的边BC 、CA 、AB 的中点,12DF EF DE AC BC AB ∴===,DEF ABC ∴∆∆∽,214DEF ABC S DF S AC ∆∆⎛⎫∴== ⎪⎝⎭,4ABC DEF S S ∆∆∴=.【总结】本题考查三角形中位线,相似三角形的性质及判定知识.【习题5】 如图,DE 是ABC ∆的中位线,N 是DE 的中点,CN 的延长线交AB 于点M ,若ABC S ∆= 24,求AMNE S 四边形.【难度】★★ 【答案】略.【解析】解:联结AN .DE Q 是ABC ∆的中位线, //DE BC ∴,12DE BC =,ADE ABC ∴∆∆∽, 164ADE ABC S S ∆∆∴== ,N Q 是DE 的中点, 132ADN ADE S S ∆∆∴==,//DE BC Q ,14DN BC =,14DM BM ∴=,1133DM BD AD ∴==,113DMN ADN S S ∆∆∴==错误!未找到引用源。
九年级数学上册 25.3 相似三角形 学相似三角形—对应边角要分清素材
学相似三角形对应边角要分清学习相似三角形时,为了强调对应关系,记两个三角形相似要求把表示对应顶点的字母写在对应的位置上.本文对如何识别相似三角形的对应边与对应角认真解读,希望能对同学们有所帮助.一般来说,两个相似三角形中,对应角所对的边是对应边,两个对应角所夹的边是对应边;反过来,对应边所对的角是对应角,两条对应边所夹的角是对应角;一对最长(短)的边是对应边,一对最大(小)的角是对应角.当两个相似三角形具有一定位置关系时,(1)如图1,△ABC与△AED的公共角∠A一定是对应角,∠A所对的边DE与CB是对应边;(2)如图2,△ABO与△DCO 中,∠AOB和∠DOC一定是对应角,因为它们是对顶角.但要注意,两个相似三角形中,公共边不一定是对应边(想一想为什么?).如图3,AB是△ACB与△DBA的公共边,但它不是对应边.另外,在记两个三角形相似时,要把表示对应顶点的字母写在对应的位置上.如图3,在△ACB和△DBA中,A与D对应,C与B对应,B与A对应,则记为△ACB∽△DBA,这样写的好处是可以不看图形而直接找出它们的对应边和对应角.例如图4所示,分别根据下列已知条件,写出各组相似三角形的对应边的比例式。
(1)△ABC ∽△ADE,其中DE ∥BC; (2) △ABC ∽△EDC(3) △ABC ∽△ADE ,其中∠ADE=∠B分析:利用相似三角形的定义,找准对应顶点,确定正确的对应边。
解:(1)DE BCAE AC AD AB ==;(2)DC BCCE AC DE AB ==;(3)DE BCAE AC AD AB ==E D CB A (1)E D CBA(3) EDCB A(2) 图4。
九年级上册数学相似知识点大归纳
九年级上册数学相似知识点大归纳在九年级上册的数学学习中,相似是一个重要的概念。
相似性质帮助我们研究物体的形状、大小和比例关系。
在本文中,我将对九年级上册数学中的相似知识点进行大归纳,帮助大家更好地理解和应用这些知识。
一、相似三角形相似三角形是九年级上册数学中比较基础和常见的相似概念。
相似三角形具有相等的角度,同时对应边的比例也相等。
在判断相似三角形时,我们可以利用“三对应角相等”和“两边成比例”的条件进行判断。
而当我们知道两个三角形是相似的时候,我们可以利用相似比例求解未知边长或者比例。
二、相似比例相似比例是相似三角形中一个非常重要的概念。
两个相似三角形的每一对对应边长的比值都是相等的。
我们可以用相似比例来求解未知边长,或者根据已知信息推导出相似比例关系。
三、面积的相似性质在九年级数学中,相似三角形和相似多边形之间也存在着面积的相似性质。
两个相似的三角形的面积比等于对应边长比的平方。
同样地,两个相似的多边形的面积比也等于对应边长比的平方。
利用这个性质,我们可以更加方便地计算相似图形的面积。
四、正方体和相似关系在九年级上册的数学中,我们学习了正方体的性质和构造。
除了正方体本身,我们还可以通过对正方体进行缩放和旋转等操作,得到一系列相似的多面体。
这些相似的多面体具有相同的形状,但大小不同。
我们可以通过相似比例计算这些多面体之间的边长比例、面积比例和体积比例。
五、相似多面体和尺规作图在九年级上册的数学中,我们进一步学习了相似多面体之间的关系,并且将其应用到尺规作图中。
通过相似多面体的一些性质,我们可以确定一些尺规作图中的线段比例关系。
这些性质包括平行四边形的性质、三角形的性质和面积的性质等。
通过这些性质,我们可以在尺规作图中使用尺规和指南针构造相似多面体的比例关系。
通过对九年级上册数学中的相似知识点的大归纳,我们可以看到相似性质在几何学中的重要性。
通过相似性质,我们可以推导出许多有用的结论,解决许多实际问题。
人教版九年级下册数学 相似三角形的性质与判定
人教版九年级下册数学相似三角形的性质与判定归纳总结:1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等.2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等;平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.3.相似三角形的判定:①如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;②如果两个三角形的三组对应边的比相等,那么这两个三角形相似;③如果一个三角形的两个角与另外一个三角形的两个角对应相等,那么这两个三角形相似.4. 相似三角形的性质:(1)相似三角形的面积比等于 .(2)相似三角形对应边,对应角。
(3)相似三角形的对应线段(对应高、对应中线、对应角平分线)之比和周长之比都等于 .5. 相似三角形的概念:对应角、对应边的两个三角形叫做相似三角形,对应边之比叫做 .当相似比为1时,则两个三角形称 .6.四种相似三角形模型:A字、8字、K字、重叠型.1. 如图,点D在△ABC的边AC上,若CD=2,AC=6,且△CDB∽△CBA,则BC的值为.2. 如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为.3. 如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则点D 到线段AB的距离等于(结果保留根号).4. 如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为.5. 如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是.6. 如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.7. 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,若AB=2,BC=4.则DC的长度为.8. 如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连接AB并延长到C,连结CO,若△COB∽△CAO,则点C 的坐标为.9. 如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则= .10.如图,在△ABC中,已知D、E分别是AB、AC边上的点,且AD=3,AB=8,AC=10,若△ADE与△ABC相似,则AE的长为.11. 如图,正方形ABCD中,AB=2,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,若△ABE与以D、M、N为顶点的三角形相似,则DM为.12. 如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为13. 如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.14. 如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从B出发沿BC以2cm/s的速度向C移动,点Q从C出发,以1cm/s的速度向A移动,若P、Q分别从B、C同时出发,设运动时间为ts,当为何值时,△CPQ与△CBA相似?15. 如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MG⊥BC,运动时间为t秒(0<t<),连接MN.(1)用含t的式子表示MG;(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;(3)若△BMN与△ABC相似,求t的值.16. 如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.。
九年级数学相似三角形性质
3.如图,梯形ABCD中AB∥CD, AB=a, BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程 aX2-2bX+c=0有( )D C
A.没有实数根 B.有两个相等 实根 C.有两个不等 实根 D.以上都不对
A B
3.如图,梯形ABCD中AB∥CD, AB=a, BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程 aX2-2bX+c=0有( ) D C c
相似三角形
开封市金明区杏花营中学 李晓淑
定义: 对应角相等,对应边成比例的三角形叫相似 三角形. 三角形相似判定: 1.对应角相等,对应边成比例。 2.预备定理:平行于三角形一边的直线和 其他两边(或两边的延长线)相交,所构 成的三角形与原三角形相似。 3.判定定理1:两角对应相等,两三角形相似。 4.判定定理2:两边对应成比例且夹角相等, 两三角形相似。 5.判定定理3:三边对应成比例,两三角形相似。
2.过矩形ABCD的顶点A作对角线AC的垂线 分别与CB,CD的延长线交于E,F.则图中与 C △ABC相似的三角形( )。
A.4个 B. 5个 C. 6个 D. 7个
C D
B A F
E
相似三角形的性质:
1.对应角相等,对应边成比例. 2.相似三角形对应高的比,对应 中线的比,对应角平分线的比, 周长的比都等于相似比. 3.相似三角形面积的比等于相似 比的平方.
直角三角形相似判定的情况 除以上5种方法外,还有:
1.直角三角形被斜边上的高分成的两个直角 三角形相似。 2.如果一个三角形的斜边和一条直角边与另 一个直角三角形的斜边和一条直角边对应成 比例,那么着两个直角三角形相似。
Hale Waihona Puke 1.下列命题正确的是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选,A2型题,A1/A2型题]下列疾病中,可导致右心室后负荷过重的是()。A.房间隔缺损B.主动脉瓣关闭不全C.动脉导管未闭D.慢性阻塞性肺气肿E.肺动脉瓣关闭不全 [单选,A2型题,A1/A2型题]治疗阿司匹林鼻炎、鼻旁窦炎的主要方法是()。A.应用抗组胺药B.糖皮质激素疗法C.手术治疗D.免疫疗法E.应用肥大细胞膜稳定剂 [单选]不行经肘窝内的结构有()A.肱二头肌腱B.正中神经C.桡动脉D.桡神经E.尺神经 [单选]有关对阿尔茨海默病的描述,不正确的是()。A.有记忆障碍和全面的智能减退B.是老年期痴呆中最主要疾病之一C.早期可出现人格改变D.早期可出现幻觉妄想E.早期表现为多疑 [单选]信息产业分为()部门。A.1个B.2个C.3个D.4个 [单选]拟定沿岸航线,应尽量选择()的显著物标作为转向物标。A.转向一侧附近B.转向另一侧附近C.转向一侧正横附近D.转向另一侧正横附近 [问答题,简答题]对触电者的急救措施有哪些? [单选]一般情况下,灯光的默认颜色是什么:()A.黑色B.蓝色C.白色D.红色 [填空题]()就在近代科学家伽利略去世的1642年,另一位伟大的科学人物诞生了。他出生在英国资本主义上升的时期。 [判断题]气囊控制模块备用电源的作用是,当车辆发生碰撞导致蓄电池或发电机与控制模块之间的电路切断时,能在一定的时间内提供足够的点火能量来引爆点火剂。()A.正确B.错误 [单选]李某,30岁。近2月小腹胀痛,按之有积块,推之可移,痛无定处,舌质紫黯,脉沉弦。此病应诊断为哪一型癥瘕()A.气滞型B.气滞血瘀型C.气郁湿阻型D.血瘀型E.痰湿型 [单选,A1型题]根据Gullstrand模型眼计算,眼在使用最大调节力时屈光力可达()。A.58DB.65DC.70DD.75DE.80D [单选]下列关于食管癌预后,错误的是()A.下段食管癌较上段食管癌预后差B.早期及时根治预后良好,手术切除5年生存率大于90%C.症状出现后未经治疗的患者,生存期约1年D.病变已侵犯食管肌层者,预后不良E.癌细胞分化程度低已有转移者,预后不良 [填空题]化验室内有危险性的试剂可分为()(毒品)和()三类. [问答题,简答题]胸外心脏按压 [单选,A2型题,A1/A2型题]《素问·上古天真论》曰:"女子七岁,肾气盛",表现为()A.月事以时下B.真牙生而长极C.齿更发长D.身体盛壮E.筋骨坚 [单选]一项病例对照研究,500名病例中有暴露史者400例,而500名对照中有暴露史者100例,其OR值为()A.1.25B.1.6C.16D.160E.无法计算 [单选]B公司的平均投资资本为2000万元,其中净负债600万元,权益资本1400万元;税后利息费用60万元,税后利润200万元;净负债成本(税后)8%,权益成本12%。则剩余经营收益为()万元。A、-40B、-16C、44D、12 [单选,A1型题]母婴保健法规定应当为育龄妇女和孕产妇提供孕产期保健服务的机构是()A.医疗、防疫机构B.医疗、计划生育机构C.计划生育机构D.保健、计划生育机构E.医疗、保健机构 [多选]哪些是导致冠状血流减少的因素A.左室舒张期末压升高B.平均动脉压下降C.主动脉舒张压升高D.主动脉舒张压下降E.肺动脉舒张压下降 [单选]确诊不明原因性不孕首先选用()A.输卵管通液试验B.腹腔镜子宫镜联合检查C.B超检查D.子宫输卵管碘油造影E.输卵管通气实验 [填空题]螺杆机组油泵出口的油压比排气压力高()。 [填空题]电子商务利用()、()和(),实现整个商务(买卖)过程中的电化、数字化和网络化。 [单选]以下关于索赔的说法中,不正确的是()。A.索赔具有双向性B.索赔只能由承包商向业主提出C.索赔以实际发生了经济损失或权利损害为前提D.索赔可分为工期索赔和费用索赔 [单选]利用设置在航道右侧的前后两个浮标导航,如航行中发现本船位于两标连线的右侧,表明本船()。A.行驶在航道内,应保向航行B.已进入航道左侧的浅水区,应立刻向右转向C.已进入航道右侧的浅水区,应立刻向右转向D.已进入航道右侧的浅水区,应立刻向左转向 [单选]重度吸入性损伤的治疗下列哪项最关键()A.吸氧B.应用广谱抗生素C.严格消毒隔离制度D.湿化气道E.肺内灌洗 [单选]比例关系的正确判断方法是()。A、先定小比例,再定大比例B、先定大比例,再定小比例,小比例服从大比例C、大比例服从小比例D、先定大比例,后定小比例 [单选,A2型题,A1/A2型题]碘造影剂可发生过敏反应,除哪项外属于轻度反应()A.恶心、呕吐B.气喘、呼吸困难C.面色潮红D.头晕、头痛E.荨麻疹 [单选,A1型题]既能清热燥湿,又能治疗胎热不安的药物是()A.黄连B.黄芩C.黄柏D.龙胆草E.苏梗 [单选,A2型题,A1/A2型题]CT显示器所表现的亮度信号的等级差别称为()A.CT值标度B.矩阵C.窗宽D.窗位E.灰阶 [单选]康复医学是一门()A.研究残疾人和患者的行为学B.研究残疾人和患者的社会心理学C.语言矫治学D.有关促进病、伤、残者恢复身体、精神和社会生活功能为目标的学科E.促进残疾人恢复的特殊教育学 [单选]下列各项中,属于行政责任的是()。A.停止侵害B.罚款C.返还财产D.支付违约金 [问答题,简答题]装载加固成件包装货物有哪些要求? [单选]早期保健不包括()。A.全身体检检查B.询问病史C.指导孕期营养D.骨盆内外测量E.孕期保健指导 [单选,A1型题]《母婴保健法》规定的孕产期保健服务不包括()A.胎儿保健B.孕妇、产妇保健C.母婴保健指导D.胎儿性别诊断E.新生儿保健 [单选,A1型题]既能化湿,又能解暑的药物是()A.藿香、佩兰B.苍术、厚朴C.砂仁、豆蔻D.橘皮、青皮E.茯苓、玉竹 [判断题]搬运装卸润滑脂,应尽可能轻拿轻放,避免过重地碰摔,包装桶损坏、密封不严、混入外界杂质或渗入雨水会使脂变质,运输中要盖好盖,做好防雨措施。()A.正确B.错误 [单选]甲产品经过两道工序加工完成。采用约当产量比例法将直接人工成本在完工产品和月末在产品之间进行分配。甲产品月初在产品和本月发生的直接人工成本总计23200元。本月完工产品200件;月末第一工序在产品20件,完成全部工序的40%;第二工序在产品40件,完成全部工序的60%。月末在 [单选,A1型题]肾损伤后哪项护理措施不正确()A.严密观察生命体征B.观察疼痛性质及程度C.绝对卧床休息D.向患者介绍肾损伤知识E.尽早离床活动 [单选,A1型题]前列腺增生(BPH)患者下列哪种情况不宜行手术治疗()A.伴有长期的、反复的下尿路感染B.伴有反复肉眼及镜下血尿C.合并腹股沟斜疝D.伴有急性尿潴留病史E