双容水箱液位控制系统
双容水箱液位控制系统设计
双容水箱液位控制系统设计首先,双容水箱液位控制系统的基本原理是根据水位信号的反馈来控制水泵的启停。
当水箱液位低于设定值时,水泵启动,开始抽水;当液位达到设定值时,水泵停止运行。
这样就可以实现水箱液位的自动控制。
第一,确定水箱的容积和设计液位。
容积和设计液位的确定需要根据实际应用情况来选择,一般要考虑水泵的流量和工作时间等因素。
容积大的水箱可以减少水泵启停的频率,但其建设和维护成本也较高。
第二,确定水位传感器的选择和安装。
水位传感器是检测水箱液位的关键部件,可以选择浮子式传感器、超声波传感器等。
选择合适的传感器需要考虑其精度、可靠性、成本和使用环境等因素。
安装传感器时要确保其与水箱的接触良好,避免信号干扰。
第三,确定控制器的选择和编程。
控制器是实现水位控制的核心部件,可以选择PLC、单片机等。
控制器的选择要考虑其处理能力、输入输出接口和编程灵活性等因素。
编程时需要设置液位设定值和控制逻辑,使得系统能够准确地控制水泵的启停。
第四,确定水泵的选择和安装。
水泵是水箱液位控制系统的关键设备,可以选择离心泵、自吸泵等。
选择合适的水泵需要考虑其流量、扬程、功率和效率等因素。
水泵的安装要确保其与水箱的连接可靠,并考虑水泵的防护和维护问题。
第五,确定报警和保护措施。
对于水箱液位控制系统,需要设置相应的报警和保护机制,以及应急措施。
例如,当水泵故障或水箱液位异常时,系统应该能够及时发出报警,并采取相应的措施避免设备损坏或事故发生。
最后,测试和调试系统。
在系统设计和安装完成后,需要进行全面的测试和调试工作。
首先测试传感器和控制器的工作是否正常,然后测试水泵的启停控制是否准确。
同时,还需要进行系统的稳定性和灵敏度测试,确保系统能够稳定运行和满足实际需求。
总之,双容水箱液位控制系统的设计需要综合考虑容积、液位传感器、控制器、水泵、报警保护和测试调试等方面的因素。
只有设计合理并正确配置这些部件,才能实现高效、稳定的液位控制。
双容水箱液位串级控制系统_毕业设计
双容水箱液位串级控制系统_毕业设计
在双容水箱液位串级控制系统中,通常有两个水箱,分别称为主水箱
和副水箱。
主水箱通常是较大的水箱,副水箱是较小的水箱。
系统的目标
是保持主水箱和副水箱的液位稳定在设定值附近。
系统的控制过程可以分为以下几个步骤:
1.流程测量:系统通过测量主水箱和副水箱的液位,获取当前的液位
信号。
2.控制计算:根据测量值和设定值,计算需要调节的阀门开度。
3.阀门控制:根据计算结果,控制阀门的开度,调节水的流入和流出
速度,以实现液位的控制。
4.反馈调整:根据阀门控制后的效果,不断调整阀门开度,使液位稳
定在设定值附近。
在实际的设计中,双容水箱液位串级控制系统通常采用PID控制器来
实现。
PID控制器包括比例(P)、积分(I)和微分(D)三个部分。
比
例部分根据偏差的大小进行调整,积分部分根据偏差的持续时间进行调整,微分部分根据偏差的变化速率进行调整。
通过不断调整PID参数,实现系
统的稳定性和响应速度的平衡。
另外,在实际的设计中,还需要考虑到系统的动态响应、稳定性、静
差和抗干扰性等因素。
可以采用仿真软件进行系统的建模和分析,优化系
统的设计参数。
总之,双容水箱液位串级控制系统作为一种常见的控制系统,在工业、农业和民用领域有着广泛的应用。
通过合理设计和调节控制参数,可以实
现液位的稳定控制,提高系统的稳定性和安全性。
同时,与实际的实验和仿真相结合,可以进一步优化系统的设计和控制策略。
双容水箱PID液位控制系统的仿真
双容水箱PID液位控制系统的仿真概述本文档介绍了双容水箱PID液位控制系统的仿真。
双容水箱PID液位控制系统是一种常见的工控系统,它能够自动控制水箱液位,保持水箱水位稳定。
通过仿真,可以帮助了解这种控制系统的原理、工作流程以及控制效果的评估。
功能•自动控制水箱液位,维持液位稳定•实时监测水箱液位•能够进行PID控制,控制精度高环境•软件平台:MATLAB/Simulink•环境要求:–MATLAB2018a及以上版本–Simulink库中带有相关的工控控制、信号处理和仿真工具箱设计步骤1.建立模型双容水箱PID液位控制系统的基本模型包括水箱、液位传感器、执行器和控制器。
我们需要在Simulink中建立这个模型。
模型中主要包含以下子系统:•水箱:在模型中建立一个水箱模块,用于模拟水箱的液位变化。
•液位传感器:创建一个液位传感器模块,通过采集水箱液位数据,将数据通过信号传输到系统的控制器。
•执行器:建立一个执行器模块,用于控制液位泵的启动和关闭。
•PID控制器:创建一个PID控制器模块,用于根据传感器采集的数据,计算出液位偏差,并根据偏差调节液位泵的运行状态。
2.建立信号连接连接各个模块之间的信号可以让模型正常运行,实现自动控制水箱液位的目的。
在模型中,应确保信号连接正确、完整,否则控制效果将大为降低。
3.设置参数在建立信号连接后,需要对各个模块的参数进行设置,确保模型的控制效果满足要求。
例如,PID控制器的比例、积分、微分系数等参数需要调整到合适的值,才能更好的实现水箱液位的控制。
4.进行仿真设置好模型参数后,可以进行仿真。
仿真可以模拟系统的实际运行情况,帮助了解控制器的控制效果,评估系统的性能。
在本文档中,我们介绍了双容水箱PID液位控制系统的仿真。
通过建立模型、建立信号连接、设置参数和进行仿真等步骤,可以更好地了解这种控制系统的原理,并对其控制效果进行评估。
本文档旨在提供帮助,方便工程师和研究者深入了解水箱液位控制系统的设计、实现及其相关技术。
双容水箱液位串级控制系统_毕业设计
双容水箱液位串级控制系统_毕业设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。
试设计串级控制系统以维持下水箱液位的恒定。
1图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。
要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。
4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。
对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。
在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性: 111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。
双容水箱液位定值控制系统实验报告
双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。
2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。
3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。
4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。
5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。
6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。
7.记录不同设定值下液位的控制效果,并分析数据。
8.关闭水源,停止实验。
实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。
当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。
实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。
实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。
P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。
通过PID控制器的联合作用,可以实现对液位的稳定控制。
从实验结果分析可以看出,PID控制器的参数设置非常重要。
当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。
因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。
结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
基于MATLAB的双容水箱液位控制系统设计
基于MATLAB的双容水箱液位控制系统设计双容水箱液位控制系统是一种常见的控制系统,用于控制水箱中液位的稳定性。
这个系统的主要目标是保持水箱中的液位在一个提前设定好的范围内。
在这篇文章中,我们将基于MATLAB来设计和实现一个双容水箱液位控制系统。
首先,我们需要定义系统的输入和输出。
在这个系统中,输入是水箱中的水流量,输出是水箱中的液位。
我们假设系统中的水流量是恒定的,并且可以通过控制阀门的开关来改变流量。
接下来,我们需要建立双容水箱液位控制系统的数学模型。
对于这个系统,我们可以使用连续时间的均衡方程来描述液位的变化。
假设水箱中的两个容器分别为C1和C2,它们之间通过阀门进行连接。
液位的变化是由水的流入和流出速度之间的差异决定的。
我们可以用下面的方程来表示两个容器液位变化的速度:C1 * dh1/dt = Qin - q12 - q01C2 * dh2/dt = q12 - q02其中,C1和C2分别表示两个容器的容积,dh1/dt和dh2/dt表示液位的变化速率,Qin表示系统输入的水流量,q12表示C1到C2的流出速度,q01表示C1的流出速度,q02表示C2的流出速度。
我们可以通过求解这个方程组来得到系统的状态空间表示。
为了简化推导,我们假设液位变化的速率很快,即dh1/dt≈0和dh2/dt≈0。
在这种情况下,我们可以得到一个简化的状态空间表示:x=(h1,h2)u = (Qin, q01, q02)其中,x是系统的状态向量,包括两个容器的液位,u是系统的控制输入向量,包括系统的输入流量和阀门的开关。
接下来,我们需要设计一个合适的控制器来控制系统的输出液位。
在这里,我们选择使用PID控制器。
PID控制器通过调整控制输入u来控制输出液位。
PID控制器的输出是根据系统的误差信号计算得到的。
在这里,误差信号是目标液位与实际液位之间的差异。
PID控制器通过比例增益、积分增益和微分增益来调整控制输入,以最小化误差信号。
双容水箱液位串级控制系统的设计
双容水箱液位串级控制系统的设计双容水箱液位串级控制系统是一种常用于水处理、供水和污水处理等领域的控制系统。
它可以通过自动控制水泵的开关来实现水箱液位的稳定控制,从而保证水箱的安全运行。
本文将详细介绍双容水箱液位串级控制系统的设计。
首先,液位传感器的选择是系统设计的关键。
液位传感器是用于测量水箱液位的装置,常见的液位传感器包括浮球式传感器和压力传感器。
浮球式传感器适合用于小型水箱,而压力传感器适合用于大型水箱。
在选择液位传感器时,需要考虑液位测量的精度、可靠性和适应性等因素。
其次,PID控制器的设计是系统稳定性的关键。
PID控制器是一种常用的自动控制算法,通过不断调整控制器的输出值,使得系统的实际值与期望值之间的误差最小化。
PID控制器的设计需要根据系统的特点和需求来确定参数,包括比例、积分和微分的系数。
一般情况下,可以通过试错法来逐步调整这些参数,从而实现系统的稳定控制。
水泵控制策略是双容水箱液位串级控制系统的核心部分。
水泵控制策略的目标是根据水箱液位的实际情况,自动地调整水泵的开关状态,以实现水箱液位的稳定控制。
常见的水泵控制策略包括固定间隔控制、比例控制和模糊控制等。
在选择水泵控制策略时,需要考虑系统的特点和要求,以及水泵的工作状态和性能等因素。
最后,安全保护措施是系统设计中不可忽视的部分。
双容水箱液位串级控制系统在运行过程中,需要根据液位传感器的信号来判断水泵的工作状态,并及时采取相应的控制措施。
为了保证系统的安全性和可靠性,需要在系统中设置相应的报警装置和故障检测装置,以应对可能出现的各种故障情况。
总之,双容水箱液位串级控制系统的设计需要考虑液位传感器的选择、PID控制器的设计、水泵控制策略的选择和安全保护措施的设计等方面。
通过合理的系统设计和系统参数的调整,可以实现水箱液位的稳定控制,从而保证双容水箱的安全运行。
双容水箱液位流量串级控制系统设计
双容水箱液位流量串级控制系统设计引言:双容水箱液位流量串级控制系统是一种用于控制液位和流量的自动化系统。
该系统通过对水泵和阀门的控制,实现对水箱液位和流量的精确调节。
在工业生产中,液位和流量的稳定控制对于保证生产过程的正常运行至关重要。
因此,设计一个可靠的双容水箱液位流量串级控制系统具有重要的实际意义。
系统设计:1.系统硬件组成-水泵:负责将水从源头输送至水箱中。
-水箱:承装和储存水,通过液位传感器测量液位。
-液位传感器:用于测量水箱液位,将测量结果传输给控制器。
-流量传感器:用于测量水流量,将测量结果传输给控制器。
-控制阀:通过控制水流量来调节水箱液位。
-控制器:根据液位和流量传感器的反馈信号,控制水泵和控制阀的启停和开关。
2.系统工作原理双容水箱液位流量串级控制系统的工作原理是通过液位和流量传感器实时监测水箱液位和水流量的变化,并将测量结果传输给控制器。
控制器根据设定的目标液位和流量值,计算出所需的水泵和控制阀的工作状态。
当实际液位或流量低于目标值时,控制器启动水泵和控制阀以增加水流量,从而提高液位;反之,当实际液位或流量高于目标值时,控制器关闭水泵和控制阀以减少水流量,以降低液位。
3.系统控制策略双容水箱液位流量串级控制系统的控制策略可以采用PID控制器。
PID控制器是一种常用的控制算法,它通过对比实际测量值和目标值,计算出一个控制量,然后对被控对象进行控制。
其算法由比例(P)、积分(I)和微分(D)三个部分组成,可以有效地控制系统稳定性和响应速度。
在双容水箱液位流量串级控制系统中,可以将液位作为主要控制量,流量作为辅助控制量。
首先,通过对液位传感器和流量传感器的测量值进行PID控制,控制水泵的启动和停止,以满足目标液位和流量的要求。
接下来,根据控制阀的反馈信号,通过控制阀的开关来实现对水箱液位的精确调节。
4.系统安全性和可靠性双容水箱液位流量串级控制系统设计中,应考虑系统的安全性和可靠性。
双容水箱液位控制系统方案
双容水箱液位控制系统方案一、前言在许多工业生产过程中,水位的控制是非常关键的环节。
双容水箱液位控制系统是一种常用的水位控制方案,它通过两个水容器之间的液位传感器和控制阀门来实现液位的自动控制。
本文将就双容水箱液位控制系统的设计方案进行详细介绍。
二、系统结构[插入系统结构示意图]系统由两个水容器、液位传感器、控制阀门和控制器组成。
其中,一个水容器为水箱,另一个水容器为储水槽。
三、系统原理四、系统设计步骤1.确定控制策略首先要确定液位控制的目标和要求,例如需要将水箱液位控制在一定范围内。
然后根据具体的要求设计控制策略,如使用PID控制算法。
2.选择液位传感器根据实际需要选择合适的液位传感器,可以使用浮球式液位传感器或是压力式液位传感器。
传感器的选择需要考虑其测量范围、精度和稳定性等因素。
3.选择控制阀门选择合适的控制阀门用于控制水的流入和流出。
阀门的选择需要考虑其流量范围、响应速度和可控性等因素。
同时,还需要考虑阀门的安装位置和连接方式等因素。
4.确定控制器和通信协议选择合适的控制器用于接收液位传感器的信号,并控制控制阀门的开关状态。
通常可以选择PLC或是单片机作为控制器,并根据实际需要确定通信协议。
5.编写控制程序根据控制策略和控制器的要求编写控制程序,实现液位的自动控制。
程序需要包括液位传感器的读取、控制阀门的开关和液位的调节等功能。
6.系统调试和优化对安装完毕的系统进行调试和优化,通过实际测试来验证系统的性能和稳定性。
如有需要,可以对控制策略和参数进行调整,以满足实际应用的需求。
五、系统特点和应用1.可靠性高:通过使用液位传感器和控制器,系统能够实时监测和控制液位,避免了人工操作的误差。
2.自动化程度高:系统可以实现液位的自动控制,减少了人工操作的工作量。
3.调节性能好:根据实际需要,可以选择合适的控制策略和参数,以实现液位的快速调节和稳定控制。
4.应用范围广:双容水箱液位控制系统广泛应用于各类工业生产过程中,如供水系统、储罐液位控制等。
双容水箱液位控制系统毕业设计
双容水箱液位控制系统毕业设计双容水箱液位控制系统是一种用于控制水箱液位的智能化系统,通过传感器、控制器和执行器等组件,实现对水箱液位的自动监测与控制。
本文将介绍关于双容水箱液位控制系统的毕业设计,包括设计目标、系统结构、工作原理和关键技术等方面的内容。
首先,设计目标是实现对双容水箱液位的智能化控制,以提高水箱的利用率和节约水资源。
具体目标包括:准确监测水箱液位,实时调节进水与排水流量,保持水箱液位在合理范围内。
其次,双容水箱液位控制系统的结构主要包括传感器模块、控制模块和执行器模块。
传感器模块用于监测水箱液位,可以采用压力传感器、浮球传感器或超声波传感器等;控制模块负责收集传感器数据,进行算法分析和决策,控制执行器模块的动作;执行器模块包括水泵和电磁阀等组件,通过控制水泵的运行和电磁阀的开关,调节进水与排水的流量,从而控制水箱液位。
系统的工作原理是首先通过传感器获取水箱液位信息,并传输给控制模块进行处理。
控制模块根据设定的液位范围和液位变化规律,判断当前液位状态,决定执行器的动作。
如果液位过高,则控制模块发送信号给执行器模块,开启电磁阀进行排水;如果液位过低,则控制模块发送信号给执行器模块,启动水泵进行进水。
通过不断的反馈和调整,控制系统可以使液位保持在合理范围内。
关键技术包括传感器选择与布置、控制算法设计和执行器参数调节等。
传感器的选择和布置需要考虑液位变化范围和液位测量的准确性;控制算法的设计需要根据实际情况制定,包括液位判断标准和动作决策规则;执行器参数调节需要根据实际需求和系统响应特性进行调整和优化。
综上所述,双容水箱液位控制系统的毕业设计旨在实现对水箱液位的智能化监测与控制。
通过设计合理的系统结构、优化的工作原理和关键技术的应用,可以实现对水箱液位的准确监测和精确控制,提高水资源的利用效率。
一种双容水箱液位系统的状态反馈控制方法
一种双容水箱液位系统的状态反馈控制方法1. 引言1.1 引言简介水箱液位控制系统是工业生产过程中常见的一种控制系统,它通过调节进水和出水的流量,来控制水箱内的液位达到设定值。
在传统的PID控制方法中,存在着调节精度低、响应速度慢等问题。
为了提高水箱液位系统的控制性能,本文提出了一种基于状态反馈控制的方法。
状态反馈控制是一种通过测量系统状态变量,计算出控制量来调节系统的控制方法。
通过对水箱液位系统的建模分析,可以得到系统的状态方程和状态空间表达式。
结合状态反馈控制原理,可以设计出一种使系统稳定性和控制性能得到改善的控制方法。
双容水箱液位系统是一种具有两个水箱的液位控制系统,通过调节两个水箱中水的流动来实现液位的控制。
本文将在双容水箱液位系统上应用状态反馈控制方法,分析系统的敏感性、稳定性和控制性能。
通过仿真实验可以验证所提出的双容水箱液位系统的状态反馈控制方法的有效性,比较不同控制方法的控制性能。
最终得出结论总结,展望未来在水箱液位系统控制领域的发展方向。
2. 正文2.1 水箱液位系统概述水箱液位系统是工业控制领域中常见的一种控制对象,用于控制水箱内的液位。
该系统通常由水箱、液位传感器、控制阀等组成。
水箱的液位会随着流入和流出的液体量而变化,因此需要一种有效的控制方法来维持水箱内的液位在一个设定的范围内。
在水箱液位系统中,液位传感器起着关键作用,它能够实时监测水箱内的液位并将数据传输给控制系统。
控制系统根据液位传感器反馈的数据,通过控制阀来调节流入和流出的液体量,从而实现对水箱液位的控制。
水箱液位系统的控制涉及到液位的测量、控制策略的选择、控制参数的调整等多个方面,因此需要综合考虑系统的动态特性、稳定性和鲁棒性等因素。
针对不同的水箱液位系统,可以采用不同的控制方法,如PID控制、模糊控制、神经网络控制等。
水箱液位系统是一个典型的反馈控制系统,通过合理设计和控制方法的选择,可以实现对水箱液位的精准控制,确保系统稳定运行。
双容水箱液位控制系统
双容水箱液位控制系统简介双容水箱液位控制系统是一种能够自动检测液位并控制液位的系统,通常用于工业生产中的水处理、冷却等环节。
它包括两个水箱和一套自动液位控制系统。
系统组成双容水箱液位控制系统主要由以下几部分组成:1.双个水箱:分别是进水箱和出水箱,供水系统在进水箱中存储新的水,然后将水处理后的水送到出水箱,最后再供应到整个系统中。
2.液位控制器:一种能够检测并控制液位水平的控制器,通过传感器收集水位信号,并将数据传输到中控系统中。
3.中央控制器:用于处理液位信号和控制整个系统,开启或关闭水泵和控制进出水箱之间的流量。
系统工作原理当水处理系统开始工作时,水泵会将新的水送入水箱中。
同时,液位控制器会监测进水箱的液位,发送信号到中央控制器。
当进水箱的液位降到最低时,中央控制器会打开进水阀门,并将水流至进水箱中。
当进水箱液位升高到预设液位时,液位控制器会停止进水。
如果进水箱液位超过了预设值,控制器会关闭进水阀门,以避免水溢出。
同样的,出水箱也安装有液位控制器,监测出水箱液位,当液位达到最高限制时,中央控制器会打开出水阀门,并控制出水量。
当出水箱的液位降至预设值时,中央控制器会关闭出水阀门,以避免水泵过载。
优势双容水箱液位控制系统的优势主要在于以下几点:1.自动化程度高:整个水箱液位控制系统实现了全自动化的工作流程,大大减少了人工干预的频率和工作强度。
2.稳定性好:水箱液位控制系统能够实时监测液位变化,并根据水量来调整水泵流量,保证了流量平稳且不会超载,同时可以避免水流过大或过小带来的问题,提高了整个系统的稳定性和安全性。
应用场景双容水箱液位控制系统适用于以下场合:1.工业生产:工业生产中通常需要大量的水,而这些水又需要简单地进行过滤以保证生产质量。
双容水箱液位控制系统能够有效地满足这些需求。
2.冷却系统:在冷却系统中,温度是一个至关重要的因素。
过高或过低的温度都会导致整个系统的损坏,而恰当的水流量和水温可以保持整个系统的适宜温度和稳定性。
双容水箱液位控制系统设计与实现
2.2 控制器设计模型
双容水箱液位系统辨识方法
由于耦合关系的存在,假设双容水箱液位耦合系统控制器设计模型 的表达式为
y1 y2
W
(s)
u1 u2
W11 (s) W21(s)
W12 W22
(s) (s)
u1 u2
利用阶跃响应辨识方法,根据改变 u1与 u2 引起输出液位的变化曲 线,对耦合关系矩阵W 进行辨识.
此过程同样为时间常数较小的一阶惯性环节,可近似为如下线 性关系:
Qin k4u2 c2
‒流量到双容水箱液位的过程
假设 y2 y1 ,根据物料平衡关系 有:
A1
dy1 dt
Qin1
Qout1
Q0
A2
dy2 dt
Qin2
Qout 2
Q0
其中A1和A2分别为双容水箱的横截面积 Qin1与 Qin2 分别为入水流量,Qout1与 Qout2 分别为泄水流量, Q0 为某时刻2号水箱 流入1号水箱的流量
k1P 44, k1I 0.38 k2P 32.269, k2I 0.165 k21 0.24, k12 0.05 双容水箱液位系统解耦控制实验曲线如下:
1号水箱液位
2号水箱液位
6.4 非线性解耦控制(先进方法研究)
w(k 1)
e(k)
非线性
u(k )
解耦控制器
双容水箱
y(k)
y(k)
提纲
1. 双容水箱液位控制系统描述 2. 被控对象与控制器设计模型 3. 控制器设计 4. 系统仿真 5. 闭环实验
1.双容水箱液位控制系统描述
1.1 控制目标
液位解耦
双容水箱液位能够在一定时间内达到并稳定在给定值,在其中某个水 箱液位变化时,另一个水箱的液位基本维持不变
双容水箱液位流量串级控制系统设计要点
双容水箱液位流量串级控制系统设计要点双容水箱液位流量串级控制系统是一种在液位和流量之间进行联动控制的系统。
该系统通常由两个水箱、两个阀门和两个流量计组成。
其中,一个水箱用于控制液位,另一个水箱用于控制流量。
双容水箱液位流量串级控制系统的设计要点包括以下几个方面:1.系统结构设计:双容水箱液位流量串级控制系统的结构应该合理、紧凑,方便安装和维护。
系统中的各个组件应该布局合理,阀门、流量计与水箱的位置应该便于操作和读取数据。
2.控制策略设计:双容水箱液位流量串级控制系统的控制策略应该能够实现液位和流量之间的联动控制。
一般采用控制阀门的开度来调节流量,通过调节水泵的转速或者阀门的开度来调节液位。
控制策略应该具有良好的稳定性和鲁棒性,能够快速而准确地响应输入信号的变化。
3.传感器选择与布置:双容水箱液位流量串级控制系统中的传感器用于检测液位和流量。
液位传感器的选择应该考虑到水箱的工作范围和要求,以及精度和可靠性的要求。
流量传感器的选择应该根据流量范围和要求,以及精度和可靠性的要求。
传感器的布置应该能够准确地测量液位和流量,避免干扰和误差。
4.控制器选择与配置:双容水箱液位流量串级控制系统的控制器是实现控制策略的核心部件。
控制器应该具有良好的性能,包括计算能力、通信能力和抗干扰能力。
控制器的配置应该考虑到系统的需求和性能要求,以及可靠性和可扩展性的要求。
5.阀门和流量计选择与定位:双容水箱液位流量串级控制系统中的阀门和流量计是实现液位和流量调节的关键装置。
阀门的选择应该考虑到流量范围和要求,以及可靠性和响应速度的要求。
流量计的选择应该根据流量范围和要求,以及精度和可靠性的要求。
阀门和流量计的定位应该根据液位和流量的控制策略,使其能够和其他组件紧密配合,实现精确的调节和测量。
通过以上要点的设计,可以有效实现双容水箱液位流量串级控制系统的运行稳定和精确控制。
同时,设计过程中还需要考虑到系统的安全性和可靠性,以及经济性和可维护性的要求。
双容水箱液位串级控制系统课程设计完整版
双容水箱液位串级控制系统课程设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】双容水箱液位串级控制系统课程设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。
试设计串级控制系统以维持下水箱液位的恒定。
图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。
要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。
4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。
对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。
在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性:111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数);22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双容水箱液位控制系统郭晨雨目录摘要 --------------------------------------------------------------------------- 错误!未定义书签。
一.PID控制原理、优越性,对系统性能的改善----------------- 错误!未定义书签。
二.被控对象的分析与建模--------------------------------------------- 错误!未定义书签。
三.PID参数整定方法概述---------------------------------------------- 错误!未定义书签。
PID控制器中比例、积分和微分项对系统性能影响分析错误!未定义书签。
比例作用 --------------------------------------------------------- 错误!未定义书签。
积分作用 --------------------------------------------------------- 错误!未定义书签。
微分作用 --------------------------------------------------------- 错误!未定义书签。
PID参数的整定方法 ------------------------------------------------ 错误!未定义书签。
临界比例度法 ------------------------------------------------------- 错误!未定义书签。
PID参数的确定 ----------------------------------------------------- 错误!未定义书签。
四.控制结构 ---------------------------------------------------------------- 错误!未定义书签。
利用根轨迹校正系统 ----------------------------------------------- 错误!未定义书签。
利用伯德图校正系统 ----------------------------------------------- 错误!未定义书签。
调整系统控制量的模糊PID控制方法------------------------- 错误!未定义书签。
模糊控制部分----------------------------------------------------- 错误!未定义书签。
PID控制部分 ---------------------------------------------------- 错误!未定义书签。
五.控制器的设计---------------------------------------------------------- 错误!未定义书签。
六.仿真结果与分析--------------------------------------------------------- 错误!未定义书签。
七.结束语---------------------------------------------------------------------- 错误!未定义书签。
参考文献 ---------------------------------------------------------------------- 错误!未定义书签。
摘要:针对双容水箱大滞后系统,采用PID方法去控制。
首先对PID控制中各参数的作用进行分析,采用根轨迹校正、伯德图校正的方法,对系统进行校正。
最后采用调整系统控制量的模糊PID控制的方法,对该二阶系统进行控制。
同时,在MATLAB下,利用Fuzzy工具箱和Simulink仿真工具,对系统的稳定性、反应速度等各指标进行分析。
关键字:双容水箱,大滞后系统,模糊控制,PID,二阶系统,MATLAB ,SimulinkAbstract:For Two-capacity water tank big lag system,using PID to control this system. First, to analyze the effect of each parameter of PID. And the root-locus technique and bode diagram is adopted to design the correcting Unit. Then, fuzzy PID control method was used to adjust this second-order system. And a simulation model of this system is built with MATLAB Fuzzy and SIMULINK, with it analyzing the system stability ,reaction velocity and other indexs.Keywords: two-capacity water tank, big lag system, fuzzy control, PID, second-order system一.PID控制原理、优越性,对系统性能的改善当今的自动控制技术绝大多数部分是基于反馈。
反馈理论包括三个基本要素:测量、比较和执行。
测量关心的是变量,并与期望值相比较,以此偏差来纠正和调节控制系统的响应。
反馈理论及其在自动控制的应用的关键是:作出正确的测量与比较后,如何将偏差用于系统的纠正和调节。
在过去的几十年里,PID控制,即比例-积分-微分控制在工业控制中得到了广泛的应用。
虽然各种先进控制方法不断涌现,但PID控制器由于结构简单,在实际应用中较易于整定,且具有不需精确的系统模型等优势,因而在工业过程控制中仍有着非常广泛的应用。
而且许多高级的控制技术也都是以PID控制为基础的。
下面是典型的PID控制系统结构图:图1-1其中PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。
(1)比例(P)调节作用是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
(2)积分(I)调节作用是使系统消除稳态误差,提高无差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI 调节器或PID调节器。
(3)微分(D)调节作用微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。
因此,可以改善系统的动态性能。
在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。
此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。
微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。
二.被控对象的分析与建模该系统控制的是有纯延迟环节的二阶双容水箱,示意图如下:图2-1其中12A A 分别为水箱的底面积,123q q q 为水流量,12R R 为阀门1、2的阻力,称为液阻或流阻,经线性化处理,有:2R hq ∆=∆。
则根据物料平衡对水箱1有:拉式变换得:1211()()()Q S Q S A S H S ∆-∆=∆212)()(R S H S Q ∆=∆对水箱2:212R h q ∆=∆dth d A q q 1121∆=∆-∆dth d A q q 2232∆=∆-∆323R h q ∆=∆拉式变换得:)()()(2232S H S A S Q S Q ∆=∆-∆223)()(R S H S Q ∆=∆则对象的传递函数为:)()()(120S Q S H S W ∆∆=)1)(1(32213++=S R A S R A R )1)(1(21++=S T S T K其中211R A T =为水箱1的时间常数,322R A T =水箱2的时间常数,K为双容对象的放大系数。
若系统还具有纯延迟,则传递函数的表达式为:201()()()H S W S Q S ∆==∆ S e S T S T K)1)(1(21τ-++其中0τ延迟时间常数。
在参考各种资料和数据的基础上,可设定该双容水箱的传递函数为:5022()100201sG S e s s -=++三.PID 参数整定方法概述PID控制器中比例、积分和微分项对系统性能影响分析在MATLAB中建立对象的传递函数模型5 022()100201sG S es s-=++,在命令行中输入:sys=tf(2,[100 20 1],'inputdelay',5);sysx=pade(sys,1);3.1.1 比例作用分析在不同比例系数下,系统的阶跃响应图,输入命令:P=[ 1 5 10];figure,hold onfor i=1:length(P)G=feedback(P(i)*sys,1);step(G)end得到图形如下:图3-1图中分别绘出了K为,,1,5,10时的阶跃响应图,可知当K增大时系统的稳态误差不断减小,响应时间加快,并出现振荡。
3.1.2 积分作用分析在不同积分常数下,系统的阶跃响应图,输入命令:Ti=[3::5];t=0:2:100;figure,hold onKp=1;for i=1:length(Ti)Gc=tf(Kp*[1,1/Ti(i)],[1,0]);G=feedback(Gc*sys,1);step(G,t)end得图形如下:图3-2由图可知,积分作用虽可消除误差,但加入积分调节可使系统稳定性下降,途中甚至可出现不稳定的情况,同时动态响应变慢,调节时间变大。
3.1.3 微分作用分析在不同微分时间常数下,系统的阶跃响应图,输入命令:Td=[1:4:20];t=0:1:100;figure,hold onfor i=1:length(Td)Gc=tf([5*Td(i),5,1],[5,0]);G=feedback(sys*Gc,1);step(G,t)end得图形如下:图3-3图中绘出了Td为1逐渐增大至20时的系统阶跃响应变化趋势,可知微分时间常数增加时,系统上升时间增加了,但是调节时间减少,更重要的是由于带有预测作用,惯性系统的超调量大大减小了。