第一章,热力学基本规律

合集下载

热力学统计物理第一章热力学的基本规律

热力学统计物理第一章热力学的基本规律

p p1
p1
p2
§1.5 热力学第一定律
能量守恒定律:自然界一切物质都具有能量,能量有各种不 同的形式,可以从一种形式转化为另一种形式,从一个物体 传递到另一个物体,在传递与转化中能量的数量不变。
另一种表述:第一类永动机是不可能造成的。
热力学U系 BUA 统 W: Q W:以外界对系统所功作为的正 Q:以吸热为正
WW 'QRln V V 1 2(T1T2)
热机效率定义: W Q1
卡 诺 热 W T 1 机 T 21 : T 21
Q 1 T 1
T 1
§1.10 热力学第二定律 克劳修斯(克氏)表述: 不可能把热量从低温物体传到高温物体而不引起其他变化 卡尔文(开氏)表述: 不可能从单一热源吸热使之完全变成有用的功而不引起 其他变化
AT B T
A BdTQ A BdTQ r SBSA
SB SA
BdQ AT
dS dQ T
第二定律的数学表述
绝热过 :d程 Q0
SBSA0 ——熵增加原理的数学表述
熵增加原理:经绝热过程后,系统的熵永不减少,经可逆 绝热过程后熵不变,经不可逆绝热过程后熵增加,在绝热 条件下熵减少的过程是不可能实现的。
第一章 热力学的基本规律 §1.1 热力学系统的平衡状态及其描述
1.系统
孤立系 (极限概念) 闭系 开系
热力学系统的状态
平衡态 非平衡态
热力学平衡态:
(1)定义: 一个孤立系统,不论其初态如何复杂,经过 足够长的时间后,将会到达这样的状态,系 统的各种宏观性质在长时间内不发生任何变 化,这样的状态称为热力学平衡态。
n称 为 多 方 指 数: 。理 试想 证气 明体 多的 方热 过容 程

第一章热力学的基本规律课后作业和答案

第一章热力学的基本规律课后作业和答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数2111()T T V nRT V p V p pκ⎛⎫∂⎛⎫=-=-= ⎪ ⎪∂⎝⎭⎝⎭ 1.2试证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:ln (d d )T V T k p α=-⎰如果1Tα=,1T k p =,试求物态方程。

解 以,T p 为自变量,物质的物态方程为(,)V V T p =其全微分为d d d p TV V V T p T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有d 11d d p TV V V T p V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T k 的定义,可将上式改写为d d d T VT k p Vα=- (2) 有ln (d d )T V T k p α=-⎰ (3)若1Tα=,1T k p =,式(3)可表示为11ln (d d )V T p T p=-⎰ (4)积分pV CT = (5)1.3测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和71n 7.8*10p T κ--=,α和T κ可近似看作常量,今使铜块加热至10C ︒。

问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少解:(1)有d d d T Vp p p V T V T ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭知,当d 0V =时,有d 0d d d V Tp p T p T T T αβκ∂⎛⎫=+==⎪∂⎝⎭ 故 ()212121d T T TT p p T T T αακκ-==-⎰即 ()2121n 622p T p p p T T ακ∆=-=-= 分别设为V xp n ∆;,由定义得:4474.85810; 4.85101007.810T x V κ∆---=⨯=⨯-⨯⨯所以,44.0710V ∆-=⨯1.4 1mol 理想气体,在27C ︒的恒温下发生膨胀,其压强由n 20p 准静态地降到n 1p ,求气体所做的功和所吸取的热量。

热力学统计物理第1章总复习

热力学统计物理第1章总复习
dV dT T dp V 沿一任意路径积分
ln V ( dT T dp ) ln V0
(T , p)
(T0 , p0 )
T
如果由实验测得α、κT作为T、p的函数,由上 式可得物质的物态方程。
对理想气体
1 T
1 T p
选择该积分路径由一个等压过程和一个等压过程组成,
p 常数 T
1
TV
1
常数
V V dV ( ) p dT ( )T dp T p
并利用 1 ( V ) P V T
同除V得到
KT
1 V ( )T V p
得到:
dV dT K T dp V
dV V (dT KT dp)
对固体和液体,α、KT很小,并假定为常数,积分得:
作级数展开,取近似, V (T , P) V0 (T0 ,0)1 (T T0 ) KT p 并取p0=0有
T
1.4 简单固体和液体的体胀系数 和等温压缩系数 T 数值都很小,在一定温度范围内可以把 和 T 看作 常量. 试证明简单固体和液体的物态方程可近似为
V (T , p) V0 T0 , 0 1 T T0 T p .
1.4解:令 V=V(T,P)进行全微分:
2 1 p R RV ( )V p T p(V b) RTV 2 a(V b)
1 1 1 V T ( ) T 2a RT V V p 3 V
V 2 (V b) 2 3 V RT 2a(V b) 2
(V b) 2
1.2 证明任何一种具有两个独立参量 T , p 的物质,其 物态方程可由实验测得的体胀系数 及等温压缩系 数 ,根据下述积分求得:

热力学与统计物理学课后习题及解答

热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。

解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。

解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。

1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。

线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常量。

热力统计学第一章答案

热力统计学第一章答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

热力学

热力学

第一章热力学的基本规律热力学系统的分类(p3):孤立系统:无物质交换,也无能量交换;封闭系统:有能量交换,但无物质交换;开放系统:既有能量交换,又有物质交换。

热力学系统的状态可以分成两类(p3):平衡态:无外界影响,经足够长时间,系统趋于一中宏观性质不随时间变化的状态;非平衡态。

状态参量的分类(p5):按性质分:几何参量,力学参量,电磁参量,化学参量;按描述的范围分:内参量:描述系统内部状态的物理量,外参量:描述系统外界条件的物理量;按与系统总质量的关系分:广延量:与系统中质量成正比的量,强度量:与系统中质量无关的量。

准静态过程:是指如果从系统的初始态到新的平衡态的过程进行的如此缓慢,以至于其中的每一步都可以近似的认为系统是处于平衡态。

循环关系(p9):热力学第零定律(p6):两个系统与第三个系统处于热平衡时,则这两个系统之间也必然热平衡。

热力学第一定律(p19):热力学系统在任一热力学过程中,从外界吸收的热量等于系统内能的增加与对外界做功之和。

表达式:卡诺循环(p27):两个等温过程和两个绝热过程构成的准静态循环过程。

卡诺热机的效率(p29):热力学第二定律的两种表述(p30):克劳修斯氏表述:不可能吧热量从低温物理传到高温物体而不引起其他变化;考尔文表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。

(或第二类永动机不可能造成)数学表述(p42): 对不可逆过程: 对可逆过程:可逆系统:系统经历一个过程,有初态到达末态,如果能够找到一个使系统经历一个过程,由末态回到初态,而对外界不产生任何的影响的过程,则院过程就称为可逆过程不可逆过程:如果不存在这样的过程,称原过程为不可逆过程。

(p32)熵增加原理(p42):dS≥0,即绝热过程的熵不会减少,若是可逆绝热过程,则熵不变,而对不可逆过程,熵增加。

焦耳气体自由膨胀实验(p22) 实验目的:气体的内能是否与气体的体积有关;结果:水温不变;焦耳定律:理想气体的内能只是温度的函数,与体积无关。

第一章热力学的基本规律课后作业及答案

第一章热力学的基本规律课后作业及答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数2111()T T V nRT V p V p pκ⎛⎫∂⎛⎫=-=-= ⎪ ⎪∂⎝⎭⎝⎭ 1.2试证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:ln (d d )T V T k p α=-⎰如果1Tα=,1T k p =,试求物态方程。

解 以,T p 为自变量,物质的物态方程为(,)V V T p =其全微分为d d d p TV V V T p T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有d 11d d p TV V V T p V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T k 的定义,可将上式改写为d d d T VT k p Vα=- (2) 有ln (d d )T V T k p α=-⎰ (3)若1Tα=,1T k p =,式(3)可表示为11ln (d d )V T p T p=-⎰ (4)积分pV CT = (5)1.3测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和71n 7.8*10p T κ--=,α和T κ可近似看作常量,今使铜块加热至10C ︒。

问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少解:(1)有d d d T Vp p p V T V T ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭知,当d 0V =时,有d 0d d d V Tp p T p T T T αβκ∂⎛⎫=+==⎪∂⎝⎭ 故 ()212121d T T TT p p T T T αακκ-==-⎰即 ()2121n 622p T p p p T T ακ∆=-=-= 分别设为V xp n ∆;,由定义得:4474.85810; 4.85101007.810T x V κ∆---=⨯=⨯-⨯⨯所以,44.0710V ∆-=⨯1.4 1mol 理想气体,在27C ︒的恒温下发生膨胀,其压强由n 20p 准静态地降到n 1p ,求气体所做的功和所吸取的热量。

第一章 热力学的基本规律

第一章 热力学的基本规律

第一章 热力学的基本规律热力学的研究对象——由大量微观粒子(分子、原子或其它粒子)组成的宏观物质系统。

外界——与系统发生相互作用的其它物体。

孤立系——与其它物体没有任何相互作用的系统。

闭系——与外界有能量交换,但无物质交换的系统。

开系——与外界既有能量交换,又有物质交换的系统。

孤立系是一种理想的极限,为了研究系统的主要热学特点,若全部相互作用考虑,则可能无法研究。

当系统的各种宏观性质在长时间内不发生任何变化时,我们说系统处于热力学平衡态。

一个孤立系,不论其初态如何复杂,经过足够长的时间后,将达到热力学平衡。

热力学平衡态是一种动态平衡。

因为此时系统的宏观性质虽不随时间而变,但组成系统的大量微观粒子仍在不断运动,只是这些微观粒子运动的统计平均效果不变而已。

系统的宏观性质是微观量的统计平均。

平衡态下,系统的各种宏观量有确定值,这些宏观量之间有一定的关系(函数关系)。

根据问题的性质和处理问题的方便,可以选其中几个作为自变量,称为状态参量,其它的量为状态参量的函数,称为状态函数。

理想气体PV nRT =,P 、V 、T 中可任选二个作为自变量(状态参量),另一个作为函数(状态函数)描述系统几何形状的参量称为几何参量,如体积、面积、长度等描述系统力学性质的参量称为力学参量,如压强,弹力等描述系统电磁性质的参量称为电磁参量,如电场强度、磁场强度、极化强度、磁化强度等。

描述系统化学性质的参量称为化学参量,如组成系统的各种化学组成的数量(质量、mol .数)。

均匀系——各部分的性质完全一样的系统。

热力学第零定律热平衡——两个物体在只有交换热量后,最后各自的状态不变,此时两个物体处于热平衡。

第零定律:两个物体处于热平衡时,有相同的温度。

引入热力学温标T()()0273.15t C T K =-物态方程在平衡态下,热力学系统存在一个状态函数温度,它是状态参量的函数。

这种函数方程称为物态方程。

对于一个由P 、V 、T 描述的系统,物态方程可写为(),,0f P V T =,f 的具体形式随物质不同而不同。

热力学 第一章

热力学 第一章


(3)状态参量:描述热力学系统平 衡状态的宏观性质的物理量。

描述系统状态的宏观参量一般可以 直接测量。
广延量和强度量
3、均匀系与非均匀系
(1)均匀系:一个系统各部分的性质完全
一致,称为一个均匀系。(也称为一个相 —单相系) (2)非均匀系:复相系
§1.2 热平衡定律和温度

一、热平衡定律(热力学第零定律) 实验
2 3 3 6 1
如果保持温度不变,将1mol的水从1 1000 pn ,求:外界所做的功。
pn
加压到
§1.5 热力学第一定律
一、热量:系统与外界仅由于温度差,通过边界 所传递的能量。(通过分子间的碰撞来实现)
Q 过程量 热量是能量传递的另一种方式 Q 0 系统从外界吸收热量
Q 0 系统向外界放出热量
3 6 2 3
1
§1.6 热容量和焓
一、热容量
1、引入:桶的装水量(水容量)
M 水容: C h
Q 电容: C U
2、热容量:一个系统在某一过程中温度升 高1K所吸收的热量。
Q C lim T T dQ C dT
单位:焦耳/开尔文 J / K
3、系统的质量对热容量的影响:
an2 ( p 2 )(V nb) nRT V
1mol : a ( p 2 )( v b) RT v
3、简单固体和液体:
V (T , p) V0 (T0 ,0)1 (T T0 ) KT p
例1、一个简单可压缩系统,已知
nR 1 a ; KT pV p V
作业:1、1mol理想气体,在27℃的恒温下 发生膨胀,其压强由 20Pn 准静态地降到 1Pn ,求:气体所做的功和所吸取的热量。 2、在27℃,压强在0至 1000pn 之间,测得 水的体积为V (18.066 0.71510 p 0.04610 p )cm mol 如果保持温度不变,将1mol的水从1 pn 加压至 1000pn ,求:外界所做的功。

热力学统计物理总复习知识点

热力学统计物理总复习知识点

热力学统计物理总复习知识点The manuscript was revised on the evening of 2021热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。

2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。

3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。

4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。

6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。

7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。

8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。

9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。

绝热过程中内能U 是一个态函数:A B U U W -=V p W d d -=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。

12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。

13.定压热容比:p p T H C ⎪⎭⎫ ⎝⎛∂∂=;定容热容比:VV T U C ⎪⎭⎫ ⎝⎛∂∂= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=-γγT p 。

热力学统计物理(第四版汪志诚)答案及习题解答

热力学统计物理(第四版汪志诚)答案及习题解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即00p V pV C T T ==(常量), 或.p V C T=(5) 式(5)就是由所给11,T Tpακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

第01章-热力学基本定律1-资料

第01章-热力学基本定律1-资料
themegallery
[例题]:
在等压下,一定量理想气体B由10 dm3膨胀到16 dm3,并吸热700J,求W与ΔU ? 解: 初态,p 10 dm3 等 压 过 Q 程 7 0J, 0终态, p 16 dm3
Wp(V2V 1)[10136215 03]J60J8
themegallery
3. 准静态过程
定义:在过程进行中的任何时刻系统都处于平衡态 的过程。
4. 可逆过程
定义:由一系列非常接近于平衡的状态所组成 的,中间每一步都可以向相反的方向进行而不在环 境中任何痕迹的过程称为可逆过程。
themegallery
特点: ①可逆过程是由一系列非常接近于平衡的状态所 组成. ②过程中的任何一个中间态都可以从正、逆两个方 向到达。 ③经历可逆过程后,当系统复原时,环境也完全 复原而没有留下任何影响和痕迹。
1. 热力学第一定律表述: 热力学第一定律即能量守恒与转化定律:自然界 的一切物质都具有能量,能量有各种不同的形式, 能够从一种形式转化为另一种形式,在转化中, 能量的总值保持不变。 经验表述:第一类永动机是造不成的。
themegallery
2. 热力学第一定律的数学表达式
ΔU = Q + W 对一微小表化,
例题:教材第10页
在298.15K 下1mol C2H6 完全燃烧时,过程所 作的功是多少(反应系统中的气体视为理想气 体)?
解: C2H6 (g) + 3.5O2 (g) = 2CO2 (g) + 3H2O (l)
WRT B(g)= [- (2 - 3.5 - 1)×8.314×298.15]J
欢迎
第一章 热力学基本定律
1.1 热力学基本概念 1.2 热力学第一定律 与内能、焓、功、热 1.3 气体系统典型过程分析 与可逆过程、热机效率 1.4 热力学第二定律与熵、熵判据 1.5 熵变的计算与应用:典型可逆过程和可逆途径的设计 1.6 自由能函数与自由能判据:普遍规律与具体条件的结合 1.7 封闭系统热力学函数间的关系:4个基本方程 1.8 自由能函数改变值的计算及应用:可逆途径的设计

热力学统计物理_第四版_汪志诚_答案(完整教资)

热力学统计物理_第四版_汪志诚_答案(完整教资)

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为 ,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV T β∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p p κ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。

试证明:理想气体在多方过程中的热容量n C 为1n V n C C n γ-=- 解:根据式(1.6.1),多方过程中的热容量0lim .n T n n nQ U V C p T T T ∆→∆∂∂⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,,V nU C T ∂⎛⎫= ⎪∂⎝⎭ 所以.n V nV C C p T ∂⎛⎫=+ ⎪∂⎝⎭ (2) 将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得11n TV C -=(常量)。

(3)将上式微分,有12(1)0,n n V dT n V TdV --+-=所以.(1)nV V T n T ∂⎛⎫=- ⎪∂-⎝⎭ (4) 代入式(2),即得,(1)1n V V pV n C C C T n n γ-=-=-- (5) 其中用了式(1.7.8)和(1.7.9)。

1.9 试证明:理想气体在某一过程中的热容量n C 如果是常数,该过程一定是多方过程,多方指数n pn V C C n C C -=-。

假设气体的定压热容量和定容热容量是常量。

解:根据热力学第一定律,有đđ.dU Q W =+ (1)对于准静态过程有đ,W pdV =-对理想气体有,V dU C dT =气体在过程中吸收的热量为đ,n Q C dT =因此式(1)可表为().n V C C dT pdV -= (2)用理想气体的物态方程pV vRT =除上式,并注意,p V C C vR -=可得()().n V p V dT dV C C C C T V-=- (3) 将理想气体的物态方程全式求微分,有.dp dV dT p V T+= (4) 式(3)与式(4)联立,消去dT T,有。

第一章热力学第一定律

第一章热力学第一定律

经验 总结总结 归纳提高 引出或定义出 解决的 能量效应(功与热) 过程的方向与限度 即有关能量守恒 和物质平衡的规律 物质系统的状态变化 第一章 热力学第一定律§1.1 热力学基本概念1.1.1 热力学的理论基础和研究方法 1、热力学理论基础热力学是建立在大量科学实验基础上的宏观理论,是研究各种形式的能量相互转化的规律,由此得出各种自发变化、自发进行的方向、限度以及外界条件的影响等。

⇨ 热力学四大定律:热力学第一定律——Mayer&Joule :能量守恒,解决过程的能量衡算问题(功、热、热力学能等); 热力学第二定律——Carnot&Clousius&Kelvin :过程进行的方向判据; 热力学第三定律——Nernst&Planck&Gibson :解决物质熵的计算;热力学第零定律——热平衡定律:热平衡原理T 1=T 2,T 2=T 3,则T 1= T 3。

2、热力学方法——状态函数法⇨ 热力学方法的特点:①只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(p 、V 、T etc )②只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。

⇨ 局限性:不知道反应的机理、速率和微观性质。

只讲可能性,不讲现实性。

3、热力学研究內容热力学研究宏观物质在各种条件下的平衡行为:如能量平衡,化学平衡,相平衡等,以及各种条件对平衡的影响,所以热力学研究是从能量平衡角度对物质变化的规律和条件得出正确的结论。

热力学只能解决在某条件下反应进行的可能性,它的结论具有较高的普遍性和可靠性,至于如何将可能性变为现实性,还需要动力学方面知识的配合。

1.1.2 热力学的基本概念生活实践 生产实践 科学实验 热力学第一定律 热力学第二定律 热力学第三定律 热力学第零定律 热力学理论基础 热力学能U 焓H 熵S 亥姆霍茨函数A 吉布斯函数G压力p 体积V 温度T 实验测得p ,V ,T 变化过程 相变化过程 化学变化过程1、系统与环境 ⇨ 系统(System ):热力学研究的对象(微粒组成的宏观集合体)。

热力学的基本规律

热力学的基本规律

3.热力学平衡态的描述 由于系统在平衡态时,系统的热力学性质保持不变,因此可以用 描述系统热力学性质的物理量来描述系统的状态。 确定平衡态的 最少几个可以独立变化的物理量称为状态参量。其他宏观量可以 表示为状态参量的函数,称为状态函数。 状态参量的分类 ① 分类一 几何参量:长度、面积、体积(V)、应变张量等
由热力学第零定律,A与B也将处于热平衡,
fAB ( pA ,VA ; pB,VB ) 0 故:
与C无关
导热壁
A
B
FAC ( pA ,VA ;VC ) C (VC ) C (VC ) gA ( pA ,VA ) 绝热壁 FBC ( pB ,VB;VC ) C (VC ) C (VC ) gB ( pB,VB )
3.温度的测量
• 温 标:冷热程度的数值表示 • 温度计:作为测量标准的物体 ①经验温标
凡是以某物质的某一属性随冷热程度的单调变化为依据而确 定的温标称为经验温标。
经验温标 三要素
•选择测温物质和测温参量(属性) •选定固定点
•进行分度,即规定测温参量随温度 的变化关系
以摄氏温标为例
(1)测温物质:水银,测温属性:水银柱长(或 水银的体积);
② 分类二 :广延量和强度量
广延量:在给定状态下,那些与系统质量(或摩尔数)成正比的参 量叫做“广延量”(extensive quantity)
如:气体的体积,液体薄膜的表面积, 磁介质的磁矩, 系统的内能U,熵S,自由能F,焓H,热容量C等。
强度量:与系统质量(或摩尔数)无关的参量,叫做“强度量” (intensive quantity)
如:气体压强,温度,液体表面张力,磁场强度,mol量, 物质的比热容量c,摩尔热容量cm等

热力学与统计物理

热力学与统计物理

热力学与统计物理热力学与统计学的研究任务:研究热运动的规律,研究与热运动有关的物质及宏观物质系统的演化。

热力学的局限性:不考虑物质的微观结构,把物质看作连续体,用连续函数表达物质的性质,不能解释涨落现象。

热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。

2、弛豫时间:系统由初始状态达到平衡态所经历的时间(时间长短由趋向平衡的性质决定),取最长的弛豫时间为系统的弛豫时间3、热力学平衡态:一个系统不论其初始状态如何复杂,经过足够长的时间后,将会达到这样的状态,即系统的各种宏观性质在长时间内不发生任何变化。

4、准静态过程:进行得非常缓慢的过程,系统在过程中经历的每一个状态都可以看成平衡态5、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量6、简单系统:只要体积和压强两个状态参量就可以确定的系统7、单相系(均匀系):如果一个系统各个部分的性质完全一样,则该系统称为单相系; 复相系:如果整个系统是不均匀的,但可以分成若干个均匀的部分,称为复相系8、热平衡定律:如果物体A 和物体B 各自与处于同一状态的物体C 达到热平衡,若令A 与B 进行热接触,它们也将处于热平衡状态。

(得出温度的概念,比较温度的方法)9、物态方程:给出温度与状态函数之间参数的方程10、理想气体:符合玻意耳定律、阿氏定律和理想气体温标的气体11、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =12、玻意耳定律:对于固定质量的气体,在温度不变时,压强和体积的乘积为常数13、阿氏定律:在相同的温度压强下,相同体积所含的各种气体的物质的量相同14、范德瓦尔斯方程:考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程15、广延量:热力学量与系统的n 、m 成正比强度量:热力学量与n 、m 无关(广延量除以n 、m 、V 变成强度量)16、能量守恒定律:自然界中一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种;从一个物体传递到另一个物体,在传递和转化中能量的数量不变。

第一章 热力学的基本规律

第一章 热力学的基本规律

宏观理论
(热力学)
微观理论
(统计物理学) 热现象 微观量
研究对象 物 理 量
热现象 宏观量
出 发 点
方 法 优 点
观察和实验
总结归纳 逻辑推理 普遍,可靠 不深刻
微观粒子
统计平均方法 力学规律 揭露本质
缺 点
二者关系
无法自我验证
热力学验证统计物理学, 统计物理学揭示热力学本质
第一章 热力学的基本规律
几种物质的物态方程: 1、理想气体状态方程 M PV=nRT(= m RT) a (p+ v2)(v-b)=RT
引力修正 斥力修正
2、范德瓦耳斯方程(1mol)
(n mol)(p+n2a2 )(v-nb)=nRT v 3、昂尼斯物态方程( 1mol级数形式) PV=A+Bρ+Cρ +Dρ +...
二、热力学平衡状态 一个孤立系统,不论其初态如何复杂,经过足够长的时间 后,将会到达这样的状态, 系统的各种宏观性质在长时间内
不发生任何变化,这样的状态称为热力学平衡态。 其特点: 1、不限于孤立系统 2、弛豫时间 3、涨落 4、热动平衡
三、状态参量 用于描述系统的平衡状态的量称为状态参量。 系统的平衡状态就是由它的宏观物理量——状态参量的数 值确定的。 常用状态参量: 几何参量 如 体积V 力学参量 如 压强P 化学参量 如 各组分的质量和摩尔数 电磁参量 如 电场强度、电极化强度
三、对无摩擦阻力准静态过程,外 界对系统的作用力,可以用描写系 统平衡状态的参量表示出来。
O
V
四、准静态过程在状态图上可用一条曲线表示.
二、功
功不是能量的形式,而是能量变化的一种量度,它是 一个过程量,没有过程也就谈不上功。 准静态过程中,当系统有了微小的体积变化d V时, 外界对系统所作的功

热力学与统计物理答案汪志诚

热力学与统计物理答案汪志诚

热力学与统计物理答案(汪志诚) 第一章热力学的基本规律1.1 热力学系统的平衡态及其描述1.什么是热力学系统?热力学系统有哪些分类?答:热力学系统是指由大量相互作用的粒子组成的集合体,可以用一些宏观物理量来描述其状态。

热力学系统可以分为孤立系统、封闭系统和开放系统。

2.什么是热力学平衡态?热力学平衡态有哪些性质?答:热力学平衡态是指在没有外界影响的情况下,系统的宏观性质不随时间变化的状态。

热力学平衡态具有均匀性、各向同性和稳定性等性质。

3.如何描述热力学系统的状态?常用的状态参量有哪些?答:热力学系统的状态可以用一组状态参量来描述,常用的状态参量有体积、温度、压力和熵等。

1.2 热力学第零定律温度1.热力学第零定律的内容是什么?如何理解?答:热力学第零定律的内容是:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

这个定律说明了温度是描述热力学系统状态的一个重要参量,也是进行热交换的驱动力。

2.什么是温度?温度有哪些性质?答:温度是描述热力学系统状态的一个宏观参量,表示系统的冷热程度。

温度具有可加性和可比较性等性质,可以用温度计来测量。

3.温度与微观粒子运动的关系是什么?答:温度与微观粒子运动的关系可以通过麦克斯韦-玻尔兹曼分布来描述。

在一定温度下,系统中微观粒子的速度分布服从麦克斯韦-玻尔兹曼分布,粒子的平均动能与温度成正比。

1.3 热力学第一定律能量守恒定律1.热力学第一定律的内容是什么?如何理解?答:热力学第一定律的内容是:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。

这个定律说明了能量守恒和转换的规律,即能量既不会凭空产生也不会凭空消失,只会从一种形式转换成另一种形式。

2.什么是内能?内能有哪些性质?答:内能是指热力学系统中所有微观粒子的动能和势能之和。

内能是一个状态函数,具有可加性和单调性等性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.几个基本概念:1.孤立系,闭系和开系:与其他物质既没有物质交换也没有能量交换的系统叫做孤立系;与外界没有物质交换但有能量交换的系统叫做闭系;与外界既有物质交换也有能量交换的系统叫做开系。

2.平衡态:经验表明,一个孤立系统,不论其初态多么复杂,经过足够长的时间后,将会达到这样的状态,系统的各种宏观性质在长时间内不会发生任何变化,这样的状态称为热力学平衡态。

3.准静态:所谓准静态过程,它是进行的非常缓慢的过程,系统所经历的每一个状态都可以看做是平衡态。

4.可逆过程与不可逆过程:如果一个过程发生后,无论用任何曲折复杂的方法都不可能把它留下的后果完全的消除而使一切恢复原状,这过程称为不可逆过程;反之,如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,这过程称为可逆过程。

5.理想气体:我们把严格遵从玻意耳定律、焦耳定律和阿氏定律的气体称为理想气体。

二.热力学定律1.热平衡定律(即热力学第零定律):如果物体A和物体B各自与处在同一状态C达到平衡,若令A与进行热接触,他们也将处在热平衡,这个实验事实称为热平衡定律。

2.热力学第一定律:自认界的一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化成另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量不变。

第一定律也可以表述称为第一类永动机是不可能制成的。

3.热力学第二定律:1)克氏表述:不可能把热量从低温物理传到高温物体而不引起其他变化。

2)开氏表述:不可能从单一热源吸热使之完全变成有用功而不引起其他变化。

热力学第二定律也可表述为第二类永动机是不可能制成的。

关于热力学第二定律有几点需要说明:在两个表述中所说的不可能,不仅指【1】在不引起其他变化的条件下,直接从单一热源吸热而使之完全变成有用的功,或者直接将热量从低温物体送到高温物体是不可能的。

而且指【2】不论用多么复杂的方法,在全部过程终了时,其最终的唯一后果是从单一热源吸热而将之完全变成有用功,或者热量从低温物体传到高温物体是不可能的。

说明中的【2】尤为重要。

关于热力学第二定律,其实还有许多其他的表述,自然界中与热现象有关的实际过程都有其自发进行的方向,是不可逆的。

实际上自然界的不可逆过程都是存在关联的,我们可以通过某种方法把两个不可逆过程联系起来,由一个过程的不可逆性推断出另一个过程的不可逆性。

我见过的比较经典就是课本上关于克氏和开氏定律的等价性证明和关于气体自由膨胀的不可逆性,分别陈述于下:1)克氏表述与开氏表述的等价性:这里我们用反正发证明,首先我们假设克氏表述不成立,然后我们可以构造如左图所示热机,一个卡诺循环,工作物质从高温热源吸取热量Q1,在低温热源放出热量Q2,对外做功W=Q1-Q2。

如果克氏定理不成立,可以将热量Q2从低温热源送到高温热源而不引起其他变化,则全部过程的最终后果就是从单一热源吸收热量Q1-Q2,并全部转为有用的功,即开始表述不成立。

反之,如果开氏表述不正确,则一个热机能够从高温热源吸收热量Q1并全部转化成有用功W=Q1,可以利用这个功带动一个可逆卡诺热机逆向循环,整个过程是将Q2从低温物体传到高温物体,即克氏表述不正确。

至此,我们证明了克氏表述与开氏表述的等价性。

2)气体分子自由膨胀的不可逆性:依然用反正法。

假设分子的自有扩散是可逆的,即存在某种方式可以使已经已有膨胀的气体恢复原状而不引起其他变化。

这是可以制作个热机,使气体从单一热源吸热膨胀对外做功。

之后再通过哪种存在的方式是气体恢复到膨胀前的状态。

然后在进行吸热对外做功的过程。

其最终结果就是从单一热源吸热并使其全部转化成有用功,与热力学第二定律的开氏表述矛盾,所以气体分子的自由膨胀是不可逆的过程。

三.几条重要定理1)卡诺定理:所有工作于两个一定温度之间的热机,以可逆热机的效率最高。

证明:如图所示,两个热机A和B,工作于两个温度之间。

他们的工作物质在各自的循环中,分别从高温热源吸收热量Q1和q1在低温热源放热Q2和q2,对外做功W和w,则他们的效率分别为H=W/Q1,h=w/q1。

假如A可逆,我们证明H>=h。

我们用反证法,如果定理不成立,即有H<h,我们调节是Q1=q1,则有w>W可用w的一部分推动A逆向运行,从低温热源吸热Q2在高温热源放热Q1,则最终(总是用到最终的效果)的效果是从低温热源吸热并对外做功,这是违背第二定律的。

所以就有了H>=h。

接下来我们证明“=”只有在可逆热时取得。

若B不可逆,而又有H=h,则在上述过程结束后会是系统恢复原状,这显然表明B的循环不再是不可逆循环。

上述证明过程表明,所有工作于;两个一定温度之间的可逆热机,其效率相等。

再接下来,我们证明这个效率是由两个一定温度决定的,并不是所有可逆热机工作于任意两个温度之间的可逆热机效率都相等。

同样我们用反证法。

设有三个温度的热源其温度分别为T1,T2和T3,温度一次降低。

我们假设工作于T1热源和T3热源之间的可逆热机A与工作于T2热源和T3热源之间的可逆热机B效率相等。

这样可以使B从T2热源吸热Q,在T3热源放热q,并对外做功w。

我们利用这部分功推动A逆向运行。

由于两个热机效率相等,A将从T3热源吸热q并在T1热源放热Q。

最终的效果将是从T2热源吸热Q并在高温热源T1放出而没引起其他变化,这与热力学第二定律的克氏表述矛盾。

即证明了可逆热机的效率取决于两个热源的温度。

这在引入热力学温标是将会使用。

2)玻意耳定律:对于固定质量的气体,在温度不变时其压强P 和体积V的乘积是一个常数。

3)阿氏定律:在相同的温度和压强下,相等的体积所含的各种气体的质量与他们各自的分子量成正比。

4)焦耳定律:气体的内能只是温度的函数,与体积无关。

这里需要注意,玻意耳定律、阿氏定律和焦耳定律并不完全正确。

不过它们的偏差随着压强的减小而减小。

在压强趋于零的情况下气体是完全遵从着三条定律的。

三.态函数状态参量和态函数在平衡状态下,系统的各种宏观物理量都具有确定值,热力学系统的平衡状态,就是由其宏观物理量的数值确定的。

由于宏观量之间的内在联系,表现在数学上存在一定的函数关系,这些物理量不能全部独立的变化。

我们可以根据问题的性质和考虑的方便,选择其中几个为自变量,这些自变量可以自己独立的变化,我们所研究的系统的其他宏观量又都可以表达成它们的函数。

这些自变量就足以确定系统的平衡态,我们称他们为状态参量;其他的宏观变量既然可以表达为状态参量的函数,我们称他们为状态函数,即态函数。

我们基于热力学基本的几个定律定理,推到出几个比较重要的太函数。

1)由热力学第零定律导出:根据热力学第零定律,可以证明处在热平衡状态下的热力学系统,存在一个态函数,对于互为平衡态的系统,其值是相等的。

我们把这个函数变量称为温度。

这样我们就证明了在热平衡状态下的系同态函数温度的存在。

态函数温度存在的之后的首要问题即是确定其态函数的形式,即物态方程。

而选用不同的温标也会得出不同的物态方程。

在这有一种理想气体温标,而后运用第二定律还可退出另一个不依赖于任何物质的热力学温标。

a )理性气体温标:我们用与温度成正比来定义温标,并取水的三相点温度为273.16,可T=P/Pt*273.16该公式取决于用于测量物质温度的物质。

实验表明,在压强趋于零的情况下,T 的值不取决于任何测量物质。

该温标称为理想气体温标。

b )理想气体的物态方程:运用玻意耳定律,阿氏定律,和理性气体温标定义,可得理想气体的物态方程:P*V=n *R*Tc )热力学温标:根据卡诺定理,可逆卡诺热机的效率只与两个热源的温度有关,而与工作物质的特性无关。

由这个关系可以导出)(/)(/2121θθf f Q Q =这样,把T f =)(θ,再引入水的三相点的温度为273.16K 。

这样定义的温标与具体的测温物质无关。

而且这样定义的温标在理想气体可以使用温度范围内的与理想气体温标一致。

2)热力学第一定律是在焦耳的大量实验的基础上总结出来的。

而焦耳又一个实验表明,在绝热的情况下,是物体升高一定的温度,所需的功是星等的。

也就是说系统的绝热过程从初态变为终态的过程中,外界对系统所做的功仅取决于气体的初态和终态而与过程无关。

这个事实就表明,可以用绝热过程中外界对系统所做的功W 定义一个状态函数U ,在终态B 和初态A 只差U b-U a=W 这个态函数U 称作内能。

这样,第一定律可写成数学公式U2-U1=W+Q3)焓:a)热容量:一个系统在某一过程中温度升高1k 时所吸收的热量,称作在该过程的热容量。

以Q ∆表示在某一过程中温度升高T ∆所吸收的热量,则系统在该过程中的热容量C 为T Q ∆∆/在0>-∆T 的时候的极限值。

c 是一个广延量。

b)状态函数焓:引进一个状态函数H 名为焓:pV U H+=在等压过程中焓的变化为V p U H ∆+∆=∆这正是在等压过程中系统从外界吸收的热量。

在等压过程中系统从外界吸收的热量等于态函数焓的增量。

这正是焓的重要性。

这样等压热容量就可以表示为)/(T H Cp∂∂= 4)熵:a )克劳修斯等式与不等式:根据卡诺定理,工作于两个一定温度之间的任何一个热机的效率不能大于工作于这两个温度之间的可逆热机的效率。

因此,由2121T T 11-<=-=Q Q η可得02211<=+T Q T Q 再根据热力学第二定律可得0<=⎰T dQ式中等号只能在可逆过程中取得。

b )态函数熵:设想系统从初态A 经可逆过程R 到达终态B ,又经另一可逆过程r 回到初态A ,构成一个可逆循环。

根据克劳修斯等式可得,因此该式说明,由初态A 经两个不同的可逆过程R 和r 到达终态B ,积分的值相等。

该式表明,在初态A 和终态B 给定后,积分与可逆过程的路径无关。

根据这一性质,引进一个态函数熵,它的定义为熵是一个广延量。

对该式取微分可得在根据热力学第一定律,有该式称为热力学基本微分方程。

其更一般的形式为:为了判断不可逆过程进行的方向的方便,我们引入如下两个态函数:5)自由能:引进状态函数F:根据熵增加原理,可得在等温过程中系统对外做的功不大于其自由能的减少。

表示成数学公式即为6)引入一个状态函数G:名叫吉布斯函数。

可得在等温等压过程中,系统的的吉布斯函数用不增加,即:该式表明,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减小的方向进行。

五.熵增加原理:可以证明,系统经绝热过程后,系统的熵永不减少。

在可逆过程中熵值不变,在不可逆过程中,熵值增加,在绝热条件下上减少的过程是不可能实现的。

这个结论称为熵增加原理。

补充说明:均匀系统的热力学量分为两类:一类与系统的质量或物质的量成正比,称为广延量;一类与质量或物质的量无关,称为强度量。

相关文档
最新文档