锐角三角函数(培优)
湘教版 九年级数学上册第4章《锐角三角函数》培优试题与答案
![湘教版 九年级数学上册第4章《锐角三角函数》培优试题与答案](https://img.taocdn.com/s3/m/2151f1a1a76e58fafbb0036d.png)
湘教版2020—2021学年九年级数学上册第4章《锐角三角函数》培优试题与简答一.选择题(10小题,每小题3分,共30分)1.如图,ABC∆中,90B∠=︒,2BC AB=,则sin(C=)A.52B.12C .255D .552.如图,在ABC∆中,90C∠=︒,4BC=,AB的垂直平分线EF交AC于点D,连接BD,若4sin5BDC∠=,则AC的长是()A.43B.26C.10D.83.如图所示,河堤横断面迎水坡AB的坡比是1:5,堤高4BC m=,则迎水坡宽度AC的长为()A.5m B.45m C.26m D.46m4.已知ABC∆是锐角三角形,若AB AC>,则()A.sin sinA B<B.sin sinB C<C.sin sinA C<D.sin sinC A<5.如图,在Rt ACB∆中,90C∠=︒,sin0.5B=,若6AC=,则BC的长为() A.8B.12C.63D.1236.已知A,B都是锐角、且sin sinA B<,则下列关系正确的是()A.A B∠>∠B.tan tanA B>C.cos cosA B>D.以上都不正确7.如图,在ABC∆中,30A∠=︒,3tan B,23AC=AB的长是()第1题图第2题图第3题图第5题图第7题图A .4B .33+C .5D .223+8.在Rt ABC ∆中,若90ACB ∠=︒,1tan 2A =,则sin (B = ) A .12B .32C .55D .2559.如图,某停车场入口的栏杆AB ,从水平位置绕点O 旋转到A B ''的位置,已知AO 的长为4米.若栏杆的旋转角AOA α∠'=,则栏杆A 端升高的高度为( ) A .4sin α米 B .4sin α米 C .4cos α米 D .4cos α米10.如图,A ,B 两景点相距20km ,C 景点位于A 景点北偏东60︒方向上,位于B 景点北偏西30︒方向上,则A ,C 两景点相距( ) A .10kmB .103kmC .102kmD .2033km 二.填空题(共8小题,每小题3分,共24分) 11.已知3tan(15)α+︒=,则锐角α的度数为 ︒. 12.比较大小:cos45︒ cos55︒(用“>”或“<”填空) 13.在ABC ∆中,若90C ∠=︒,10AB =,2sin 5A =,则BC = 14.如图,在ABC ∆中,1sin 3B =,3tanC =,3AB =,则AC 的长为 .15.已知A ∠为锐角,且1cos 2A,那么A ∠的范围是 . 16.如图,在Rt ABC ∆中,90ACB ∠=︒,2AC =,3tan 4B =,CD 平分ACB ∠交AB 于点D ,DE BC ⊥,垂足为点E ,则DE = .17.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的第9题图第10题图第14题图第16题图俯角α是45︒,旗杆底端D到大楼前梯坎底边的距离DC是10米,梯坎坡长BC是10米,梯坎坡度41:3BCi=,则大楼AB的高为米.18.如图,在菱形ABCD中,AE BC⊥,E为垂足,若4cos5B=,2EC=,P是AB边上的一个动点,则线段PE的长度的最小值是.三.解答题(共6小题,满分46分,其中19、20每小题6分,21、22每小题7分,23、24每小题10分)19.已知032a b=≠,求代数式3cot60(2)cos30tan45a ba b+︒-︒︒的值.20.如图,在ABC∆中,90C∠=︒,3tan3A=,ABC∠的平分线BD交AC于点D,3CD=,求AB的长?21.如图,AD是ABC∆的中线,1tan3B=,2cos C=,2AC=.求:(1)BC的长;(2)sin ADC∠的值.22.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的长度是19.5米,MN是二楼楼顶,//MN PQ,点C是MN上处在自动扶梯顶端B点正上方的一点,BC MN⊥,在自动扶梯底端点A处测得C点的仰角CAQ∠为45︒,坡角BAQ∠为37︒,求二楼的层高BC(精确到0.1米).(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75)︒≈第17题图第18题图23.某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30︒,再沿DF 方向前行40米到达点E 处,在点E 处测得楼顶M 的仰角为45︒,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF 的高.(结果精确到0.1m ,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈24.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45︒的防洪大堤(横断面为梯形)ABCD 急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF 的坡比1:3i =. (1)求加固后坝底增加的宽度AF ;(2)求完成这项工程需要土石多少立方米?(结果保留根号)湘教版2020—2021学年九年级数学上册第4章《锐角三角函数》培优试题参考简答一.选择题(共10小题)1.D . 2.D . 3.B . 4.B . 5.C . 6.C . 7.C . 8.D . 9.B . 10.B . 二.填空题(共8小题)11. 15 ︒. 12. > . 13. 4 . 14.21. 15. 6090A ︒<︒ . 16.87. 17. 27 . 18. 4.8 . 三.解答题(共6小题)19.已知032a b=≠,求代数式3cot 60(2)cos30tan 45a b a b +︒-︒︒的值. 【解】:032a b=≠, 23a b ∴=,∴23b a =, 原式323323..22322332(2).a a a===-.20.如图,在ABC ∆中,90C ∠=︒,3tan A =,ABC ∠的平分线BD 交AC 于点D ,3CD =,求AB 的长?【解】:在Rt ABC ∆中,90C ∠=︒,3tan A =, 30A ∴∠=︒, 60ABC ∴∠=︒,BD 是ABC ∠的平分线,30CBD ABD ∴∠=∠=︒,又3CD =,3tan30CDBC ∴==︒,在Rt ABC ∆中,90C ∠=︒,30A ∠=︒, 6sin30BCAB ∴==︒. 答:AB 的长为6.21.如图,AD 是ABC ∆的中线,1tan 3B =,2cosC =,2AC =.求:(1)BC 的长; (2)sin ADC ∠的值.【解】:(1)过点A 作AE BC ⊥于点E ,2cos C 45C ∴∠=︒,在Rt ACE ∆中,cos 1CE AC C ==, 1AE CE ∴==,在Rt ABE ∆中,1tan 3B =,即13AE BE =,33BE AE ∴==,4BC BE CE ∴=+=;(2)AD 是ABC ∆的中线,122CD BC ∴==, 1DE CD CE ∴=-=, AE BC ⊥,DE AE =, 45ADC ∴∠=︒,2sin ADC ∴∠=. 22.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB 的长度是19.5米,MN 是二楼楼顶,//MN PQ ,点C 是MN 上处在自动扶梯顶端B 点正上方的一点,BC MN ⊥,在自动扶梯底端点A 处测得C 点的仰角CAQ ∠为45︒,坡角BAQ ∠为37︒,求二楼的层高BC (精确到0.1米).(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75)︒≈【解】:延长CB 交AQ 于点D ,则CD AQ ⊥,在Rt BAD ∆中,sin BD BAD AB ∠=,cos ADBAD AB∠=, sin 19.50.611.7BD AB BAD ∴=∠≈⨯=,cos 19.50.815.6AD AB BAD =∠≈⨯=,在Rt CAD ∆中,45CAD ∠=︒, 15.6CD AD ∴==, 3.9BC CD BD ∴=-=,答:二楼的层高BC 约为3.9米.23.某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30︒,再沿DF 方向前行40米到达点E 处,在点E 处测得楼顶M 的仰角为45︒,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF的高.(结果精确到0.1m,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈【解】:设MC x=,30MAC∠=︒,∴在Rt MAC∆中,3tan3MCAC xMAC===∠.45MBC∠=︒,∴在Rt MCB∆中,MC BC x==,又40AB DE==,40AC BC AB∴-==,即340x x-=,解得:2020354.6x=+≈,54.6 1.556.1MF MC CF∴=+=+=(米),答:楼MF的高56.1米.24.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45︒的防洪大堤(横断面为梯形)ABCD急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比1:3i=.(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)【解】:(1)分别过点E、D作EG AB⊥、DH AB⊥交AB于G、H.四边形ABCD 是梯形,且//AB CD ,DH ∴平行且等于EG .故四边形EGHD 是矩形. ED GH ∴=.在Rt ADH ∆中,tan 10tan4510AH DH DAH =÷∠=÷︒=(米).在Rt FGE ∆中, 3EGi FG==, 33FG EG ∴=(米).1033101037AF FG GH AH ∴=+-=-=(米);(2)加宽部分的体积AFED V S =⨯梯形坝长 1(31037)105002=⨯+⨯⨯ 25000310000=-(立方米).答:(1)加固后坝底增加的宽度AF 为(1037)米; (2)完成这项工程需要土石310000)立方米.。
杭州市九年级数学下册第二十八章《锐角三角函数》综合经典习题(专题培优)
![杭州市九年级数学下册第二十八章《锐角三角函数》综合经典习题(专题培优)](https://img.taocdn.com/s3/m/41533f75f4335a8102d276a20029bd64783e62de.png)
学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题1.如图,将一副三角尺如图所示叠放在一起,则BECE的值是()A.3B.33C.2 D.322.如图,O是ABC的外接圆,60BAC∠=︒,若O的半径OC为1,则弦BC的长为()A.12B.32C.1 D.33.如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于( )A.31)m B.31)mC.31)m D.31)m4.在Rt△ABC中,∠ACB=90°,AB5tan∠B=2,则AC的长为()A.1 B.2 C5D.55.一把5m长的梯子AB斜靠在墙上,梯子倾斜角α的正切值为34,考虑安全问题,现要求将梯子的倾斜角改为30°,则梯子下滑的距离AA'的长度是()A.34m B.13m C.23m D.12m6.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.BDBCB.BCABC.ADACD.CDAC7.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60︒方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.1002m C.1003m D.2003m38.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD的内角BCD∠的大小为()A.100°B.120°C.135°D.150°9.在Rt△ABC中,若∠ACB=90°,tanA=12,则sinB=()A.12B3C5D2510.点E在射线OA上,点F在射线OB 上,AO⊥BO,EM平分∠AEF,FM平分∠BFE,则tan∠EMF的值为( )A .12B .33C .1D .311.如图,在矩形ABCD 中,33AB =,AD =9,点P 是AD 边上的一个动点,连接BP ,将矩形ABCD 沿BP 折叠,得到△A 1PB ,连接A 1C ,取A 1C 的三等分点Q (CQ <A 1Q ),当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的运动路径长为( )A .πB .23πC .433πD .233π 12.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .4813.如图,在扇形OAB 中,120AOB ∠=︒,点P 是弧AB 上的一个动点(不与点A 、B 重合),C 、D 分别是弦AP ,BP 的中点.若33CD =,则扇形AOB 的面积为( )A .12πB .2πC .4πD .24π14.如图所示,矩形ABCD 的边长AB =2,BC =3△ADE 为正三角形.若半径为R 的圆能够覆盖五边形ABCDE (即五边形ABCDE 的每个顶点都在圆内或圆上),则R 的最小值是( )A .23B .4C .2.8D .2.5二、填空题15.如图,点O 为正八边形ABCDEFGH 的中心,连接DA 、DB ,则=ADB ∠______度;若4OA =,则该正八边形的面积为______.16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD +=,则四边形ABCD 的面积最大值为_______________________.17.已知菱形ABCD 的边长为6,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为点E ,AC =4,那么sin ∠AOE =_____.18.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).19.如图,长方形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C’处,BC’交AD于点E,则线段DE的长为____.20.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.21.如图,我市在建高铁的某段路基横断面为梯形ABCD,DC∥AB,BC长为6米,坡角β为45°,AD的坡角α为30°,则AD的长为 ________ 米(结果保留根号)22.如图,在矩形ABCD中,对角线AC与BD相交于点O,F为DA上一点,连接BF,E为BF中点,CD=6,sin∠ADB=1010,若△AEF的周长为18,则S△BOE=_____.23.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2016的坐标是______.24.如图,ABCD 中,∠DAB =30°,AB =8,BC =3,P 为边CD 上的一动点,则PB +12PD 的最小值等于__________.25.如图,在矩形ABCD 中,连接AC ,以点B 为圆心,BA 为半径画弧,交BC 于点E ,已知3BE =,33BC =,则图中阴影部分的面积为_______.(结果保留π)26.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.三、解答题27.2)0+cos60°﹣|13|.28.如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .(1)求∠CDE 的度数;(2)求证:DF 是⊙O 的切线;(3)若AC =5,求tan ∠ABD 的值.参考答案29.某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,//,BC AD BE AD⊥,斜坡AB长为51062m,坡度9:5i=.为了减缓坡面,防止山体滑坡,保障安全,学校决定对该斜坡进行改造,地质人员勘测,当坡角不超过45时,可确保山体不滑坡.(1)求改造前坡顶到地面的距离BE.(2)如果改造时保持坡脚A不动,坡顶B沿BC削进到F处,问BF至少是多少米? 30.平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A,B两点,点A,B的坐标分别为(﹣3,0),(1,0),与y轴交于点C,点D为顶点.(1)求抛物线的解析式和tan∠DAC;(2)点E是直线AC下方的抛物线上一点,且S△ACE=2S△ACD,求点E的坐标;(3)如图2,若点P是线段AC上的一个动点,∠DPQ=∠DAC,DP⊥DQ,则点P在线段AC上运动时,D点不变,Q点随之运动.求当点P从点A运动到点C时,点Q运动的路径长.【参考答案】一、选择题1.B2.D3.A4.B5.D6.C7.A8.D9.D10.C11.D12.C13.A14.C二、填空题15.225【分析】连接OAOB由正八边形的性质求出得到过A作于K可证得是等腰直角三角形利用正弦的定义求出AK由三角形面积公式即可得出答案【详解】解:连接OAOB∵ABCDEFGH是正八边形∴∴过A作于K16.【分析】根据四边形面积公式S=AC×BD×sin60°根据sin60°=得出S=x(10−x)×再利用二次函数最值求出即可【详解】解:∵AC与BD所成的锐角为60°∴根据四边形面积公式得四边形ABC17.【分析】由菱形对角线互相垂直得到AC⊥BD根据∠OAE=∠BAO∠OEA=∠AOB可以判定△OAE∽△ABO进而得到∠AOE=∠BAO再由AO和AB的值即可求得sin∠AOE的值【详解】∵菱形对角线18.【解析】【分析】在和中利用锐角三角函数用CH表示出AHBH的长然后计算出AB的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C19.375【分析】首先根据题意得到BE=DE然后根据勾股定理得到关于线段ABAEBE的方程解方程即可解决问题【详解】设ED=x则AE=6﹣x∵四边形ABCD为矩形∴AD∥BC∴∠EDB=∠DBC由题意得20.2+【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC==BC=OB﹣OC=2﹣在Rt△ABC中根据tan∠ABO=可得答案【详解】如图连接OA过点A 作AC⊥OB于点21.【分析】过C作CE⊥AB于EDF⊥AB于F分别在Rt△CEB与Rt△DFA中使用三角函数即可求解【详解】解:过C作CE⊥AB于EDF⊥AB于F可得矩形CEFD和Rt△CEB与Rt△DFA∵BC=6∴22.【分析】根据题意求出AD=18设AF=则BF=在Rt△ABF中利用勾股定理可求得求出DF=10可求出S△BDF由三角形中位线定理可求出答案【详解】∵四边形ABCD是矩形∴AB=CD=6∠BAD=9023.(10091008)【分析】根据题意得出直线OB1的解析式为y=x进而得出OB1B2B3坐标进而得出坐标变化规律进而得出答案【详解】过B1向x轴作垂线B1C垂足为C由题意可得:A(10)AO∥A1B24.4【分析】过点P作PE⊥AD交AD的延长线于点E由锐角三角函数可得EP=即PB+=PB+PE则当点B点P点E三点共线且BE⊥AD时PB+PE有最小值即最小值为BE【详解】解:如图过点P作PE⊥AD交25.【分析】设圆弧与AC交于F连接BF过F作FH⊥BC于H解直角三角形得到∠BAC=60°求得△ABF是等边三角形得到∠ABF=60°推出∠FBE=30°然后根据S阴影=S扇形BAF+S△BCF−S△A26.【分析】连接PMPN根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x则PB=2a -x然后利用锐角三角函数求出PM和P三、解答题27.28.29.30.【参考解析】一、选择题1.B解析:B【分析】设AC=AB=x,求得tan3ACCDD===,根据相似三角形的性质即可得到结论.【详解】解:设AC=AB=x,则tanACCDD===,∵∠BAC=∠ACD=90°,∴∠BAC+∠ACD=180°,∴AB∥CD,∴△ABE∽△DCE,∴BE ABCE CD===故选:B.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.2.D解析:D【分析】先作OD⊥BC于D,由于∠BAC=60°,根据圆周角定理可求∠BOC=120°,又OD⊥BC,根据垂径定理可知∠BOD=60°,BD=12BC,在Rt△BOD中,利用特殊三角函数值易求BD,进而可求BC.【详解】解:如右图所示,作OD⊥BC于D,∵∠BAC=60°,∴∠BOC=120°,又∵OD⊥BC,∴∠BOD=60°,BD=12BC,∴BD=sin60°×OB∴BC=2BD=故答案是【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD⊥BC,并求出BD.3.A解析:A【解析】设MN=xm,在Rt△BMN中,∵∠MBN=45∘,∴BN=MN=x,在Rt△AMN中,tan∠MAN=MN AN,∴tan30∘=16xx=3√3,解得:3,则建筑物MN的高度等于3 +1)m;故选A.点睛:本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角,哪个角是俯角,知道仰角是向上看的视线与水平线的夹角,俯角是向下看的视线与水平线的夹角,并与三角函数相结合求边的长.4.B解析:B【分析】根据正切的定义得到BC=12AC,根据勾股定理列式计算即可.【详解】在Rt△ABC中,∠ACB=90°,tan∠B=2,∴ACBC=2,∴BC=12AC,由勾股定理得,AB2=AC2+BC252=AC2+(12AC)2,解得,AC=2,故选B.【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.5.D解析:D【分析】设AC=3k,BC=4k,根据勾股定理得到AB=22AC BC+=5k=5,求得AC=3m,BC=4m,根据直角三角形的性质健康得到结论.【详解】解:如图,∵梯子倾斜角α的正切值为34,∴设AC=3k,BC=4k,∴AB=22AC BC+=5k=5,∴k=1,∴AC=3m,BC=4m,∵A′B′=AB=5,∠A′B′C=30°,∴A′C=12A′B′=52,∴AA′=AC﹣A′C=3﹣52=12m,故梯子下滑的距离AA'的长度是12 m,故选:D.【点睛】本题考查了解直角三角形在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键,属于中考常考题型.6.C解析:C【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【详解】解:∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD=BDBC =BCAB=DCAC,只有选项C错误,符合题意.故选:C.【点睛】此题主要考查了锐角三角函数的定义,得出∠α=∠ACD是解题关键.7.A解析:A【分析】根据题意可得△OAB为直角三角形,∠AOB=30°,OA=200m,根据三角函数定义即可求得AB的长.【详解】解:由已知得,∠AOB=90°-60°=30°,OA=200m.则AB=12OA=100m.故选:A.【点睛】本题主要考查了解直角三角形的应用——方向角问题,正确记忆三角函数的定义是解决本题的关键.8.D解析:D【分析】作AE⊥BC于E,根据平行四边形的面积=矩形面积的一半,得出AE=12AB,再由三角函数即可求出∠ABC的度数,即可得到答案.【详解】解:作AE⊥BC于E,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=12 BC•AB,∴AE=12AB,∴sinB=12AE AB =, ∴∠ABC=30°,∴∠BCD=150°.故选:D .【点睛】本题考查了平行四边形的性质、矩形的性质、面积的计算以及三角函数;熟练掌握平行四边形和矩形的性质,并能进行推理计算是解决问题的关键.9.D解析:D【分析】作出草图,根据∠A 的正切值设出两直角边分别为k ,2k ,然后利用勾股定理求出斜边,则∠B 的正弦值即可求出.【详解】解:如图,∵在Rt △ABC 中,∠C =90°,tanA =12, ∴设AC =2k ,BC =k ,则AB =22(2k)k +=5k ,∴sinB =AC AB=2k 5k =255. 故选:D .【点睛】考核知识点:勾股定理,三角函数.理解正弦、正切定义是关键.10.C解析:C【分析】根据三角形外角的性质求得∠AEF+∠BFE=270°,由角平分线定义可求得∠MEF+∠MFE=135°,根据三角形内角和定理可求出∠EMF=45°,从而可得出结论.【详解】如图,∵AO ⊥BO∴∠AOB=90°∴∠OEF+∠OFE=90°∵∠AEF 和∠BFE 是△EOF 的外角∴∠AEF=90°+∠OFE ,∠BFE=90°+∠OEF∴∠AEF+∠BFE=90°+90°+∠OFE+∠OEF=270°∵EM 平分∠AEF ,FM 平分∠BFE ,∴∠MEF+∠MFE=12(∠AEF+∠BFE) =135°, ∵∠MEF+∠MFE+∠M=180° ∴∠M=180°-(∠MEF+∠MFE)=180°-135°=45°∴tan ∠EMF=tan45°=1故选:C .【点睛】此题主要考查了三角形内角和定理、三角形外角的性质及三角函数,求出∠MEF+∠MFE=135°是解答此题的关键.11.D解析:D【分析】连接AC ,BD ,相交于点O ,过点Q 作1//QE A B ,交BC 于点E ,即点E 为BC 的三等分点,根据平行线分线段成比例得出113QE A B =为定值,可得出点Q 的运动轨迹是以点E 为圆心,QE 为半径的圆弧,通过对点A 1运动轨迹的分析求出圆心角,最后根据弧长公式进行求解.【详解】连接AC ,BD ,相交于点O ,过点Q 作1//QE A B ,交BC 于点E ,即点E 为BC 的三等分点,∵在矩形ABCD 中,33AB =AD =9, ∴3tan AB ADB AD ∠==30ADB ︒∠=,∴60ABD ︒∠=,∵将矩形ABCD 沿BP 折叠,得到△A 1PB , ∴133A B AB ==, ∴1133QE A B ==, 当点P 运动到点A 时,点A 1与点A 重合,当点P 运动到点D 时,点A 1与A 2重合,此时2120ABA ︒∠=,∴点Q 的运动轨迹是以点E 为圆心,QE 为半径,圆心角为120︒的圆弧,∴点Q 的运动路径长1203231803ππ⨯==, 故选D .【点睛】本题考查矩形与轴对称图形的性质,平行线分线段成比例,由三角函数值求锐角,弧长公式,构造平行线得出QE 的长为定值是解题的关键.12.C解析:C【分析】分别用AC ,AB 和BC 表示出123,,S S S ,然后根据222BC AB AC =-即可得出123,,S S S 的关系.同理,得出456,,S S S 的关系,从而可得答案.【详解】解:如图,1S 对应ACD ∆的面积,过D 作DH AC ⊥于H ,ACD ∆为等边三角形,160,,,2DAC AH CH AC AD AC ∴∠=︒=== sin 60,DH AD ∴︒=33,22DH AD AC ∴== 2113,24S AC DH AC ∴=•=同理:222333,,44S BC S AB == ∵222BC AB AC =-, ∴213,S S S -=如图2,同理可得:456S S S =+,∴3421564516111454.S S S S S S +=-++=-++=故选:C .【点睛】本题考查了勾股定理、等边三角形的性质.锐角三角函数等知识点,其中勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .13.A解析:A【分析】如图,作OH ⊥AB 于H .利用三角形中位线定理求出AB 的长,解直角三角形求出OB 即可解决问题.【详解】解:如图作OH ⊥AB 于H .∵C 、D 分别是弦AP 、BP 的中点.∴CD 是△APB 的中位线,∴AB =2CD =63∵OH ⊥AB ,∴BH =AH =33∵OA =OB ,∠AOB =120°,∴∠AOH =∠BOH =60°,在Rt △AOH 中,sin ∠AOH =AH AO, ∴AO =336sin 3AH AOH ==∠, ∴扇形AOB 的面积为:2120612360ππ=, 故选:A .【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14.C解析:C【分析】连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,根据勾股定理可得AC ,根据直角三角形的边角关系可得∠ACB =30°,∠CAD =30°,再根据正三角形的性质可得:∠EAD =∠EDA =60°,AE =AD =DE =3△EAC 是直角三角形,由勾股定理可得EC 的长.判断△EAB ≌△EDC ,根据全等三角形的性质可得EB =EC ,继而根据题意可判断能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE ,从而此圆的圆心到△BCE 的三个顶点距离相等.根据等腰三角形的判定和性质可得F 是BC 中点,BF =CF 3EF ⊥BC ,由勾股定理可得EF 的长,继而列出关于R 的一元二次方程,解方程即可解答.【详解】如图所示,连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,∵四边形ABCD 是矩形,∴∠ABC =∠DAB =∠BCD =∠ADC =90°,AD ∥BC ,AD =BC =AB =CD =2 ∵BC =AB =2由勾股定理可得:AC 4∴sin ∠ACB =24AB AC ==12,sin ∠CAD =24CD AC ==12∴∠ACB =30°,∠CAD =30°∵△ADE 是正三角形 ∴∠EAD =∠EDA =60°,AE =AD =DE =∴∠EAC =∠EAD +∠CAD =90°,∴△EAC 是直角三角形,由勾股定理可得:EC∵∠EAB =∠EAD +∠BAD =150°∠EDC =∠EDA +∠ADC =150°∴∠EAB =∠EDC∵EA =ED ,AB =DC∴△EAB ≌△EDC∴EB=EC =即△EBC 是等腰三角形∵五边形ABCDE 是轴对称图形,其对称轴是直线EF ,∴能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE .从而此圆的圆心到△BCE 的三个顶点距离相等.设此圆圆心为O ,则OE =OB =OC =R ,∵F 是BC 中点∴BF=CF EF ⊥BC在Rt △BEF 中,由勾股定理可得:EF 5∴OF =EF -OE =5-R在Rt △OBF 中,222BF OF OB即()2225R R +-= 解得:R =2.8∴能够覆盖五边形ABCDE 的最小圆的半径为2.8.故选C .【点睛】本题考查勾股定理的应用、全等三角形的判定及其性质、等腰三角形的判定及其性质、直角三角形的边角关系.解题的关键是理解圆内接五边形的特点,并且灵活运用所学知识.二、填空题15.225【分析】连接OAOB 由正八边形的性质求出得到过A 作于K 可证得是等腰直角三角形利用正弦的定义求出AK 由三角形面积公式即可得出答案【详解】解:连接OAOB ∵ABCDEFGH 是正八边形∴∴过A 作于K解析:22.5 322【分析】连接OA 、OB ,由正八边形的性质求出45AOB ∠=︒,得到22.5ADB ∠=︒,过A 作AK OB ⊥于K ,可证得AKO ∆是等腰直角三角形,利用正弦的定义求出AK ,由三角形面积公式即可得出答案.【详解】解:连接OA 、OB ,∵ABCDEFGH 是正八边形,∴360845AOB ∠=︒÷=︒,∴122.52ADB AOB ∠=∠=︒, 过A 作AK OB ⊥于K ,∴90AKO ∠=︒,∵45AOB ∠=︒,,∴AKO ∆是等腰直角三角形,∵4OA =,∴422AK ===∴11422OAB S OB AK ∆=⋅=⨯⨯=∴正八边形ABCDEFGH 88OAB S ∆==⨯=故答案为:22.5,.【点睛】本题考查的是正多边形的有关计算以及锐角三角函数,掌握正多边形的中心角的计算方法、熟记锐角三角函数的定义是解题的关键.16.【分析】根据四边形面积公式S =AC×BD×sin60°根据sin60°=得出S =x(10−x )×再利用二次函数最值求出即可【详解】解:∵AC 与BD 所成的锐角为60°∴根据四边形面积公式得四边形ABC【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°, 设AC =x ,则BD =10−x ,所以S =12x (10−x )x−5)2所以当x =5,S【点睛】 此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.【分析】由菱形对角线互相垂直得到AC ⊥BD 根据∠OAE =∠BAO ∠OEA =∠AOB 可以判定△OAE ∽△ABO 进而得到∠AOE =∠BAO 再由AO 和AB 的值即可求得sin ∠AOE 的值【详解】∵菱形对角线解析:13【分析】由菱形对角线互相垂直得到AC ⊥BD ,根据∠OAE =∠BAO ,∠OEA =∠AOB 可以判定△OAE ∽△ABO ,进而得到∠AOE =∠BAO ,再由AO 和AB 的值即可求得sin ∠AOE 的值.【详解】∵菱形对角线互相垂直,∴∠OEA =∠AOB ,∵∠OAE =∠BAO ,∴△OAE ∽△ABO ,∴∠AOE =∠ABO ,∵AO =12AC =2,AB =6, ∴sin ∠AOE =sin ∠ABO =AO AB =13. 故答案为:13. 【点睛】 考查了相似三角形判定和性质、三角形中正弦函数的计算,解题关键是证明三角形相似再利用其性质得到∠AOE=∠ABO .18.【解析】【分析】在和中利用锐角三角函数用CH 表示出AHBH 的长然后计算出AB 的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C解析:)12001 【解析】【分析】在Rt ACH 和Rt HCB 中,利用锐角三角函数,用CH 表示出AH 、BH 的长,然后计算出AB 的长.【详解】由于CD//HB , CAH ACD 45∠∠∴==,B BCD 30∠∠==,在Rt ACH 中,CAH 45∠∴=,AH CH 1200∴==米,在Rt HCB ,CH tan B HB∠=, CH 12001200HB tan B tan303∠∴====米), )AB HB HA 120012001∴=-==米,故答案为()120031-. 【点睛】本题考查了解直角三角形的应用——仰角、俯角问题,题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .19.375【分析】首先根据题意得到BE=DE 然后根据勾股定理得到关于线段ABAEBE 的方程解方程即可解决问题【详解】设ED=x 则AE=6﹣x ∵四边形ABCD 为矩形∴AD ∥BC ∴∠EDB=∠DBC 由题意得 解析:3.75【分析】首先根据题意得到BE =DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【详解】设ED =x ,则AE =6﹣x .∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB =∠DBC .由题意得:∠EBD =∠DBC ,∴∠EDB =∠EBD ,∴EB =ED =x .由勾股定理得:BE 2=AB 2+AE 2,即x 2=9+(6﹣x )2,解得:x =3.75,∴ED =3.75.故答案为3.75.【点睛】本题考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.20.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:2+3.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出OC=22OA AC -=3、BC=OB ﹣OC=2﹣3,在Rt △ABC 中,根据tan ∠ABO=AC BC 可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt △AOC 中,222221OA AC -=-3∴BC=OB ﹣OC=2﹣3, ∴在Rt △ABC 中,tan ∠ABO=123AC BC =-=2+3. 故答案是:2+3.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 21.【分析】过C 作CE ⊥AB 于EDF ⊥AB 于F 分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解【详解】解:过C 作CE ⊥AB 于EDF ⊥AB 于F 可得矩形CEFD 和Rt △CEB 与Rt △DFA ∵BC=6∴解析:62【分析】过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,分别在Rt △CEB 与Rt △DFA 中使用三角函数即可求解.【详解】解:过C 作CE ⊥AB 于E ,DF ⊥AB 于F ,可得矩形CEFD 和Rt △CEB 与Rt △DFA , ∵BC=6,∴CE=2sin 456322BC ︒=⨯=, ∴DF=CE=32,∴62sin 30DF AD ==︒, 故答案为:62.【点睛】此题考查了解直角三角形的应用-坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.22.【分析】根据题意求出AD=18设AF=则BF=在Rt △ABF 中利用勾股定理可求得求出DF=10可求出S △BDF 由三角形中位线定理可求出答案【详解】∵四边形ABCD 是矩形∴AB=CD=6∠BAD=90解析:152【分析】根据题意求出AD=18,设AF=a ,则BF=18a -,在Rt △ABF 中,利用勾股定理可求得8a =,求出DF=10,可求出S △BDF ,由三角形中位线定理可求出答案.【详解】∵四边形ABCD 是矩形,∴AB=CD=6,∠BAD=90°,OB=OD ,∵sin ∠ADB=10,∴610AB BD BD ==, ∴BD =∴18DA ===,∵E 为BF 中点,∴AE=BE=EF ,∵△AEF 的周长为18,∴AE+EF+AF=BE+EF+AF=BF+AF=18,设AF=a ,则BF=18a -,在Rt △ABF 中,AB 2+AF 2=BF 2,∴62+a 2=(18a -)2,解得:8a =,∴DF=18-8=10.∵E 为BF 中点,O 为BD 的中点, ∴OE ∥DF ,OE=12DF , ∴△BOE ∽△BDF , ∴BOE BDF 14SS =, ∵BDF 12S =DF•AB=12×6×10=30, ∴S △BOE =BDF 111530442S =⨯=. 故答案为:152. 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数,相似三角形的判定与性质,中位线定理,三角形的面积等知识,熟练掌握几何基本图形的性质是解题的关键.23.(10091008)【分析】根据题意得出直线OB1的解析式为y=x 进而得出OB1B2B3坐标进而得出坐标变化规律进而得出答案【详解】过B1向x 轴作垂线B1C 垂足为C 由题意可得:A (10)AO ∥A1B解析:(1009,10083) 【分析】 根据题意得出直线OB 1的解析式为y=3x ,进而得出O ,B 1,B 2,B 3坐标,进而得出坐标变化规律,进而得出答案.【详解】过B 1向x 轴作垂线B 1C ,垂足为C ,由题意可得:A (1,0),AO ∥A 1B 1,∠B 1OC =30°,∴CB 1=OB 1cos30°=32, ∴B 1的横坐标为:12,则B 1的纵坐标为:32, ∴点B 1,B 2,B 3,…都在直线y =3x 上,∴B 1(12,32), 同理可得出:A 的横坐标为:1,∴y =3,∴A 2(2,3),…A n (1+2n ,32n ). ∴A 2016(1009,10083),故答案为:(1009,10083)【点睛】此题主要考查了一次函数图象上点的坐标特征以及规律探究,得出A 点横纵坐标变化规律是解题关键.24.4【分析】过点P 作PE ⊥AD 交AD 的延长线于点E 由锐角三角函数可得EP =即PB+=PB+PE 则当点B 点P 点E 三点共线且BE ⊥AD 时PB+PE 有最小值即最小值为BE 【详解】解:如图过点P 作PE ⊥AD 交解析:4【分析】过点P 作PE ⊥AD ,交AD 的延长线于点E ,由锐角三角函数可得EP =12PD ,即PB+12PD =PB+PE ,则当点B,点P ,点E 三点共线且BE ⊥AD 时,PB+PE 有最小值,即最小值为BE .【详解】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB ∥CD∴∠EDP =∠DAB =30°,∴sin ∠EDP =12EP DP = ∴EP =12PD ∴PB +12PD =PB +PE ∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB +PE 有最小值,即最小值为BE , ∵sin ∠DAB =12BE AB = ∴BE =12AB =4 故答案为:4【点睛】本题考查了平行四边形的性质,垂线段最短,锐角三角函数的性质,作出适当的辅助线是解题的关键.25.【分析】设圆弧与AC 交于F 连接BF 过F 作FH ⊥BC 于H 解直角三角形得到∠BAC =60°求得△ABF 是等边三角形得到∠ABF =60°推出∠FBE =30°然后根据S 阴影=S 扇形BAF +S △BCF−S △A解析:34π 【分析】 设圆弧与AC 交于F ,连接BF ,过F 作FH ⊥BC 于H ,解直角三角形得到∠BAC =60°,求得△ABF 是等边三角形,得到∠ABF =60°,推出∠FBE =30°,然后根据S 阴影=S 扇形BAF +S△BCF−S△ABF−S扇形BFE=S扇形BAF−S扇形BFE计算即可.2【详解】解:设圆弧与AC交于F,连接BF,过F作FH⊥BC于H,在矩形ABCD中,∵∠ABC=90°,AB=BE=3,BC=33∴tan∠BAC333=∴∠BAC=60°,∵BA=BF=3,∴△ABF是等边三角形,∴∠ABF=60°,∴∠FBH=30°,∴FH=12BF=32,∴S阴影=S扇形BAF+S△BCF−S△ABF−S扇形BFE=S扇形BAF−S扇形BFE 22603303333360360244,故答案为:34π.【点睛】本题考查扇形面积的计算,锐角三角函数,等边三角形的判定和性质,扇形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.26.【分析】连接PMPN根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x则PB=2a-x然后利用锐角三角函数求出PM和P3【分析】连接PM、PN,根据菱形的性质求出∠CAP=12∠=DAP30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x,则PB=2a-x,然后利用锐角三角函数求出PM和PN,然后利用勾股定理求出MN2与x的函数关系式,化为顶点式即可求出MN2的最小值,从而求出结论.【详解】解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30° ∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x ∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠32a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2 ∴MN 的最小值为32a 3. 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.三、解答题27.532【分析】原式利用零指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【详解】 2)0+cos60°﹣|13|=1+1231)=1+12=52 【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键. 28.(1)90°;(2)证明见解析;(3)2.【分析】(1)根据圆周角定理即可得∠CDE 的度数;(2)连接DO ,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF 是⊙O 的切线;(3)根据已知条件易证△CDE ∽△ADC ,利用相似三角形的性质结合勾股定理表示出AD ,DC 的长,再利用圆周角定理得出tan ∠ABD 的值即可.【详解】解:(1)解:∵对角线AC 为⊙O 的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO ,∵∠EDC=90°,F 是EC 的中点,∴DF=FC ,∴∠FDC=∠FCD ,∵OD=OC ,∴∠OCD=∠ODC ,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF 是⊙O 的切线;(3)解:如图所示:可得∠ABD=∠ACD ,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E ,又∵∠ADC=∠CDE=90°,∴△CDE ∽△ADC , ∴DC DE AD DC, ∴DC 2=AD•DE ∵,∴设DE=x ,则,则AC 2﹣AD 2=AD•DE ,期()2﹣AD 2=AD•x ,整理得:AD 2+AD•x ﹣20x 2=0,解得:AD=4x 或﹣4.5x (负数舍去),则DC=22(25)(4)2x x x -=,故tan ∠ABD=tan ∠ACD=422AD x DC x==. 29.(1)452m ;(2)10米 【分析】 (1)根据坡度设9BE x =,5AE x =,利用勾股定理得222BE AE AB +=,列出方程求出x 的值,可以求出BE 的长;(2)连接AF ,过点F 作FH AD ⊥于点H ,根据FAH ∠是45︒,利用它的正切值得到FH 和AH 的比值,设BF xm =,列式求出x 的值. 【详解】(1)∵坡度9:5i =, ∴95BE AE =,设9BE x =,5AE x =, 根据勾股定理,222BE AE AB +=,则222581251062x x +=,解得52x =, ∴545922BE m =⨯=; (2)如图,连接AF ,过点F 作FHAD ⊥于点H , 由(1)得525522AE m =⨯=, 设BF xm =,∵tan tan 451FH FAH AH=∠=︒=, ∴4521252x =+,解得10x =, ∴BF 至少是10米.【点睛】本题考查解直角三角形的应用,解题的关键是掌握用锐角三角函数解直角三角形的方法. 30.(1)y =﹣x 2﹣2x +3,AC =32DC 2;(2)E (1,0);(32【分析】(1)将点A (﹣3,0),B (1,0)分别代入抛物线y =ax 2+bx +3可解的a ,b 的值,从而得到解析式,tan ∠DAC =DC AC,可根据表达式求出C ,D 的坐标然后计算DC 和AC 的长度计算;(2)可取一点E ,过E 作EF 平行于x 轴,交AC 于F 此时可表示出S △ACE ,根据类方程S △ACE =2S △ACD ,求E 点坐标即可;(3)根据题能得到Q 的运动轨迹为直线,且当P 在A 处时Q 在C 处,当P 运动到C 处时,可以得到△ADC ∽PQD ,根据形似性质可得到PQ 长度即为Q 的运动路径长.【详解】解:(1)将A (﹣3,0),B (1,0)分别代入抛物线y =ax 2+bx +3可得: 093303a b a b =-+⎧⎨=++⎩,解得12a b =-⎧⎨=-⎩; ∴抛物线解析式为y =﹣x 2﹣2x +3,∴D (﹣1,4),C (0,3);∴AC =32DC 2;∴tan ∠DAC =21=332DC AC . (2)如图1所示,过E 作EF //x 轴交AC 于点F ,设点E (m ,﹣m 2﹣2m +3),直线AC 的表达式为y =kx +n ,将A (﹣3,0),C (0,3)分别代入y =kx +n 可得:033k n n =-+⎧⎨=⎩,解得13k n =⎧⎨=⎩, ∴直线AC 表达式为y =x +3,。
中考数学 锐角三角函数 培优练习(含答案)及答案
![中考数学 锐角三角函数 培优练习(含答案)及答案](https://img.taocdn.com/s3/m/79d7d752a21614791611282c.png)
中考数学锐角三角函数培优练习(含答案)及答案一、锐角三角函数1.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②123【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ,∵PF∥BC,∴∠DFP=∠ADF,∴∠DFQ=∠ADF,∴△DEF是等腰三角形;(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,∵∠P′DF′=∠PDF,∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,∴∠P′DC=∠F′DB,由旋转的性质可知:△DP′F′≌△DPF,∵PF∥BC,∴△DPF∽△DCB,∴△DP′F′∽△DCB ∴''DC DP DB DF = , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意;当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°, ∴tan ∠DBF′=33.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.2.如图,在△ABC 中,∠ABC =90°,以AB 的中点O 为圆心,OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)求证:BC 2=2CD•OE ;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数3.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan∠ABC=,∴,∴,∴,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:AI=25,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,∵OB2=BH2+OH2,∴,解得:,当QH=时,∴QD=,∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.考点:1圆;2相似三角形;3三角函数;4直角三角形.4.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数5.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.6.如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结(1)求证:(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,或【解析】(1)证明:∵四边形为正方形,∴∵三角板是等腰直角三角形,∴又三角板绕点逆时针旋转至的位置时,∴···························· 3分(2)存在.································· 4分∵∴过点与平行的直线有且只有一条,并与垂直,又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上,························ 5分∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和此时,点分别在点和点,满足·························· 7分当切点在第二象限时,点在第一象限,在直角三角形中,∴∴∴点的横坐标为:点的纵坐标为:∴点的坐标为··························· 9分当切点在第一象限时,点在第四象限,同理可求:点的坐标为综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或································ 11分(1)根据旋转的性质找到相等的线段,根据SAS定理证明;(2)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE 的长,通过解直角三角形,不难得到E点的坐标,由此得解.7.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD 为12米,求条幅AE 的长度.(结果保留根号)【答案】AE 的长为(123)+ 【解析】 【分析】在Rt ACF V 中求AF 的长, 在Rt CEF V 中求EF 的长,即可求解. 【详解】过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF V 中,45ACF ∠=︒tan 1AFACF CF∴∠== 12AF ∴= 在Rt CEF V 中,30ECF ∠=︒ tan EFECF CF∴∠= 312EF ∴=43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.8.如图,在△ABC 中,∠A=90°,∠ABC=30°,AC=3,动点D 从点A 出发,在AB 边上以每秒1个单位的速度向点B 运动,连结CD ,作点A 关于直线CD 的对称点E ,设点D 运动时间为t (s ).(1)若△BDE是以BE为底的等腰三角形,求t的值;(2)若△BDE为直角三角形,求t的值;(3)当S△BCE≤92时,所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=23【答案】(133;(23秒或3秒;(3)6﹣3【解析】【分析】(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由3,可得t 的值;(2)分两种情况:①当∠DEB=90°时,如图2,连接AE,根据3t的值;②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,②当△BCE在BC的上方时,分别计算当高为3时对应的t的值即可得结论.【详解】解:(1)如图1,连接AE,由题意得:AD=t,∵∠CAB=90°,∠CBA=30°,∴BC=2AC=6,∴22633∵点A、E关于直线CD的对称,∴CD垂直平分AE,∴AD=DE,∵△BDE是以BE为底的等腰三角形,∴DE=BD,∴AD=BD,∴t=AD=332;(2)△BDE为直角三角形时,分两种情况:①当∠DEB=90°时,如图2,连接AE,∵CD垂直平分AE,∴AD=DE=t,∵∠B=30°,∴BD=2DE=2t,∴AB=3t=33,∴t=3;②当∠EDB=90°时,如图3,连接CE,∵CD垂直平分AE,∴CE=CA=3,∵∠CAD=∠EDB=90°,∴AC∥ED,∴∠CAG=∠GED,∵AG=EG,∠CGA=∠EGD,∴△AGC≌△EGD,∴AC=DE,∵AC∥ED,∴四边形CAED是平行四边形,∴AD=CE=3,即t=3;综上所述,△BDE为直角三角形时,t的值为3秒或3秒;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,此时S△BCE=12AE•BH=12×3×3=92,易得△ACG≌△HBG,∴CG=BG,∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,∴∠ACD=∠DCE=15°,tan ∠ACD=tan15°=t3=2﹣3, ∴t=6﹣33,由图形可知:0<t <6﹣33时,△BCE 的BH 越来越小,则面积越来越小, ②当△BCE 在BC 的上方时,如图3,CE=ED=3,且CE ⊥ED , 此时S △BCE =12CE•DE=12×3×3=92,此时t=3, 综上所述,当S △BCE ≤92时,t 的取值范围是6﹣33≤t≤3.【点睛】本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.9.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8. (1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y . 【解析】 【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BOPD MO=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠, ∴POD OCE ∆≅∆, ∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒, ∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =, ∵90BTO ∠=︒, ∴90TPO TOP ∠+∠=︒, ∵PO BM ⊥, ∴90BNO ∠=︒, ∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=︒, ∴BPN x ∠=︒, ∵2PMB KPB ∠=∠, ∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠, ∴PO PM =,过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠, tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t =+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==, ∴CM y P 轴,∵90PNM POC ∠=∠=︒, ∴BM OC P ,∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=Y . 故答案为32. 【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.10.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--.【解析】 【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90°∵∠DCP =∠OCB ∴△CDP ∽△COB ∴PC PDBC OB= ∵B (4,0),C (0,3)∴OB=4,OC =3,BC ∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG 125==①若点Q 在x 轴上方,则Q (41255-,)设直线l解析式为:y=kx+b∴40 412 55 k bk b-+=⎧⎪⎨-+=⎪⎩解得:343kb⎧=⎪⎨⎪=⎩∴直线l:334y x=+②若点Q在x轴下方,则Q(41255--,)∴直线l:334y x=--综上所述,直线l的解析式为334y x=+或334y x=--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q点是关键,同时不要忘记需要分情况讨论11.如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的¶BD 交y轴正半轴于点D,¶BD与BC有交点时,交点为E,P为¶BD上一点.(1)若c=3,①BC=,¶DE的长为;②当CP=2时,判断CP与⊙A的位置关系,井加以证明;(2)若c=10,求点P与BC距离的最大值;(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)【答案】(1)①12,π;②详见解析;(2)①65;②65(3)答案见详解【解析】【分析】(1)①先求出AB,AC,进而求出BC和∠ABC,最后用弧长公式即可得出结论;②判断出△APC是直角三角形,即可得出结论;(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;(3)画图图形,同(2)的方法即可得出结论.【详解】(1)①如图1,∵c=3+2,∴OC=3,∴AC=3﹣2=3∵AB=6,在Rt△BAC中,根据勾股定理得,BC=12,tan∠ABC=ACAB3∴∠ABC=60°,∵AE=AB,∴△ABE是等边三角形,∴∠BAE=60°,∴∠DAE=30°,∴»DE的长为306180π⨯=π, 故答案为12,π; ②CP 与⊙A 相切.证明:∵AP =AB =6,AC =OC ﹣OA =63, ∴AP 2+CP 2=108, 又AC 2=(63)2=108, ∴AP 2+PC 2=AC 2.∴∠APC =90°,即:CP ⊥AP . 而AP 是半径, ∴CP 与⊙A 相切.(2)若c =10,即AC =10﹣2=8,则BC =10.①若点P 在»BE上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F , 则PF 的长就是最大距离,如图2,S △ABC =12AB ×AC =12BC ×AF , ∴AF =AB AC BC ⋅=245,∴PF =AP ﹣AF =65;②如图3,若点P 在»DE上,作PG ⊥BC 于点G ,当点P 与点D 重合时,PG 最大. 此时,sin ∠ACB =PG AB CP BC=, 即PG =AB CP BC ⋅=65∴若c=10,点P与BC距离的最大值是65;(3)当c=1时,如图4,过点P作PM⊥BC,sin∠BCP=AB PM BC CD=∴PM=67423737AB CDBC⋅⨯===423737;当c=6时,如图5,同c=10的①情况,PF=6﹣1213=1213613-,当c=9时,如图6,同c=10的①情况,PF=4285685 -,当c=11时,如图7,点P和点D重合时,点P到BC的距离最大,同c=10时②情况,DG 18117.【点睛】此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.12.如图,建筑物上有一旗杆,从与相距的处观测旗杆顶部的仰角为,观测旗杆底部的仰角为,求旗杆的高度.(参考数据:,,)【答案】旗杆的高度约为.【解析】【分析】在Rt△BDC中,根据tan∠BDC=求出BC,接着在Rt△ADC中,根据tan∠ADC==即可求出AB的长度【详解】解:∵在Rt△BDC中,tan∠BDC==1,∴BC=CD= 40m在Rt△ADC中,tan∠ADC==∴tan50°= =1.19∴AB7.6m答:旗杆AB的高度约为7.6m.【点睛】此题主要考查了三角函数的应用13.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.14.如图1,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,动点P在线段BC上,点Q在线段AB上,且PQ=BQ,延长QP交射线AC于点D.(1)求证:QA=QD;(2)设∠BAP=α,当2tanα是正整数时,求PC的长;(3)作点Q关于AC的对称点Q′,连结QQ′,AQ′,DQ′,延长BC交线段DQ′于点E,连结AE,QQ′分别与AP,AE交于点M,N(如图2所示).若存在常数k,满足k•MN=PE•QQ′,求k的值.【答案】(1)证明见解析(2)PC的长为37或32(3)8【解析】【分析】(1)由等腰三角形的性质得出∠B=∠BPQ=∠CPD,由直角三角形的性质得出∠BAC=∠D,即可得出结论;(2)过点P作PH⊥AB于H,设PH=3x,BH=4x,BP=5x,由题意知tanα=1或12,当tanα=1时,HA=PH=3x,与勾股定理得出3x+4x=5,解得x=57,即可求出PC长;当tanα=12时,HA=2PH﹣6x,得出6x+4x=5,解得x=12,即可求出PC长;(3)设QQ′与AD交于点O,由轴对称的性质得出AQ′=AQ=DQ=DQ′,得出四边形AQDQ′是菱形,由菱形的性质得出QQ′⊥AD,AO=12AD,证出四边形BEQ'Q是平行四边形,得出QQ′=BE,设CD=3m,则PC=4m,AD=3+3m,即QQ′﹣BE=4m+4,PE=8m,由三角函数得出MOAO=tan∠PAC=PCAC,即可得出结果.【详解】(1)证明:∵PQ=BQ,∴∠B=∠BPQ=∠CPD,∵∠ACB=∠PCD=90°,∴∠A+∠BAC=90°,∠D+∠CPD=90°,∴∠BAC=∠D,∴QA=QD;(2)解:过点P作PH⊥AB于H,如图1所示:设PH=3x,BH=4x,BP=5x,由题意得:tan∠BAC=43,∠BAP<∠BAC,∴2tanα是正整数时,tanα=1或12, 当tanα=1时,HA =PH =3x , ∴3x+4x5, ∴x =57, 即PC =4﹣5x =37; 当tanα=12时,HA =2PH ﹣6x , ∴6x+4x =5,∴x =12, 即PC =4﹣5x =32; 综上所述,PC 的长为37或32; (3)解:设QQ′与AD 交于点O ,如图2所示: 由轴对称的性质得:AQ′=AQ =DQ =DQ′, ∴四边形AQDQ′是菱形, ∴QQ′⊥AD ,AO =12AD , ∵BC ⊥AC , ∴QQ′∥BE , ∵BQ ∥EQ′,∴四边形BEQ'Q 是平行四边形, ∴QQ′=BE ,设CD =3m ,则PC =4m ,AD =3+3m , 即QQ′﹣BE =4m+4,PE =8m , ∵MO AO =tan ∠PAC =PCAC, ∴332MOm +=43m,即MN =2MO =4m (1+m ),∴k =PE QQ MNg ′=8(44)4(1)m m m m ++=8.【点睛】本题是三角形综合题目,考查了等腰三角形的性质与判定、三角函数、勾股定理、菱形的判定与性质、平行线的性质以及分类讨论等知识;本题综合性强,熟练掌握等腰三角形的判定与性质,灵活运用三角函数是解题关键.15.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)2,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,2,设AE=CE=x,则222-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,解得:x=52,故可得sin∠BEC=35CFCE,AE=52;(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=24AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.。
数学锐角三角函数的专项培优练习题(含答案)及详细答案
![数学锐角三角函数的专项培优练习题(含答案)及详细答案](https://img.taocdn.com/s3/m/672c446a08a1284ac95043ad.png)
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=. 在Rt ABC 中,sin AC B AB =,所以3sin 3725155AC AB ︒=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM 中,4sin 15125CM AC CAM =⋅∠=⨯=,3cos 1595AM AC CAM =⋅∠=⨯=.在Rt ADM △中,tan MDDAM AM∠=,所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =+=+==-=,.设缉私艇的速度为v海里/小时,则有2491716=,解得617v=.经检验,617v=是原方程的解.答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.【点睛】此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.4.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数5.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC3,在RT△MFC中MF=MN-FN=MN-CE=x-20FC=NE=NA+AE=x+3∵∠MCF=30°∴FC3MF,即x+33-20)解得:x =40331- =60+203≈95m答:电视塔MN 的高度约为95m .【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.6.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8. (1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCMS =.【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BOPD MO=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠,∴POD OCE ∆≅∆, ∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒, ∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =, ∵90BTO ∠=︒, ∴90TPO TOP ∠+∠=︒, ∵PO BM ⊥, ∴90BNO ∠=︒, ∴BQT TPO ∠=∠, ∴QTB PTO ∆≅∆, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=︒, ∴BPN x ∠=︒, ∵2PMB KPB ∠=∠, ∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒,∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CMy 轴, ∵90PNM POC ∠=∠=︒, ∴BMOC , ∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=.故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.7.如图1,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-x -与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .(1)请直接写出OE 、⊙M 的半径r 、CH 的长;(2)如图2,弦HQ 交x 轴于点P ,且DP : PH =3 : 2,求cos ∠QHC 的值;(3)如图3,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT交x 轴于点N .是否存在一个常数a ,始终满足MN·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.【答案】(1)OE=5,r=2,CH=2(2);(3)a=4【解析】【分析】(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH 是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QPD,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.【详解】(1)OE=5,r=2,CH=2(2)如图1,连接QC、QD,则∠CQD =90°,∠QHC =∠QDC,易知△CHP∽△DQP,故,得DQ=3,由于CD=4,;(3)如图2,连接AK,AM,延长AM,与圆交于点G,连接TG,则,由于,故,;而,故在和中,;故△AMK∽△NMA;即:故存在常数,始终满足常数a="4"解法二:连结BM,证明∽得8.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)【答案】AE 的长为(123)+【解析】【分析】在Rt ACF 中求AF 的长, 在Rt CEF 中求EF 的长,即可求解.【详解】过点C 作CF AB ⊥于点F由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AF ACF CF∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒tan EF ECF CF∴∠= 3123EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.9.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E(1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果∠BED=60°,3PA 的长;(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE 为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,PD=3,∴0 tan30ODPD=,解得OD=1,∴22PO PD OD=+=2,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.10.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.(2)若2ABD BDC ∠=∠.①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒,CE DB ⊥,90DEC ∴∠=︒,//CF AD ∴,180DAC ACF ∴∠+∠=︒.(2)①如图,连接OC .OA OC =,12∴∠=∠.312∠=∠+∠,321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠,421∴∠=∠,43∴∠=∠,//OC DB ∴.CE DB ⊥,OC CF ∴⊥.又OC 为O 的半径,CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF ⊥,90OCF ∴∠=︒,3tan 4OC F CF ∴==, 解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.。
人教版九年级数学下锐角三角函数单元培优教师版
![人教版九年级数学下锐角三角函数单元培优教师版](https://img.taocdn.com/s3/m/2a711c6f240c844769eaeed4.png)
第二十八章 锐角三角函数1. 锐角三角函数(一)预习归纳在直角三角形中,锐角a 的 对边 与 斜边 的比叫做角ɑ的正弦,记作sin ɑ . 例题讲解 【例】(2014·兰州)如图,在Rt △ABC 中,∠C 90°,BC =3,AC =4,那么sin A 的值等于( C ) A .43 B . 54 C . 53 D . 34基础题训练1 .已知Rt △ABC 中,∠C =90°,∠A =60°,则AC :BC :AB =2:3:12 .已知Rt △ABC 中,∠C =90°,AB =2BC ,则∠A = 30° .3 .已知△ABC 中,∠A =∠B =21∠C ,则BC :AC :AB4 .在Rt △ABC 中,∠C =90°,∠A 的正弦是( A ) A .AB BC B . AB AC C . AC BC D . BCAB5 .计算2·sin45°的结果等于( B )A .2 B . 1 C .22D . 32 6 .在△ABC 中,∠C =90°,AC =2BC ,则sinA 的值为( C ) A .552 B . 2 C . 55D . 32 7 . 把Rt △ABC 的三边的长度都扩大为原来的3倍,则锐角A 的正弦值( A )A . 不变B . 缩小为3倍C . 扩大3倍D . 不能确定 8 .如图,在△ABC 中,∠C =90°,AB =13, BC =5,求sinB 的值.ABCABC解:sin B=13129.(2015·包头)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=14,求线段AC的长.解:2中档题训练10 .△ABC中,∠C=90°,AB=15,sinA=31,则BC等于( B )A .45B .5C .51D .45111 .(2014·威海)如图,在右边网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是( D )A.310B.12C.13D.1012.如图,在菱形ABCD中,AE⊥BC于点E,EC=1,sinB=135,求菱形的周长.解:设AE=5x,AB=13x,∴BE=12x,∴12x+1=13x,x=1∴AB=13,∴菱形的周长为52 .ABDCE13 .如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,sinA =54,AC =5,求sinB 及BC 的长.解:sin B =53 BC =32014 .在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c =35,若关于x 的方程(35+b )x 2+2ax +35-b =0,有两个相等的实数根. (1)试判断△ABC 的形状; (2)若sin A =53,求△ABC 的面积. 解:(1)由题意知:(a +b )x 2+2ax +c -b =0,△=0,可知a 2+b 2=c 2,∴∠C =90°. (2)S △ABC =18 .综合题训练15 .(2014·上海)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH .求sin B 的值.解:可证∠B =∠DCB =∠CAE ,又AC 5CH ,故sinB 5.ADC2. 锐角三角函数(二)预习归纳1.在直角三角形中,锐角a 的 邻边 与 斜边 的比叫做角a 的余弦,记作 cosa 2.在直角三角形中,锐角a 的 对边 与 邻边 的比叫做角a 的正切,记作tana 例题讲解【例】如图,在Rt △ABC 中,∠C =90°,AC =12,AB =13,则sinA =513;cosA =1213 ;tanA = 512 ;sinB = 1213 ;cosB = 513;tanB = 125 .基础训练1 .如图,在Rt △ABC 中,∠C =90°,AC =8,tanA =43,则BC = 6 ;AB = 10 ;sinB =45 ;cosB = 35;tanB = 43 . 2 . 在Rt △ABC 中,∠C =90°,tanA =3,则sinAcosA = ;sinB =;、cosB tan = 13. 3.(2015·天津)cos45°的结果等于( B )A .12 B .C . 23 D .4 .(2014·巴中) 在Rt △ABC 中,∠C =90°,sinA =513,则tanB 的值是( D ) A .1213 B . 512 C . 1312 D . 1255 .在△ABC 中,∠C =90°,cosA =54,则tanB 的值为( A ) A . 34 B . 43 C . 53 D . 546 .在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =5, AC =6,则tanB 的值是( C ) A . 54B . 53C . 43D . 34A7 .在△ABC 中,∠C =90°∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列式子一定成立的是( B ) A . a =c ·sin B B . a =c ·cosB C . a =c ·tanB D . a =Bccos 8 .已知在△ABC 中,∠C =90°,AB =2AC ,求tanA 、tanB 的值.解:tanA =3;tan B33 9.如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AD =1,BD =4. (1)求CD 的长; (2)求sin A 、tan B 的值. 解:(1)2 (2)255,12中档题训练10.(2014·苏州)如图,在△ABC 中,AB =AC =5, BC =8.若∠BPC=12∠BAC ,则tan ∠BPC = 43. 11.(2015·山西)如图,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则∠ABC 的正切值是( D ). A .2 B .255 C .55 D .12第10题图 第11题图 第12题图 12.如图,△ABC 中,cos B =2,sin C =35,AC =5,则△ABC 的面积是多少? 解:AD ⊥BC ,∵△ABC 中,cos B =2,sin C =35.AC =5,∴cos B =2=BDAB,∴∠B = 45°,∵sin C =35=AD AC =5AD ,∴AD =3,CD =4,∴BD =3,则△ABC 的面积是:12×AD ×BC =12×3×(3+4)=21213.如图,正方形ABCD 中,M 为DC 的中点,N 为BC 上一点,BN =3CN ,求tan ∠MAN 的值.解:连MN ,易证△ADM ≌△MCN ,知∠AMN =90°,∴tan ∠MAN =MN AM =CM AD =12.综合题训练14.如图,直线y=-3x+b与x轴、y轴分别交于点D、A,与双曲线y=kx在第一象限交于B、C两点,且AB·AC=4.(1)求tan∠ADO的值;(2)求k的值.解:(1)过B作BM⊥y轴于M,过C作CN⊥y轴于N,∵A (0,b),D (3b,0),∴tan∠ADO=3b =3.(2)设点B和点C的横坐标分别为m,n,则AB=23m,AC=23n,∴AB·AC=23m·23n=4,∴mn=3,又m,n为方程-3x+b=kx的两根,∴mn=k,∴3=3k,∴k=33.锐角三角函数(三)预习归纳锐角α30°45°60°sinα122232cosα322212tanα3313(1)α的值逐渐增大,α的值逐渐减小,α的值逐渐增大.(2)sin30°=cos60°,sin30°=cos60°;(3) sin230°+cos230°=1;(4)sin30cos30︒︒=tan30°;(5)若sinα=cosα,则锐角α=45°.例题讲解【例】计算:1-2sin30°·cos30°=232-.基础题训练1.计算: sin30°·cos30°+cos60°·sin45°=32+.2.计算:3tan30°·tan45°+2cos60°=3+1.3.若α为锐角,且tanα=1,则α=45°,cosα=22.4.计算:cos601+1+sin60tan30︒︒︒=2.5.(2014·白银)△ABC中,∠A、∠B都是锐角,若sin A=3,co sB=12,则∠C=60°.6.计算:(1) (2011-1)0+18sin45°-22.(2) (2015·长沙) (12)-1+4cos60°-|-3|+9.解:原式=0解:原式=4(3)27-(4-π)0-6cos30°+|-2| (4)(2015·福州) (-1)2015+sin30°+(2-3)(2+3).解:原式=1解:原式=1 2中档题训练7.(2014·凉山州)在△ABC中,若|cos A-12|+(1-tan B)2=0,则∠C的度数是( C)A.45°B.60°C.75°D.105°8.反比例函数y=kx的图象经过点(tan45°,cos60°),则k=12.9.在△ABC中,∠A=30°,sin B=3,AC=23,则AB=4.10.已知2+3是方程x2-5x sinθ+1=0的一个根,且0°<θ<90°,求sinθ的值.解:sinθ=4 511.(2014·连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,求tan∠ANE的值.解:设正方形的边长为2a,DH=x,则CH=2a-x,由翻折的性质,DE=12AD=12×2a=a.EH=CH=2a-x,在Rt△DEH中,DE2+DH2=EH2,即a2+x2=(2a-x)2,解得x=34a,∵∠MEH=∠C=90°,∴∠AEN+∠DEH=90°∵∠ANE+∠AEN=90°∴∠ANE=∠DEH,∴tan∠ANE=tan∠DEH=DHDE=34aa=34综合题训练12.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD 上.(1)求证:△ABF≌△DFE;(2)若sin∠DFE=13,求tan∠EBC的值.(1)略(2) Rt△DFF中,sin∠DFE=DEEF=13,∴设DE=a,EF=3a,DF=22EF DE=22a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,又由(1)△ABF≌△DFE,∴EFBF=DFAB=224aa=22,∴tan∠EBF=EFBF=2,tan∠EBC=tan∠EBF=24. 解直角三角形(一)预习归纳在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,则有:(1)三边的关系(勾股定理)是__________ a2+b2=c2;(2)两个锐角之间的关系是__________∠A+∠B=90°;(3)边角之间的关系是:sin A__________ac;sin B__________bc;cos A__________bc;cos B__________ac;tan A__________ab;tan B _________ba.例题讲解【例】在△ABC中,AB=AC=3,BC=2,则cos B的值是(B).A.3B. 13C. 33D.23基础题训练1.在Rt△ABC中,∠C=90°.(1)若c=12,sin A=13,则a=__________4,b=__________;(2)若∠A=30°,a=8,则∠B=__________60°,c=__________16,b=__________;(3)若a=,b=,则∠A=__________60°,∠B=__________30°,c=__________(4)若a=c=4,则∠A=__________45°,∠B=__________45°,b=__________.2. (2015·兰州)如图,△ABC中,∠B=90°,BC=2AB,则cos A=(D)CA.B.12C. D.3. 如图,已知△ABC中,∠C=90°,给出下列四个结论:①a=c·sin A;②a=b·tan A;③c=a·sin C;④sincosAA=tan A,其中正确的结论是(B)BA. ①②③B. ①②④C. ①③④D.②③④4. 如图,Rt△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=a,AB=3,BC=4.(1)求sinα的值;(2)求AD的长.解:(1)4 5(2)9 55.在Rt△ABC中,∠C=90°,∠A=60°,a-b1,求斜边c的长.解:tan A=ababb-b1,b=1,c=2.中档题训练6.如图,△ABC 中,∠A =30°,∠C =45°,BC,求AC 的长.解:作BD ⊥AC 于D ,CD =BD =1,ADAC+1. 7.如图,在△ABC 中,AD ⊥BC 于D ,如果BD =9,BC =5,cos B =35,E 为AC 的中点,求sin ∠EDC 的值.解:sin ∠EDC =sin ∠C =1213. 8.如图,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC的角平分线,若AC ,求线段AD 的长.解:∵△ABC 中,∠C =90°,∠B =30°, ∴∠BAC =60°,∵AD 是△ABC 的角平分线,∴∠CAD =30°,∴在Rt △ADC 中,AD =cos30AC=2.9.如图,等腰Rt △ABC 中,∠ACB =90°,过BC 的中点D 作DE ⊥AB ,垂足为E ,连接CE ,求sin ∠ACE .E解:过E 作EH ⊥AC ,∴AH =3CH ,∴sin ∠ACE .综合题训练10.如图,在△ABC中,∠C=90°,∠A=15°,(1)求ACBC的值;(2)求sin A的值.解:(1)在AC上取点E,使AE=BE,则∠CEB=30°,设BC=1,则BE=2,CE,AC=2AB2=(2)2+1=8+AB1,ACBC=2(2)sin A=BCAB5. 解直角三角形(二)预习归纳视线与视平线的夹角叫做__________视角;当视线在视平线之上时,此视角叫做__________仰角;当视线在视平线之下时,此视角叫做__________俯角.例题讲解【例】如图,飞机于空中A处探测地面目标B,此时从飞机上看目标B的俯角∠α=30°,飞行高度AC=1200米,则飞机到目标B的距离AB为(B)A.1200米B. 2400米米米基础题训练1.如图,已知一商场自动扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于(A)A. 34B.43C.45D.352.(2014·孝感)如图,在ABCD 中,对角线AC 、BD 相交所成的锐角为a ,若AC =a ,BD =b ,则ABCD 的面积是( A )A. 12ab sinαB. ab sinαC. ab cosαD. 12ab cosα 3. 如图,是意大利著名的比萨斜塔,塔身的中心线与垂直中心线的夹角A 约为5°28',塔身的长为54.5m ,则塔顶中心偏离垂直中心线的距离BC 是( A )A. 54.5×sin5°28'mB. 54.5×cos 5°28'mC. 54.5×tan5°28'mD.o 54.5m sin528'4. (2015·长沙)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 仰角∠ABO 为α,则树OA 的高度为( C )OAA. 30tan α米 B.30sinα米 C. 30tanα 米 D.30cosα米5. (2015·哈尔滨)如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看到地平面指挥台B 的俯角α=30°,则飞机A 与指挥台B 的距离为( D )1200mαBCAA.1200 m 2 m 3 D.2400 m中档题训练6.如图,为了测量电线杆的高度AB ,在离电线杆20米的C 处,用高1.20米的测角仪CD 测得电线杆顶端B 的仰角α=22°,求电线杆AB 的高.(精确到0.1)(sin22°≈0.3746,cos22°≈0.9272,tan22°≈0.4040).α解:AB =20×tan22°+1.20≈9.3.7.如图,某高速公路建设中需要确定隧道AB 的长度,已知在离地面1500 m 高的C 处有一架飞机,飞行员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长.CD解:∵OA =1500×tan30°=1500×33=5003,OB =OC =1500, ∴AB =1500-5003≈1500-865=635(m ).8.如图,教室窗户的高度AF 为2.5米,遮阳篷外端一点D 到窗户上椽距离为AD ,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC 为30°,PE 为窗户的一部分在教室地面所形成的影子且长为3米,试求AD 的长度.(结果带根号)B F PA D解:AD =332米. 综合题训练 9. (2015·天津)如图,某建筑物BC 顶部有一旗杆AB ,且点A ,B ,C 在同一直线上,小红在D 处观测旗杆顶部A 的仰角为47°,观测旗杆底部B 的仰角为42°.已知点D 到地面的距离DE 为1.56m ,EC =21m ,求旗杆AB 的高度和建筑物BC 的高度(结果保留小数点后一位).参考数据:tan47°≈1.07,tan42°≈0.90.47°42°F A BD解:如图,根据题意,DE =1.56,EC =21,∠ACE =90°,∠DEC =90°,过点D 作DF ⊥AC ,垂足为F ,则∠DFC =90°,∠ADF =47°,∠BDF =42°,可得四边形DECF 为矩形,∴DF =EC =21,FC =DE =1.56,在Rt △DF A 中,tan ∠ADF =AFDF,∴AF =DF ·tan47°≈21×1.07=22.47,在Rt △DFB 中,tan ∠BDF =BFDF,∴BF =DF ·tan42°≈21×0.90=18.90,于是,AB =AF -BF ≈22.47-18.90=3.57≈3.6,BC =BF +FC ≈18.90+1.56=20.46≈20.5. 答:旗杆AB 的高度约为3.6m ,建筑物BC 的高度约为20.5m.6. 解直角三角形(三)预习归纳在一斜坡上,升高的高度h与水平前进的距离l的比叫坡度,用字母i表示,即i=hl.例题讲解【例】如图,在山坡上种树,要求株距(相邻两树间的水平距离)是6米,测得斜坡的坡度为1:2.4,则斜坡上相邻两树间的坡面距离是(C)A.6.2米B.6.4米C. 6.5米D.7.2米基础题训练1. 如图,已知某斜坡的坡度为13,则斜坡的坡角α是(A)i=1:3αA.30°B. 45°C. 60°D.0°<α<30°2. 一艘海轮位于灯塔的北偏红65°方向,那么灯塔位于这艘海轮的(A)A. 南偏西65°方向B. 南偏西25°方向C. 北偏西65°方向D. 北偏西25°方向3. (2014·上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为__________26米.4. 河堤横断面如图所示,堤高BC=5米,迎水坡的坡比是3(坡比是坡面的铅直高度BC 与水平宽度AC之比),则AC的长是()ABA. 5米B. 10米C. 15米3米5. 如图,某人从A 点出发,沿着西南方向行了个单位,到达B 后观察到原点O 在它的南偏东60°方向上,则原来A 点的坐标为__________(04).(结果保留根号)6.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为个坡面的坡度为__________1:2.7.如图,水坝的横断面是梯形,背水坡AB:1,坡长AB m ,为加强水坝强度,将坝底从A 处向后延伸到F 处,使新的背水坡BF 的坡度为1:1,求AF 的长度(结果精确到1米,参考数据:≈1.414,≈1.732).解:过B 作BE ⊥AD 于E ,在Rt △ABE中,tan ∠BAE =BEAE则∠BAE =60°,∴AE=3BE =BE =30,tan ∠BFE =BEEF=1,∴BE =EF =30,∴AF =EF -AE =30-13 m中档题训练8.如图,斜坡AC 的坡度为1:3,AC =10米,坡顶有一旗杆BC ,旗杆顶端B 点与点A 有一条彩带AB 相连,AB =14米,试求旗杆BC 的高度. 解:BC =6米9.如图,梯形ABCD 是拦水坝的横断面图(图中1:3i =是指坡面的铅直高度DE 与水平宽度CE 的比),∠B =60°,AB =6,AD =4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字,参考数据:3 1.732≈,2 1.414≈) 解:52.010.(2015 南京)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO =45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h 和36km/h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 处,测得∠DBO =58°,此时B 处距离码头O 有多远?(参考数据:sin 580.85︒≈,cos580.53︒≈,tan 58 1.60︒≈)解:设B 处距离码头O 有x km ,在Rt △CAO 中,∠CAO =45°.∵tan COCAO AO∠=. ∴()tan 450.1tan 45 4.5CO AO CAO x x ︒=∠=⨯+=+,在Rt △DBO 中,∠DBO =58°, ∵tan DODBO BO∠=,∴tan tan 58DO BO DBO x ︒=∠=,∵DC DO CO =-, ∴()360.1tan 58 4.5x x ︒⨯=-+,∴360.1 4.5360.1 4.513.51.601tan 581x ︒⨯+⨯+=≈=--,因此,B 处距离码头O 大约13.5km .综合题训练11.施工队准备在一段斜坡上铺上台阶方便通行,现测得斜坡上铅垂的两棵树间水平距离 AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数.(结果精确到1°)(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶? (参考数据:cos 200.94︒≈,sin 200.34︒≈,sin180.31︒≈,cos180.95︒≈)解:(1)4cos cos 0.944.25AB D ABC BC ∠=∠==≈,∴0.94D ∠≈. (2) sin 85sin 20850.3428.9EF DE D ︒=∠=≈⨯=米,共需台阶28.910017170⨯÷=级.专题三角函数与圆 利用圆转化角求三角函数1.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于( A )A .OM 的长B .2OM 的长C .CD 的长 D .2CD 的长2.如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 分别为AB 、AC 的中点,则 sin ∠BAC 的值等于线段( B )A .BC 的长B .DE 的长C .AD 的长 D .AE 的长3.如图⊙O是△ABC外接圆,AD是⊙O的直径,连CD,若⊙O的半径32r=,AC=2,则cos B的值是(B).A.12B.53C.52D.234.如图,直角梯形ABME中,∠M=90°,BM∥AE,以AB为直径的⊙O与EM切于点C,连BE,若AE=6,AB=10,则tan∠BEM的值为(D).A.12B.2C.13D.65.如图,⊙O与矩形ABCD的边CD切于点E,交BC于点F,M为BF上一点,若7CE=,7AD=,则tan∠M的值为(A).A.7B.34C.7D.356.如图,已知⊙O的半径为10,AB=6,△ABC内接于⊙O,BD⊥AC于D,则sin∠CBD 的值等于(B).A.13B.10C.310D.37.如图,AB为⊙O的直径,弦AC、BD相较于P点,BPC a∠=,则CDAB的值为(B).A.sin aB.cos aC.tan aD.1 cos a专题 三角函数与圆 圆中三角函数的综合运用1.(2011武汉中考)如图,P A 为⊙O 的切线,A 为切点,过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B ,延长BO 与⊙O 交于点D ,与P A 的延长线交于点E . (1)求证:PB 为⊙O 的切线; (2)若1tan 2ABE ∠=,求sin E 的值.证:(1)连OA ,证△PBO ≌△P AO .(2)连接AD ,证AD ∥OP ,∴△ADE ∽△POE ,∵EA ADEP OP=由AD ∥OC 得AD =2OC , ∵1tan 2ABE ∠=,∴12OC BC =,设OC t =,则2BC t =,2AD t =,由△PBC ∽△BOC ,得 24PC BC t ==,5OP t =,∴25EA AD EP OP ==,可设2EA m =,5EP m =,则3PA m =, ∴3sin 5PB E EP ==. 2.(2012 武汉中考)在锐角△ABC 中,5BC =,4sin 5A =. (1)如图1,求△ABC 外接圆的直径;(2)如图2,点I 为△ABC 的内心,BA BC =,求AI 的长.解:(1)作直径CD ,连BD ,∴254CD =. (2)延长BI 交AC 于D ,则BD ⊥AC ,IE ⊥BC 于F .∴4BD =,3AD AE CD ===,2BE BF ==,设ID IE IF x ===,在△BIF 中有 ()22224x x +=-,32x =,∴35AI =3.(2013武汉4月调考)在⊙O 中,AB 为直径,PC 为弦,且P A =PC . (1)如图1,求证:OP ∥BC ;(2)如图2,DE 切⊙O 于点C ,若DE ∥AB ,求tan ∠A 的值.解:(1)证△POA ≌△POC ,∠BCP =∠A =∠APO =∠CPO .(2)设PC 交AB 于M ,证△APB ∽△COM ,BP OM AP OC =,∴2BM BC BCOM OP OC===,设OM x =,2BM x =,∴212OM OC x x==-+,∴21BPAP =-.4.(2015 乌鲁木齐)如图,AB 是⊙O 的直径,CD 与⊙O 相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E . (1)求证:DC =DE ;(2)若1tan 2CAB ∠=,3AB =,求BD 的长.解:(1)连OC ,证∠DCE =∠E 即可. (2)1BD =.5.如图,PT 是⊙O 的切线,T 为切点,P AB 是经过圆心O 的割线. (1)求证:∠PTA =∠BTO ;(2)若4PT =,2PA =,求sin B 的值.解:(1)90PTO ATB ︒∠==∠,∴PTA BTO ∠=∠;(2)在Rt △POT 中,222OP OT PT +=,∴()22242r r +=+,3r =, 由△P AT ∽△PTB ,∴12AT PA TB PT ==,设AT x =,2BT x =,∴5AB x =,∴5sin 5AT B AB ==.6.如图,△ABC 中,以BC 为直径的⊙O 交AB 于点D ,ACD ABC ∠=∠.(1)求证:CA 是⊙O 的切线;(2)若点E 是BC 上一点,已知6BE =,2tan 3ABC ∠=,5tan 3AEC ∠=,求圆的直径. 解:(1)略; (2)5tan 3AC AEC EC ∠==,∴35EC AC =,2tan 3AC ABC BC ∠==,∴32BC AC = 6BE BC EC =-=,∴203AC =,∴3201023BC =⨯=. 7.如图,AB 为⊙O 的直径,CD CB =,CE ⊥AD 于E ,连BE .(1)求证:CE 为⊙O 的切线;(2)若6AE =,⊙O 的半径为5,求tan BEC ∠的值.证:(1)连OC 、BD 交于M ,证四边形EDMC 为矩形.(2)设OM x =,则2AD x =,5CM DE x ==-,∴()256x x +-=,1x =,∴26BM =,46BD =6tan tan 46DE BEC DBE BD ∠=∠==.。
锐角三角函数全章培优
![锐角三角函数全章培优](https://img.taocdn.com/s3/m/62c1a31083c4bb4cf7ecd196.png)
锐角三角函数全章培优 1.如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD=CD ,4cos 5DCA ∠=,BC=10,则AB 的值是( ) A .9 B .8C .6D .32. 如图,等边三角形中,、分别为、边上的点,,与交于点,于点, 则的值为 . 3.(贵州安顺,第9题3分)如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点且AE :EB=4:1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( )AB .C .D .4. (攀枝花)如图4,已知AD 是等腰△ABC 底边上的高,且tan ∠B=,AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是( ) A .B .C . D. 5. 如图,已知直线∥∥∥,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则 .6.(兰州中考)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A .5m B .6m C .7m D .8m 6.(济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。
7.(湖州中考)小明发现在教学楼走廊上有一拖把以15°的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全。
他自觉地将拖把挪动位置,使其的倾斜角为75°,如果拖把的总长为1.80m ,则小明拓宽了行路通道_______________m .(结果保留三个有效数字,参考数据:sin15°≈26,cos15°≈0.97)8.(扬州)如图,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45°的方向上,港口A 位于B 的北偏西30°的方向上.求A 、C 之间的距离 .(结果精确到0.1海里,参考数据≈1.41,≈1.73)9.(安顺)丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出CD(精确到个位,≈1.7).ABC D E AB BC AD BE =AE CDF AG CD ⊥G AGAF43539854971l 2l 3l 4l sin α= A BCD α1l 3l 2l 4l10. 如图,将边长为的等边折叠,折痕为,点与点重合,和分别交于点、,,垂足为,.设的面积为,则重叠部分的面积为 .(用含的式子表示)11.(连云港)已知B 港口位于A 观测点北偏东53.2°方向,且其到A 观测点正北方向的距离BD 的长为16km ,一艘货轮从B 港口以40km/h 的速度沿如图所示的BC 方向航行,15min 后达到C 处,现测得C 处位于A 观测点北偏东79.8°方向,求此时货轮与A 观测点之间的距离AC 的长 (精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)12.(上海)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN =30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H .如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米) (参考数据:3≈1.7)13.如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412≈,sin37°≈0.60,cos37°≈0.80)33+ABC ∆DE B F EF DF AC M N AB DF ⊥D 1=AD DBE ∆S S DNEF M CBA14.如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)5.关于三角函数有如下的公式:利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α为60°,底端C点的俯角β为75°,此时直升飞机与建筑物CD的水平距离BC为42米,求建筑物CD的高。
中考数学锐角三角函数(大题培优)含答案
![中考数学锐角三角函数(大题培优)含答案](https://img.taocdn.com/s3/m/3d7f4749eefdc8d376ee32d3.png)
中考数学锐角三角函数(大题培优)含答案一、锐角三角函数1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD . (1)求证:直线OD 是E e 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG : ①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BGCF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12.【解析】 【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径 ∴90BDC ∠=︒ ∴90BDA ∠=︒ ∵OA OB = ∴OD OB OA == ∴OBD ODB ∠=∠∵EB ED =∴EBD EDB ∠=∠∴EBD OBD EDB ODB ∠+∠=∠+∠ 即:EBO EDO ∠=∠ ∵CB x ⊥轴 ∴90EBO ∠=︒ ∴90EDO ∠=︒ ∴直线OD 为E e 的切线.(2)①如图1,当F 位于AB 上时: ∵1~ANF ABC ∆∆∴11NF AF AN AB BC AC== ∴设3AN x =,则114,5NF x AF x ==∴103CN CA AN x =-=- ∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x ==1504333131OF =-=即143,031F ⎛⎫⎪⎝⎭如图2,当F 位于BA 的延长线上时: ∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x == ∴103CM CA AM x =+=+ ∴241tan 1037F M x ACF CM x ∠===+ 解得:25x =∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M , ∵BC 是直径∴90CGB CBF ∠=∠=︒ ∴~CBF CGB ∆∆∴8BG MG MGCF BC == ∵MG ≤半径4=∴41882BG MG CF =≤= ∴BG CF的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.2.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【解析】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数3.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.4.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH =(t ﹣3)2cm 2∴S 关于t 的函数关系式为:.(3)分两种情况:①∵当DP=PC 时,易知此时N 点为DC 的中点,∴MN=6cm ∴EN=3cm+6cm=9cm.∴t=9s故当t=9s 的时候,△CPD 为等腰三角形; ②当DC=PC 时,DC=PC=12cm ∴NC=6cm∴EN=16cm ﹣1cm ﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s 时,△CPD 为等腰三角形.综上所述,当t=9s 或t=(15﹣6)s 时,△CPD 为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.5.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)【答案】215.6米. 【解析】 【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离. 【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米, 在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BNDN =≈o米,∴215.6MN MD DN AB =+=≈米 即A ,B 两点之间的距离约为215.6米. 【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.6.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8. (1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y . 【解析】 【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BOPD MO=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠, ∴POD OCE ∆≅∆, ∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.7.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E .设P 是»AC 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,¼¼AP BP=,求PD 的长.【答案】(1)证明见解析;(2310 【解析】【分析】 (1)根据AB ⊥CD ,AB 是⊙O 的直径,得到¶¶ADAC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;(2)连接OP ,由¶¶APBP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =BC AC,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP GE ED=,然后根据勾股定理即可得到结果.【详解】(1)证明:连接AD,∵AB⊥CD,AB是⊙O的直径,∴¶¶AD AC=,∴∠ACD=∠B=∠ADC,∵∠FPC=∠B,∴∠ACD=∠FPC,∴∠APC=∠ACF,∵∠FAC=∠CAF,∴△PAC∽△CAF;(2)连接OP,则OA=OB=OP=15 22 AB=,∵¶¶AP BP=,∴OP⊥AB,∠OPG=∠PDC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,∴tan∠CAB=tan∠DCB=BCAC,∴12 CE BEAE CE==,∴AE=4BE,∵AE+BE=AB=5,∴AE=4,BE=1,CE=2,∴OE=OB﹣BE=2.5﹣1=1.5,∵∠OPG=∠PDC,∠OGP=∠DGE,∴△OPG∽△EDG,∴OG OP GE ED=,∴2.52 OE GE OPGE CE-==,∴GE=23,OG=56,∴PG5 6 =,GD23 =,∴PD=PG+GD【点睛】本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得△OPG∽△EDG是解题的关键.8.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG ⊥AC ,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC ,∴∠GEC =∠GCE =45°,∴∠BEG =∠GCF =135°,由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ),∴BG =GF ,∵G 在正方形ABCD 对角线上,∴BG =DG ,∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°,∴∠CGF+∠AGB =90°,∴∠AGD+∠CGF =90°,∴∠DGF =90°,∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,在Rt △ADG 中,∵∠DAC =45°,∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°,∴GH 33236,∴DG =2GH =6,∴DF 2DG =3在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.9.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,3∴0 tan30ODPD=,解得OD=1,∴22PO PD OD+,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.10.如图所示的是一个地球仪及它的平面图,在平面图中,点A、B分别为地球仪的南、北极点,直线AB与放置地球仪的平面交于点D,所夹的角度约为67°,半径OC所在的直线与放置它的平面垂直,垂足为点E,DE=15cm,AD=14cm.(1)求半径OA的长(结果精确到0.1cm,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC的面积(π取3.14,结果精确到1cm)822cm.【答案】(1)半径OA的长约为24.5cm;(2)扇形BOC的面积约为2【解析】【分析】(1)在Rt△ODE中,DE=15,∠ODE=67°,根据∠ODE的余弦值,即可求得OD长,减去AD 即为OA.(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒,∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.11.如图(1),已知正方形ABCD 在直线MN 的上方BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接GD ,求证:△ADG ≌△ABE ;(2)连接FC ,观察并直接写出∠FCN 的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD 改为矩形ABCD ,AB =6,BC =8,E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请求出tan ∠FCN 的值.若∠FCN 的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43.理由见解析. 【解析】【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论.【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°,∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE ,∴∠BAE =∠DAG ,在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ABE (AAS ).(2)解:∠FCN =45°,理由如下:作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE ,∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFH ≌△ABE (AAS ),∴FH =BE ,EH =AB =BC ,∴CH =BE =FH ,∵∠FHC =90°,∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下:作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG=∠BAD=∠AEF=90°,结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,∴EH=AD=BC=8,∴CH=BE,∴EH FH FHAB BE CH==;在Rt△FEH中,tan∠FCN=8463 FH EHCH AB===,∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=43.【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.12.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长:_________________;(2)当t =__________时,点Q与点C重合时;(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【答案】(1);(2)1;(3)t的值为或或.【解析】【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AQ=AC,即可得出结论;(3)分三种情况,利用锐角三角函数,即可得出结论.【详解】(1)∵AP= , AB=4,∠A=30°∴AC= , AD=∴CD=;(2)AQ=2AD=当AQ=AC时,Q与C重合即=∴t=1;(3)①如图,当PQ的垂直平分线过AB的中点F时,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=②如图,当PQ的垂直平分线过AC的中点N时,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t.在Rt△NMQ中,∵AN+NQ=AQ,∴③如图,当PQ的垂直平分线过BC的中点F时,∴BF=BC=1,PE=PQ=t,∠H=30°.∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.在Rt△PEH中,PH=2PE=2t.∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.13.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°,∴△CDB 为等边三角形.∴∠CDB =60°∵线段DP 绕点D 逆时针旋转60°得到线段DF ,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE,∴CE=DEtanα,∴BC=2CE=2DEtanα,即BF﹣BP=2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP≌△DBF是解此题的关键,综合性比较强,证明过程类似.14.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)【答案】(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为127.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x 的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:12,设PF=5x,CF=12x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=AB BC,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+120x.在RT△AEP中,tan∠APE=1805490123 AE xEP x-≈=+,∴x=207,∴PF=5x=10014.37≈.答:此人所在P的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×207≈37.1,BC+CP=90+37.1=127.1.答:从P到点B的路程约为127.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.15.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).【答案】(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17+2)π;.【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EFAC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°, ∴AB =83, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB 22AC BC +216x +∴OA =2162x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∴216x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 解得x =4(负根已经舍弃),∴AB =2∴⊙O 的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF =18x 2=98, ∴FG=2﹣98,AF158,AH, ∵∠CFG =∠AFH ,∠FCG =∠AHF ,∴△CFG ∽△HFA , ∴GF CG AF AH=,∴928158-= ∴CG,∴=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.。
初三数学锐角三角函数的专项培优练习题(含答案)及答案
![初三数学锐角三角函数的专项培优练习题(含答案)及答案](https://img.taocdn.com/s3/m/aae8db4f5a8102d277a22f0f.png)
初三数学锐角三角函数的专项培优练习题(含答案)及答案一、锐角三角函数1.如图13,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.【答案】(1)详见解析;(2)①②和走完全程所需时间为【解析】试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.试题解析:解:(1)证明:四边形是矩形.与交于点O,且关于对称四边形是菱形.(2)①连接,直线分别交于点,交于点关于的对称图形为在矩形中,为的中点,且O为AC的中点为的中位线同理可得:为的中点,②过点P作交于点由运动到所需的时间为3s由①可得,点O以的速度从P到A所需的时间等于以从M运动到A即:由O运动到P所需的时间就是OP+MA和最小.如下图,当P运动到,即时,所用时间最短.在中,设解得:和走完全程所需时间为考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置2.如图,矩形OABC 中,A(6,0)、C(0,23)、D(0,33),射线l 过点D且与x 轴平行,点P 、Q 分别是l 和x 轴的正半轴上的动点,满足∠PQO =60º.(1)点B 的坐标是 ,∠CAO = º,当点Q 与点A 重合时,点P 的坐标 为 ;(2)设点P 的横坐标为x ,△OPQ 与矩形OABC 重叠部分的面积为S ,试求S 与x 的函数关系式和相应的自变量x 的取值范围.【答案】(1)(6,23). 30.(3,33)(2)()()()()243x 430x 3331333x x 3x 5S {23x 1235x 93543x 9+≤≤-+-<≤=-+<≤>【解析】解:(1)(6,23). 30.(3,33). (2)当0≤x≤3时, 如图1,OI=x ,IQ=PI•tan60°=3,OQ=OI+IQ=3+x ; 由题意可知直线l ∥BC ∥OA ,可得EF PE DC31==OQ PO DO333==,∴EF=13(3+x),此时重叠部分是梯形,其面积为:EFQO14343S S EF OQ OC3x x43 233==+⋅=+=+梯形()()当3<x≤5时,如图2,()HAQEFQO EFQO221S S S S AH AQ243331333x43x3=x x32232∆=-=-⋅⋅=+---+-梯形梯形。
中考数学 锐角三角函数 培优练习(含答案)含详细答案
![中考数学 锐角三角函数 培优练习(含答案)含详细答案](https://img.taocdn.com/s3/m/cf6045512af90242a895e5ee.png)
中考数学锐角三角函数培优练习(含答案)含详细答案一、锐角三角函数1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62或23.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,3AE=CK,∴FK=2,在Rt△EFK中,tan∠3∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,3OH=23∴()2212362+-=如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=33OE=233, 综上所述:OP 的长为62 或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.2.小红将笔记本电脑水平放置在桌子上,显示屏OB 与底板OA 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO '后,电脑转到AO 'B '位置(如图3),侧面示意图为图4.已知OA=OB=24cm ,O 'C ⊥OA 于点C ,O 'C=12cm . (1)求∠CAO '的度数.(2)显示屏的顶部B '比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O 'B '与水平线的夹角仍保持120°,则显示屏O 'B '应绕点O '按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm ;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°. 【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B 作BD ⊥AO 交AO 的延长线于D ,通过解直角三角形求得BD=OBsin ∠BOD=24×=12,由C 、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.3.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E、F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由; (3)记ACBC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 为3时,CPE V 总是等边三角形 【解析】 【分析】(1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FPMC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,ACBC=tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可. 【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FPMC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中 ,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF , ∴△DAF ≌△EAF (AAS ), ∴AD=AE ,在△DAP 和△EAP 中, ∵AD=AE ,∠DAP=∠EAP ,AP=AP , ∴△DAP ≌△EAP (SAS ), ∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC , ∴FD ∥BC ∥PM , ∴DM FPMC PB=, ∵点P 是BF 的中点, ∴DM=MC ,又∵PM ⊥AC , ∴PC=PD ,又∵PD=PE , ∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形, ∴∠CEP=60°, ∴∠CAB=60°, ∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°, ∵AC k BC =,ACBC=tan30°, ∴k=tan30°=3∴当k 3△CPE 总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.4.(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=22.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为,直线l的解析式为;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.【答案】解:(1)(﹣4,0);y=x+4.(2)在点P、Q运动的过程中:①当0<t≤1时,如图1,过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•35=3t.∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,S=12PM•PE=12×2t×(14﹣5t)=﹣5t2+14t.②当1<t≤2时,如图2,过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t.S=12PM•PE=12×2t×(16﹣7t)=﹣7t2+16t.③当点M与点Q相遇时,DM+CQ=CD=7,即(2t﹣4)+(5t﹣5)=7,解得t=167.当2<t<167时,如图3,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,S=12PM•MQ=12×4×(16﹣7t)=﹣14t+32.综上所述,点Q与点M相遇前S与t的函数关系式为()()225t14t0<t1S{7t16t1<t21614t322<t<7-+≤=-+≤⎛⎫-+ ⎪⎝⎭.(3)①当0<t≤1时,22749S5t14t5t55⎛⎫=-+=--+⎪⎝⎭,∵a=﹣5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大.∴当t=1时,S有最大值,最大值为9.②当1<t≤2时,22864S7t16t7t77⎛⎫=-+=--+⎪⎝⎭,∵a=﹣7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647.③当2<t<167时,S=﹣14t+32∵k=﹣14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)t=209或t=125时,△QMN为等腰三角形.【解析】(1)利用梯形性质确定点D的坐标,由sin∠DAB=2,利用特殊三角函数值,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式:∵C(7,4),AB∥CD,∴D(0,4).∵sin∠DAB=2,∴∠DAB=45°.∴OA=OD=4.∴A(﹣4,0).设直线l的解析式为:y=kx+b,则有4k b0{b4-+==,解得:k1{b4==.∴y=x+4.∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.(2)弄清动点的运动过程分别求解:①当0<t≤1时,如图1;②当1<t≤2时,如图2;③当2<t<167时,如图3.(3)根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值.(4)△QMN为等腰三角形的情形有两种,需要分类讨论:①如图4,点M在线段CD上,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,由MN=MQ,得16﹣7t=2t﹣4,解得t=209.②如图5,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.∴当t=209或t=125时,△QMN为等腰三角形.考点:一次函数综合题,双动点问题,梯形的性质,锐角三角函数定义,特殊角的三角函数值,由实际问题列函数关系式,一次函数和二次函数的性质,等腰三角形的性质,分类思想的应用.5.如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结(1)求证:(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,或【解析】(1)证明:∵四边形为正方形,∴∵三角板是等腰直角三角形,∴又三角板绕点逆时针旋转至的位置时,∴···························· 3分(2)存在.································· 4分∵∴过点与平行的直线有且只有一条,并与垂直,又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上,························ 5分∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和此时,点分别在点和点,满足·························· 7分当切点在第二象限时,点在第一象限,在直角三角形中,∴∴∴点的横坐标为:点的纵坐标为:∴点的坐标为··························· 9分当切点在第一象限时,点在第四象限,同理可求:点的坐标为综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或································ 11分(1)根据旋转的性质找到相等的线段,根据SAS定理证明;(2)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE 的长,通过解直角三角形,不难得到E点的坐标,由此得解.6.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速【解析】分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,∴∠PAH=∠CAB –∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH=tan PHPAH∠=3=503,∵AC ∥BD ,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD –∠PBD=45°, 则PH=BH=50,∴AB=AH+BH=503+50,∵60千米/时=503米/秒,∴时间503503+=3+33≈8.1(秒), 即车辆通过AB 段的时间在8.1秒以内,可认定为超速.点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。
锐角三角函数培优讲义33113
![锐角三角函数培优讲义33113](https://img.taocdn.com/s3/m/8e037eb4162ded630b1c59eef8c75fbfc67d9475.png)
讲义编号:组长签字:签字日期:(2)正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。
3、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; 4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB,cosA=sinB. 5、特殊角的三角函数:00 300450 600sin α2122 23 cos α 1 23 22 21 tan α33 1 (1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
三、典型例题考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cos α=35,sin α=_______,tan α=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1ncosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
九年级数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案
![九年级数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案](https://img.taocdn.com/s3/m/a3b5f9bff705cc17552709a1.png)
九年级数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案一、锐角三角函数1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.(1)求之间的距离(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)35. 【解析】 【分析】(1)解直角三角形即可得到结论;(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,'30CE AA ==3Rt △ABC 中,求得DC=333,然后根据三角函数的定义即可得到结论. 【详解】解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,∴AB=sin 30AC︒=6012=120(m )(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3在Rt △ABC 中, AC=60m ,∠ADC=60°,∴DC=333∴3∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235答:从无人机'A 上看目标D 235【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.2.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形;(2)若,,,求的值.【答案】(1)证明见解析(2)【解析】试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP试题解析:(1)∵AE平分∠BAD BF平分∠ABC∴∠BAE=∠EAF ∠ABF=∠EBF∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF∴∠BAE=∠AEB ∠AFB=∠ABF∴AB=BE AB=AF∴AF=AB=BE∵AD//BC∴ABEF为平行四边形又AB=BE∴ABEF为菱形(2)作PH⊥AD于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan ∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=;②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.4.如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结(1)求证:(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由. 【答案】(1)证明见解析(2)存在,或【解析】(1)证明:∵四边形为正方形,∴∵三角板是等腰直角三角形,∴又三角板绕点逆时针旋转至的位置时,∴···························· 3分(2)存在.································· 4分∵∴过点与平行的直线有且只有一条,并与垂直,又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上,························ 5分∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和此时,点分别在点和点,满足·························· 7分当切点在第二象限时,点在第一象限,在直角三角形中,∴∴∴点的横坐标为:点的纵坐标为:∴点的坐标为··························· 9分当切点在第一象限时,点在第四象限,同理可求:点的坐标为综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或································ 11分(1)根据旋转的性质找到相等的线段,根据SAS定理证明;(2)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE 的长,通过解直角三角形,不难得到E点的坐标,由此得解.5.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为1:3,DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)【答案】该停车库限高约为2.2米.【解析】【分析】据题意得出3tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】解:由题意得,3 tan3B=∵MN∥AD,∴∠A=∠B,∴tan A3,∵DE⊥AD,∴在Rt△ADE中,tan A=DEAD,∵DE=3,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=33.在Rt △CEF 中,设EF =x ,CF =3x (x >0),CE =2.5,代入得(52)2=x 2+3x 2, 解得x =1.25,∴CF =3x ≈2.2,∴该停车库限高约为2.2米. 【点睛】本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.6.如图,直线y =12x +2与x 轴交于点A ,与y 轴交于点B ,抛物线y =﹣12x 2+bx +c 经过A 、B 两点,与x 轴的另一个交点为 C . (1)求抛物线的解析式;(2)根据图象,直接写出满足12x +2≥﹣12x 2+bx +c 的x 的取值范围; (3)设点D 为该抛物线上的一点、连结AD ,若∠DAC =∠CBO ,求点D 的坐标.【答案】(1)213222y x x =--+;(2)当x ≥0或x ≤﹣4;(3)D 点坐标为(0,2)或(2,﹣3). 【解析】 【分析】 (1)由直线y =12x +2求得A 、B 的坐标,然后根据待定系数法即可求得抛物线的解析式;(2)观察图象,找出直线在抛物线上方的x 的取值范围;(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,先求出CO =1,AO =4,再由∠DAC =∠CBO ,得出tan ∠DAC =tan ∠CBO ,从而有,DE COAE BO=,最后分类讨论确定点D 的坐标. 【详解】 解:(1)由y =12x +2可得:当x=0时,y=2;当y=0时,x=﹣4,∴A(﹣4,0),B(0,2),把A、B的坐标代入y=﹣12x2+bx+c得:322bc⎧=-⎪⎨⎪=⎩,,∴抛物线的解析式为:213222y x x=--+(2)当x≥0或x≤﹣4时,12x+2≥﹣12x2+bx+c(3)如图,过D点作x轴的垂线,交x轴于点E,由213222y x x=-+令y=0,解得:x1=1,x2=﹣4,∴CO=1,AO=4,设点D的坐标为(m,213222m m--+),∵∠DAC=∠CBO,∴tan∠DAC=tan∠CBO,∴在Rt△ADE和Rt△BOC中有DE COAE BO=,当D在x轴上方时,213212242--+=+m mm解得:m1=0,m2=﹣4(不合题意,舍去),∴点D的坐标为(0,2).当D在x轴下方时,213(2)12242---+=+m mm解得:m1=2,m2=﹣4(不合题意,舍去),∴点D的坐标为(2,﹣3),故满足条件的D点坐标为(0,2)或(2,﹣3).【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.7.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--.【解析】 【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D∴∠CDP =∠COB =90°∵∠DCP =∠OCB∴△CDP ∽△COB ∴PC PD BC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC∴PD =45PC ∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小∵A (﹣2,0),OC ⊥AB ,AE ⊥BC∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90°∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个此时,连接FQ ,过点Q 作QG ⊥x 轴于点G∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点∴F (1,0),FQ =FA =3∵T (﹣4,0)∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG=2222912FQ 355FG ⎛⎫-=-= ⎪⎝⎭①若点Q 在x 轴上方,则Q (41255-,)设直线l 解析式为:y =kx+b ∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,) ∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论8.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm .【解析】【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒. ∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒, ∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈ ()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.9.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q .(1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值;(3)在直线l 移动过程中,是否存在t 值,使S=320ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或7. 【解析】【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OB BC B∴== 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴,∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0),∴点A 的坐标为(4,0).分两种情况考虑,如图1所示.①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t , ∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0),将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭ 21220233S PQ OP t t ∴=⋅=-+ 22202502(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503. (3)S 菱形ABCD =AB •OC =80.当0≤t ≤4时,4t =12,解得:t =3;当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.10.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).【答案】【小题1】73.2【小题2】超过限制速度.【解析】解:(1)100(31)AB=-73.2 (米).…6分(2) 此车制速度v==18.3米/秒11.3米/秒 =65.88千米/小时>60千米/小时.∴此车超过限制速度.…4分12.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:PA AD PC CD=;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.13.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)【答案】(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为127.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x 的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:12,设PF=5x,CF=12x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=AB BC,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+120x.在RT△AEP中,tan∠APE=1805490123 AE xEP x-≈=+,∴x=207,∴PF=5x=10014.37≈.答:此人所在P的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×207≈37.1,BC+CP=90+37.1=127.1.答:从P到点B的路程约为127.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.14.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)【答案】潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD=tan AD ACD=tan30x= 3x在Rt△BCD中,BD=CD•tan68°,∴325+x=3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频15.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。
清华大学附属中学九年级数学下册第二十八章《锐角三角函数》经典测试题(培优)
![清华大学附属中学九年级数学下册第二十八章《锐角三角函数》经典测试题(培优)](https://img.taocdn.com/s3/m/7d2860c0376baf1ffd4fadd8.png)
一、选择题1.如图,在等边△ABC 中,点O 在边AB 上,⊙O 过点B 且分别与边AB 、BC 相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF ⊥AC ,则EF 是⊙O 的切线B .若EF 是⊙O 的切线,则EF ⊥ACC .若BE =EC ,则AC 是⊙O 的切线D .若32BE EC =,则AC 是⊙O 的切线 2.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,延长PO 交⊙O 于点C ,若60APB ∠=︒,6PC =,则AC 的长为( )A .4B .22C .23D .333.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A 10B 310C 210D 10 4.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在 改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD 的平台BC 上(如图),测得52.5,5AED BC ︒∠==米,35CD =米,19DE =米,则铁塔AB的高度约为( )(参考数据:52.50.79,52.50.61,52.5 1.30sin cos tan ︒︒︒≈≈≈)A.7.6 米B.27.5 米C.30.5 米D.58.5 米5.如图,△ABC的三个顶点均在格点上,则cos A的值为()A.12B.55C.2 D.2556.如图,将一副三角尺如图所示叠放在一起,则BECE的值是()A.3B.33C.2 D.327.一段公路路面的坡度为i=1:2.4.如果某人沿着这段公路向上行走了260m,那么此人升高了()A.50m B.100m C.150m D.200m8.如图,四边形 ABCD中,BD是对角线,AB=BC,∠ABC=60°,CD=4,∠ADC=60°,则△BCD的面积为()A.3B.8 C.3D.369.在Rt△ABC中,∠ACB=90°,AB5tan∠B=2,则AC的长为()A .1B .2C .5D .25 10.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是( )A .23-B .23+C .36D .32 11.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .4212.如图,在△ABC 中,sinB=13, tanC=2,AB=3,则AC 的长为( )A .2B .52C .5D .213.如图,在△ABC 中,∠ABC =90°,D 为BC 的中点,点E 在AB 上,AD ,CE 交于点F ,AE =EF =4,FC =9,则cos ∠ACB 的值为( )A .35B .59C .512D .4514.如图,分别以直角三角形三边为边向外作等边三角形,面积分别为1S 、2S 、3S ;如图2,分别以直角三角形的三边为直径向外半圆,面积分别为4S 、5S 、6S .其中116S =,245S =,511S =,614S =,则34S S +=( )A .86B .64C .54D .48 15.在半径为1的O 中,弦AB 、AC 的长度分别是3,2,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45二、填空题16.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。
保定市第一中学九年级数学下册第二十八章《锐角三角函数》综合经典测试题(培优)
![保定市第一中学九年级数学下册第二十八章《锐角三角函数》综合经典测试题(培优)](https://img.taocdn.com/s3/m/528c5396ed3a87c24028915f804d2b160b4e86c4.png)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知,一个小球由桌面沿着斜坡向上前进了10cm ,此时小球距离桌面的高度为5cm ,则这个斜坡的坡度i 为( )A .2B .1:2C .1:2D .1:3 2.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .433.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到'PB 的位置,测得(''PB C a B C ∠=为水平线),测角仪/B D 的高度为1米,则旗杆PA 的高度为( )A .11sin a +米B .11cos a -米C .11sin a -米D .11cos a +米 4.如图,已知第一象限内的点A 在反比例函数2y x =的图象上,第二象限的点B 在反比例函数k y x=的图象上,且OA ⊥OB ,tanA=2,则k 的值为( )A.4 B.8 C.-4 D.-85.一段公路路面的坡度为i=1:2.4.如果某人沿着这段公路向上行走了260m,那么此人升高了()A.50m B.100m C.150m D.200m6.如图,在4×5的正方形网格中,每个小正方形的边长都是1,ΔABC的顶点都在这些小正方形的顶点上,那么cos∠ACB值为()A.355B.175C.35D.457.如图,四边形 ABCD中,BD是对角线,AB=BC,∠ABC=60°,CD=4,∠ADC=60°,则△BCD的面积为()A.43B.8 C.23+4 D.368.如图,在A处测得点P在北偏东60︒方向上,在B处测得点P在北偏东30︒方向上,若2AB=米,则点P到直线AB距离PC为().A.3米B3米C.2米D.1米9.如图,在矩形ABCD中,AB=6,BC=2,点E是边BC上一动点,B关于AE的对称点为B′,过B′作B′F⊥DC于F,连接DB′,若△DB′F为等腰直角三角形,则BE的长是( )A .6B .3C .32D .62﹣6 10.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .11.西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB 表示,小李站在C 点测得∠BCA =45°,小李从C 点走4米到达了斜坡DE 的底端D 点,并测得∠CDE =150°,从D 点上斜坡走了8米到达E 点,测得∠AED =60°,B ,C ,D 在同一水平线上,A 、B 、C 、D 、E 在同一平面内,则大树AB 的高度约为( )米.(结果精确到0.12≈1.413≈1.73)A.24.3 B.24.4 C.20.3 D.20.412.如图,Rt△ABC中,AB=4,BC=2,正方形ADEF的边长为2,F、A、B在同一直线上,正方形ADEF向右平移到点F与B重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图象表示正确的是()A.B.C.D.13.点E在射线OA上,点F在射线OB 上,AO⊥BO,EM平分∠AEF,FM平分∠BFE,则tan∠EMF的值为( )A.12B.33C.1 D.314.如图,△ABC中,∠C=90°,BC=2AC,则cos A=()A.12B5C25D5二、填空题15.如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为________cm.16.已知AD 是△ABC 的高,CD =1,AD =BD =3,则∠BAC =_______.17.某人沿坡度是1:2的斜坡走了100米,则他上升的高度是_____米.18.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K .若正方形ABCD 边长为3,则AH=__.19.如图,“人字梯”放在水平的地面上,AB AC =,当梯子的一边与地面所夹的锐角α为60︒时,两梯角之间的距离BC 的长为2m .周日亮亮帮助妈妈整理换季衣服,先使α为60︒,后又调整α为45︒,则梯子顶端A 离地面的高度下降了___________m .20.如图,梯形ABCD 是拦水坝的横断面图,(图中1:3i =是指坡面的铅直高度DE 与水平宽度CE 的比),60B ∠=,6AB =,4=AD ,拦水坝的横断面ABCD 的面积是________(结果保留三位有效数字,参考数据:3 1.732=,2 1.414=)21.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,3AB=_____.22.如图,正方形ABCD的边长为22,过点A作AE⊥AC,AE=1,连接BE,则tanE= .23.在矩形纸片ABCD中,AB=6,BC=8.将矩形纸片折叠,使点C与点A重合,则折痕的长是______.24.如图,已知平行四边形ABCO,以点O为原点,OC所在的直线为x轴,建立直角坐标系,AB交y轴于点D,AD=4,OC=10,∠A=60°,线段EF垂直平分OD,点P为线段EF上的动点,PM⊥x轴于点M点,点E与E'关于x轴对称,连接BP、E'M,则BP+PM+ME'的长度的最小值为______.25.如图,∠EFG=90°,EF=10,OG=17,cos∠FGO=0.6,则点F的坐标是_______.26.如图,在ABC ∆中,90A ∠=︒,10BC =,3sin 5B ∠=,D 是BC 边上的一个动点(异于B 、C 两点),过点D 分别作AB 、AC 边的垂线,垂足分别为E 、F ,则EF 的最小值是________.三、解答题27.如图,AB 是圆O 的一条弦,OD ⊥AB ,垂足为C ,交圆O 于点D ,点E 在圆O 上. (1)若∠AOD =50°,求∠DEB 的度数;(2)若OC =3,∠A =30°,求AB 的长.28.为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装红外线体温监测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.名称 红外线体温检测仪安装示意图技术参数探测最大角:∠OBC=73.14°探测最小角:∠OAC=30.97°安装要求本设备需安装在垂直于水平地面AC的支架CP上根据以上内容,解决问题:学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.(结果精确到0.1m,参考数据:sin73.14°≈0.957,cos73.14°≈0.290,tan73.14°≈3.300,sin30.97°≈0.515,cos30.97°≈0.857,tan30.97°≈0.600)29.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.参考答案30.第十一届全国少数民族传统体育运动会于2019年9月8日至16日在郑州举行,据了解,该赛事每四年举办一届,是我国规格最高、规模最大的综合性民族体育盛会,其中,花炮、押加、民族式摔跤三个项目的比赛在郑州大学主校区进行.如图,钟楼是郑州大学主校区标志性建筑物之一,是郑大的“第一高度”,寓意来自五湖四海的郑大人的团结和凝聚.小刚站在钟楼前C处测得钟楼顶A的仰角为53°,小强站在对面的教学楼三楼上的D 处测得钟楼顶A的仰角为45°,此时,两人的水平距离EC为4m,已知教学楼三楼所在的高度为10m,根据测得的数据,计算钟楼AB的高度.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【参考答案】一、选择题1.D2.B3.C4.D5.B6.C7.A8.B9.D10.A11.B12.B13.C14.D二、填空题15.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴16.75°或15°【分析】分两种情形求高的位置然后再根据三角函数的定义求出∠BAD∠CAD 的度数最后再相加或相减即可求出∠BAC的度数【详解】解:如图所示:①tan∠BAD==1∴∠BAD=45°tan17.【分析】先画出图形再根据坡度的可得然后设米从而可得米最后利用勾股定理求出x 的值由此即可得出答案【详解】如图由题意得:米设米则米由勾股定理得:即解得(米)则米即他上升的高度是米故答案为:【点睛】本题考18.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD和四边形BEFG是正方形∴∠BAH=∠AB19.m【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD的长同理算出进而20.520【分析】过点A作于点F利用特殊角的锐角三角函数值和坡度求出AFBFCE的长把整个梯形分成两个三角形和一个矩形去计算面积【详解】解:如图过点A作于点F∵∴∵∴故答案是:520【点睛】本题考查锐角21.4【解析】分析:由CE所在直线垂直平分线段AD可得出CE平分∠ACD进而可得出∠ACE=∠DCE由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB结合∠ACB=90°可求出∠ACE∠A的度22.【详解】如图延长CA使AF=AE连接BF过B点作BG⊥AC垂足为G∵四边形ABCD是正方形∴∠CAB=45°∴∠BAF=135°∵AE⊥AC∴∠BAE=135°∴∠BAF=∠BAE∵在△BAF和△B23.【分析】先利用勾股定理得出AC根据翻折变换的性质可得AC⊥EFOC=AC然后利用∠ACB的正切列式求出OF再求出△AOE和△COF全等根据全等三角形对应边相等可得OE=OF从而求出折痕的长【详解】解24.【分析】连接OP先确定OD的长和B点坐标然后证明四边形OPME是平行四边形可得OP=EM因为PM是定值推出PB+ME=OP+PB的值最小时即当OPB共线时BP+PM+ME的长度最小最后根据两点间的距25.【分析】先过点F作直线交轴于点过点作于点证明根据cos∠FGO=06以及勾股定理即可得到答案【详解】过点F作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H26.【分析】先利用求得AC的长再证明四边形AEDF是矩形推出EF=AD根据垂线段最短即可解决问题;【详解】解:如图连接AD在△ABC中∵∠BAC=90°∴∴AC=6∴AB==10∵DF⊥ACDE⊥BC∴三、解答题27.28.29.30.【参考解析】一、选择题1.D解析:D【分析】过B作BC⊥桌面于C,由题意得AB=10cm,BC=5cm,再由勾股定理得AC=然后由坡度的定义即可得出答案.【详解】解:如图,过B 作BC ⊥桌面于C ,由题意得:AB =10cm ,BC =5cm ,∴AC=222210553AB BC -=-=,∴这个斜坡的坡度i =BC AC =553=1:3 ,故选:D .【点睛】本题考查了解直角三角形的应用-坡度坡角问题以及勾股定理;熟练掌握坡度的定义和勾股定理是解题的关键.2.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+,解得32x k =, ∴52OE OB BE k =+=, ∴24cos 552CE k E OE k ===,故选:B .【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.3.C解析:C【分析】设PA=PB=PB′=x ,在RT △PCB′中,根据sin αPC PB =',列出方程即可解决问题. 【详解】解:设PA=PB=PB′=x ,在RT △PCB′中,sin αPC PB ='∴1sin αx x-=∴x 1xsin α-=, ∴(1-sin α)x=1,∴x=11sin α-. 故选C .【点睛】 本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.4.D解析:D【分析】过点A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,垂足分别为点C 、D ,如图,易证△AOC ∽△OBD ,则根据相似三角形的性质可得214AOC BOD S OA S OB ⎛⎫== ⎪⎝⎭△△,再根据反比例函数系数k 的几何意义即可求出k 的值.【详解】解:过点A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,垂足分别为点C 、D ,如图,则∠ACO=∠BDO=90°,∠OAC+∠AOC=90°,∵OA⊥OB,tan∠BAO=2,∴∠AOC+∠BOD=90°,OA:OB=1:2,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴221124 AOCBODS OAS OB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△,∵1212AOCS⨯==,12BODS k=△,∴11142k=,∴8k=,∵k<0,∴k=﹣8.故选:D.【点睛】本题考查了反比例函数系数k的几何意义、相似三角形的判定和性质以及三角函数的定义等知识,熟练掌握所学知识、明确解答的方法是解题的关键.5.B解析:B【分析】已知了坡面长为260米,可根据坡度比设出两条直角边的长度,根据勾股定理可列方程求出坡面的铅直高度,即此人上升的最大高度.【详解】解:如图,Rt△ABC中,tan A=12.4,AB=260米.设BC=x,则AC=2.4x,根据勾股定理,得:x2+(2.4x)2=2602,解得x=100(负值舍去).故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及勾股定理、三角函数的运用能力,难度不大,注意掌握坡度的定义及数形结合思想的应用.6.C解析:C【分析】如图,过点A 作AH BC ⊥于H .利用勾股定理求出AC 即可解决问题.【详解】解:如图,过点A 作AH BC ⊥于H .在Rt ACH ∆中,4AH =,3CH =, 2222435AC AH CH ∴=+=+=,3cos 5CH ACH AC ∴∠==, 故选:C .【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 7.A解析:A【分析】先证明△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,可得△CDM是等边三角形,进而得到∆BCM ≅∆ACD ,可得到60BMC ∠=︒,得到BM ∥CD ,过点M 作MH CD ⊥,根据△BCD 的面积等于△CDM 的面积求解即可;【详解】∵BD 是对角线,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,延长BC ,交C 于点N ,如图所示,∵∠ADC=60°,CM=CD ,∴△CDM 是等边三角形,∴60MCD ∠=︒,∴∠ACB+∠ACM=∠MCD+∠ACM ,即:∠BCM=∠ACD ,∴∆BCM ≅∆ACD ,∴∠BMC=∠ADC=60°,∴∠BMC=∠MCD ,∴BM ∥CD ,根据平行线间的距离相等得到△BCD 的面积等于△CDM 的面积,过点M 作MH CD ⊥,∵CD=4,∴2==CH HD , ∴tan 602MH MH DH ︒==, ∴MH =,∴△△142BDC CDM S S ==⨯⨯= 故答案选A .【点睛】本题主要考查了四边形综合,结合等边三角形性质,构造等边△CDM 是解题的关键. 8.B解析:B【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可.【详解】解:设点P 到直线AB 距离PC 为x 米,在Rt APC △中,tan PC AC PAC ==∠,在Rt BPC △中,tan PC BC x PBC ==∠,2x -=,解得,x =),故选:B .【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 9.D解析:D【分析】根据 B 关于 AE 的对称点为 B′,可得22AB AD '=,1AB D ∴等腰直角三角形,可得D B E '、、三点共线,可求出BE 的长.【详解】解:26,62,2AB AB AB AD AD ==='∴=', 又△DB′F 为等腰直角三角形,045FDB ∴∠=,又在矩形 ABCD ,090ADF ∠=,045ADB ∴='∠,又22AB AD '=, AB D ∴'等腰直角三角形, 090AB D ∴='∠,090AB E ∠=',D BE ∴'、、三点共线,在等腰直角△RCE ,CE=CD=6,∴BE=BC-CE=626-,故选D..【点睛】本题考查三角形的性质及解直角三角形,找出D B E '、、三点共线是解题关键. 10.A解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==,∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴2222CE x =-, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫=-=-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())24sin 454CE PE x x ==-︒=-, ∴四边形CEPF 的面积为()222144822x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.11.B解析:B【分析】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG=EF ,EG=BF ,求得∠EDF=30°,根据直角三角形的性质得到EF=12DE=4,33即可得到结论.【详解】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG =EF ,EG =BF ,∵∠CDE =150°,∴∠EDF =30°,∵DE =8,∴EF =12DE =4,DF =43, ∴CF =CD +DF =4+43,∵∠ABC =90°,∠ACB =45°,∴AB =BC ,∴GE =BF =AB +4+43,AG =AB ﹣4,∵∠AED =60°,∠GED =∠EDF =30°,∴∠AEG =30°,∴tan30°=433443AG AB GE AB -==++ , 解得:AB =14+63≈24.4,故选:B .【点睛】此题考查解直角三角形的应用-坡度坡角问题,根据题意作出辅助线是解题的关键. 12.B解析:B【分析】分三种情况分析:当0<x≤2时,平移过程中两图重叠部分为Rt △AA'M ;当2<x≤4时,平移过程中两图重叠部分为梯形F'A'MN ;当4<x≤6时,平移过程中两图重叠部分为梯形F'BCN .分别写出每一部分的函数解析式,结合排除法,问题可解.【详解】设AD 交AC 于N ,A D ''交AC 于M ,当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2,AA x '=,∴tan ∠CAB =A M BC AA AB ='', ∴A 'M =12x ,其面积y=12AA A M ''=12x •12x =14x 2, 故此时y 为x 的二次函数,排除选项D ; 当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN ,AA x '=,2AF x '=-,同理:A 'M =12x ,()122F M x ='-, 其面积y=12AA A M ''-12AF F M ''=12x •12x ﹣12(x ﹣2)•12(x ﹣2)=x ﹣1, 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCN ,AF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2, 其面积y =12 [12(x ﹣2)+2]×(6﹣x )=﹣14x 2+x +3, 故此时y 为x 的二次函数,其开口方向向下,故排除A ;综上,只有B 符合题意.故选:B .【点睛】本题考查了动点问题的函数图象以及三角函数的知识,数形结合并运用排除法,是解答本题的关键.13.C解析:C【分析】根据三角形外角的性质求得∠AEF+∠BFE=270°,由角平分线定义可求得∠MEF+∠MFE=135°,根据三角形内角和定理可求出∠EMF=45°,从而可得出结论.【详解】如图,∵AO ⊥BO∴∠AOB=90°∴∠OEF+∠OFE=90°∵∠AEF 和∠BFE 是△EOF 的外角∴∠AEF=90°+∠OFE ,∠BFE=90°+∠OEF∴∠AEF+∠BFE=90°+90°+∠OFE+∠OEF=270°∵EM 平分∠AEF ,FM 平分∠BFE ,∴∠MEF+∠MFE=12(∠AEF+∠BFE) =135°, ∵∠MEF+∠MFE+∠M=180° ∴∠M=180°-(∠MEF+∠MFE)=180°-135°=45°∴tan ∠EMF=tan45°=1故选:C .【点睛】此题主要考查了三角形内角和定理、三角形外角的性质及三角函数,求出∠MEF+∠MFE=135°是解答此题的关键.14.D解析:D【分析】此题根据已知可设AC =x ,则BC =2x ,根据三角函数的定义即可得到结论.【详解】解:∵BC =2AC ,∴设AC =a ,则BC =2a ,∵∠C =90°,∴AB 225AC BC a +=, ∴cosA =55AC AB a== 故选:D .【点睛】此题考查的知识点是锐角三角函数的定义,勾股定理,关键是熟练掌握锐角三角函数的定义.二、填空题15.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴解析:64【分析】连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F,求出 CE , EF , DF 即可解決问题;【详解】解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB//EF,AE//BF,∴四边形ABFE是平行四边形,∵∠AEF=90°,∴四边形AEFB是矩形,∴EF=AB=10(cm),∵AE//PC,∴∠PCA=∠CAE=30°,∴CE=AC•sin30°=27(cm),同法可得DF=27(cm),∴CD=CE+EF+DF=27+10+27=64(cm),故答案为64.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.16.75°或15°【分析】分两种情形求高的位置然后再根据三角函数的定义求出∠BAD∠CAD的度数最后再相加或相减即可求出∠BAC的度数【详解】解:如图所示:①tan∠BAD==1∴∠BAD=45°tan解析:75°或15°【分析】分两种情形求高的位置,然后再根据三角函数的定义求出∠BAD、∠CAD的度数,最后再相加或相减即可求出∠BAC的度数.【详解】解:如图所示:①tan ∠BAD =BD AD =1, ∴∠BAD =45°, tan ∠CAD =CD AD =33, ∴∠BAD =30°,∴∠BAC =45°+30°=75°; ②tan ∠BAD =BD AD=1, ∴∠BAD =45°, tan ∠CAD =CD AD =33, ∴∠BAD =30°,∴∠BAC =45°﹣30°=15°.故∠BAC =75°或15°.【点睛】本题考查了三角函数的应用,灵活应用三角函数求角和分类讨论思想是解答本题的关键. 17.【分析】先画出图形再根据坡度的可得然后设米从而可得米最后利用勾股定理求出x 的值由此即可得出答案【详解】如图由题意得:米设米则米由勾股定理得:即解得(米)则米即他上升的高度是米故答案为:【点睛】本题考 解析:5【分析】先画出图形,再根据坡度的可得12AC BC =,然后设AC x =米,从而可得2BC x =米,最后利用勾股定理求出x 的值,由此即可得出答案.【详解】 如图,由题意得:90C ∠=︒,100AB =米,1tan 2AC B BC ==, 设AC x =米,则2BC x =米,由勾股定理得:22AB AC BC =+()222100x x +=, 解得205x =(米),AC=米,则205即他上升的高度是205米,故答案为:205.【点睛】本题考查了勾股定理、解直角三角形的应用:坡度问题,掌握理解坡度的概念是解题关键.18.1【分析】连接BH证明Rt△ABH≌△Rt△EBH(HL)得出∠ABH=30°在Rt△ABH中解直角三角形即可【详解】解:连接BH如图所示:∵四边形ABCD 和四边形BEFG是正方形∴∠BAH=∠AB解析:1【分析】连接BH,证明Rt△ABH≌△Rt△EBH(HL),得出∠ABH =30°,在Rt△ABH中解直角三角形即可.【详解】解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,∵BH=BH,AB=EB,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=1∠ABE=30°,2∴AH=AB•tan∠33,故答案为:1.【点睛】本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、解直角三角形.能正确作出辅助线得出Rt △ABH ≌△Rt △EBH ,从而求得∠ABH =30°是解题关键.19.m 【分析】根据有一个角是的等腰三角形是等边三角形判断出是等边三角形根据等边三角形的三边相等得出BC=AB=AC=2米在Rt 中根据正弦函数的定义及特殊锐角三角函数值由AD=即可求出AD 的长同理算出进而 解析:()32-m . 【分析】根据有一个角是60︒的等腰三角形是等边三角形判断出ABC 是等边三角形,根据等边三角形的三边相等得出BC=AB=AC=2米,在Rt ABD 中根据正弦函数的定义及特殊锐角三角函数值,由AD=AB?sin60︒即可求出AD 的长,同理算出11A D ,进而根据AD-11A D 即可得出答案.【详解】解:如图1,由题意可得:∵∠B=∠C=60︒,AB=AC∴ABC 是等边三角形BC=AB=AC=2米 在Rt ABD 中:23AD 2sin603=︒== 如图2,由题意可得:∵∠B 1=∠C 1=45︒,A 1B 1=A 1C 1=2m在111Rt A B D 中:11222sin4522A D =︒== ∴(1132AD A D -=m . 故答案为:(32m . 【点睛】此题主要考查锐角三角函数定义、等腰三角形的性质、等边三角形的判定和性质、特殊角的三角函数值,正确理解锐角三角函数定义是解题关键. 20.520【分析】过点A 作于点F 利用特殊角的锐角三角函数值和坡度求出AFBFCE 的长把整个梯形分成两个三角形和一个矩形去计算面积【详解】解:如图过点A 作于点F ∵∴∵∴故答案是:520【点睛】本题考查锐角解析:52.0【分析】过点A 作AF BC ⊥于点F ,利用特殊角的锐角三角函数值和坡度求出AF 、BF 、CE 的长,把整个梯形分成两个三角形和一个矩形去计算面积.【详解】解:如图,过点A 作AF BC ⊥于点F , 3sin 606332AF AB =⋅︒=⨯=, 1cos60632BF AB =⋅︒=⨯=, 33DE AF ==,∵13DE EC =, ∴9EC =, ∵1193333222ABF S AF BF =⋅=⨯⨯=, 11273933222CDE S CE DE =⋅=⨯⨯=, 433123ADEF S AD AF =⋅=⨯=,∴9327312330352.022ABCD S =++=≈. 故答案是:52.0.【点睛】本题考查锐角三角函数的实际应用,解题的关键是掌握利用特殊角的锐角三角函数值解直角三角形的方法.21.4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD 进而可得出∠ACE=∠DCE 由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB 结合∠ACB=90°可求出∠ACE ∠A 的度解析:4【解析】分析:由CE 所在直线垂直平分线段AD 可得出CE 平分∠ACD ,进而可得出∠ACE=∠DCE ,由CD 平分∠BCE 利用角平分线的性质可得出∠DCE=∠DCB ,结合∠ACB=90°可求出∠ACE 、∠A 的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB 的长度. 详解:∵CE 所在直线垂直平分线段AD ,∴CE 平分∠ACD ,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=13∠ACB=30°,∴∠A=60°,∴AB=236032BCsin=︒=4.故答案为4.点睛:本题考查了线段垂直平分线的性质、角平分线的性质以及特殊角的三角函数值,通过角的计算找出∠A=60°是解题的关键.22.【详解】如图延长CA使AF=AE连接BF过B点作BG⊥AC垂足为G∵四边形ABCD是正方形∴∠CAB=45°∴∠BAF=135°∵AE⊥AC∴∠BAE=135°∴∠BAF=∠BAE∵在△BAF和△B解析:2 3【详解】如图,延长CA使AF=AE,连接BF,过B点作BG⊥AC,垂足为G,∵四边形ABCD是正方形,∴∠CAB=45°.∴∠BAF=135°.∵AE⊥AC,∴∠BAE=135°.∴∠BAF=∠BAE.∵在△BAF和△BAE中,BA BA{BAF BAEAE AF∠∠===,∴△BAF≌△BAE(SAS).∴∠E=∠F.∵四边形ABCD是正方形,BG⊥AC,∴G是AC的中点.∴BG=AG=2.在Rt△BGF中,BG2tanFFG3==,即tanE=23.考点:正方形的性质,全等三角形的判定和性质,锐角三角函数的定义,23.【分析】先利用勾股定理得出AC根据翻折变换的性质可得AC⊥EFOC=AC 然后利用∠ACB的正切列式求出OF再求出△AOE和△COF全等根据全等三角形对应边相等可得OE=OF从而求出折痕的长【详解】解解析:15 2【分析】先利用勾股定理得出AC,根据翻折变换的性质可得AC⊥EF,OC=12AC,然后利用∠ACB的正切列式求出OF,再求出△AOE和△COF全等,根据全等三角形对应边相等可得OE=OF,从而求出折痕的长.【详解】解:如图∵AB=6,BC=8,∴AC==10,∵折叠后点C与点A重合,∴AC⊥EF,OC=12AC=12×10=5,∵tan∠ACB=OFCO =ABCB,∴OF5=68,解得OF=154,∵矩形对边AD∥BC,∴∠OAE=∠OCF,在△AOE 和△COF 中OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ),∴OE=OF=154, ∴EF=152故答案为152【点睛】本题考查了翻折变换的性质,矩形的性质,勾股定理,锐角三角函数的定义,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.24.【分析】连接OP 先确定OD 的长和B 点坐标然后证明四边形OPME 是平行四边形可得OP=EM 因为PM 是定值推出PB+ME=OP+PB 的值最小时即当OPB 共线时BP+PM+ME 的长度最小最后根据两点间的距解析:22123+【分析】连接OP ,先确定OD 的长和B 点坐标,然后证明四边形OPME'是平行四边形,可得OP=EM ,因为PM 是定值,推出PB+ME'=OP+PB 的值最小时,即当O 、P 、B 共线时BP+PM+M E 的长度最小,最后根据两点间的距离公式和线段的和差解答即可.【详解】解:如图:连接OP在Rt △ADO 中,∠A=60°,AD=4,∴OD=4tan60°3∴A (-4,3∵四边形ABCD 是平行四边形,∴AB=OC=10,∴DB=10-4=6 ∴B (6,43)∵线段EF 垂直平分OD∴OE=12OD=23,∠PEO=∠EOM=∠PM0=90°, ∴四边形OMPE 是矩形,∴PM=OE=23,∵OE=0E'∴PM=OE',PM//OE',∴四边形OPME'是平行四边形,∴0P=EM ,∵PM=23是定值,∴PB+ME'=OP+PB 的值最小时,BP+PM+ME 的长度最小,∴当0、P 、B 共线时,BP+PM+ME 的长度最小∴BP+PM+ME 的最小值为OB+PM=()226432322123++=+.故答案为22123+.【点睛】本题属于四边形综合题,主要考查了平行四边形的判定和性质、垂直平分线的性质、最短路径问题、锐角三角函数等知识,掌握并灵活应用两点之间线段最短是解答本题的关键. 25.【分析】先过点F 作直线交轴于点过点作于点证明根据cos ∠FGO=06以及勾股定理即可得到答案【详解】过点F 作直线交轴于点过点作于点如图:∴(两直线平行内错角相等)又∵∠EFG=90°∴∠AFE+∠H解析:(8,12)【分析】先过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,证明FGO ∠HFG FEA =∠=∠,根据cos ∠FGO =0.6以及勾股定理即可得到答案.【详解】过点F 作直线//FA OG 交y 轴于点A ,过点G 作GH FA ⊥于点H ,如图:∴FGO HFG ∠=∠(两直线平行,内错角相等),又∵∠EFG =90°,∴∠AFE+∠HEG =90°,又∵∠AFE+∠FEA =90°,∴HFG FEA ∠=∠,∴FGO HFG FEA ∠=∠=∠,在Rt AEF ∆中,10EF =,则10cos 100.66AE FEA =⋅∠=⨯= ∴221068AF =-=(勾股定理),∴1789FH =-=,在Rt FGH ∆中,90.615FG =÷=,∴2215912HG =-=(勾股定理), ∴(8,12)F ,故答案为:(8,12).【点睛】本题主要考查了平行的性质(两直线平行,内错角相等)、勾股定理的应用以及三角函数,熟练掌握各知识点并灵活运用是解题的关键.26.【分析】先利用求得AC 的长再证明四边形AEDF 是矩形推出EF =AD 根据垂线段最短即可解决问题;【详解】解:如图连接AD 在△ABC 中∵∠BAC =90°∴∴AC =6∴AB ==10∵DF ⊥ACDE ⊥BC ∴解析:245【分析】先利用10BC =,3sin 5B ∠=求得AC 的长,再证明四边形AEDF 是矩形,推出EF =AD ,根据垂线段最短即可解决问题;【详解】解:如图,连接AD .在△ABC 中,∵∠BAC =90°,10BC =,3sin 5B ∠=, ∴3105AC =, ∴AC =6, ∴AB 2268+=10,∵DF ⊥AC ,DE ⊥BC ,∴∠DFA =∠DEA =∠BAC =90°,∴四边形AEDF 是矩形,∴EF =AD ,∴当AD ⊥BC 时,AD 的值最小,此时EF 最小值=AD =245AC AB BC =, 故答案为:245. 【点睛】本题考查矩形的判定和性质、垂线段最短、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题27.(1)25°;(2)【分析】(1)由垂径定理可证AD =BD ,再利用圆周角与圆心角的关系求解.(2)由垂径定理可证AC=BC ,△AOC 为直角三角形,由30°的角可求得直角边AC 的长度,从而求得AB 的长度.【详解】(1)∵OD ⊥AB ,∴AD =BD ,∵∠AOD =50°, ∴∠DEB=12∠AOD =25°; (2)∵OD ⊥AB , ∴AC=BC ,△AOC 为直角三角形,∵OC=3,∠A=30°,∴tan 30OC AC ︒=,即OC AC = ∴AC=,∴AB=2AC=【点睛】本题考查了圆周角定理,垂径定理,锐角三角函数.注意:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.28.该设备的安装高度OC 约为2.9m .【分析】根据题意可得OC ⊥AC ,∠OBC=73.14°,∠OAC=30.97°,AB=4m ,所以得AC=AB+BC=4+BC ,。
锐角三角函数综合性试卷(培优)
![锐角三角函数综合性试卷(培优)](https://img.taocdn.com/s3/m/554c0973bf1e650e52ea551810a6f524ccbfcbd0.png)
锐角三角函数综合性试卷(培优)1.绵山是中国清明节(寒食节)的发源地,相传春秋时期晋国介子推携母隐居被焚在山上.绵山入口处有一座雄伟高大的介子推铜像,当地某校的综合与实践小组的同学们想要测出这座铜像有多高.他们先制订了测量方案,随后又进行了实地测量.如图,铜像MN建在坡比为1:2.4的楼梯BM顶端,同学们在A处测得铜像顶点N的仰角为30°,然后沿着AC方向走了12m到达B处,此时在B处测得铜像顶点N的仰角为63.4°,其中点A,B,C,D,M,N均在同一平面内.请根据以上数据求出铜像MN的高度.(结果精确到0.1m,参考数据√3≈1.73,sin 63.4°≈0.89,cos63.4°≈0.45,tan 63.4°≈2.00)2.如图是人民英雄纪念碑,它位于北京天安门广场中心,是为了纪念在人民解放战争和人民革命中牺牲的人民英雄,碑体正面是毛泽东亲笔题词“人民英雄永垂不朽”八个鎏金大字.右图是纪念碑的示意图,小丽在A处测得碑顶D的仰角为30°,沿纪念碑方向前进37.1m后,在B处测得碑顶D的仰角为53°(点A,B,D,E,F在同一平面内,且点A,B,E,F在同一水平线上)求纪念碑的高度.(结果精确到0.1m.参考数据:√3≈1.73,sin53°≈45;cos53°≈35,tan53°≈43)3.2022年6月28日,美国“本福德”号导弹驱逐舰穿航台湾海峡并公开炒作,为了维护国家安全和祖国统一,我中国人民解放军东部战区组织海空兵力对美舰进行全程跟监警戒,一架飞机沿水平直线飞行,在点C处测得正前方水平地面上某建筑物AB的顶端A 的俯角为30°,飞机面向AB方向继续飞行5米至点D处,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求飞机飞行的高度.(结果精确到1米,参考数据:√2≈1.414,√3≈1.732)4.通过学习《解直角三角形》这一章,王凯同学勤学好问,在课外学习活动中,探究发现,三角形的面积、边、角之间存在一定的数量关系,下面是他的学习笔记.请仔细阅读下列材料并完成相应的任务.在△ABC(图1)中,∠A,∠B,∠C的对边分别为a、b、c,△ABC的面积为S△ABC,过点A作AD⊥BC,垂足为D,则在Rt△ABD中,∵sin B=AD AB,∴AD=AB•sin B.∴S△ABC=12BC⋅AD=12BC⋅AB⋅sinB=12ac sin B.同理可得,S △ABC =12bc sin A ,S ABC =12ba sin C .即S △ABC =12bcsinA =12acsinB =12ba sin C ……………①由以上推理得结论:三角形的面积等于两边及其夹角正弦积的一半. 又∵abc ≠0, ∴将等式12bcsinA =12acsinB =12ba sin C 两边同除以12abc ,得,sinA a=sinB b=sinC c.∴asinA=b sinB=c sinC⋯⋯⋯⋯⋯⋯⋯②由以上推理得结论:在一个三角形中,各边和它所对角的正弦的比值相等.理解应用:如图2,甲船以30√2海里/时的速度向正北方向航行,当甲船位于A 处时,乙船位于甲船的南偏西75°方向的B 处,且乙船从B 处沿北偏东15°方向匀速直线航行,当甲船航行20分钟到达D 处时,乙船航行到甲船的南偏西60°方向的C 处,此时两船相距10√2海里.(1)求:△ADC 的面积.(2)求:乙船航行的速度(结果保留根号).5.在交城县城西北方向的卦山群峰中,位于中央的小山峰上屹立着一座白塔,它在卦山诸多名胜中最引人注目(如图1).某数学小组为测量白塔的高度,在A 处(如图2)测得塔顶C 的仰角为45°,然后沿着斜坡AB 前进13米到达B 处,在B 处测得到塔脚的距离BD =15米,已知tan ∠BAF =512,∠E =90°,求白塔的高度CD .6.延安宝塔,是革命圣地延安的标志和象征,融历史文物和革命遗址为一脉,集人文景观和自然景观为一体,某数学兴趣小组在确保无安全隐患的情况下,开展了测量延安宝塔的高度的实践活动,具体过程如下:如图,CN是坡度i=3:4的斜坡,CN的长为15米,BC=32米,MN是测角仪,长为2米,从点M测得该塔顶部A处的仰角为37°,已知MN⊥BC,AB⊥BC,求该塔AB的高度.(参考数据:sin37°≈3 4)7.图1是一盏可调节台灯,图2为其平面示意图,固定底座OA与水平面OE垂直,AB为固定支撑杆,BC为可绕着点B旋转的调节杆,灯体CD始终保持垂直BC,MN为台灯照射在桌面的区域,如图2,旋转调节杆使BC与水平面OE平行,此时△DMN是以D为顶点的等腰三角形,AB=5dm,OM=2dm,BC=6dm,tanB=43,求台灯照射桌面区域MN的长度.8.如图,梯形ABCD是某水坝的横截面示意图,其中AB=CD,坝顶BC=2m,坝高CH=5m,迎水坡AB的坡度i=1:1.(1)求坝底AD的长;(2)为了提高堤坝防洪抗洪能力,防汛指挥部决定在背水坡加固该堤坝,要求坝顶加宽0.5m,背水坡坡角改为α=30°,求加固总长5千米的堤坝共需多少土方?(参考数据:π≈3.14,√2≈1.41,√3≈1.73;结果精确到0.1m3)9.无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,在跟踪、定位、遥测、数据传输等方面发挥着重要作用,在如图所示的某次测量中,无人机从点A的正上方点C,沿正东方向以5m/s的速度飞行18s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行72s到达点E,测得点B的俯角为37°.求AB的长度(结果精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73).10.如图1,中苏友谊纪念塔在大连市旅顺博物馆前的广场中心,是大连著名的地标建筑之一.如图2,一个人(AR)站在纪念塔前的石阶底部,测得点R关于点N的仰角α=60°.已知人高1.5m,ED=3m,BC=1.2m,BM=3m.若将塔前的楼梯看作斜坡,坡角θ的度数为33.69°(sin33.69°≈0.55,cos33.69°≈0.83,tan33.69°≈0.67,√3≈1.73).(1)求斜面AB的长度;(2)求塔高PQ(结果保留整数).11.华山是陕西著名的景点之一,西峰是华山最秀丽险峻的山峰,峰顶翠云宫前有巨石状如莲花,故又名莲花峰.游客可以从山底乘坐索道车到达西峰,小明要测量峰顶翠云宫的高度,他在索道A处测得翠云宫底部B的仰角约为30°,测得翠云宫顶部C的仰角约为37°,索道车从A处运行到B处的距离约为300米.请你利用小明测量的数据,求翠云宫BC的高度.(结果保留整数.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)12.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM=30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE∥BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:√2取1.41,√3取1.73,sin22°取0.37,cos22°取0.93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)13.如图,是某市在城区河道上新建成的一座大桥,学校数学兴趣小组在一次数学实践活动中对桥墩的高度进行了测量,测得斜坡BC长为50米,∠CBE=30°,在斜坡顶端C处水平地面上以3.6km/h的速度行走半分钟到达点D,在点D处测得桥墩最高点A的仰角为34°.(1)水平地面CD长为米;(2)求桥墩AB的高(结果保留1位小数).(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.68,√3≈1.73)14.小明在①号楼的C处测得建筑物AB的顶端A的仰角是35°,在地面D处测得A的仰角是55°.E为①号楼底端一点,已知CE=DE=9米,且A,B,C,D,E在同一平面上,求建筑物AB的高度.(参考数据:sin55°≈0.8,tan55°≈1.4,sin35°≈0.6,tan35°≈0.7)15.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)求证:△ABC≌△DEF;(2)若滑梯的长度BC=10米,DE=8米,分别求出滑梯BC与EF的坡度;(3)在(2)的条件下,由于EF太陡,在保持EF长不变的情况下,现在将点E向下移动,点F随之向右移动.①若点E向下移动的距离为1米,求滑梯EF底端F向右移动的距离;②在移动的过程中,直接写出△DEF面积的最大值.。
锐角三角函数(培优)
![锐角三角函数(培优)](https://img.taocdn.com/s3/m/a5f87517cc22bcd126ff0caf.png)
知识要点1、锐角三角函数定义斜边的对边αα∠=sin 斜边的邻边αα∠=cos的邻边的对边ααα∠∠=tan 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300、450、600、的记忆规律: 3、角度变化与锐角三角函数的关系当锐角α在00∽900之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。
4、同角三角函数之间有哪些关系式平方关系:sin 2A +cos 2A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tanB =1; 5、互为余角的三角函数有哪些关系式Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900-A )=ctan A ;一、选择题1.在Rt △ABC 中,∠C =900,∠A =∠B ,则sinA 的值是( ).A .21 B .22 C .23D .12.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A .21 B .33C .1D .3 3.在Rt △ABC 中,如果各边的长度都缩小至原来的51,那么锐角A 的各个三角函数值( ). A .都缩小51B .都不变C .都扩大5倍D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α=54B .cos α=53 C .tan α= 34 D .tan α= 43 5.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin =A B .31cos =B C .42tan =A D .2tan 4B = 6.已知ΔABC 中,∠C =90,CD 是AB 边上的高,则CD :CB 等于( ).A .sinAB .cosAC .tanAD .1tan A7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A.513B.1213 C.1013D.5128.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG =B. sin EH G EF =C. sin GH G FG =D. sin FHG FG= 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、ACB45°、60°(风筝线是拉直的),则三人所放的风筝( ).A .甲的最高B .乙的最低C .丙的最低D .乙的最高10.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于( ).A .43B .34 C .53 D .35第4题 第8题 第10题二、填空题11.32 可用锐角的正弦表示成__________.12.如图表示甲、乙两山坡情况,其中t a n α_____t a n β,_____坡更陡. (前一空填“>”“<”或“=”,后一空填“甲”“乙”)13.在Rt △ABC 中,若∠C =900,∠A =300,AC =3,则BC =__________. 14.在Rt △ABC 中,∠C =900,a =2, sinA =13, 则c =______. 15.如图,P 是∠α的边OA 上一点,且P 点的坐标为(3,4),则sin (900 - α)=_______.16.已知tan α·tan30°=1,且α为锐角,则α=______. 17.在△ABC 中,∠A =21∠B =31∠C ,则∠A = ,若BC =4,则AB = .18.已知直角三角形的两直角边的比为1:7,则最小角的正弦值为__________. 三、解答题19.在Rt △ABC 中,∠C =900,AB =13,BC =5, 求A sin , A cos ,A tan . 20.计算: (1)︒⨯︒45cos 2260sin 21(2)tan 230°+cos 230°-sin 245°tan45° CBAEF Dαβ1213 34甲乙(3)0000tan 60tan 45tan 60tan 45-g +2sin 60°21.在△ABC 中,∠C =90°,sinA =32,求cosA 、tanB .22.已知α为锐角,求下列各题中α的度数: (1)tan(α+12°)=33 (2)24cos 10α-= 23.在△ABC 中,内角∠A 、∠B 满足|sinA -23|+(1-tanB)2=0,请说出△ABC 的至少三个特征.24.在△ABC 中,∠C =900,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,试证明sin 2A +cos 2A =1;并利用这个公式计算:若sinA =71,求cosA 的值(∠A 为锐角). 25. 如图,△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC=BD =3. (1)求cosA(2)求BC 的长及△ABC 的面积.26.在△ABC 中,∠A =1200,AB =12,AC =6.求sinB +sinC 的值.(提示:过C 点作CE ⊥BA 交BA 的延长线于E ,过点B 作BD ⊥CA 交CA 的延长线于D .)ABCED1.如图1,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,(精确到千米)A 图12.如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=ο60,坡长AB=m 320,为加强水坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡的坡角∠F=ο45,求AF 的长度(结果精确到1米, 参考数据:414.12≈,732.13≈).3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83km 的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸请说明理由.5. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到米,参考数据:2≈,3≈,5≈,6≈NM 东北BCAl(2题图)17cm(第3题)A BCD参考数据 cos20°≈, sin20°≈,sin18°≈,ABE F QP第5题6.如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BF Q=60°,EF=1km.(1)判断ABAE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到).(参考数据:3≈,sin74°≈,cos74°≈,tan74°≈,sin76°≈,cos76°≈)7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高(2)求风筝A与风筝B的水平距离.(精确到m;参考数据:sin45°≈,cos45°≈,tan45°=1,sin60°≈,cos60°=,tan60°≈)9.为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.AB4560CE D(第19题10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC为______米(精确到).(参考数据:414.12≈732.13≈)11. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米(结果精确到米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈, 结果保留整数).13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算第19题图ABC D45°60° 第(12)题BAC(第11题图)湖中两个小亭A 、B 之间的距离.14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)15.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第15题图B37° 48°DCA。
九年级数学锐角三角函数的专项培优练习题含答案
![九年级数学锐角三角函数的专项培优练习题含答案](https://img.taocdn.com/s3/m/d050035daf45b307e87197b0.png)
九年级数学锐角三角函数的专项培优练习题含答案一、锐角三角函数1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBDS ME S EB =V ,从而可知52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案. 【详解】(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,∵1EBDS MES EB=V ,∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =,∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.5.如图以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点F.(1)求证:DF ⊥AC ;(2)若∠ABC=30°,求tan ∠BCO 的值. 【答案】(1)证明见解析; (2) tan ∠3 【解析】试题分析:(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)过O 作OF ⊥BD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解. 试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE ∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=3OB∵BD=DC, BF=FD,∴FC=3BF=33OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,BF=3OB,FC=3BF=33OB是解题关键.6.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC=3xm,在RT△MFC中MF=MN-FN=MN-CE=x-20FC=NE=NA+AE=x+203∵∠MCF=30°∴FC=3MF,即x+203=3 ( x-20)解得:x=403 31=60+203≈95m答:电视塔MN的高度约为95m.【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.7.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA′B′成为等腰三角形的x的值有:0秒、32 秒、95- . 【解析】 【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CEA D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm ,∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36, ∴(6﹣245)2+(2x +185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.8.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。
初三数学锐角三角函数的专项培优练习题(含答案)含详细答案
![初三数学锐角三角函数的专项培优练习题(含答案)含详细答案](https://img.taocdn.com/s3/m/0173d3fcd4d8d15abe234ee8.png)
初三数学锐角三角函数的专项培优练习题(含答案)含详细答案一、锐角三角函数1.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?【答案】【解析】过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可.2.如图,在平行四边形ABCD 中,平分,交于点,平分,交于点,与交于点,连接,.(1)求证:四边形是菱形; (2)若,,,求的值.【答案】(1)证明见解析 (2)【解析】试题分析:(1)根据AE 平分∠BAD 、BF 平分∠ABC 及平行四边形的性质可得AF=AB=BE ,从而可知ABEF 为平行四边形,又邻边相等,可知为菱形(2)由菱形的性质可知AP 的长及∠PAF=60°,过点P 作PH ⊥AD 于H ,即可得到PH 、DH 的长,从而可求tan ∠ADP试题解析:(1)∵AE 平分∠BAD BF 平分∠ABC ∴∠BAE=∠EAF ∠ABF=∠EBF ∵AD//BC∴∠EAF=∠AEB ∠AFB=∠EBF ∴∠BAE=∠AEB ∠AFB=∠ABF ∴AB=BE AB=AF ∴AF=AB=BE ∵AD//BC∴ABEF 为平行四边形 又AB=BE ∴ABEF 为菱形 (2)作PH ⊥AD 于H由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5∴tan ∠ADP=考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数3.如图,反比例函数() 0k y k x=≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒. (1)求k 的值及点B 的坐标; (2)求tanC 的值.【答案】(1)2k =,()1,2B --;(2)2. 【解析】【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数()0ky k x=≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出Ctan 即可.【详解】(1)∵点A (1,a )在2y x =上, ∴a =2,∴A (1,2),把A (1,2)代入 ky x= 得2k =, ∵反比例函数()0ky k x=≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,∴()12B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,∵90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=,∴AD 22OD 1tanC tan AOD =∠===.【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD是关键.4.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE;(3)解:∵cos∠BAD=,∴sin∠BAC=,又∵BE=,E是BC的中点,即BC=,∴AC=.又∵AC=2OE,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数5.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.6.如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结(1)求证:(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,或【解析】(1)证明:∵四边形为正方形,∴∵三角板是等腰直角三角形,∴又三角板绕点逆时针旋转至的位置时,∴···························· 3分(2)存在.································· 4分∵∴过点与平行的直线有且只有一条,并与垂直,又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上,························ 5分∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和此时,点分别在点和点,满足·························· 7分当切点在第二象限时,点在第一象限,在直角三角形中,∴∴∴点的横坐标为:点的纵坐标为:∴点的坐标为··························· 9分当切点在第一象限时,点在第四象限,同理可求:点的坐标为综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或································ 11分(1)根据旋转的性质找到相等的线段,根据SAS定理证明;(2)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE的长,通过解直角三角形,不难得到E点的坐标,由此得解.7.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3BE=【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC=90°,∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,∴∠BEG=∠GCF=135°,由平移的性质得:BE=CF,在△BEG和△GCF中,BE CFBEG GCF EG CG=⎧⎪∠=∠⎨⎪=⎩,∴△BEG≌△GCF(SAS),∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =32,在Rt △DHG 中,∵∠AGD =60°, ∴GH =3=323=6,∴DG =2GH =26, ∴DF =2DG =43, 在Rt △DCF 中,CF =()22436-=23,∴BE =CF =23.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.8.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥; (2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HNBH HN HM ===︒.由22cos 45DFEF DF DH ===︒,得22EF AB HM =-.【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。
九年级培优锐角三角函数.doc
![九年级培优锐角三角函数.doc](https://img.taocdn.com/s3/m/db139292fad6195f302ba671.png)
佢®H疏模块一三角函数基础锐角三角函数的定义如图所示,在RtAABC屮,a、b、c分别为ZA、ZB、上C的对边.(1)正眩:RtMBC中,锐角A的对边与斜边的比叫做ZA的正弦,记作sinA, BP sinA = -.c(2)余弦:RtMBC屮,锐角4的邻边与斜边的比叫做ZA的余弦,记作cosA,即cosA = -.C(3)正切:RtAABC中,锐角A的对边与邻边的比叫做ZA的正切,记作tan A ,即tanA = -.b注意:①正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义.②sin A、cos A、urn A分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin与A、cos 与A、tan与A的乘积.③在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数三角函数0°30°45°60°90°sin A012返2更21cos A1週2V2212这些特殊角的三角函数值一定要牢牢记住!三、锐角三角函数的取值范围在RtAABC 中,ZC = 90° , a>0, b>0, c > 0, a <c, b <c, X sin A = —f cos A = — c c 以0 v sin A < 1, 0 v cos A < 1, tan A > 0.四、三角函数关系1.同角三角函数关系:2.互余角三角函数关系:(1)任意锐角的正弦值等于它的余角的余弦值:sin A = cos (90°-A);(2)任意锐角的余弦值等于它的余角的正弦值:cos A = sin (90°-A);(3)任意锐角的正切值等于它的余角的余切值:tan A = cot (90°-A).3.锐角三角函数值的变化规律:(1)A^ B 是锐角,若A〉B,贝0 sin A > sin B :若A<B,贝!j sin A < sin B(2)A、B 是锐角,若A>B,贝ij cos A < cos B ;若AvB,贝lj cos A > cos B(3)A、B 是锐角,若A>B,贝lj tan A > tan B :若AvB,贝>J tan A < tan Z?【例I】己知在"C中,S /B是锐角,且sinA寻论=2,遊29旳,则S A ,tan A =—,所bsin2A 4- cos2 A = 1 , tan A =sin A cos A【巩固】如图,点A 在半径为/?的0上,以A 为圆心,厂为半径作A,设0的弦PQ 与A 相切,求证PA ・04为定值.【例2 ]求 tan 1 ° • tan 2°- lan 3° ・• tan 89° 的值sincr+ coscr sin 2 a l-tan 2a +sina-cos«・ l-cos'a sin a + --------------------- :【例 3】 已知 tana = V5,求(1) --------- ,(2) (0°va<90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识要点1、锐角三角函数定义?斜边的对边αα∠=sin 斜边的邻边αα∠=cos的邻边的对边ααα∠∠=t a n 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300、450、600、的记忆规律:3、 角度变化与锐角三角函数的关系当锐角α在00∽900之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。
4、 同角三角函数之间有哪些关系式平方关系:sin 2A +cos 2A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tanB =1; 5、 互为余角的三角函数有哪些关系式?Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900-A )=ctan A ; 一、选择题1.在Rt △ABC 中,∠C =900,∠A =∠B ,则sinA 的值是( ).A .21B .22C .23D .12.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A .21B .33C .1D .33.在Rt △ABC 中,如果各边的长度都缩小至原来的51,那么锐角A 的各个三角函数值( ). A .都缩小51B .都不变C .都扩大5倍D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α=54 B .cos α= 53 C .tan α= 34 D .tan α= 435.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ).A .423sin =A B .31cos =B C .42tan =A D .tan 4B = 6.已知ΔABC 中,∠C =90︒,CD 是AB 边上的高,则CD :CB 等于( ).A .sinAB .cosAC .tanAD .1tan A7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A.513B.1213 C.1013D.5128.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG =B. sin EH G EF =C. sin GH G FG =D. sin FHG FG= 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、45°、60°(风筝线是拉直的),则三人所放的风筝( ).ACBA .甲的最高B .乙的最低C .丙的最低D .乙的最高10.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于( ).A .43B .34 C .53 D .35第4题 第8题 第10题二、填空题 11.32可用锐角的正弦表示成__________. 12.如图表示甲、乙两山坡情况,其中t a n α_____t a n β,_____坡更陡. (前一空填“>”“<”或“=”,后一空填“甲”“乙”)13.在Rt △ABC 中,若∠C =900,∠A =300,AC =3,则BC =__________. 14.在Rt △ABC 中,∠C =900,a =2, sinA =13, 则c =______. 15.如图,P 是∠α的边OA 上一点,且P 点的坐标为(3,4),则sin (900- α)=_______. 16.已知tan α·tan30°=1,且α为锐角,则α=______. 17.在△ABC 中,∠A =21∠B =31∠C ,则∠A = ,若BC =4,则AB = .18.已知直角三角形的两直角边的比为1:7,则最小角的正弦值为__________. 三、解答题19.在Rt △ABC 中,∠C =900,AB =13,BC =5, 求A sin , A cos ,A tan . 20.计算: (1)︒⨯︒45cos 2260sin 21(2)tan 230°+cos 230°-sin 245°tan45° (3)0000tan 60tan 45tan 60tan 45-+2sin 60° CBAEF D αβ 1213 34甲乙21.在△ABC 中,∠C =90°,sinA =32,求cosA 、tanB .22.已知α为锐角,求下列各题中α的度数: (1)tan(α+12°)=33 (2)24cos 10α-= 23.在△ABC 中,内角∠A 、∠B 满足|sinA -23|+(1-tanB)2=0,请说出△ABC 的至少三个特征.24.在△ABC 中,∠C =900,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,试证明sin 2A +cos 2A =1;并利用这个公式计算:若sinA =71,求cosA 的值(∠A 为锐角). 25. 如图,△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC=BD =3. (1)求cosA(2)求BC 的长及△ABC 的面积.26.在△ABC 中,∠A =1200,AB =12,AC =6.求sinB +sinC 的值.(提示:过C 点作CE ⊥BA 交BA 的延长线于E ,过点B 作BD ⊥CA 交CA 的延长线于D .)ABCED1.如图1,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)2.如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡的坡角∠F=45,求AF 的长度(结果精确到1米, 参考数据: 414.12≈,732.13≈).3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距的C 处. (1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.5. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)第5题 6. 如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km . (1)判断ABAE 的数量关系,并说明理由;东l (2题图)(第3题)锐角三角函数复习2017/10/4ABEFQ P(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49, sin76°≈0.97,cos76°≈0.24)7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m,每层楼高3.5m,AE 、BF 、CH 都垂直于地面,EF=16m,求塔吊的高CH 的长.8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C 处(如图).现已知风筝A 的引线(线段AC )长20m ,风筝B 的引线(线段BC )长24m ,在C 处测得风筝A 的仰角为60°,风筝B 的仰角为45°.(1)试通过计算,比较风筝A 与风筝B 谁离地面更高? (2)求风筝A 与风筝B 的水平距离.(精确到0.01 m ;参考数据:sin45°≈0.707,cos45°≈0.707, tan45°=1,sin 60°≈0.866,cos60°=0.5,tan 60°≈1.732)9. 为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.AB(第19题10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为______米(精确到0.1).(参考数据:414.12≈732.13≈)82.011. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB1.732, 结果保留整数).13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.第19题图A45°60° 第(12)题(第11题图)14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)15.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第15题图B 37° 48°DC A。