1.1命题与逻辑

合集下载

黑龙江省考研数学与应用数学复习资料离散数学重点整理

黑龙江省考研数学与应用数学复习资料离散数学重点整理

黑龙江省考研数学与应用数学复习资料离散数学重点整理离散数学是数学的一个分支,主要研究离散结构以及离散对象之间的关系。

它在计算机科学、信息技术、电子工程等领域中具有重要的应用价值。

对于准备参加黑龙江省考研数学与应用数学专业的同学来说,熟悉离散数学的重要概念和基本知识点,掌握离散数学的解题方法和应用技巧,对于提高考试成绩将起到重要的作用。

本文将对离散数学的重点内容进行整理和归纳,以供考生复习使用。

一、命题逻辑命题逻辑是离散数学中的重要内容之一。

在命题逻辑中,我们研究命题的逻辑关系,包括命题的否定、合取、析取、条件和双条件等。

此外,我们还需要掌握等价命题、永真和矛盾命题的概念,以及逻辑推理和证明方法。

1.1 命题及其逻辑关系命题是陈述性句子,可以判断其真假。

命题可以进行否定、合取、析取、条件和双条件等逻辑运算。

1.2 等价命题等价命题指的是逻辑上等价的命题,它们具有相同的真值。

1.3 逻辑推理和证明方法逻辑推理是根据已知的命题,通过推理规则得出新的命题。

证明方法是为了证明一个结论的正确性,通过逻辑推理和证明步骤来证明。

二、集合论集合论是离散数学中的另一个重要内容,它研究集合的基本概念、运算和集合之间的关系。

在集合论中,我们需要掌握集合的表示方法、集合间的运算、集合的基数以及集合的代数运算等知识点。

2.1 集合的基本概念集合是由一些确定的对象组成的整体,我们可以用不同的方式来表示一个集合。

2.2 集合的运算集合的运算包括交集、并集、差集和补集等。

2.3 集合的基数集合的基数表示集合中元素的个数,当集合的基数有限时,我们称之为有限集合。

2.4 集合的代数运算集合的代数运算指的是集合的基本运算,如幂运算、笛卡尔积运算等。

三、图论图论是离散数学的重要分支之一,它研究图的性质、图的表示方法以及图的算法和应用。

在图论中,我们需要了解图的基本概念、图的遍历算法、连通性和网络流等内容。

3.1 图的基本概念图由节点和边构成,节点表示对象,边表示节点之间的关系。

知识点1.1 命题、联结词及命题符号化

知识点1.1 命题、联结词及命题符号化

第1 章命题逻辑第1 章命题逻辑授课内容知识点1:命题、联结词及命题符号化知识点2:命题公式、真值表及公式分类知识点3:等价式与等价演算知识点4:对偶式与蕴涵式知识点5:范式第1 章命题逻辑授课内容知识点6:主析取范式与主合取范式知识点7:命题演算的推理理论知识点8:有效结论证明方法知识点9:命题演算推理实例解析知识点1:命题、联结词及命题符号化一问题的引入命题逻辑是研究由命题为基本单位构成的前提和结论之间的可推导关系。

那么,什么是命题?如何表示和构成?如何进行推理的?例如:已知:如果今天星期三,那么公鸡会下蛋。

今天是星期三。

问题:根据以上前提你能推出什么结论?二命题、联结词及命题符号化1 命题的概念定义1.1.1:能够判断真假的陈述句称作命题。

命题仅有两种可能的真值:真和假,且二者只能居其一。

真用1或T表示,假用0或F表示。

由于命题只有两种真值,所以称这种逻辑为二值逻辑。

例1.1.1 判断下列语句哪些是命题①-1是整数。

②地球是围绕月亮转的。

③3+5=8。

④木星的表面温度是20 F。

⑤不要讲话!⑥你吃饭了吗?⑦本命题是假的。

(他正在说谎。

等)解①-④都是命题,①和③的真值为真,②真值是假,④不知真和假,但真值是可以确定的。

⑤⑥都不是命题。

⑦无法确定它的真值,当它假时,它便真;当它真时,它便假。

这种断言叫悖论。

2 命题的分类与表示•命题分为两类,第一类是原子命题,它是由再也不能分解成更为简单的语句构成的命题,称为原子命题。

用英文字母P,Q,R,…或带下标Pi,Qi,Ri,…表示之。

例如,用P表示武汉是一座美丽的城市,记为P:武汉是一座美丽的城市。

冒号:代表表示的意思•第二类是复合命题,它由原子命题、命题联结词和圆括号组成。

3 联结词1.3.1 否定联结词﹁P定义1.1.2设P表示一个命题,由命题联结词⎤和命题P连接成⎤P,称⎤P为P的否定式复合命题,⎤P读“非P”。

称⎤为否定联结词。

⎤P是真当且仅当P为假;否定联结词“⎤”的定义可由表1-1表示。

高中数学第一章常用逻辑用语1.1.1四种命题12111数学

高中数学第一章常用逻辑用语1.1.1四种命题12111数学
样的两个命题就叫做互否命题,若把其中一个命
题叫做原命题,则另一个就叫做原命题的否命题.
例如: 原命题是:同位角相等,两直线平行。 否命题(mìng tí)是:同位角不相等,两直线不平行。
第七页,共二十一页。
课中共(zhōnɡ ɡò①nɡ)学如果两个三角形全等,那么它们的面积相等;
④如果两个三角形的面积不相等,那么它们不全等。
逆否命题,并判断各命题的真假。
解 原命题(mìng tí):若a=0,则ab=0是真命题; 逆命题:若ab=0,则a=0是假命题(mìng tí);
否命题:若a 0,则ab 0 ”是假命题;
逆否命题:若ab 0,则a 0”是真命题;
原命题为真,它的否命题不一定为真;
原命题为真,它的逆否命题一定为真.
逆否命题 是:两直线不平行,同位角不相等。
第八页,共二十一页。
课中共(zhōnɡ 学 ɡònɡ)
探究 活动: (tànjiū)
1.探求(tànqiú)四种命题之间的关系,为 什么存在这种关系?
第九页,共二十一页。
课中共学
四种命题间的相互(xiānghù)关系:
原命题(mìng tí) 若p则q
互 否
例如:
原命题(mìng tí)是:同位角相等,两直线平行。 逆命题就是:两直线(zhíxiàn)平行,同位角相等。
第六页,共二十一页。
课中共(zhōnɡ ɡ①ònɡ如)学果两个三角形全等,那么它们的面积相等;
③如果两个三角形不全等,那么它们的面积不相等;
2.在两个命题中,一个命题的条件和结论分别 (fēnbié)是另一个命题的条件的否定和结论的否定,这
第十三页,共二十一页。
课中共(zhōnɡ 学 ɡònɡ)

离散数学作业 第一章

离散数学作业 第一章

第一章命题逻辑1.1命题与命题联结词P6.T2.判断下列语句是否为命题,为什么?若是命题判断是原子命题还是复合命题,并把复合命题符号化,要求符号化到原子命题。

(1)他们明天或后天去百货公司。

(2)你能告诉我,我什么时候一定会死吗?你不能!(3)如果这个语句是命题,那么它是一个假命题。

(4)李刚和李春是兄弟。

(5)王海和李春在学习。

(6)只要努力学习,就一定能取得优异成绩。

(7)李春对李刚说:“今天天气真好呀!”(8)你知道这是个真命题还是假命题就请告诉我!(9)王海不是女孩子。

答案解⑴是复合命题。

设p:他们明天去百货公司;q:他们后天去百货公司。

命p∨。

题符号化为q⑵是疑问句,所以不是命题。

⑶是悖论,所以不是命题。

⑷是原子命题。

⑸是复合命题。

设p:王海在学习;q:李春在学习。

命题符号化为p∧q。

⑹是复合命题。

设p:你努力学习;q:你一定能取得优异成绩。

p→q。

⑺不是命题。

⑻不是命题⑼。

是复合命题。

设p:王海是女孩子。

命题符号化为:⌝p。

P7.T4.设p表示命题“天下大雨”,q表示命题“他乘公共汽车上班”,r表示命题“他骑自行车上班”。

请将下列命题符号化。

(1)如果天不下大雨,他乘坐公共汽车或者骑自行车上班。

(2)只要天下大雨,他就乘公共汽车上班。

(3)只要天下大雨,他才乘公共汽车上班。

(4)除非天下大雨,否则他不乘公共汽车上班。

答案解⑴⌝p→(q∨r)。

⑵p→q。

⑶q→p。

⑷q → p。

1.2命题公式及其分类P10.T4.构造下列公式的真值表,并据此说明它是重言式、矛盾式或者仅为可满足式。

(1)p ∨⌝(p ∧q )。

(2)(p ∧q )∧⌝(p ∨q )。

(3)(p →q )↔(⌝p ↔q )。

(4)((p →q )∧(q →r ))→(p →r )。

答案解 ⑴设)(q p p A ∧⌝∨=,其真值表如表2-1所示:故)(q p p A ∧⌝∨=为重言式。

⑵设A =(p ∧q )∧⌝(p ∨q ),其真值表如表2-2所示:表2-2故∧∧⌝∨为矛盾式。

1.1命题逻辑基本概念

1.1命题逻辑基本概念
(3) p→┐q
(4) ┐p→┐q
例1.5 将下列命题符号化,并指出其真值
以下命题中出现的a是一个给定的正整数: (5) 只要a能被4整除,则a一定能被2整除。 (6) a能被4整除,仅当a能被2整除。 (7) 除非a能被2整除, a才能被4整除。 (8) 除非a能被2整除,否则a不能被4整除。 (9) 只有a能被2整除, a才能被4整除。 (10)只有a能被4整除, a才能被2整除。
例1.3 将下列命题符号化
(1)吴颖既用功又聪明。 (2)吴颖不仅用功而且聪明。 (3)吴颖虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。
(5)张辉与王丽是同学。
p: q: r: s: t:
吴颖用功。 吴颖聪明。 张辉是三好学生。 王丽是三好学生。 张辉与王丽是同学。
解题要点: 正确理解命题含义。 找出原子命题并符号化。 选择恰当的联结词。
例1.2
将下面这段陈述中所出现的原子命题符号化,并指出它 们的真值,然后再写出这段陈述。 2 是有理数是不对的;2是偶素数;2或4是素数;如果2 是素数,则3也是素数;2是素数当且仅当3也是素数。 p: 2 是有理数 q:2是素数; r:2是偶数 s:3是素数; t:4是素数
0 1 1 1 0
非p; q并且(与)r; q或t; 如果q,则s; q当且仅当s。
1.1 命题符号化与联结词
称能判断真假的陈述句为命题 (proposition)。 作为命题的陈述句所表达得的判断结果称为命题的真值。 真值只取两个:真与假。
真值为真的命题称为真命题。
真值为假的命题称为假命题。
说 明
感叹句、疑问句、祈使句都不能称为命题。 判断结果不唯一确定的陈述句不是命题。
关于真值(逻辑)联结词的说明

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

逆否命题原命题为:若a,则b。

逆否命题为:若非b,则非a如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.名称定义命题:可以判断真假的语句叫做命题。

原命题为:若a,则b逆命题为:若b,则a否命题为:若非a,则非b逆否命题为:若非b,则非a互为逆否命题:如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

性质一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.逻辑学认为命题与逆否命题是等价的,也就是命题真,则逆否命题也真。

命题同它的逆否命题等价是作为公理存在的,你既不能证明它正确也不能证明它错误。

其实这个东西可以认为是公理。

它和公理“排中律”是等价的。

我们数学的体系就是建立在这些公理之上。

2逆否命题的滥用现实生活中存在许多对逆否逻辑的滥用,使用时须注意以下几点:1、逆否命题、逆命题、否命题概念适用的前提是原命题为复合命题,而非简单命题。

复合命题是由简单命题通过逻辑连接词互相连接而组成的。

简单命题难以区分前提和结论,其真假只能通过生活经验和客观事实加以判断。

例如:“我爱你”。

这个句子不能算作命题。

因为是否“爱”的真假没有一个明确的判断标准。

如果“我爱你”是命题,那么它是一个简单命题。

我们可以把它等价转换为“若p,则q”的形式。

再谈论其逆否命题。

(”我爱你“不具有排他性)等价转换为:若我存在,则至少存在一个爱你的人(或”若我存在,则存在我爱你“)。

逆否命题为:若不存在一个爱你的人,则我不存在(如果所有人都不爱你了,那么我也不存在了)。

高中数学选修1-1知识点总结归纳(经典版)

高中数学选修1-1知识点总结归纳(经典版)

高中数学选修1-1知识点总结归纳(经典版)常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。

其中p 叫做命题的条件,q 叫做命题的结论。

1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。

如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”. 6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。

1.2 充要条件与必要条件1.2.1 充分条件与必要条件1、充要条件与必要条件:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件。

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的

1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式名称定义表示形式互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.原命题为“若p,则q”;逆命题为“若q,则p”互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p,则q”;否命题为“若p,则q”互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题原命题为“若p,则q”;逆否命题为“若q,则p”2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]四种命题把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:原词语等于(=)大于(>)小于(<)是都是至多有一个否定词语不等于(≠)不大于(≤)不小于(≥)不是不都是至少有两个原词语至少有一个至多有n个任意的任意两个所有的能否定词语一个也没有至少有(n+1)个某一个(确定的)某两个某些不能1.(1)命题“若y =kx ,则x 与y 成正比例关系”的否命题是( )【导学号:97792009】A .若y ≠kx ,则x 与y 成正比例关系B .若y ≠kx ,则x 与y 成反比例关系C .若x 与y 不成正比例关系,则y ≠kxD .若y ≠kx ,则x 与y 不成正比例关系D [条件的否定为y ≠kx ,结论的否定为x 与y 不成比例关系,故选D.] (2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]四种命题的关系及真假判断(1)对于原命题:“已知a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.[规律方法]判断命题真假的方法1解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.2原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.[跟踪训练]2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{a<0Δ=4a2+12a≤0,即{a<0-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.[规律方法] 1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。

离散数学作业册

离散数学作业册

离散数学作业册第一章命题逻辑1.1 命题与逻辑联结词1.判断下列语句是否是命题,不是划“×”,是划“√”,且指出它的真值.(1)所有的素数都是奇数. ( ) 其真值( )(2)明天有离散数学课吗? ( ) 其真值( )(3)326+>. ( ) 其真值( )(4)实践出真知. ( ) 其真值( )(5)这朵花真好看呀! ( ) 其真值( )(6)5x=. ( ) 其真值( )(7)太阳系外有宇宙人. ( ) 其真值( )2.将下列命题符号化.(1)如果天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.(3)我们不能既划船又跑步.(4)大雁北回,春天来了.3.将下列复合命题分解成若干个原子命题,并找出适当的联结词.(1)天下雨,那么我不去图书馆.(2)若地球上没有水和空气,则人类无法生存.1.2 命题公式1. 判断下列各式是否是命题公式,不是的划“×”,是的划“√”.(1)(Q→R∧S). ( )(2)((R→(Q→R)→(P→Q)). ( )(3) (P∨QR)→S. ( )(4)((?P→Q)→(Q→P)). ( )2.写出五个常用命题联结词的真值表.1.3 真值表与等价公式1.指出下列命题的成真赋值与成假赋值.(1)?(P∨?Q).(2)?P→(Q→P).2.构造真值表,判断下列公式的类型.(1)(P∧Q)∧?(P∨Q).(2) P→(P∧┑Q))∨R.3.用等值演算法验证下列各等价式.(1) ((P→Q)∧(Q→R))→(P→R)?T.(2)P→(Q∧R)?(P→Q)∧(P→R).(3)?(P∨Q)∨(?P∧Q)??P.1.4 蕴涵式及其他联结词1.试证明下列各式为重言式.(1)(P→Q)∧(Q→R)?(P→R).(2) (P→Q)→Q?P∨Q.(3)?(P↓Q)??P↑?Q.2.将下列公式化成与之等价且仅含{┑,∨}中联结词的公式.(1) (P∨Q)∧┑P(2) (P→(Q∨┑R))∧(┑P∧Q)3.证明{?,∧}是最小全功能联结词组.4.设A、B、C为任意的三个命题公式,试问下面的结论是否正确?(1)若A∧C?B∧C,则A?B.(2)若?A??B,则A?B.(3)若A→C?B→C,则A?B.1.6 对偶与范式1.试给出下列命题公式的对偶式.(1)T∨(P∧Q).(2)?(P∧Q)∧(?P∨Q).2.试求下列各公式的主析取范式和主合取范式.(1) (P→(Q∧R))∧(┑P→(┑Q→R)).(2)(?(P→Q)∧Q)∨R.(3)(P→(Q∨R))∧(?P∨(Q?R)).3.试用将公式化为主范式的方法,证明下列各等价式.(1) (┑P∨Q)∧(P→R)?P→(Q∧R)(2) ┑(P?Q)?(P∧┑Q)∨(┑P∧Q)1.7 推理理论1.试用推理规则,论证下列各式.(1) ┑(P∧┑Q),┑Q∨R,┑R?┑P(2) P∨Q,Q→R,P→S,┑S?R∧(P∨Q)(3) ┑P∨Q,┑Q∨R,R→S?P→S(4) P∨Q,P→R,Q→S?R∨S第二章谓词逻辑2.1 词的概念与表示1.用谓词表达写出下列命题.(1)高斯是数学家,但不是文学家.(2)小王既是运动员也是大学生.(3)张宁和李强都是三好学生.(4)若是x奇数,则2x不是奇数.2.2 命题函数与量词1.用谓词表达式写出下列命题.(1)每个计算机系的学生都学离散数学.(2)直线A平行于直线B当且仅当直线A不相交于直线B.(3)不存在既是奇数又是偶数的自然数.(4)没有运动员不是强壮的.(5)有些有理数是实数但不是整数.(6)所有学生都钦佩某些教师.2.3 谓词公式与变元的约束1.利用谓词公式翻译下列命题. (1)没有一个奇数是偶数.(2)一个整数是奇数,如果它的平方是奇数.2. 设个体域为自然数集N ,令P(x):x 是素数;E(x):x 是偶数;O(x):x 是奇数;D(x ,y):x 整除y .将下列各式译成汉语.(1)?x(E(x)∧D(x ,6)).(2)?x(O(x)→?y(P(x)→?D(x ,y))).3.指出下列表达示中的自由变元和约束变元,并指明量词的辖域.(1)()()(,)()()x F x Q x y xP x R x ?∧→?∨.(2)?x(P(x ,y)∨Q(z))∧?y(R(x ,y)→ ?zQ(z)).4.设个体域为A ={a ,b ,c},消去公式?xP(x)∧?xQ(x)中的量词.2.4 谓词演算的等价式与蕴含式1.试证下列等价式或蕴涵式,其中A(x),B(x)表示含x自由变量的公式,A,B 表示不含变量x(不论是自由的还是约束的)的公式.(1)(?x A(x)→B)?(?x(A(x)→B)).(2)(?x A(x)→B)??x(A(x)→B).2.试将下列公式化成等价的前束范式.(1)?x((┑?yP(x,y))→(?zQ(z)→R(x))).(2)?x(F(x)→G(x))→(?xF(x)→?xG(x)).2.5 谓词演算的推理理论1.证明下列推理.(1)所有有理数都是实数,某些有理数是整数。

常用逻辑用语

常用逻辑用语

表 1.1.4 pq 00 01 10 11
p →q 1 1 0 1
长丰县第一中学
【例1.1.7】 (1) p:天下雨了。
q:路面湿了。则 p→q:如果天下雨,则路面湿。 (2) r:三七二十一。则 p→r:如果天下雨,则三七二十一。
长丰县第一中学
注 (1)逻辑中,前件p为假时,无论后件q 是真是假,蕴含式p→q的真值均为1。这与日 常语言中的,特别是数学上常用的“真蕴含真” 不太一样。事实上并不矛盾,例如某人说: “如果张三能及格,那太阳从西边升起。”说 话者当然知道“张三能及格”与“太阳从西边 升起”风马牛不相及,而一般人此时并没有说 谎的必要,即这是真命题,它所要明确的是 “张三能及格”是假命题。
长丰县第一中学
从上面讨论可以看出,判断一个语句是否是命 题的关键是:
(1)语句必须是陈述句。 (2)陈述句必须具有唯一的真值。要注意两点: ①一个陈述句在客观上能判断真假,而不受人 的知识范围的限制。 ②一个陈述句暂时不能确定真值,但到了一定 时候就可以确定,与一个陈述句的真值不能唯一确定 是不同的。
长丰县第一中学
前面我们用p、q、r等符号表示确定的简单命题, 通常此时称它们为命题常元。而事实上,这些常元无 论具体是怎样的简单命题,它们的真值均只可能是 “1”或“0”。为了更广泛地应用命题演算,在研究 时,我们只考虑命题的“真”与“假”,而不考虑它 的具体涵义(即只重“外延”,不顾“内涵”)。譬
长丰县第一中学
以上所讨论的命题均是一些简单陈述句。在 语言学中称为简单句,其结构均具有“主语+谓 语”的形式,在数理逻辑中,我们将这种由简单 句构成的命题称为简单命题,或称为原子命题, 用p、q、r、pi、qi、ri等符号表示(亦可用其它 小写的英文字母表示)。如:

1第一章 命题逻辑基本概念

1第一章 命题逻辑基本概念


如何将语句符号化, 以及如何理解符号化了的语句。 语句符号化要注意:
1. 要善于确定简单命题, 不要把一个概念硬拆成几个 概念。 例如“我和他是同学”是一个简单命题。 2. 要善于识别自然语言中的联结词 (有时它们被省略)。 例 1.11 狗急跳墙。
解 应理解为: p: 狗急了, q: 狗才跳墙
解 令 p: odd是奇数, q: odd2是奇数,
上述语句可表示为 p q。 6. 异或(exclusive or)连结词“” 【定义】 对于“排斥或”, 在数理逻辑中用联结词 “”表示, 称作“异或”。 当且仅当命题p和q的真值相异时, p q便取值为 真。

p q的真值表如表1.1.6所示。



1. 否定(negation)词“” 【定义 1.1】 设p是一个命题, 复合命题“非P‖(P的否 定)称为命题p的否定式, 记作“P‖, (读作“非p‖)。 命题p取值为真, 当且仅当命题P取值为假。 p的真值表如表1.1.1所示。 表.1.1 P 0 1 P 1 0
例 1.3 P:地球是圆的。 P:地球不是圆的。
p
0 0 1 1
表 1.6 q 0 1 0 1
pq 0 1 1 0
从定义可知联结词“”有以下性质: (1) p q = q p (2) (p q) r = p (q r) (3) p∧(q r) = (p∧q) (p∧r) (4) p q (p∧q)∨(p∧q) (5) p q (p q) (6) p p 0,p F P, p T P。
但不完全等同。

p∧q的真值表如表1.1.2所示。
表 1.2 p q 0 0 0 1 1 0 1 1

常用逻辑用语(命题及其关系,概念和例子)

常用逻辑用语(命题及其关系,概念和例子)

逆命题:若f (x) 是周期函数,则f (x) 是正弦函数. (假)
原命题是真命题,它的逆命题不一定是真命题.
观察命题(1)与(3)的条件和结论之间分别有什么关系?
1. 3.
若 若ff((xx))是 不正 是弦 正函 弦数函,数p 则,则f(xf)(是x)周不期是函周数期;函q数.
┐p
┐q
常把条件p的否定和结论q的否定分别记作"┐p","┐q",
对所有x, 存在某x, 对任何x,
成立 不成立
不成立
存在某x, 成立
所有的 某些
三、作业:课本P8. 习题2:1,2,3
提高练习:
已知命题 P:lg(x 2 2x 2) ≥0 的解集是 A;命题 Q:x(4 x) ≤ 0 的解集不是 B.若 P 是真命题,Q 是假命题,求 A∩B.
解:由 lg(x 2 -2x-2)≥0,得 x 2 -2x-2≥1
下列语句是不是命题?
(1) 今天天气如何? (3) 4>3。
(2) -2不是整数。 (4) x>4。
(1)不是(疑问句) (3)是(肯定陈述句)
(2)是(否定陈述句) (4)不是(开语句)
注意:(1)命题定义的核心是判断,判断结果可真可假, 但真假必居其一。
(2)有些含有变量(又未给定变量的取值)的语句,无法 确定真假。
原命题:若p,则q 逆命题:若q,则p
命题“同位角相等,两直线平行”的逆命题是
探__究_1_:_ 如果原命题是真命题,那么它的逆命题一定是
真命题吗? 例1.等边三角形的三个内角相等.
(真)
逆命题:三个内角相等的三角形是等边三角形. (真)
例2.若f (x) 是正弦函数,则f (x) 是周期函数. (真)

离散数学_命题逻辑_1.1

离散数学_命题逻辑_1.1

1.1命题与联结词
例1.1 判断下列语句是否是命题 不是命题 (7) x+8>0。 (8)你出去么? 不是命题 (9)5或6是素数。 不是命题 (10)如果行列式的两行对应成比 真命题 例,则行列式的值为0。 (11)角A与角B相等当且仅当A与角 假命题 B是对顶角。
1.1命题与联结词


2.命题的特点 命题一定是陈述句,但陈述句不一定是命 题。 命题的真值有时明确给出,有时还要依 靠环境、条件、实际情况等因素才能确 定其真值。
什么是离散?离散就是不连续。
线与点。 人的说话声,鸟叫声等;计算机里储存声音。 生活中,人眼见到的图像(非计算机里的);计 算机里用灰度值(从0到255)表示的图像。 计算机不能处理连续信息的,这是由计算机的 本质:0和1,决定的。因此,如果要用计算机 来处理连续信息,必须经过离散化。


离散数学的地位


离散数学的特点

提高抽象思维、严格推理以及综合归纳 分析能力 以研究离散量的结构和相互关系为主要 目标
显著特征是符号化和形式化


离散数学的用途

又称“计算机数学”,因为离散数学的 主要应用领域是计算机。
数理逻辑——数字逻辑电路、密码学 图论(包括树)——数据结构、操作系统 、编译 原理、计算机网络 集合论和关系代数——软件工程和数据库原理
其他分支
代数系统
图论
形式语言与 自动机
数理逻辑
集合论
离散数学 的构成
数理逻辑 命题逻辑
离散数学
集合论 集合及其运算 二元关系
谓词逻辑
函数
代数系统
图论 图的基本概念
群、环、域
Euler图与Hamilton图

1.1命题逻辑

1.1命题逻辑

(2)A是流氓,则A说的“B是骑士”为假话,即B是流氓, 则命题p、q真值为0,对应真值表第4行。 B是流氓那么B 说的话“我们两人不是一类人”就应为谎话,取值0。
1 1 0
1 0 1
0 0
¬ p 0 0 1 1
¬ q p∧(¬ q) 0 0 1 1 0 0 1 0
¬ p∧ q 0 0 1 0
(p∧(¬ q))∨(¬ p∧q)
p∧q为真,当且仅当 p和q同时为真
逻辑联结词“∧”的定义
2.联结词:合取 ∧
例1:令p为命题“今天是星期五”,q为命 题“今天下雨”,则这两个命题的合取p∧q 是命题“今天是星期五并且下雨”。 例2:令p为命题“张三考及格了”,q为命题 “李四考及格了”, p∧q就表示复杂命题 “张三和李四都考及格了”。
3.复合命题的真值表
复合命题的真假完全由构成它的简单命题的 真假所决定。
例:给出命题公式(p∧(¬ q))∨(¬ p∧q)的真值表。
解:因为真值表涉及2个命题变元p和q,所以表有4行
1 1 0
1
0 1
0 0
¬ p 0 0 1 1
¬ q p∧(¬ q) 0 0 1 1 0 0 1 0
¬ p∧ q 0 0 1
从而找到命题 并符号化
p 0 0 1 1
q 0 1 0 1
p∨q 0 1 1 1
令p:男孩额头上有泥” 令q:女孩额头上有泥”
回到难题
p 0 0 1 1 q 0 1 0 1 p∨q 0 1 1 1
1
双方知道p∨q取值1,取真值 表后三行。
2

第一次回答
男孩看到q为1, ∴男孩知道取真值表二、四行, ∴不确定p值,答:“不知道”。

1.1命题及其关系

1.1命题及其关系

原命题 逆命题 否命题 逆否命题

真 真 假

假 真 真

假 真 真

真 真 假
互逆互否,真假无关; 互为逆否,同真同假.
例 1 命题“若 m>0 ,则 x2 + x - m = 0 有实根”的逆否命题是 ________命题(填“真”或“假”). 解:∵m>0,∴方程 x2+x-m=0 的判别式 Δ=4m+1>0. ∴方程 x2+x-m=0 有实根. 2 ∴原命题“若 m>0,则 x +x-m=0 有实根”为真. 又因原命题与它的逆否命题等价, 所以“若 m>0,则 x2+x-m=0 有实根”的逆否命题也为真.
的解集不是 B.
解:由 lg(x -2x-2)≥0,得 x -2x-2≥1 ∴x≥3 或 x≤-1,∴ A , 1 3, 由 x (4 x ) ≤ 0 得 x≤ 0 或 x≥4 ∵命题 Q 假, ∴ B={x |x≤0 或 x≥4}.
则 {x| x≥ 3 或 x≤- 1}∩ {x|x≤ 0 或 x≥4} ={x| x≤- 1 或 x≥ 4}; ∴ A∩ B=(-∞ ,- 1]∪ [4, +∞)
2 2
一个定理或推论都是由条件和结论两部分构成,命题是否也是由条件和结论 两部分构成呢?
从构成来看,所有的命题都具由条件和结论两部分构成 记做: p q
命题“若整数a是素数,则a是奇数.” 具有“若p,则q”的形式. q p
通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论.
“若p,则q” 是命题的一种形式而不是唯一的形式,也可写成“如果p,那么q” “只要p,就有q”等形式.
(3)原命题为真命题 逆命题“若 a,b 都为 0,则 a2+b2=0”均为真命题. 所以逆否命题与否命题也均为真命题.

离散数学(第二版) (1)

离散数学(第二版) (1)
论(conclusion)或后件(consequent)。 “→”是一个二元运算。 条件联结词→的定义如表1.1.4
所示。
表1.1.4
第1章 命题逻辑
第1章 命题逻辑 5. 双条件联结词
定义1.1.6 如果 P和Q是命题, 那么“P当且仅当 Q” 是一个复合命题, 记做 P Q, 称为P和Q的双条件命题
表1.1.1
第1章 命题逻辑
第1章 命题逻辑
2. 合取联结词
定义1.1.3 如果 P和Q是命题, 那么“P并且Q”是一个 复合命题, 记做P∧Q, 称为P和Q 的合取(conjunction)。 符号∧用于表示合取联结词。 P∧Q 为T, 当且仅当P、 Q
均为T。 “∧”是一个二元运算符。 合取联结词∧的定义如表
第1章 命题逻辑
定义1.1.1 一个具有真或假但不能两者都是的断言称为 命题。
如果一个命题所表达的判断为真, 则称其真值(truth value)为“真”, 用大写字母T或数字1表示; 如果一个命题 所表达的判断为假, 则称其真值为“假”, 用大写字母F或 数字0表示。 为简便起见, 本书在构建真值表时一般用0表示 “假”, 用1表示“真”。
(biconditional proposition)。
词。 P Q为T, 当且仅当 P和Q 的真值相同。
1.1.5所示。
表1.1.5
第1章 命题逻辑
第1章 命题逻辑
1.2 命 题 公 式
1.2.1 命题公式及其符号化
定义1.2.1 用于代表取值为真(T、 1)或假(F、 0)之一 的变量, 称为命题变元, 通常用大写字母或带下标或上标的
大写字母表示, 如 P、 Q、 R、 P1、 P2等。 将T和F称为命

2-1.1 命题逻辑

2-1.1 命题逻辑
01 11 11 01 10 1011 0001 1011 0001 1010 0110 1101 1111 按位OR 0100 按位AND 1011 按位XOR
六、模糊逻辑
命题的真值是介于0和1之间的数。 “张三是幸福的” 真值为0.8; “李四是幸福的” 真值为0.4; 命题的否定:1减去该命题的真值。 “张三不幸福” 真值为1-0.8=0.2
六、模糊逻辑
命题的合取:两个命题真值的最小值。 “张三和李四都幸福” 真值为0.4 命题的析取:两个命题真值的最大值。 “张三或李四幸福” 真值为0.8
七、规范一致
如果能给一组命题表达式中的每个变 量一个真值,使各表达式均为真,则 这一组命题表达式是一致的。 在给出系统规范时,必须使这些规范 一致。
思考题:
在古西西里的传说中有一个住在边远小镇上的剃头匠, 只有穿过一条危险的山路才能找到他。这个剃头匠给 且只给那些不自己剃须的人刮胡子。这样的剃头匠存 在吗? 边远村庄的每个人要么总说真话,要么总说谎话。对 旅游者的问题,村民要么回答“是”,要么回答 “不”。假定你在这一地区旅游,走到一个岔路口, 一条岔路通向你想去的遗址,另一岔路通向丛林深处。 此时恰有一村民站在岔路口,问村民什么样一个问题 就能决定走哪条路?
三、翻译语言的句子
“除非你已满16周岁,否则只要你 身高不足4英尺就不能玩过山车。” p: 你能玩过山车。 r: 你身高不足4英尺。 s: 你已满16周岁。 (﹁s∧r)→﹁p
三、翻译语言的句子
“只要暖天能持续一周,苹果树就 会开花。” p: 暖天持续一周。 q: 苹果树开花。 p→q
三、翻译语言的句子
四、布尔检索
运用布尔逻辑运算符对检索词进行逻辑组配,表 达两个概念之间的逻辑关系。 与(AND):用于匹配包含两个检索项的记录 或(OR):用于匹配两个检索项之一或两项 均匹配的记录 非(NOT):用于排除某个特定的检索项

第一章 常用逻辑用语全章教案

第一章 常用逻辑用语全章教案

第一课时 1.1.1 命题及其关系(一)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.教学重点:命题的改写.教学难点:命题概念的理解.教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;>;(2)312>吗?(3)312(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1. 教学命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?x<;(5)215(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练→个别回答→教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成“若p,则q”的形式:①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论.②试将例1中的命题(6)改写成“若p,则q”的形式.③例2:将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练→个别回答→教师点评)3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式.三、巩固练习:1. 练习:教材P41、2、32. 作业:教材P9第1题第二课时 1.1.2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系.教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分; (2)函数232y x x =-+有两个零点. 二、讲授新课:1.(师生共析→学生说出答案→教师点评)②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假: (1)同位角相等,两直线平行; (2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等. (学生自练→个别回答→教师点评) 2. 教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系. ②四种命题的相互关系图:③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系. ⑤例2 若222p q +=,则2p q +≤.(利用结论一来证明)(教师引导→学生板书→教师点评) 3. 小结:四种命题的概念及相互关系. 三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假. (1)函数232y x x =-+有两个零点;(2)若a b >,则a c b c +>+; (3)若220x y +=,则,x y 全为0;(4)全等三角形一定是相似三角形; (5)相切两圆的连心线经过切点.2. 作业:教材P9页 第2(2)题 P10页 第3(1)题1.1.3 四种命题间的相互关系 教学目标:1.了解命题的逆命题、否命题和逆否命题.2.明白四种命题之间的关系.3.会利用两个命题互为逆否命题的关系判别命题的真假. 授课类型:新授课 教学重点:四种命题的关系. 教学难点:判断两个命题关系及真假. 教学方法: 读、议、讲、练结合教学. 教学过程: 一、引入请判断下列语句的真假,能否看出这些语句的表达形式有什么特点?(1)如果直线a∥b,那么直线a和直线b无公共点;(2)2 + 4 = 7;(3)平行于同一条直线的两条直线平行;(4)若x2 = 1 , 则x= 1 ;(5)两个全等三角形的面积相等;(6)3能被2整除.分析得到命题的概念:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.强调判断命题的两个基本条件:①必须是一个陈述句;②可以判断真假.判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;=-(32(4)在同一平面内,如果两条直线不相交,那么这两条直线平行;(5)指数函数是增函数吗?;(6)x > 15 .二、讲授新课1、命题的题设和结论:例1中的命题(2)(4)容易看出其具有“若p,则q” 或“如果p,那么q”的形式.通常,我们把这种形式的命题中的p叫做命题的题设(条件),q叫做命题的结论.(本章中我们只讨论这种“若p,则q”形式的命题),(3)(6)不能判定其真假,故不是命题. 条件成立结论一定成立的命题是真命题, 条件成立结论不一定成立的命题是假命题.2、四种命题的关系:思考下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?(1)如果两个三角形全等,那么它们的面积相等;(2)如果两个三角形的面积相等,那么它们全等;(3)如果两个三角形不全等,那么它们的面积不相等;(4)如果两个三角形的面积不相等,那么它们不全等;一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个叫做原命题的的否命题.一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个叫做原命题的的逆否命题.归纳总结: 三、例题例题3.写出命题“若0a =,则0ab =”的逆命题,否命题与逆否命题从上面的例子可以看出:原命题是真命题,逆命题是假命题,否命题是假命题,逆否命题是真命题.例题4.把下列命题改写成“若p ,则q”的形式,并写出它们的逆命题,否命题与逆否命题,同时指出它们的真假: (1)两个全等三角形的三边对应相等; (2)四条边相等的四边形是正方形.一般地,互为逆否命题地两个命题,要么都是真命题,要么都是假命题.即互为逆否命题的两个命题的真假相同. 四、练习1.把下列命题改写成“若p ,则q”的形式,并写出它们的逆命题,否命题与逆否命题,同时指出它们的真假:(1)能被2整除的整数是偶数; (2)菱形的对角线互相垂直且平分.,q p若非则非,p q若非则非(3)垂直于同一个平面的两条直线平行;(4)对顶角相等.2.课本第6页练习.五、课堂小结1.四种命题的准确表达及其相互关系;2.等价转化的思想方法:互为逆否的两个命题同真同假的应用.六、作业: 课本P8 习题1.1 1、21.2.2充要条件(一)教学目标1.知识与技能目标:(1)正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.(2)正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.(3)通过学习,使学生明白对条件的判定应该归结为判断命题的真假,.2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.3. 情感、态度与价值观:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.(二)教学重点与难点重点:1、正确区分充要条件;2、正确运用“条件”的定义解题难点:正确区分充要条件.教具准备:与教材内容相关的资料。

高中数学选修1-1公式概念总结

高中数学选修1-1公式概念总结

第一章 常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。

其中p 叫做命题的条件,q 叫做命题的结论。

1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。

如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。

如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。

1.2 充要条件与必要条件1.2.1 充分条件与必要条件原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题 若q ⌝,则p ⌝原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假原命题逆命题否命题逆否命题互为 逆 否互为 逆 否 互 逆 互否互否若p ⌝,则q ⌝ 若q ⌝,则p ⌝若p ,则q若q ,则p互逆1、充要条件与必要条件:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习 P3 练习1.1.1 P8 练习1.1.2
作业 P9 习题1.1
有时也用“1”和“0”来表示真、假命题。 (二值逻辑)
判断下列句子是否是命题?如果是请判断其真假。
(1)有一组对边平行且相等的四边形是平行四边形。 (2)3+2=4 (3)4x<0 (4)请不要在公共场合喧哗! (5)我说的话都是假话。 (6)三角形三内角和等于1800。
命题:(1)、(2)、(6) 真命题:(1)、(6) 假命题:(2)
复合命题:用一些关联词把一些简单命题联结 起来组成的新命题。
“且” “或” “非”
表示方法: “且” p∧q “或” p∨q “非” ¬p
p∧q 真值表
p
q
1
1
1

0
0
1
0
0
p∧q 1 0 0 0
p∨q 真值表
p
q
1
1
1
0
0
1
0
0
p∨q 1 1 1 0
¬p 真值表
p
¬p
1
0
0
1
用符号表示下列命题并判断其真假: (1)5>4或5=4 (2)5>5或5=5 (3)5<4或5=4 (4)-1<0且-1是整数 (5)2是偶数且3是奇数 写出下列命题的否定形式 (1)p:2是有理数 (2)q:x<1 (3)r:-2,3都是自然数
命题与逻辑
(1)中国是亚洲最大的国家。 (2)4<3 (3)地球是圆的。 (4)明天是晴天。 (5)请关门。 (6)x小于y。 (7)这句话是假话。 (8)半径大小决定圆的周长。
找出可以其判断真假的陈述句
命题:非真即假的陈述句。
真命题:与事实相符的陈述句。(T) 假命题:与事实不符的陈述句。(F)
命题的表示方法: 命题一般用小写拉丁字母表示:p,q,r,… 如: p:4<3 q:{0}是{0,1,2}的真子集。
关联词 (1) 中国是亚洲最大的国家而且是世界上人口最 多的国家。 (2) 地球是圆的或者地球是方的。 (3) 如果四边形一组对边平行那么四边形是平行 四边形。 (4) 三角形是等边三角形当且仅当三角形三边相 等。
相关文档
最新文档