2016讲弹性力学试题及答案1

合集下载

弹性力学试题含答案

弹性力学试题含答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移」_2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量, 也就是正应力和切应力。

应力及其分量的量纲是L M T。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性_________6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量J=100MPa 口y=50MPa弋xy=10/5O MPa,则主应力6= 150MPao^nQMPa a r=35l6"。

&已知一点处的应力分量, a ^200 MPa 口y=0MPa Jy=—400 MPa,则主应力▽“=512 MPa, 二2 =-312 MPa,: 1 =-37 ° 57'。

9、已知一点处的应力分量,匚x=-2000 MPa匚y =1000 MPa,岑=-400 MPa,则主应力匚1 = 1052 MPa二2= -2052 MPa , :- "-82 ° 32'。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界________________ 条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试题及答案

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中:平衡微分方程, 应力边界条件。

2.一组可能的应力分量应满足:平衡微分方程,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中,的物理意义是杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M.4.平面问题的应力函数解法中,Airy应力函数在边界上值的物理意义为边界上某一点(基准点)到任一点外力的矩。

5.弹性力学平衡微分方程、几何方程的张量表示为:,。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

题二(2)图(a)(b)3.图示矩形弹性薄板,沿对角线方向作用一对拉力P,板的几何尺寸如图,材料的弹性模量E、泊松比 已知.试求薄板面积的改变量.题二(3)图设当各边界受均布压力q时,两力作用点的相对位移为。

由得,设板在力P作用下的面积改变为,由功的互等定理有:将代入得:显然,与板的形状无关,仅与E、、l有关。

4.图示曲杆,在边界上作用有均布拉应力q,在自由端作用有水平集中力P.试写出其边界条件(除固定端外)。

题二(4)图(1);(2)(3)5.试简述拉甫(Love)位移函数法、伽辽金(Galerkin)位移函数法求解空间弹性力学问题的基本思想,并指出各自的适用性Love、Galerkin位移函数法求解空间弹性力学问题的基本思想:(1)变求多个位移函数或为求一些特殊函数,如调和函数、重调和函数。

(2)变求多个函数为求单个函数(特殊函数)。

《弹性力学》试题参考标准答案与弹性力学复习题

《弹性力学》试题参考标准答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题————————————————————————————————作者:————————————————————————————————日期:弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

弹性力学教材习题及解答(供参考)

弹性力学教材习题及解答(供参考)

1-1. 选择题a. 下列材料中,D属于各向同性材料。

A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。

b. 关于弹性力学的正确认识是A。

A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。

c. 弹性力学与材料力学的主要不同之处在于B。

A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。

d. 所谓“完全弹性体”是指B。

A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。

2-1. 选择题a. 所谓“应力状态”是指B。

A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。

2-2. 梯形横截面墙体完全置于水中,如图所示。

已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。

2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。

根据材料力学分析结果,该梁横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。

试写出楔形体的边界条件。

2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。

试写出球体的面力边界条件。

2-6. 矩形横截面悬臂梁作用线性分布载荷,如图所示。

试根据材料力学应力解答推导挤压应力σy的表达式。

3-1. 选择题a. 切应力互等定理根据条件B 成立。

A. 纯剪切;B. 任意应力状态;C. 三向应力状态;D. 平面应力状态;b. 应力不变量说明D.。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学试卷及答案4套

弹性力学试卷及答案4套

弹性力学试卷(1)1. 土体是由固体颗粒、水和气体三相物质组成的碎散颗粒集合体,是否是连续介质? 在建筑物地基沉降问题中,可否作为连续介质处理?(15分)2. 试用圣维南原理,列出题2图所示的两个问题中OA边的三个积分的应力边界条件,并比较两者的面力是否是静力等效?(15分)3. 根据所给的一点应力分量,试求1σ,2σ,3σ。

400,1000,2000-==-=xyyxτσσ.(20分)4. 已知单位厚度矩形截面悬臂梁的自由端受力F作用而发生横向弯曲(题4图),力F的分布规律为)4(222yhIFp--=,由材料力学求得应力分量为IyxlFx)(--=σ,)4(22yhIFxy--=τz====yxzzyττσσ式中I为截面惯性矩,试检查该应力分量是否满足平衡方程和边界条件(20分)5. 试考察应力函数)43(2223yhhFxyΦ-=能满足相容方程,并求出应力分量(不计体力),画出题5图所示矩形体边界上的面力分布(在次要边界上画出面力的主矢量和主矩),指出该应力函数所能解决的问题。

6.试考察应力函数ϕρcos363aq=Φ能解决题6图所示弹性体的何种受力问题?(20分)弹性力学试卷(3)1. “单一成分构成的物体是均匀体,也是各向同性体”,此话是否正确?(15分)2.试列出题2-8图所示问题的全部边界条件。

在其端部边界题2题2题4y题5题 6上,应用圣维南原理列出三个积分的应力边界条件。

(15分) 3. 根据所给的一点应力分量,试求1σ,2σ,3σ。

1010,50,100===xy y x τσσ.(20分)4. 检验下列应力分量是否是题4图所示问题的解答:q b y x 22=σ,0===yx xy yττσ。

(20分)5. 试证)2(10)134(4332332h y h y qy h y h y qx Φ-+-+-=能满足相容方程,并考察它在题5图所示矩形板和坐标系中能解决什么问题(设矩形板的长度为L ,深度为h ,体力不计)。

弹性力学试题及答案

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

《弹性力学》试题参考答案

《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学试题及答案

弹性力学试题及答案

弹性力学试题及答案题目一:弹性力学基础知识试题:1. 弹性力学是研究什么样的物体的变形与应力关系?答案:弹性力学是研究具有弹性的物体(即能够恢复原状的物体)的变形与应力关系的学科。

2. 弹性力学中的“应力”是指什么?答案:应力是物体内部相邻两部分之间的相互作用力与其接触面积之比。

3. 弹性力学中的“应变”是指什么?答案:应变是物体在受力作用下发生形变的程度。

正应变表示物体在拉伸力作用下的伸长程度与原始长度之比,负应变表示物体在压缩力作用下的压缩程度与原始长度之比。

4. 弹性力学中的“胡克定律”是什么?答案:胡克定律描述了弹簧的弹性特性。

根据胡克定律,当弹簧的变形量(即伸长或缩短的长度)与施加在弹簧上的力成正比时,弹簧的弹性变形是符合弹性恢复原状的规律的。

题目二:弹性系数计算试题:1. 弹性模量是用来衡量什么的物理量?答案:弹性模量是衡量物体在受力作用下发生弹性形变的硬度和刚度的物理量。

2. 如何计算刚体材料的弹性模量?答案:刚体材料的弹性模量可以通过应力与应变之间的关系来计算。

弹性模量E等于应力σ与应变ε之比。

3. 如何计算各向同性材料的体积弹性模量(Poisson比)?答案:各向同性材料的体积弹性模量(Poisson比)可以通过材料的横向应变与纵向应变之比来计算。

Poisson比v等于横向应变ε横与纵向应变ε纵之比。

4. 如何计算材料的剪切弹性模量?答案:材料的剪切弹性模量G(也称剪切模量或切变模量)可以通过材料的剪应力与剪应变之比来计算。

题目三:弹性体的应力分析试题:1. 弹性体的应力状态可以用什么来表示?答案:弹性体的应力状态可以用应力张量来表示。

2. 什么是平面应力状态和轴对称应力状态?答案:平面应力状态是指在某一平面上的应力分量仅存在拉伸(或压缩)和剪切,而垂直于该平面的应力分量为零的应力状态。

轴对称应力状态是指应力分量只与径向位置有关,而与角度无关的应力状态。

3. 弹性体的应力因子有哪些?答案:弹性体的应力因子包括主应力、主应力差、偏应力、平均应力、最大剪应力、最大剪应力平面等。

弹性力学试题及答案

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显着的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 ? 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,设板在力P 作用下的面积改变为S ∆,由功的互等定理有: 将l ∆代入得:显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

4.图示曲杆,在b r =边界上作用有均布拉应力q ,在自由端作用有水平集中力P 。

弹性力学试题及答案

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学教材习题及解答

弹性力学教材习题及解答

1-1. 选择题a. 下列材料中,D属于各向同性材料。

A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。

b. 关于弹性力学的正确认识是A。

A. 计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。

c. 弹性力学与材料力学的主要不同之处在于B。

A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。

d. 所谓“完全弹性体”是指B。

A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。

2-1. 选择题a. 所谓“应力状态”是指B。

A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。

2-2. 梯形横截面墙体完全置于水中,如图所示。

已知水的比重为 ,试写出墙体横截面边界',,’的面力边界条件。

2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。

根据材料力学分析结果,该梁横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。

试写出楔形体的边界条件。

2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。

试写出球体的面力边界条件。

2-6. 矩形横截面悬臂梁作用线性分布载荷,如图所示。

试根据材料力学应力解答推导挤压应力σy的表达式。

3-1. 选择题a. 切应力互等定理根据条件B 成立。

A. 纯剪切;B. 任意应力状态;C. 三向应力状态;D. 平面应力状态;b. 应力不变量说明D.。

《弹性力学》试题参考答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题

弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年度弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

2、平面问题分为 和 。

平面应力问题 平面应变问题6、在弹性力学中规定,切应变以 时为正, 时为负,与 的正负号规定相适应。

直角变小 变大 切应力7、小孔口应力集中现象中有两个特点:一是 ,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。

二是 ,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。

孔附近的应力高度集中 , 应力集中的局部性四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。

(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ;其中,A ,B ,C ,D ,E ,F 为常数。

解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s fm l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。

(1)此组应力分量满足相容方程。

为了满足平衡微分方程,必须A =-F ,D =-E 。

此外还应满足应力边界条件。

(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。

上两式是矛盾的,因此,此组应力分量不可能存在。

2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。

试利用平衡微分方程求系数C 1,C 2,C 3。

解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 4、试写出平面问题的应变分量存在的必要条件,并考虑下列平面问题的应变分量是否可能存在。

(1)Axy x =ε,3By y =ε,2Dy C xy -=γ;(2)2Ay x =ε,y Bx y 2=ε,Cxy xy =γ; (3)0=x ε,0=y ε,Cxy xy =γ; 其中,A ,B ,C ,D 为常数。

解:应变分量存在的必要条件是满足形变协调条件,即y x xy xyy x ∂∂∂=∂∂+∂∂γεε22222 将以上应变分量代入上面的形变协调方程,可知:(1)相容。

(2)C By A =+22(1分);这组应力分量若存在,则须满足:B =0,2A =C 。

(3)0=C ;这组应力分量若存在,则须满足:C =0,则0=x ε,0=y ε,0=xy γ(1分)。

5、证明应力函数2by =ϕ能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0≠b )。

解:将应力函数2by =ϕ代入相容方程024422444=∂∂+∂∂∂+∂∂yy x x ϕϕϕ 可知,所给应力函数2by =ϕ能满足相容方程。

由于不计体力,对应的应力分量为b yx 222=∂∂=ϕσ,022=∂∂=x y ϕσ,02=∂∂∂-=y x xy ϕτ 对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:上边,2hy -=,0=l ,1-=m ,0)(2=-=-=h y xy x f τ,0)(2=-=-=h y y y f σ;下边,2hy =,0=l ,1=m ,0)(2===h y xy x f τ,0)(2===h y y y f σ;左边,2lx -=,1-=l ,0=m ,b f l x x x 2)(2-=-=-=σ,0)(2=-=-=l x xy y f τ;右边,2lx =,1=l ,0=m ,b f l x x x 2)(2===σ,0)(2===l x xy y f τ。

可见,上下两边没有面力,而左右两边分别受有向左和向右的均布面力2b 。

因此,应力函数2by =ϕ能解决矩形板在x 方向受均布拉力(b >0)和均布压力(b <0)的问题。

6、证明应力函数axy =ϕ能满足相容方程,并考察在如图所示的矩形板和坐标系中能解决什么问题(体力不计,0≠a )。

解:将应力函数axy =ϕ代入相容方程024422444=∂∂+∂∂∂+∂∂yy x x ϕϕϕ 可知,所给应力函数axy =ϕ能满足相容方程。

由于不计体力,对应的应力分量为022=∂∂=yx ϕσ,022=∂∂=x y ϕσ,a y x xy -=∂∂∂-=ϕτ2 对于图示的矩形板和坐标系,当板内发生上述应力时,根据边界条件,上下左右四个边上的面力分别为:上边,2hy -=,0=l ,1-=m ,a f h y xy x =-=-=2)(τ,0)(2=-=-=h y y y f σ;下边,2hy =,0=l ,1=m ,a f h y xy x -===2)(τ,0)(2===h y y y f σ;左边,2lx -=,1-=l ,0=m ,0)(2=-=-=l x x x f σ,a f l x xy y =-=-=2)(τ;右边,2lx =,1=l ,0=m ,0)(2===l x x x f σ,a f l x xy y -===2)(τ。

可见,在左右两边分别受有向下和向上的均布面力a ,而在上下两边分别受有向右和向左的均布面力a 。

因此,应力函数axy =ϕ能解决矩形板受均布剪力的问题。

7、如图所示的矩形截面的长坚柱,密度为ρ,在一边侧面上受均布剪力,试求应力分量。

解:根据结构的特点和受力情况,可以假定纵向纤维互不挤压,即设0=x σ。

由此可知022=∂∂=yx ϕσ将上式对y 积分两次,可得如下应力函数表达式())()(,21x f y x f y x +=ϕ将上式代入应力函数所应满足的相容方程则可得0)()(424414+dxx f d dx x f d y 这是y 的线性方程,但相容方程要求它有无数多的解(全柱内的y 值都应该满足它),可见它的系数和自由项都应该等于零,即0)(414=dx x f d , 0)(424=dxx f d 这两个方程要求I Cx Bx Ax x f +++=231)(, K Jx Ex Dx x f +++=232)(代入应力函数表达式,并略去对应力分量无影响的一次项和常数项后,便得2323)(Ex Dx Cx Bx Ax y ++++=ϕ对应应力分量为022=∂∂=yx ϕσgy E Dx B Ax y xy ρϕσ-+++=∂∂=26)26(22C Bx Ax yx xy ---=∂∂∂-=2322ϕτ以上常数可以根据边界条件确定。

左边,0=x ,1-=l ,0=m ,沿y 方向无面力,所以有0)(0==-=C x xy τ右边,b x =,1=l ,0=m ,沿y 方向的面力为q ,所以有q Bb Ab b x xy =--==23)(2τ上边,0=y ,0=l ,1-=m ,没有水平面力,这就要求xy τ在这部分边界上合成的主矢量和主矩均为零,即0)(00==⎰dx y bxyτ将xy τ的表达式代入,并考虑到C =0,则有0)23(230232=--=--=--⎰Bb Ab BxAx dx Bx Ax b b而00)(00=⋅=⎰dx y b xy τ自然满足。

又由于在这部分边界上没有垂直面力,这就要求y σ在这部分边界上合成的主矢量和主矩均为零,即0)(00==⎰dx y byσ,0)(00==⎰x d x y byσ将y σ的表达式代入,则有02323)26(2020=+=+=+⎰Eb Db Ex Dx dx E Dx b b022)26(230230=+=+=+⎰Eb Db Ex Dx xdx E Dx b b由此可得2bq A -=,b qB =,0=C ,0=D ,0=E 应力分量为0=x σ, gy b x b y q y ρσ-⎪⎭⎫ ⎝⎛-=312, ⎪⎭⎫ ⎝⎛-=23b x b x q xy τ虽然上述结果并不严格满足上端面处(y =0)的边界条件,但按照圣维南原理,在稍远离y =0处这一结果应是适用的。

9、如图所示三角形悬臂梁只受重力作用,而梁的密度为ρ,试用纯三次的应力函数求解。

解:纯三次的应力函数为3223dy cxy y bx ax +++=ϕ相应的应力分量表达式为dy cx xf yx x 6222+=-∂∂=ϕσ, gy by ax yf x y y ρϕσ-+=-∂∂=2622, cy bx y x xy 222--=∂∂∂-=ϕτ 这些应力分量是满足平衡微分方程和相容方程的。

现在来考察,如果适当选择各个系数,是否能满足应力边界条件。

上边,0=y ,0=l ,1-=m ,没有水平面力,所以有02)(0==-=bx y xy τ对上端面的任意x 值都应成立,可见0=b同时,该边界上没有竖直面力,所以有06)(0==-=ax y y σ对上端面的任意x 值都应成立,可见0=a因此,应力分量可以简化为dy cx x 62+=σ,gy y ρσ-=,cy xy 2-=τ斜面,αtan x y =,ααπsin 2cos -=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=l ,()ααcos cos =-=m ,没有面力,所以有()()⎪⎩⎪⎨⎧=+=+==00tan tan αατστσx y xy y x y yx x l m m l 由第一个方程,得()0sin tan 6sin 4cos tan 2sin tan 62=--=-+-αααααααdx cx cx dx cx对斜面的任意x 值都应成立,这就要求0tan 64=--αd c由第二个方程,得0sin sin tan 2cos tan sin tan 2=-=-αρααααρααgx cx gx cx对斜面的任意x 值都应成立,这就要求0tan 2=-g c ρα(1分)由此解得αρcot 21g c =(1分),αρ2cot 31g d -= 从而应力分量为αραρσ2cot 2cot gy gx x -=, gy y ρσ-=, αρτcot gy xy -=设三角形悬臂梁的长为l ,高为h ,则l h=αtan 。

相关文档
最新文档