基于 PLC 和变频器控制的恒压供水系统设计

合集下载

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计

基于PLC的变频恒压供水系统的设计一、引言随着城市人口的增加和经济的发展,对水资源的需求也越来越大。

传统的供水系统存在着供水压力波动大、能耗高的问题,为了解决这些问题,本文将利用PLC技术设计一种基于变频恒压的供水系统,从而减少能耗,提高供水质量和稳定性。

二、PLC介绍PLC是可编程逻辑控制器的缩写,是一种集数字、模拟输入输出、计数、定时功能于一体的工业自动化控制器。

其核心是CPU模块,包含CPU和内存,可以接收输入信号、进行逻辑处理、控制输出信号。

三、供水系统工作流程设计1. 水泵控制PLC通过传感器采集水泵出水压力信号,并与设定值进行比较,通过调节水泵的转速,使出水压力保持在恒定值。

当压力低于设定值时,PLC将信号发送给变频器,控制水泵转速逐渐增大;当压力超过设定值时,PLC将信号发送给变频器,控制水泵转速逐渐减小。

通过不断调整水泵的转速,使水泵输出的水压保持在恒定值,实现恒压供水。

2. 水箱控制系统还包括一个水箱,可根据水位的高低来控制水泵的工作。

当水箱的水位低于设定值时,PLC将信号发送给水泵,启动水泵工作,将水从水源输送至水箱中;当水箱的水位达到设定值时,PLC将信号发送给水泵,停止水泵工作。

通过控制水泵的启停,可以实现水箱水位的自动控制,保证水箱有足够的水源供应。

3. 水质检测为了保证供水质量,系统还将设置水质检测装置。

PLC可以定时采集水质传感器的数据,并与设定值进行比较。

如果水质偏离设定值范围,PLC将及时发出警报信号,并进行相应的处理,例如关闭水泵。

四、系统优势1. 能耗低传统的供水系统通过开启或关闭水泵来控制供水压力,而PLC基于变频恒压技术可以根据实时压力需求调整水泵的转速,实现恒压供水。

这样既节省了能量,又降低了噪音和设备的磨损。

2. 供水质量稳定PLC可以实时监测水质,并进行相应的调节和处理。

及时发现水质异常,可以通过关闭水泵或其他措施来保证供水质量稳定,提高供水系统的可靠性和安全性。

PLC与变频器控制恒压供水系统设计方案

PLC与变频器控制恒压供水系统设计方案

PLC与变频器控制恒压供水系统设计方案随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统已逐渐取代原有的水塔供水系统,广泛应用于多层住宅小区生活消防供水系统。

然而,由于新系统多会继续使用原有系统的部分旧设备(如水泵),在对原有供水系统进行变频改造的实践中,往往会出现一些在理论上意想不到的问题。

本文介绍的变频控制恒压供水系统,是在对一个典型的水塔供水系统的技术改造实践中,根据尽量保留原有设备的原则设计的,该系统很好的解决了旧设备需要频繁检修的问题,既体现了变频控制恒压供水的技术优势,同时有效的节省了资金。

1、系统介绍变频恒压供水系统原理,它主要是由PLC、变频器、PID调节器、TC时间控制器、压力传感器、液位传感器、动力控制线路以及3台水泵等组成。

用户通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。

通过安装在出水管网上的压力传感器,把出口压力信号送入PID调节器,经运算与给定压力参数进行比较,得出一调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC控制器加泵。

根据用水量的大小由PLC控制工作泵数量的增减及变频器对水泵的调速,实现恒压供水。

当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。

同时系统配备的时间控制器和PID控制器,使其具有定时换泵运行功能(即钟控功能,由时间控制器实现)和双工作压力设定功能(PID控制器和时间控制器实现)。

此外,系统还设有多种保护功能,尤其是硬件/软件备用水泵功能,充分保证了水泵的及时维修和系统的正常供水。

2 、工作原理2.1 运行方式该系统有手动和自动两种运行方式:⑴. 手动运行按下按钮启动或停止水泵,可根据需要分别控制1#-3#泵的启停。

该方式主要供检修及变频器故障时用。

⑵. 自动运行合上自动开关后,1#泵电机通电,变频器输出频率从0Hz上升,同时PID调节器接收到自压力传感器的标准信号,经运算与给定压力参数进行比较,将调节参数送给变频器,如压力不够,则频率上升到50Hz,1#泵由变频切换为工频,启2#变频,变频器逐渐上升频率至给定值,加泵依次类推;如用水量减小,从先启的泵开始减,同时根据PID调节器给的调节参数使系统平稳运行。

基于plc与变频器控制的恒压供水系统

基于plc与变频器控制的恒压供水系统

摘要随着人们对生活水平要求的不断提高和经济社会发展的需求;再加上目前能源的紧缺,严重制约着经济社会的发展。

利用现有的成熟技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势。

本文介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。

在经过PID运算,通过PLC控制变频与工频的切换,实现闭环自动调节恒压变量供水。

运行结果表明,该系统具有压力稳定,结构简单,工作可靠等特点。

而本设计是针对居民生活用水而设计的。

电动机泵组成由三台水泵组成,由变频器或工频电网供电,根据供水系统出水口的压力和流量来控制变频器电动机泵的速度和切换,使系统运行在最合理的状态,保证按需供水。

关键词:变频器,恒压供水,PLC目录第一章绪论 (4)1.1变频恒压供水系统的国内研究现状 (4)1.2恒压供水系统的基本构成 (5)1.3课题研究的目的和意义 (5)第二章PLC功能选择及应用 (5)2.1 模拟量输入模块的功能及与PLC系统的连接 (5)2.2 模拟量输入模块缓冲存储器(BFM)的分配 (6)2.3 模拟量输出模块的功能及PLC系统连接 (6)2.4变频器的功能选择及原理 (7)2.4.1 变频器的分类及工作原理 (8)2.4.2 变频器硬件选择 (8)2.5压力传感器的作用及使用方法 (9)第三章系统设计 (10)3.1系统要求....................................................................... (10)3.2控制系统的I/O及地址分配 (10)3.3 PLC系统选型 (11)3.4 电器控制系统原理图 (11)3.4.1 主电路图 (11)3.4.2 控制电路图 (12)第四章系统程序设计 (12)4.1系统要求的工作泵组数量管理 (12)4.2程序的结构及程序功能的实现 (13)4.3 系统的运行分析 (14)总结 (14)致谢 (15)参考文献 (15)第一章绪论随着社会经济的迅速发展,水对人民生活与工业生产的影响日益加强,人民对供水的质量和供水系统可靠性的要求不断提高。

基于PLC和变频器控制的恒压供水系统设计

基于PLC和变频器控制的恒压供水系统设计
inverter. It is also explains hardware configuration and control. The system can solve the problem of the water supply in a high building or industry etc. This system has the advantages of saving energy, high reliability, easy control, simple operation, economic and easy matches.
应用技术
基于 PLC 和变频器控制的恒压供水系统设计
赵华军 钟波
广州铁路职业技术学院
摘要 文章介绍一种基于三菱 PLC 和变频器控制恒压供水系统 详细地介绍了硬件的构成和控制流程 系
统较好地解决高层建筑 工业等恒压供水需求 系统具有节能 工作可靠 自动控制程度高 经济易配置等优点
关键词 变频器 PID PLC 恒压供水
(上接第 17 页)
参考文献
[1] Wonderware Corporation Wonderware FactorySuiteTM INTOUCH User Manual, 2000-6-06.
[2] Rockwell Automation Allen-Bradley Logix5550 Controller User Manual, Cat. No. 1756-L1, L1M1on. http://www.
增加水泵的工作数量
执行减泵程序 是 供水压力过高 需要
减少水泵的工作数量
执行水泵轮换程序 是 避免某台水泵长时间
工作 进行水泵轮换
图 4 PLC 程序流程图

基于PLC变频恒压供水控制系统设计

基于PLC变频恒压供水控制系统设计

基于PLC变频恒压供水控制系统设计PLC变频恒压供水控制系统的设计供水系统是一种常见的工业和建筑领域常用的系统。

PLC变频恒压供水控制系统是一种可以控制和调节水泵的电气控制系统,以实现恒压供水的目的。

下面将介绍一个基于PLC变频恒压供水控制系统的设计。

设计目标:1.实现恒定的供水压力,不受进水压力和水流量的波动影响。

2.实现多台水泵的协调运行,实现水泵的均衡负荷运行,延长水泵寿命。

3.实现故障自动检测和报警,提高供水系统的可靠性。

系统组成:1.传感器:使用压力传感器和流量传感器来感知进水压力和供水流量。

2.PLC:使用可编程逻辑控制器(PLC)来实现逻辑控制和运算。

3.变频器:使用变频器来控制水泵的转速,从而实现恒扬程供水控制。

4.水泵:使用多台水泵来实现供水。

系统工作原理:1.系统启动:当水泵系统运行时,PLC会控制最初的启动过程,按照设定的启动顺序依次启动水泵,避免同时启动造成的电网冲击。

2.进水压力检测:系统通过压力传感器检测进水压力,当进水压力小于设定的最小进水压力时,PLC会自动启动水泵,以提供足够的进水压力。

3.恒压供水控制:PLC通过控制变频器,改变水泵的转速来实现供水流量和压力的稳定。

当供水压力低于设定的最小供水压力时,PLC会增加水泵的转速以提供足够的供水压力;当供水压力高于设定的最大供水压力时,PLC会降低水泵的转速以避免过高的压力。

4.水泵协调运行:通过PLC控制,多台水泵可以根据供水流量需求实现均衡负载运行,避免其中一台水泵长时间运行。

系统优势:1.系统能够自动检测供水压力,保持恒定的供水压力,避免由于进水压力和水流量的波动而导致的供水压力变化。

2.系统能够实现多台水泵的协调运行,避免单一水泵长时间运行而导致的设备损坏。

3.系统具有快速故障检测和报警功能,及时发现水泵等设备的故障,减少停机时间。

总结:基于PLC变频恒压供水控制系统的设计可以实现恒定的供水压力,提高供水系统的稳定性和可靠性。

基于PLC 和变频器控制的恒压供水系统

基于PLC 和变频器控制的恒压供水系统

基于PLC 和变频器控制的恒压供水系统摘要本文设计介绍了一种基于PLC和变频器的变频恒压供水系统,由PLC 进行逻辑控制,由变频器进行压力调节。

PLC和变频器作为控制系统的核心部件,经过变频器内部的PID运算,通过PLC控制变频与工频的切换,通过传感器反馈压力信号,实现闭环自动调节恒压供水,基本实现了高质量恒压供水,降低电能损耗,延长了加压泵的使用寿命,通过故障处理基本实现了不间断供水。

关键词PLC;变频器;传感器0 引言在城乡供水系统中,随着高层建筑的广泛建设以及居民小区的规模化发展,原有的高位水塔供水系统已经不能满足恒压供水的要求,采用变频恒压控制是现代供水控制系统的新型方式,变频恒压供水系统可有效地降低“水锤”对泵体冲击、节约电能、维持管网水压恒定、实现无人值守等。

具有较大的经济和社会意义。

本文论述了一种基于PLC的变频恒压供水系统。

利用PLC加以不同功能的传感器、变频器,根据压力传感器测得管网压力的大小及变化来控制加压泵的转速及数量,使水管的压力始终保持在合适的范围内,从而达到恒压供水的目的。

1 恒压供水系统原理恒压供水的基本思路是:采用电机调速装置控制泵的转速,并自动调整泵的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节能的目的。

系统的控制目标是泵站总管的出水压力。

系统任意设定供水压力值,其与反馈总管的压力值通过PID调节后控制调速装置,以调节加压泵的运行速度,从而调节系统的供水压力。

与传统的恒速泵供水系统、水塔高位水箱供水系统和气压罐供水系统相比,调速恒压供水系统具有供水质量高、灵活性强、能耗少、电动机起制动平稳、无水锤效应等优点,从而获得了广泛应用。

2 系统总体设计2.1 系统概况本系统拟在控制2台55kW和3台30kW加压泵相互配合完成恒压供水。

本文将以“一拖三”(一台变频器拖动三台加压泵,加压泵功率为30kW),“一拖二”(一台变频器拖动两台加压泵,加压泵功率为55kW)的设备介绍PLC与变频器组成的恒压供水系统的工作原理。

基于PLC和变频器的恒压供水系统设计

基于PLC和变频器的恒压供水系统设计

本论文结合我国中小城市供水厂的现状,设计了一套基于PLC和变频器的恒压供水自动控制系统。

变频调速恒压供水自动控制系统由可编程控制器、变频器、水泵电机组、传感器、以及控制柜等构成。

在变频调速恒压供水系统中,三台水泵的调节是通过变频器来改变电源的频率f来改变电机的转速n,从而改变水泵性能曲线得以实现的。

变频调速恒压供水自动控制系统的控制器经历了从继电器—接触器,到单片机,再到PLC。

而变频器也从多端速度控制、模拟量输入控制,发展到专用变频器。

从而实现了城市供水系统简单、高效、低耗能的功能,而且还实现自动化的控制过程。

通过编程软件设计了一个用于供水系统压力控制的PID控制器,PID控制器内置在PLC中,该控制器对于压力给定值与测量值的偏差进行处理,实时控制变频器的输出电压和频率,进而改变水泵电动机的转速来改变水泵出水口流量,实现整个供水的压力的自动调节,使压力稳定在设定值附近。

关键词:PLC 变频调速恒压供水节能运行摘要 (I)1 绪论 (1)1.1 恒压供水问题的提出 (1)1.2 恒压供水系统的国内外研究现状 (1)1.3 本课题的主要工作 (2)2 变频恒压供水的工作原理 (3)2.1 供水系统的基本特性 (3)2.2 变频与变压(VVVF)原理 (3)2.3 变频调速的原理 (4)2.4 水泵调速运行的节能原理 (5)2.5 变频恒压供水的特点 (7)3 变频恒压供水系统的硬件设计 (8)3.1 变频恒压供水系统方案设计 (8)3.2 变频恒压供水系统结构设计 (9)3.3 变频恒压供水系统的构成 (10)3.3.1 压力传感器选择 (10)3.3.2 系统主要配置的选型 (11)3.3.3 MM420变频器概述 (14)3.4 基于S7-200 PLC恒压供水系统设计 (17)3.4.1 S7-200 PLC概述 (17)3.4.2 系统主电路设计 (19)3.4.3 控制系统接线图 (20)3.4.4 PLC外围接线图 (21)4 变频恒压供水系统软件设计 (23)4.1 恒压供水系统的控制流程 (23)4.2 供水系统加减水泵分析 (24)4.3 恒压供水中PID控制设计 (24)4.4 控制系统程序设计 (27)4.4.1供水系统的I/O分配 (27)4.4.2 供水系统所用软元件配置 (28)4.4.3手动自动设计 (30)4.4.4 水泵变/工频程序设计 (32)4.4.5 PLC和变频器通讯 (37)4.5 控制系统的调试 (39)结论 (41)致谢 (42)参考文献 (43)1 绪论1.1 恒压供水问题的提出众所周知,水是人类生活、生产中不可缺少的重要物质,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低,而随着我国社会经济的发展,人们生活水平的不断提高,以及住房制度改革的不断深入,城市建设发展十分迅速,同时也对城市的基础设施建设提出了更高的要求。

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化的快速发展,供水系统的稳定性和效率成为了关键性的问题。

恒压供水系统作为解决这一问题的有效手段,已经得到了广泛的应用。

其中,基于PLC(可编程逻辑控制器)的恒压变频供水系统以其高效、稳定、智能的特点,在供水领域得到了极大的关注。

本文将详细介绍基于PLC恒压变频供水系统的设计与实现。

二、系统设计1. 系统架构设计本系统主要由三部分组成:PLC控制器、变频器和供水泵站。

其中,PLC控制器负责接收压力传感器传来的信号,通过运算处理后,控制变频器调节供水泵的转速,从而达到恒压供水的目的。

2. PLC控制器设计PLC控制器是本系统的核心部分,它需要接收压力传感器的实时数据,对数据进行处理和计算,然后发出控制指令。

此外,还需要具有与其他设备通信的能力。

在设计过程中,应充分考虑PLC的稳定性、可扩展性、抗干扰能力等因素。

3. 变频器与供水泵站设计变频器是连接PLC控制器和供水泵站的桥梁,它接收PLC 的控制指令,调节供水泵的转速。

供水泵站则负责实际的供水任务。

在设计过程中,应考虑泵站的布局、管道的设计、泵的选型等因素,以确保整个系统的稳定性和效率。

三、系统实现1. 硬件实现硬件部分主要包括PLC控制器、变频器、压力传感器、供水泵站等设备的选型和安装。

在选型过程中,应充分考虑设备的性能、价格、维护等因素。

安装过程中,应遵循相关的安全规范,确保系统的稳定性和安全性。

2. 软件实现软件部分主要包括PLC程序的编写和调试。

在编写过程中,应充分考虑系统的控制逻辑、数据处理、通信协议等因素。

在调试过程中,应对系统进行反复测试和优化,确保系统的稳定性和准确性。

四、系统测试与运行1. 系统测试在系统安装完成后,应进行系统测试。

测试过程中,应检查各部分的连接是否正常,系统运行是否稳定,数据是否准确等。

如果发现问题,应及时进行排查和修复。

2. 系统运行经过测试后,系统可以正式投入运行。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。

随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。

在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。

而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。

恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。

基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。

研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。

1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。

传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。

对于基于PLC的恒压供水系统的研究具有重要的意义。

通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。

本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。

1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。

通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。

通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。

通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。

基于plc控制的恒压供水系统设计

基于plc控制的恒压供水系统设计

基于PLC的恒压供水系统任务设计书基于PLC的恒压供水系统任务设计书一、系统概述众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。

主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。

在此情况下,我们小组讨论并设计了该“基于PLC的恒压供水系统”。

本文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统。

变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器等构成。

本系统包含三台水泵电机,它们组成变频循环运行方式。

采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。

压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。

二、总体方案设计PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图1所示:图1变频恒压供水系统控制流程图从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为:(l) 执行机构:执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。

(2) 信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。

《2024年基于PLC的变频恒压供水系统的设计》范文

《2024年基于PLC的变频恒压供水系统的设计》范文

《基于PLC的变频恒压供水系统的设计》篇一一、引言随着城市化进程的不断推进和居民生活质量的提升,对供水的需求和质量要求也越来越高。

为满足这些需求,我们提出了一种基于PLC的变频恒压供水系统设计方案。

此系统结合了可编程逻辑控制器(PLC)与变频技术,有效控制了水泵的运行状态,达到了稳定供水的目的。

该设计不仅能实现水压的稳定输出,还可以降低能源消耗,具有很高的实际应用价值。

二、系统概述基于PLC的变频恒压供水系统主要由以下几个部分组成:PLC控制器、变频器、水泵、传感器和管网等。

其中,PLC控制器和变频器是该系统的核心部分,负责实现水压的稳定输出和能源的节约。

三、系统设计1. PLC控制器设计PLC控制器是整个系统的“大脑”,负责接收传感器采集的数据,并根据这些数据对变频器进行控制,以实现水压的稳定输出。

在设计过程中,我们选择了高性能的PLC控制器,其处理速度快、可靠性高,可以确保系统的稳定运行。

2. 变频器设计变频器是实现恒压供水的关键设备。

它可以根据PLC控制器的指令调整水泵的转速,从而达到控制水压的目的。

我们选择了高性能的变频器,具有较高的转换效率和稳定的运行性能。

3. 水泵设计水泵是供水系统的核心设备。

在设计过程中,我们选择了高效、低噪音的水泵,以满足供水的需求。

同时,我们还考虑了水泵的节能性能,选择了能效较高的水泵。

4. 传感器设计传感器负责采集水压、流量等数据,为PLC控制器提供控制依据。

我们选择了高精度的传感器,以确保数据的准确性。

5. 管网设计管网是供水系统的“血管”,其设计直接影响到供水的质量和效率。

我们采用了高强度、耐腐蚀的管道材料,并进行了合理的布局和安装,以确保供水的稳定和高效。

四、系统实现在系统实现过程中,我们首先对各个设备进行了选型和采购,然后进行了设备的安装和调试。

在调试过程中,我们对系统的各项性能进行了测试和优化,确保系统能够稳定、高效地运行。

最后,我们对系统进行了实际运行测试,验证了该设计的可行性和实用性。

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计

基于PLC的恒压供水系统的设计恒压供水系统是一种实现供水自动控制和恒定水压的系统,其中PLC(可编程逻辑控制器)是系统的核心控制设备。

本文将介绍基于PLC的恒压供水系统的设计。

需要明确恒压供水系统的工作原理。

恒压供水系统通过感应水压信号,实时检测并调节水泵的运行状态,以保持恒定的水压。

当水压下降时,PLC将接收到水压信号,并根据预设的控制逻辑,自动启停水泵。

当水压恢复到设定的压力范围内时,PLC会停止水泵的运行。

1. 系统布局设计:首先需要对供水系统的布局进行设计。

包括水泵的位置安排、水源与供水管道的连接方式等。

通过合理的布局设计,可以确保供水系统的稳定运行。

2. PLC选型和安装:根据实际需求选择合适的PLC设备,并进行安装。

选型时需要考虑PLC的输入输出点数量,通信接口等因素。

安装时需要按照PLC的安装手册进行操作,确保PLC设备的正常运行。

3. 传感器的选择和安装:恒压供水系统的关键是实时检测水压信号。

需要选择合适的传感器来感应水压信号,并将信号输入到PLC中。

一般可以选择压力传感器或液位传感器作为水压信号的检测装置。

安装传感器时需要遵循传感器的安装手册,确保传感器的准确度和可靠性。

4. PLC程序编写:根据系统需求,编写PLC程序。

程序的编写需要根据实际情况设置水压的设定值、水泵的启停逻辑等控制策略。

编写完程序后,需要进行PLC程序的调试和测试,确保程序的正确性和稳定性。

5. 系统调试和优化:系统调试是确保恒压供水系统正常运行的关键步骤。

调试过程中需要检查各个设备的连接情况、信号传输的准确性等。

同时还需要对恒压供水系统进行性能优化,例如设置合理的启停控制逻辑,调整设定的水压范围等,以提高供水系统的稳定性和节能效果。

6. 系统运行和维护:系统调试完成后,可以正式启动恒压供水系统的运行。

在系统运行过程中,需要定期检查和维护系统设备,保持设备的正常运行。

同时也需要注意系统的安全性,定期检查阀门、电气连接等,确保供水系统的安全运行。

基于PLC与变频器实现恒压供水控制系统

基于PLC与变频器实现恒压供水控制系统

基于PLC与变频器实现恒压供水控制系统基于PLC与变频器实现恒压供水控制系统一、项目描述传统的生活及生产供水的方法是通过建造水塔维持水压。

但是,建造水塔需要花费财力,水塔还会造成水的二次污染。

那么,可不可以不借助水塔来实现恒压供水呢?当然可以,但是要解决水压随用水量的大小变化的问题,通常的办法是:用水量大时,增加水泵数量或提高水泵的转动速度以保持管网中的水压不变,用水量小时又需做出相反的调节。

这就是恒压供水的基本思路。

交流变频器的诞生和PLC的运用为水泵转速的平滑性连续调节提供了方便。

恒压供水控制系统的基本控制策略采用电动机调速装置与可编程控制器(PLC)构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。

系统的控制目标是泵站总管的出水压力,系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入CPU运算处理后,发出控制指令,控制运行变量泵电动机的转速,从而达到给水总管压力稳定在设定的压力值上。

恒压供水就是利用变频器的PID或PI功能实现的工业过程的闭环控制。

即将压力控制点测的压力信号(4-20mA)直接输入到变频器中,由变频器将其与用户设定的压力值进行比较,并通过变频器内置PID运算将结果转换为频率调节信号调整水泵电机的电源频率,从而实现控制水泵转速。

供水系统选用原则水泵扬程应大于实际供水高度,水泵流量总和应大于实际最大供水量。

二、项目要求1.水泵功率:7.5kw.2.恒定压力:3.5mpa三、现恒压供水的方案设计供水系统采用一台三菱(FX2N系列)PLC控制一台三菱(FR-E500)变频器,并通过接触器切换实现一台变频器控制三台水泵的运转,为保证系统的可靠性,本系统采用转换开关来实现工频/变频之间的转换,在变频操作方式下,交流接触器之间采用互锁控制方式,同理,在工频操作方式下,交流接触器之间也采用互锁控制方式。

《2024年基于PLC的变频恒压供水系统的设计》范文

《2024年基于PLC的变频恒压供水系统的设计》范文

《基于PLC的变频恒压供水系统的设计》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率成为了关键因素。

变频恒压供水系统因其良好的节能效果和稳定的水压输出,被广泛应用于各种工业和民用领域。

本文将介绍一种基于PLC(可编程逻辑控制器)的变频恒压供水系统的设计,通过精确控制水泵的运转,实现恒压供水,并提高整个系统的可靠性和灵活性。

二、系统设计概述基于PLC的变频恒压供水系统主要由水泵、变频器、压力传感器、PLC控制器等部分组成。

其中,PLC控制器作为整个系统的核心,负责接收压力传感器的信号,根据预设的压力值调整变频器的输出频率,从而控制水泵的运转,实现恒压供水。

三、硬件设计1. 水泵:选用高效、低噪音的水泵,根据实际需求选择合适的型号和数量。

2. 变频器:选用性能稳定、调速范围广的变频器,与水泵匹配,实现精确控制。

3. 压力传感器:安装在水管网络上,实时监测水压,并将信号传输给PLC控制器。

4. PLC控制器:作为整个系统的核心,选用高性能、高可靠性的PLC控制器,具备强大的数据处理和逻辑控制能力。

四、软件设计1. 数据采集与处理:PLC控制器通过压力传感器实时采集水压数据,经过数据处理后,与预设的压力值进行比较。

2. 控制算法:根据比较结果,采用PID(比例-积分-微分)控制算法,调整变频器的输出频率,从而控制水泵的运转,实现恒压供水。

3. 逻辑控制:PLC控制器根据实际需求,实现系统的逻辑控制,如自动启停、故障报警等。

五、系统实现1. 连接硬件:将水泵、变频器、压力传感器等硬件设备连接起来,形成完整的供水系统。

2. 编程与调试:使用专业的编程软件对PLC控制器进行编程,实现数据采集、处理、控制算法和逻辑控制等功能。

经过反复调试,确保系统稳定、可靠地运行。

3. 安装与调试:将编程好的PLC控制器安装到系统中,进行实际运行测试。

根据测试结果,对系统进行优化和调整,确保系统达到预期的恒压供水效果。

基于PLC的变频调速恒压供水系统设计与实现

基于PLC的变频调速恒压供水系统设计与实现

基于PLC的变频调速恒压供水系统设计与实现一、本文概述随着工业自动化的发展,变频调速技术在供水系统中的应用越来越广泛。

基于PLC(可编程逻辑控制器)的变频调速恒压供水系统,以其高效、稳定、节能的特点,成为当前供水系统设计的重要趋势。

本文旨在探讨基于PLC的变频调速恒压供水系统的设计与实现方法,以期为相关领域的工程应用提供有益的参考。

文章首先介绍了供水系统的基本构成和功能需求,包括恒压供水的重要性以及变频调速技术在供水系统中的应用优势。

随后,详细阐述了基于PLC的变频调速恒压供水系统的总体设计方案,包括硬件选型、软件编程、系统控制策略等方面。

在此基础上,文章重点探讨了系统实现过程中的关键技术问题,如PLC编程实现、变频器的选择与配置、压力传感器信号的采集与处理等。

通过本文的研究,期望能够为供水系统的设计与实现提供一种有效、可靠的解决方案,同时推动变频调速技术在供水领域的应用和发展。

二、系统需求分析和设计目标随着现代工业技术的快速发展,供水系统的稳定性和效率成为了评价一个城市或企业基础设施水平的重要指标。

传统的供水系统往往存在能耗高、调节性差、压力不稳定等问题,无法满足现代供水系统的要求。

为了解决这些问题,本文提出了一种基于PLC的变频调速恒压供水系统设计方案。

稳定性需求:供水系统需要保持长时间的稳定运行,确保供水压力的稳定性,避免因压力波动对供水质量造成影响。

节能性需求:传统的供水系统往往存在能耗高的问题,新的供水系统需要采用先进的控制技术,降低能耗,提高能源利用效率。

调节性需求:供水系统需要能够根据实际需求,自动调节供水流量和压力,以满足不同时段、不同区域的供水需求。

实现供水系统的恒压供水:通过PLC控制系统,实时监测供水压力,根据压力变化自动调节变频器的输出频率,从而控制水泵的转速,实现恒压供水。

提高供水系统的稳定性:采用先进的控制算法,确保供水系统在各种工况下都能保持稳定的运行状态,避免因压力波动对供水质量造成影响。

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》范文

《基于PLC恒压变频供水系统的设计与实现》篇一一、引言随着现代工业和城市化进程的快速发展,供水系统的稳定性和效率问题越来越受到关注。

恒压变频供水系统作为一种先进的供水技术,通过精确控制水泵的转速和输出,实现了水压的稳定供应。

本文将详细介绍基于PLC(可编程逻辑控制器)的恒压变频供水系统的设计与实现过程。

二、系统设计1. 需求分析在系统设计阶段,首先需要对供水系统的需求进行详细分析。

包括供水范围、水压要求、水泵数量及功率等。

同时,还需考虑系统的稳定性、可维护性及节能性等因素。

2. 硬件设计硬件设计是恒压变频供水系统的基础。

主要包括PLC控制器、变频器、水泵、压力传感器等设备。

其中,PLC控制器负责整个系统的控制与协调,变频器用于调节水泵的转速,压力传感器则用于实时监测水压。

3. 软件设计软件设计是实现恒压变频供水系统的关键。

通过PLC编程,实现对水泵的转速、输出及水压的精确控制。

同时,还需设计友好的人机界面,方便操作人员对系统进行监控与操作。

三、系统实现1. PLC编程PLC编程是实现恒压变频供水系统的核心。

通过编写梯形图或指令表,实现对水泵的转速、输出及水压的精确控制。

在编程过程中,需充分考虑系统的稳定性、响应速度及节能性等因素。

2. 硬件连接与调试将PLC控制器、变频器、水泵、压力传感器等设备连接起来,进行系统调试。

确保各设备之间能够正常通信,并实现精确的控制与协调。

3. 人机界面开发开发友好的人机界面,方便操作人员对系统进行监控与操作。

人机界面应具有直观、易操作、信息丰富等特点,能够实时显示水压、水泵状态等信息。

四、系统测试与优化1. 系统测试在系统测试阶段,需要对恒压变频供水系统进行全面的测试,包括稳定性测试、响应速度测试、节能性测试等。

确保系统能够满足实际需求。

2. 参数优化根据测试结果,对系统的参数进行优化,以提高系统的性能和稳定性。

优化过程中,需充分考虑系统的实际运行情况及外界环境因素。

基于PLC变频调速恒压供水系统设计设计

基于PLC变频调速恒压供水系统设计设计

摘要根据城市居民用水标准为前提和小型自来水厂的供水要求,自行设计了基于PLC变频调速恒压供水系统。

恒压供水系统是指用户端在任何时候,不管用水量的大小,总能保证管网中的水压恒的基本定。

变频调速恒压供水系统利用PLC、变频器、压力变送器和水泵机组组成闭环控制系统,采用了PLC进行逻辑控制,变频器对水泵机组的调速。

本系统是用3台水泵电机的变频循环运行方式,变频器和PLC作为系统控制的核心部件,时刻跟踪压力变送器检测到的管网压力和给定压力的偏差变化,经PLC内部进行PID运算,通过PLC控制变频和工频的切换,自动控制水泵的投入台数和控制变频器的输出频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。

本系统是采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则,避免了水泵的长时间运行而造成电机的损坏和减少寿命,还增加了液位变送器的实时监控水泵进水源防止水泵的空抽而损坏水泵电机和报警系统是反应系统是否运行正常,水泵电机是否过载、变频器是否异常。

关键词:PLC、变频调速、恒压供水系统、压力变送器、液位变送器ABSTRACTThis paper is based on residential water standards for water supply requirements of the premise and waterworks, to design a PLC-based frequency control water supply system. Water Supply System means the size of the client at any time, regardless of water use, always ensure that the water pressure constant in the pipe network in the set. Frequency control water supply system uses PLC, inverter, pressure transmitter, and the pump unit to form a closed loop control system using PLC logic control, the inverter speed control of pump units.This system is the conversion cycle operation mode of the water pump motor, inverter and PLC as the core component of the system control keeps track of pressure transmitter detected the pipe network pressure and a given pressure change in error, the PID by the PLC internal operation by the PLC to control the switching of the variable frequency and power frequency, automatic control of pump input the number of units and control of inverter output frequency, and thus change the speed of the pump motor to change the supply quantity, and ultimately to maintain the stability of the pipe network pressure near the set value. This system uses the converter to achieve soft-start and frequency control three-phase water pump motor run switch using the principle of "first initial first stop" to avoid the long-running of the pump and cause damage and reduce the life of the motor, but also increase a real-time monitoring of the level transmitter pump into the empty pumping of water to prevent pump damage to the pump motor and alarm system is the response system is functioning properly, whether the pump motor overload, the inverter is abnormal.Keywords:PLC, Frequency Control, Water Supply System, pressure transmitter, level transmitter目录1 绪论 (1)1.1 选题的背景和意义 (1)1.2 变频恒压供水的特点及应用 (2)1.2.1 变频恒压供水代替传统恒压供水的优点 (2)1.2.2 变频恒压供水的特点 (3)1.2.3 变频调速恒压供水的应用 (3)1.3 变频恒压供水系统的发展方向 (3)1.3.1 变频调速技术的发展状况 (3)1.3.2 变频恒压供水系统的研究成果 (4)1.3.3 变频恒压供水系统的发展趋势 (5)1.4本课题的主要研究内容 (5)2 变频恒压供水系统的理论分析 (6)2.1系统概述和节能原理 (6)2.1.1 系统概述 (6)2.1.2 节能原理 (6)2.2电动机的调速原理 (7)2.3 变频恒压供水系统的控制方案 (8)2.3.1 控制方案的选择 (8)2.3.2 系统的组成及原理图 (9)2.3.3 系统控制流程 (11)2.3.4 水泵切换条件分析 (12)3 系统的硬件设计 (14)3.1 供水设备的选择原则 (14)3.2 系统主要设备的选型 (15)3.2.1 PLC及其扩展模块的选型 (16)3.2.2 变频器的选型 (20)3.2.3 压力变送器的选型 (24)3.2.4 液位变送器的选型 (25)3.3 系统主电路、控制电路分析及其设计 (26)3.3.1 系统主电路分析及其设计 (26)3.3.2 系统控制电路分析及其设计 (28)3.4 PLC的I/O分配及外围接线图 (30)4 系统的软件设计 (33)4.1 系统软件设计分析 (33)4.2 PLC程序设计 (34)4.2.1控制系统主程序设计 (35)4.2.2 控制系统子程序设计 (38)4.3 PID控制器参数整定 (41)4.3.1 PID控制及其控制算法 (41)4.3.2 变频恒压供水系统的近似数学模型 (43)4.3.3 PID参数整定 (43)5 结束语和展望 (45)5.1 结束语 (45)5.2 展望 (45)参考文献 (47)致谢 (48)附录A 主程序梯形图 (49)附录B 英文文献 (55)附录C 中文翻译 (61)1 绪论1.1 选题的背景自从改革开放以来,我国国民经济发展迅速,人民生活水平快速提高。

(完整版)基于PLC的变频恒压供水系统的设计毕业论文

(完整版)基于PLC的变频恒压供水系统的设计毕业论文

一、课题简介随着变频技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统以其环保、节能和高品质的供水质量等特点,广泛应用于多层住宅小区及高层建筑的生活、消防供水中。

变频恒压供水的调速系统可以实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。

在实际应用中如何充分利用专用变频器内置的各种功能,对合理设计变频恒压供水设备、降低成本、保证产品质量等有着重要意义。

变频恒压供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。

目前变频恒压供水系统正向着高可靠性、全数字化微机控制、多品种系列化的方向发展。

追求高度智能化、系列化、标准化,是未来供水设备适应城镇建设中成片开发、智能楼宇、网络供水调度和整体规划要求的必然趋势。

变频恒压供水系统能适用生活水、工业用水以及消防用水等多种场合的供水要求,该系统具有以下特点:(1)供水系统的控制对象是用户管网的水压,它是一个过程控制量,同其他一些过程控制量(如:温度、流量、浓度等)一样,对控制作用的响应具有滞后性。

同时用于水泵转速控制的变频器也存在一定的滞后效应。

(2)用户管网中因为有管阻、水锤等因素的影响,同时又由于水泵自身的一些固有特性,使水泵转速的变化与管网压力的变化成正比,因此变频调速恒压供水系统是一个线性系统。

(3)变频调速恒压供水系统要具有广泛的通用性,面向各种各样的供水系统,而不同的供水系统管网结构、用水量和扬程等方面存在着较大的差异,因此其控制对象的模型具有很强的多变性。

(4)在变频调速恒压供水系统中,由于有定量泵的加入控制,而定量泵的控制(包括定量泉的停止和运行)是时时发生的,同时定量泵的运行状态直接影响供水系统的模型参数,使其不确定性地发生变化,因此可以认为,变频调速恒压供水系统的控制对象是时时变化的。

基于PLC的变频器综合控制1控3的恒压供水系统设计

基于PLC的变频器综合控制1控3的恒压供水系统设计

目录第一部分设计任务与调研 (2)1.1 毕业设计的主要任务 (2)1.2 设计的思路、方法 (2)1.3 调研的目的和总结 (2)第二部分设计说明 (4)2.1恒压供水的理论分析 (4)2.2系统方案设计与论证 (5)2.3变频器的选择 (8)2.4 PLC 的选择 (10)2.5 恒压供水系统 (13)2.6作品的特点 (16)第三部分设计成果 (17)3.1 PLCI/O分配表 (17)3.2外部接线图 (17)3.3变频恒压供水系统主程序流程图: (18)3.4变频恒压供水系统主程序梯形图如图所示: (19)第四部分结束语 (29)第五部分致谢 (30)第六部分参考文献 (31)第一部分设计任务与调研1.1 毕业设计的主要任务设计一城市自来水管网的小区恒压供水系统,系统总共有3台水泵,采用西门子系列变频器,西门子S-200PLC进行控制。

利用PLC,配以不同功能的传感器,根据网管的压力,通过变频器控制水泵的转速,使水管中的压力始终保持在合适的范围。

这种变频恒压供水系统直接取代水塔、高位水箱及传统的气压罐供水装置,电路设计要注意整个系统的电路布局与布线。

安装和调试方法,绘制电气控制原理图,编写PLC控制程序。

撰写毕业设计说明书,列出系统的详细设备材料清单。

基本部分控制要求采用变频器与可编程控制器(PLC)构成控制系统,具体要体现恒压供水实质,就是利用变频器的PID或PI功能实现的工业过程的闭环控制。

发挥部分控制要求供水管网压力按时间自动变化。

1.2 设计的思路、方法本系统将PLC、变频器(含PID)、相应的传感器和执行机构有机地结合起来,并发挥各自优势,这个操作方便的自动控制系统,以变频调速为核心,以智能供水控制系统取代了以往高位水箱和压力罐等供水设备,起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等东西的使用寿命;可以消除起动和停机时的水锤效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于PLC和变频器控制的恒压供水系统设计
赵华军钟波
(广州铁路职业技术学院)
摘要:文章介绍一种基于三菱PLC和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。


统较好地解决高层建筑、工业等恒压供水需求。

系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。

关键词:变频器;PID;PLC;恒压供水
1引言
目前,在城市供水系统中,还有很多高楼、生活
小区、边郊企业等采用高位水塔供水方式。

这样,由
于用水量具有很大随机性,常常出现在用水高峰时供
水量很小甚至没有水用的问题;且采用高位水塔,很
容易造成自来水的二次污染问题。

针对这一情况,本
文设计了一套基于变频器内置PID功能的恒压供水
系统,采用了PLC控制及交流变频调速技术对传统
水塔供水系统的技术改造。

该系统根据用水量的变
化,经过压力传感器将水压变化情况反馈给系统,使
得系统能自动调节变频器输出频率,从而控制水泵转
速,调节输出数量,使得水量变化时可保持水压恒定;
可取代高位水塔或直接水泵加压供水方式,为城市供
水系统的建设提出了一条极具推广、应用的新途径[1]。

2工作原理
本文采用的变频器是三菱FR-A540,该变频器内
置PID控制功能;供水系统方案如图1所示。

将通往用户供水管中的压力变化经传感器采集
到变频器,与变频器中的设定值进行比
较,根据变频器内置的PID功能,进行数
据处理,将数据处理的结果以运行频率的
形式进行输出[2]。

当供水的压力低于设定压力,变频器
就会将运行频率升高,反之则降低,且可
根据压力变化的快慢进行差分调节。

由于
本系统采取了负反馈,当压力在上升到接
近设定值时,反馈值接近设定值,偏差减小,PID运算会自动减小执行量,从而降低变频器输
出频率的波动,进而稳定压力。

在水网中的用水量增大时,会出现“变频泵”
效率不够的情况,这时就需要增加水泵参与供水,通
过PLC控制的交流接触器组负责水泵的切换工作;
PLC是通过检测变频器频率输出的上下限信号,来判
断变频器的工作频率,从而控制接触器组是否应该增
加或减小水泵的工作数量。

图1供水系统方案图
图2主电路接线图
系统设计
3.1主电路
主电路如图2,KM1、KM3、KM5分别为电动机M1、M2、M3工频运行时接通电源的控制接触器,
KM0、KM2、KM4分别为电动机M1、M2、M3变
频运行时接通电源的控制接触器,KM6为由PLC控
制,作为接通变频器电源用的接触器,变频器的启动
由PLC控制Y7实现。

3.2接触器与PLC连接
如图3,图中Y0~Y5分别接接触器KM0~KM5
为了防止出现某台电动机既接工频电又接变频电,设计了电气互锁,如在同是控制M1电动机的两个接触器KM1、KM0线圈中,分别串入了对方的常闭触头形成电气互锁。

供水压力设定值通过变频器的2和5端子(0~5V)设定,频率检测的上/下限信号分别通过OL和FU输出至PLC的X2与X3输入端,作为PLC增泵、减泵控制信号。

3.3变频器的参数设置[3]
虽然系统对调速的精度要求不高,但要使供水系
统运行性能稳定,工作可靠,必须正确设置变频器的各种性能。

具体设置如表1。

、、、
.4程序设计
由于供水系统惯性较大,因此在设计思想上以查
询方式为主,本系统PLC控制程序流程如图4
系统启动时,KM0闭合,1#水泵以变频方式运
行。

如果水压过低,而变频器已经达到上限设定值
时,OL发出“发出频率上限”动作信号,PLC启动增泵程序;PLC通过这个上限信号将KM0断开KM1吸合,1#水泵由变频运行转为工频运行,同时KM2
吸合变频启动2#水泵。

此时电动机M1工频运行,M2为变频运行。

如果再次接收到变频器上限输出信号,则KM2
断开KM3吸合,2#水泵由变频转为工频,同时KM4闭合3#水泵变频运行,这时电动机M1、M2为工频运行,M3为变频运行。

如果变频器频率偏低,即压力过高,输出的下限
信号,PLC启动减泵程序,将正在使用的“变频泵”切除,将另一台“工频泵”切换为“变频泵”,使PLC关闭KM4、KM3,开启KM2,2#水泵变频启动,此时电动机M1工频运行,M2为变频运行。

若再次收到下限信号就关闭KM2、KM1,吸合
KM0,只剩1#水泵变频工作。

4结语
当流量减少,水泵转速下降时,其电动机输出。

相关文档
最新文档