数理经济学 7 最优控制

合集下载

最优控制

最优控制

四、最优控制在控制领域中的应用
模拟退火算法 1983年,Kirkpatrick与其合作者提出了模拟退火(SA)的方法,它是求解单目标 多变量最优化问题的一项Monte-Caula技术。该法是一种物理过程的人工模 拟,它基于液体结晶或金属的退火过程。液体和金属物体在加热至一定温度 后,它们所有的分子、原子在状态空间D中自由运动。随着温度的下降,这些 分子、原子逐渐停留在不同的状态。当温度降到相当低时,这些分子、原子 则重新以一定的结构排列,形成了一个全部由有序排列的原子构成的晶体结 构。模拟退火法已广泛应用于生产调度、神经网络训练、图像处理等方面。
三、最优控制的研究方法
古典变分法:古典变分法是研究泛函求极值的一种数字方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常 三、最优控制的研究方法
古典变分法:
古典变分法是研究泛函求极值的一种数字方法。古典变分法只能用在控制 变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取 值常常受到封闭性的边界限制,如方向舵只能在2个极限值范围内转动,电动 机的力矩只能在正负的最大值范围内产生等。因此,古典变分法的应用范 围十分有限。
二、最优控制问题的一般性描述
实际上,终端约束规定了状态空间的一个时变或非时变的集合,此满足终 端约束的状态集合称为目标集M,并可表示为:
M {x(t f ) | x(t f ) Rn , N1[ x(t f ), t f ] 0, N2[ x(t f ), t f ] 0}
为简单起见,有时将上式称为目标集。
三、最优控制的研究方法
极小值原理:
极小值原理是对分析力学中古典变分法的推广,能用于处理由于外力源的 限制而使系统的输入(即控制)作用有约束的问题。极小值原理的突出 优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足 的条件。如高夯、汪更生、楼红卫等人论述了多种类型的抛物型方程和 退化拟线性、半线性椭圆方程的极小值原理。

最优控制全部PPT课件

最优控制全部PPT课件

J
(x(t f ),t f)
tf t0
F(x(t),u(t),t)dt
为最小。
这就是最优控制问题。
如果问题有解,记为u*(t), t∈ [t0,tf],则u*(t)叫做最优控制(极值控制),相应的轨 线X*(t)称为最优轨线(极值轨线),而性能指标J*=J(u*(·))则称为最优性能指标。
第11页/共184页
目标质心的位置矢量和速度矢量为: xM xM
F(t)为拦截器的推力
x xL xM v xL xM
则拦截器与目标的相对运动方程为:
x v v a(t) F (t)
m(t)
m F (t) c
其中a(t)是除控制加速度外的固有相对加速度,是已知的。
初始条件为: x(t0 ) x0 v(t0 ) v0 m(t0 ) m0 终端条件为: x(t f ) 0 v(t f )任意 m(t f ) me
至于末态时刻,可以事先规定,也可以是未知的。 有时初态也没有完全给定,这时,初态集合可以类似地用初态约束来表示。
第9页/共184页
3:容许控制 在实际控制问题中,大多数控制量受客观条件的限制,只能在一定范围内取 值,这种限制通常可以用如下不等式约束来表示:
0 u(t) umax 或ui i 1,2p
给定一个线性系统,其平衡状态X(0)=0,设计的目的是保持系统处于平衡状态,即 这个系统应能从任何初始状态返回平衡状态。这种系统称为线性调节器。
线性调节器的性能指标为:
J
tf t0
n
xi 2 (t)dt
i 1
加权后的性能指标为:
J
tf t0
n
qi xi 2 (t)dt
i1
对u(t)有约束的性能指标为: J t f 1 [ X T (t)QX (t) uT (t)Ru(t)]dt

最优控制问题介绍

最优控制问题介绍

最优控制问题介绍最优控制问题是现代控制理论的核心内容之一,它研究的主要问题是如何在满足一定约束条件下,使得某一性能指标达到最优。

这类问题广泛存在于各个领域,如航天工程、经济管理、生态系统等。

通过对最优控制问题的研究,我们可以更加科学、合理地进行决策,实现资源的优化配置,提高系统的运行效率。

一、最优控制问题的基本概念最优控制问题通常可以描述为一个动态系统的优化问题。

在这个问题中,我们需要找到一个控制策略,使得系统从初始状态出发,在给定的时间内,通过控制输入,使得系统的某一性能指标达到最优。

这个性能指标可以是时间最短、能量消耗最小、误差最小等。

为了解决这个问题,我们首先需要建立系统的数学模型。

这个模型应该能够准确地描述系统的动态行为,包括状态方程、输出方程以及约束条件等。

然后,我们需要定义一个性能指标函数,这个函数描述了我们希望优化的目标。

最后,我们通过求解一个优化问题,找到使得性能指标函数达到最优的控制策略。

二、最优控制问题的分类根据系统的动态特性和性能指标函数的不同,最优控制问题可以分为多种类型。

其中,最常见的包括线性二次型最优控制问题、最小时间控制问题、最小能量控制问题等。

1. 线性二次型最优控制问题:这类问题中,系统的动态特性是线性的,性能指标函数是状态变量和控制输入的二次型函数。

这类问题在实际应用中非常广泛,因为许多实际系统都可以近似为线性系统,而二次型性能指标函数可以方便地描述许多实际优化目标。

2. 最小时间控制问题:在这类问题中,我们的目标是使得系统从初始状态到达目标状态的时间最短。

这类问题通常出现在对时间要求非常严格的场合,如火箭发射、紧急制动等。

3. 最小能量控制问题:这类问题的目标是使得系统在完成指定任务的过程中消耗的能量最小。

这类问题在能源有限的系统中尤为重要,如无人机、电动汽车等。

三、最优控制问题的求解方法求解最优控制问题的方法主要有两种:解析法和数值法。

1. 解析法:解析法是通过求解系统的动态方程和性能指标函数的极值条件,得到最优控制策略的解析表达式。

最优控制 公式

最优控制 公式

最优控制公式
最优控制是指在给定系统模型和性能指标的情况下,通过优化算法寻找系统输入的最优策略。

最优控制的数学描述可以使用最优控制公式来表示。

在最优控制中,通常使用动态系统的状态变量来描述系统的演化,并通过控制输入来影响系统的行为。

最优控制公式可以分为两类:动态规划和最优控制问题。

1.动态规划公式:动态规划是一种通过将问题划分为连续的子问题来求解最优控制策略的方法。

基于动态规划的最优控制公式为贝尔曼方程,它描述了最优值函数的递归关系。

贝尔曼方程通常写作:
$$V(x)=\min_u[g(x,u)+\int_{t_0}^{t_1}L(x,u)dt+V'(x )f(x,u)]$$
其中,$V(x)$是最优值函数,$x$是系统状态,$u$是控制输入,$g(x,u)$是即时收益函数,$L(x,u)$是运行损失函数,$f(x,u)$是系统动态的微分方程。

动态规划方法基于最优子结构的原理,通过递归地求解子问题来求得全局最优解。

2.最优控制问题的公式:最优控制问题可以用最小化一个性能指标的函数来描述,通常称为性能指标函数或者代价函数。

$$J(u)=\int_{t_0}^{t_1}L(x,u)dt$$
其中,$J(u)$是性能指标函数,$L(x,u)$是运行损失函数,$x$是系统状态,$u$是控制输入。

最优控制问题的目标是找到合适的控制输入$u$,使得性能指标函数$J(u)$最小化。

求解最优控制问题的方法包括动态规划、最优化方法、解析解等。

综上所述,最优控制公式是通过数学描述来求解最优控制策略的公式。

根据具体问题的不同,可以使用动态规划公式或者最优控制问题的公式来描述最优控制问题。

现代控制理论-第7章 最优控制

现代控制理论-第7章  最优控制

(3)控制规律:
u* kx(t)
P由黎卡提微分k 方Q2程1BT得P 到 边界条件:P(tf)=Q0

PA AT P PBQ21BT P Q1 P(t)
例:求解使:J最小的u*(t)
0 1 0 x 0 0x 1u,
பைடு நூலகம்
J
第二节 状态调节器
在不消耗过多控制能量的前提下,使系统各状态在受 到外界干扰作用下,维持平衡状态。
一.无限长时间状态调节器
1.原系统:可控系统

2.性能指标: 说明:(1) J

x Ax Bu, y Cx
12表0 (示xTQ1系x u统TQ2要u)d求t 状态变量偏离平衡点的累积
u* kx(t)
3.控制规律
k Q21BT P
正定实对称P由黎卡提代数方程得到:
PA AT P PBQ21BT P Q1 0
例:求使J最小的u*(t)。 0 1 0
解:
x 0 0x 1u,
J

1

(xT
x uTu)dt
误差最小,这xTQ意1x 味着因某种原因系统状态偏离平衡点,控制
作用应使它很快回复到平衡点,调节器的名称由此而来
(2) 表示在控制过程中,消耗的能量最小
J中(3的u)TQ权Q2u1重半正定,Q2正定,用来确定状态变量与控制能量在
即寻求控制规律,使系统的状态变量x(t)按性能指标J的要 求,在无限长的时间内达到平衡点
1.原系统:可控、可观系统
x Ax Bu, y Cx

2.性能指标:J

1 2

[(y
0

最优控制的计算方法

最优控制的计算方法
(2) 的第K步估计值 和给定的 合在一起,从 积分正则方程,求出 ,抽出n个要求的分量的终值 ,若 ,停止计算,否则进行下一步。
可得
3、将 代入协态方程,且由边界条件 从t=1倒向积分可得 这里选步长因子 。如此继续下去,直至指标函数随迭代变化很小为止。 由 ,得
图b 最优状态的求解
图a 用梯度法寻找最优控制 右图表示了控制和状态的初始值和第一次迭代值,可以看到第一次迭代 就几乎收敛到最优值, 与最优值还有差异,而且一般说来愈接近最优值收敛愈慢。
K=1时时,控制量为
所以,这个例子只要两步迭代即可得到最优解。一般说来,共轭梯度法比梯度法收敛快,但接近最优解后收敛性仍是较慢的。一个补救办法是重新启动,即找出几个共轭梯度方向 后,令 ,再重新迭代,寻找共轭梯度方向。
可以证明 ,即为最优控制。这只要证明
2、共轭梯度法
*
用共轭梯度法寻找最优控制时是沿着所谓共轭梯度向量的方向进行的。为了说明共轭梯度的意义,我们先从求函数极值问题的共轭梯度法开始,再推广到求泛函极值问题。
(1) 求函数极值的共轭梯度法
其中,
C为常数, Q为正定阵。
要求寻找X使F(X)取极值。
设F(X)是定义在Rn空间中的二次指标函数
直接法的特点是,在每一步迭代中,U(t)不一定要满足H 取极小的必要条件,而是逐步改善它,在迭代终了使它满足这个必要条件,而且,积分状态方程是从t0到tf ,积分协态方程是从tf到t0,这样就避免了去寻找缺少的协态初值(t0)的困难。常用的直接法有梯度法,二阶梯度法,共轭梯度法。
间接法的特点是,在每一步迭代中都要满足H取极小的必要条件,而且要同时积分状态方程和协态方程,两种方程的积分都从从t0到tf或从tf到t0 。常用的间接法有边界迭代法和拟线性化法。

最优控制笔记

最优控制笔记

最优控制又叫动态优化工程技术领域里的过程(物理过程或化学过程),通常都是可以控制的过程控制:使过程的发展变化按人们的需要进行动态优化问题的四个要素:1.建立过程的动态模型(动态系统的状态方程)2.指定所需的初始状态和结束状态(状态方程的边界条件)3.确立在可行控制策略4.性能指标动态系统的变化,可以看成对应状态的变化,其中每一个状态对应着n维状态空间中的一个点,系统的运动将在状态空间中画出一条状态曲线动态系统的状态方程:1.是对研究对象的动态数学建模2.体现了系统运动时应遵循的规律,反映了系统的动态特征3.一般是微分方程组描述状态方程f[x(t),u(t),t]的数学性质:1.f[x(t),u(t),t]是向量函数,维数与状态变量维数相同2.f[x(t),u(t),t]是关于x(t)/u(t)/t的连续函数3.f[x(t),u(t),t]是关于x(t)/t的连续可微函数4.u(t)是关于t的分段连续函数,只有有限个第一类间断点系统的初始时刻t0和初始状态x0一般都是已知的系统的结束时刻tf:固定或者不固定系统的结束状态xf:全部固定/全部不固定/部分固定性能指标:1.要根据实际任务确定,例如过程持续的时间最少/过程消耗的能量最少/成本最小/利益最大等等2.种类:终值型/积分型/复合型,它们都是关于x(t)/t的连续可微函数最优控制一定是容许控制,即最优控制策略(最优控制函数)在控制函数空间中的一个子集中选择当最优控制轨迹确定后,通过系统的状态方程,可以确立对应的最优状态轨迹现代控制理论相对于经典控制理论的优点:1.从时不变系统延伸到时变系统2.从单输入单输出系统延伸到多输入多输出系统3.从频域回到时域,采用能够揭示系统内部各状态变化规律的状态空间描述法最优控制理论属于现代控制理论的分支从数学角度来看,最优控制问题本质上是求泛函极值的变分学问题变分法分为古典变分法和现代变分法(最大值原理/动态规划)古典变分法只能解决容许控制集为开集的最优控制问题实际最优控制问题的容许控制集都是闭集,可以用现代变分法解决函数分为两类:普通函数和泛函普通函数随自变量t变化有确定值对应泛函随普通函数(称为泛函的宗量函数)的形式变化有确定值对应,t已确定或不产生影响复合函数也是普通函数,随自变量t变化有确定值对应具有某些相同特征的所有函数组成一个函数类,或称函数空间在函数空间内,每一个函数(形式不同的)成为函数空间的一个点,例如sin(x)和sin(2x)是正弦函数空间的两个点泛函宗量的变分:1.同一函数空间中的两个函数的差(t已确定或不产生影响)2.宗量的变分仍然是一个普通函数3.这里“变分”的意思是改变量宗量的维数为m时,则宗量的变分在m维函数空间中进行,其中每一维函数空间各自是具有某些相同特征的函数类两个普通函数k阶相近的定义,从几何上来看就是曲线的相似程度两个普通函数间的k阶距离定义,从几何上来看就是曲线的差异程度m维函数空间中,与点[x0(t),x1(t),...xm(t)]距离相同的点构成m维空间中的一个球面泛函k阶连续的定义(利用两个普通函数间的k阶距离来定义)线性泛函的定义:满足齐次性与可加性泛函的变分:1.是泛函增量的关于宗量变分的线性主部2.是关于宗量变分的线性连续泛函3.仍然是一个泛函4.泛函的变分是唯一的5.这里变分的意思相当于普通函数的微分泛函变分的计算公式,是关于宗量变分的泛函,也是关于alpha的普通函数,从普通函数极值条件出发推导得到泛函极值条件求普通函数的极值,必要条件是:极值在稳定点获得,稳定点即普通函数导数为0的点求泛函的极值,必要条件是:极值在泛函变分为0的点取得Lagrange/Mayer/Bolza形式指标的相互转换欧拉--拉格朗日方程的推导过程欧拉--拉格朗日方程是一个二阶微分方程欧拉--拉格朗日方程成立的前提:1.宗量函数对自变量的二阶导数存在2.积分函数二阶连续可微欧拉--拉格朗日方程的能积分出最优解的特殊情况含有多个宗量函数的欧拉--拉格朗日方程组形式等式约束条件下的泛函极值问题采用拉格朗日乘子思想等式约束下的多变量普通函数极值问题,拉格朗日乘子是m维常向量等式约束下的泛函极值问题,拉格朗日乘子是m维普通函数,称为协态变量拉格朗日乘子法的步骤:原问题-->辅助泛函-->解等式约束+欧拉方程-->用边界条件确定未知系数-->判断极大/极小/鞍点等式约束下的泛函极值问题中,拉格朗日乘子(本质上是普通函数)的欧拉方程就是原问题的等式约束条件对于最优控制问题,控制函数u(t)和状态函数x(t)都看成是泛函的宗量,系统的动态方程作为等式约束条件Hamilton函数是泛函,其t的范围由x(t)/u(t)中的t范围确定,可以看成是mayer型泛函Hamilton函数的作用:积分型泛函J对u(t)的等式约束条件极值问题,转换成H对u(t)的无约束条件机制问题Hamilton函数方法解决最优控制问题,是基于必要条件,而不是充分条件Hamilton函数沿着最优空之轨迹和最优状态轨迹,对时间t的全导数等于偏导数当Hamilton函数不显含t时,H是不依赖于t的常数基础数理化:数学是理路,物理和化学是实践;工程中的物理和化学变化过程都是可控的;过程:与时间有关,随着时间推荐的变化,又叫动态过程;动态过程的数学模型又称状态方程,为OEDs或者DAEs形式对一个过程实施控制往往可以选择的策略不唯一,为了使得任务完成得最好,需要选择最优控制策略;最优的意义:根据任务确定的技术或者经济指标,可以是时间上最快、能量上最省、成本最低、利润最大等;状态微分方程f[x(t),u(t),t]是关于u(t),x(t),t的连续函数,是关于x(t),t的连续可微函数,u(t)只有有限个第一类间断点;状态、状态空间、动态系统的变化过程对应于状态空间中的点运动轨迹、点运动轨迹的起始点和结束点就是状态方程的边界条件;系统的初始时间t0和初始状态x0通常是给定的;系统的结束状态根据结束时间tf是否固定和结束状态是否固定可分为6种情况;性能指标的类型:终值型(Mayer型)、积分型(Lagrange型)、复合型(Bolza型;)终值型(Mayer型)是x(t),t的连续可微函数;积分型(Lagrange型)是u(t),x(t),t的连续函数,是x(t),t的连续可微函数,u(t)只有有限个第一类间断点;注意终值型(Mayer型)指标中不含u(t);最优控制轨迹往往在m维控制函数空间的一个子集omiga中选择;经典控制论的特点:针对SISO、线性、时不变(定常)、集中参数系统,以laplace变换作为分析工具,频域内;现代控制论的特点:针对MIMO、非线性、时变、分布参数系统,以状态空间分析方法为分析工具,时域内分析;对系统的状态空间描述,最大好处在于能够反映系统内部各状态变量之间的关系;最优控制理论属于现代控制理论的一部分;最优控制问题在数学上来说属于求泛函极值的变分学领域;古典变分法的局限性:只能处理u(t)无约束或者为开集的泛函极值问题;现代变分学的两个代表:最大值原理(苏联,Pontryagin提出)和动态规划(美国,Bellman 提出);现代计算机的发展推动了控制理论和优化理论的发展与应用,增加了基于计算的科研活动方式;函数分为一般函数和泛函两类;一般函数:自变量形式唯一,当自变量确定为某一值时,函数值也随之确定;泛函:自变量形式和取值(范围)已经确定,当宗量函数形式确定时,泛函值也随之确定;复合函数属于一般函数;终值型泛函中,tf能被确定,所以泛函值取决于终值型泛函的宗量形式;积分型泛函中,被积函数往往是u(t),x(t),dx(t)/dt,t的函数,u(t),x(t)都属于积分型泛函的宗量;积分型泛函中,由于宗量的维数大于1:宗量为u(t),x(t),且各自维数也可能大于1,所以积分型泛函属于多维泛函(宗量为多维,在多维函数空间内取值);Hamiltonian属于多维泛函,自变量取值范围为t0~tf,宗量包括控制函数u(t),状态函数x(t),协态函数y(t);函数空间:具有相同性质的函数类(按函数不同形式区分函数类中的单个函数),构成了一维函数空间(一根轴),每个属于该函数类的具体形式函数都是该一维函数空间(轴)上的一个点;宗量函数的变分deltax(t):是同一函数类中两个一般函数的差,或者说是某一维函数空间中两个点之间的距离,本质上仍然是一个一般函数;一般函数相近的几何意义:曲线形态相似;泛函连续性的定义及与宗量函数相近(宗量函数的变分趋于0)的关系;线性泛函的定义:满足针对宗量函数的齐次性和可加性(将宗量看成一般函数的自变量);泛函变分detalJ[x(t)]:是泛函增量关于“宗量函数变分”的线性主部,是关于“宗量函数变分”的线性连续泛函,本质是泛函;泛函的变分具有唯一形式;求一个泛函的变分不直接使用定义,而用偏导数方法获得,这与一般函数的微积分知识相似;泛函达到极值的必要条件:泛函在宗量函数x*(t)处的变分为0,有三种情况:非极值,极大值,极小值;古典变分法中的欧拉方程由积分型泛函变分为0的必要条件推出,所以欧拉方程也是泛函达到极值的必要条件;欧拉方程本质上是一个二阶偏微分方程;欧拉方程成立的前提是:L[x(t),dx(t)/dt,t]对宗量函数x(t)、宗量函数的导数dx(t)/dt、自变量t存在二阶偏导数;注意L[x(t),dx(t)/dt,t]本身不能称为泛函(自变量的值没有给定),也不能称为宗量函数(宗量函数是x(t));欧拉方程可以求解的条件:L[x(t),dx(t)/dt,t]中不显含x(t)、dx(t)/dt、t三者其一或其二;宗量函数为向量函数时,欧拉方程也成为向量二阶偏微分方程(二阶偏微分方程组);phi(tf)这条终端曲线实际靠测试获得,并作为已知曲线;横街条件反应的是:极值曲线终端斜率与给定曲线斜率之间的关系横街条件成立的前提:L[x(t),dx(t)/dt,t]对宗量函数x(t)、宗量函数的导数dx(t)/dt、自变量t存在二阶偏导数;phi(t)对自变量t存在一阶偏导数;终端点可变情况下,泛函极值的必要条件共有两个:欧拉方程、横街条件;Lagrange型泛函的一阶变分和二阶变分的表达式;泛函极值属性的判断需要借助二阶变分表达式,它是一个对称函数矩阵;涉及到最优控制问题时,最优状态轨迹不仅要使目标函数最优,更重要的是满足系统的状态方程;系统的状态方程(等式)可以看成是求泛函极值问题时的微分等式约束;带等式约束的泛函极值问题,处理思想和一般函数的等式约束极值问题思路一样,采用拉格朗日乘子法思想;带等式约束的泛函极值问题,拉格朗日乘子是一般函数(一般函数的等式约束极值问题中,拉格朗日乘子是常数);带等式约束的泛函极值问题,与一般函数的等式约束极值问题相比,梯度为0的必要条件进化成为变分为0(欧拉方程的满足);带等式约束的泛函极值问题,原等式约束可以视为F[x(t),dx(t)/dt,lamda(t),t]对宗量函数lamda(t)的欧拉方程;利用古典变分法求解最优控制问题,是将控制函数u(t)和拉格朗日乘子函数lamda(t)都作为泛函的宗量函数;Hamiltonian的作用是将dx(t)/dt从F[u(t),x(t),dx(t)/dt,lamda(t),t]中分离出去,它们的关系是:H[u(t),x(t),lamda(t),t]=F[u(t),x(t),dx(t)/dt,lamda(t),t]-lamda(t)dx(t)/dt正则方程组的推导既可以从F[u(t),x(t),dx(t)/dt,t]的欧拉方程推导,也可以直接从变分=0的必要条件推导(欧拉方程从变分=0的必要条件中推导出来);推导tf固定、tf自由时的最优控制问题必要条件时,辅助函数的做法:终态约束等式约束放在积分号外面,状态方程等式约束放在积分号里面;tf固定时的三种情况:x(tf)固定(仅需要欧拉方程无需横截条件)属于x(tf)自由的特殊情况,x(tf)自由又属于x(tf)受约束的情况;tf自由时的三种情况:x(tf)固定(仅需要欧拉方程无需横截条件)属于x(tf)自由的特殊情况,x(tf)自由又属于x(tf)受约束的情况;tf固定又属于tf自由时的特殊情况,仅缺少关于最优时间的方程,所以6种情况最终都可以归类为tf自由、x(tf)受约束的情况处理;Hamiltonian沿着最优控制轨迹和最优状态轨迹(即H[u(t),x(t),lamda(t),t]中的u(t),x(t),lamda(t)都在最优轨迹上取值)时,对时间的偏导数等于对时间的全导数;以上性质说明:沿着最优控制轨迹和最优状态轨迹时,若Hamiltonian不显含t,则Hamiltonian为常数;不等式约束泛函极值问题?古典变分法要求u(t)属于一个全函数空间或者一个函数空间中的开集;现代变分法从实际出发,u(t)可以属于一个函数空间中的闭集;现代变分法中的代表:极小值原理(苏联,Pontryagin)和动态规划(美国,Bellman)极小值原理比古典变分法的进步:u(t)可以属于一个函数空间内的闭集,不要求Hamiltonian对u(t)可微;当u(t)属于一个函数空间内的闭集时,H对u(t)的偏导数可能不为0(在闭函数空间内取不到极点)、deltau(t)可以为0,两方面原因造成古典变分法不再适用;与古典变分法对应的是,极小值原理也有6种情况,最普遍的是tf可变、x(tf)受约束的情况;对于tf可变的情况,需要增加一个确定tf的方程(属于横截条件的一部分);Hamiltonian达到极小值的定义?极小值原理仅是最优控制问题的必要条件;如果x(tf)有终端约束,那么两点边值问题的求解难度会增加很多,常用方法为打靶法(扫描法);协态变量就是等式约束泛函极值问题的拉格朗日乘子函数;状态变量终态的自由与固定,对应协态变量终态的固定与自由;状态变量微分方程求解联合协态变量微分方程求解体现了原问题--对偶问题的共同求解思想?目标泛函对u(t)求偏导,实际是泛函对宗量函数求偏导;从理论分析可以得到,目标泛函对u(t)的梯度(偏导数)在最优控制问题中与Hamiltonian 对u(t)的梯度(偏导数)等价;最优控制(动态优化)问题转换成静态优化问题的理论:通过对u(t)的离散化,将函数空间变为向量空间?从而可以直接使用静态优化算法;处理x(tf)受约束的方法除了惩罚函数法还有其他方法没?。

最优控制

最优控制

最优控制学院专业班级姓名学号1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。

钱学森1954年所着的《工程控制论》直接促进了最优控制理论的发展和形成。

最优控制理论所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。

这类问题广泛存在于技术领域或社会问题中。

从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。

解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。

最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。

例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少,选择一个温度的调节规律和相应的原料配比使化工反应过程的产量最多,制定一项最合理的人口政策使人口发展过程中老化指数、抚养指数和劳动力指数等为最优等,都是一些典型的最优控制问题。

最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。

苏联学者Л.С.庞特里亚金1958年提出的极大值原理和美国学者R.贝尔曼1956年提出的动态规划,对最优控制理论的形成和发展起了重要的作用。

线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。

最优控制理论-主要方法解决最优控制问题的主要方法解决最优控制问题,必须建立描述受控运动过程的运动方程为了解决最优控制问题,必须建立描述受控运动过程的运动方程,给出控制变量的允许取值范围,指定运动过程的初始状态和目标状态,并且规定一个评价运动过程品质优劣的性能指标。

变分法

变分法

1


1
b e
x A A
1
b H λ (1)
有等式约束条件的多元函数极值(5/5)
将上述的表达式代入式(1),可得
x A A
1

b A A
1

H H A A

1

1 H H A A b e
Ch.7 最优控制原理
目录(1/1)



7.1 最优控制概述 7.2 变分法 7.3 变分法在最优控制中的应用 7.4 极大值原理 7.5 线性二次型最优控制 7.6 动态规划与离散系统最优控制 7.7 Matlab问题 本章小结
变分法(1/1)
7.2 变分法
本节在讨论变分法之前,先简单讨论多元函数的极值问题, 然后引出 泛函的极值问题。
有不等式约束条件的多元函数极值(3/7)—定理7-1
min f ( x )
x
s.t.
g( x) 0
定理7-1(库恩-塔哈克定理) 对上述不等式约束的极值函数问 题,那么必存在p个不同时为零的数1,2,…,p,满足为
1) 2) 3)
λ g ( x* ) 0
i 0; i 1, 2,..., p
1
当矩阵H为行满秩矩阵时,矩阵H(A+A)-1H是可逆的,此时上 述解成立。
由极值问题的充分条件可知,当
2 L( x* , λ) A A 0 xx
时,上述极值为极小值。
有不等式约束条件的多元函数极值(1/7)
3. 有不等式约束条件的多元函数极值
有不等式约束条件的多元函数极值问题可描述为

最优控制总结

最优控制总结

最优控制总结最优控制是指在满足系统约束条件的前提下,设计一个最优控制策略来使系统达到最优性能水平的一种方法。

它在制造工业、金融等领域都有广泛的应用,在未来的智能制造、智能交通等领域也将发挥重要作用。

下面将对最优控制的基本概念、方法和应用进行总结。

一、最优控制的基本概念最优控制的目标是使系统达到最优性能水平,所以它需要满足一些基本要求。

最优控制要求系统有确定的数学模型,可以用数学方程式描述系统的状态和演变过程。

而且,最优控制需要考虑系统所受到的各种限制条件,比如控制输入、系统状态变量等等。

最优控制还需要一定的优化目标,比如可以最小化系统的能量消耗、最大化系统的性能表现等等。

二、最优控制的方法最优控制的方法有很多种,常用的方法有经典控制理论和现代控制理论。

1. 经典控制理论经典控制理论采用状态空间模型,通过设计合适的控制器来实现系统的最优控制。

经典控制理论包括PID控制、根轨迹设计和频域法等方法。

现代控制理论采用优化理论和控制理论相结合的方法,通过数学建模和计算机数值计算,实现系统最优控制。

现代控制理论包括线性二次型控制、最优控制和自适应控制等方法。

最优控制可以应用于各种领域,包括工业制造、金融、交通等。

下面介绍几个典型的应用场景。

1. 工业制造工业制造领域是最优控制的一个重要应用场景。

最优控制可以用于工艺控制、机器人控制等方面。

比如,在化学工业生产过程中,最优控制可以帮助控制流量、温度等参数,保证产品的质量和生产效率。

2. 金融3. 交通交通领域是最优控制的另一个重要应用场景。

最优控制可以用于交通路网的控制、交通信号灯的控制等方面。

比如,在城市交通中,最优控制可以实现交通信号灯的智能控制,缓解拥堵情况。

四、最优控制的发展趋势最优控制是一个重要的控制领域,它在未来的智能制造、智能交通等领域都将有广泛的应用。

最优控制的发展趋势主要有以下几点:1. 智能化随着计算机技术和人工智能技术的不断发展,最优控制也在向智能化方向发展。

最优控制课程介绍

最优控制课程介绍

最优控制先修课程:常微分方程,最优化方法最优控制问题是具有特殊数学结构的一类最优化问题,在科学、工程和管理乃至人文领域都存在大量的最优控制问题。

最优控制研究动态系统在各种约束条件下,寻求目标泛函取极值的最优控制函数与最优状态轨线的数学理论和方法,它是静态最优化在无穷维空间的扩展。

希望学生通过本课程的学习,能够结合实际背景,建立最优控制的模型,理解求解最优控制的三大类基本方法的数学思想,灵活地掌握这些方法的基本过程,并能解释计算结果的意义。

主要内容如下:最优控制问题及其建模;数学基础;变分法及其在最优控制的应用;极小值原理及其应用;动态规划方法及其应用;应用。

最优控制一、课程基本信息 1.先修课程:数学系本科包括到大三的全部课程 2.面向对象:理学院数学系各专业 3.推荐教学参考书:吴沧浦,《最优控制的理论与方法》,国防工业出版社,2000 王朝珠等,《最优控制理论》,科学出版社,2003 邢继祥等,《最优控制应用基础》,科学出版社,2003 W. L. Brogan, Modern C ontrol Theor y, (3th eidition), Prentice-Hall, Englew ood C liffs,1991 二、课程的性质和任务本课程是数学与应用数学专业本科生高年级选修课程之一。

从数学的角度,最优控制问题是最优化问题中具有特殊结构的一类问题。

就问题的来源看,它又是控制问题。

最优控制研究动态系统在各种约束条件下寻求使目标泛函取极值的最优控制函数和最优状态轨线的数学理论和方法。

最优控制问题涉及范围广跨度大,几乎理工医农,管理军事乃至人文经法领域,都存在着大量此类问题。

最优化已是寻求最优系统和结构,挖掘系统潜力的有力武器,学会求解最优控制问题,是应用数学工作者的最基本素养之一。

通过本课程的主要任务是,从各个教学环节引导学生认识不同数学问题的特点和相应数学模型的结构,自己学会分析实际问题,建立各种数量之间的联系,写出正确的合理的最优控制的模型;领会求解最优控制问题解法是如何提出的数学思想,并学会如何根据这些思想来构成相应方法的技巧;学会能正确地解释计算结果的物理意义的能力。

最优控制理论PPT课件

最优控制理论PPT课件

生产计划与调度
在企业生产管理中,利用 最优控制理论对生产计划 和调度进行优化,提高生 产效率和降低成本。
08
总结与展望
最优控制理论的重要性和应用前景
总结
最优控制理论是现代控制理论的重要组成部分,它在解决复杂系统的优化和控制问题方面 具有显著的优势。该理论通过数学模型和算法,寻求在给定条件下实现系统性能最优化的 控制策略。
非线性最优控制理论
20世纪70年代,基于微分几何、非 线性分析和最优控制问题的研究。
智能优化算法与最优控制
20世纪80年代,考虑系统不确定性 ,引入概率论和随机过程理论。
03
最优控制问题的数学模型
状态方程与性能指标
状态方程
描述系统动态行为的数学方程,通常表示为状态变量对时间 的导数等于其函数。
性能指标
态。这种控制策略的关键在于如何根据当前状态信息快速、准确地计算出最优控制输入。
离散系统的最优输出反馈控制
总结词
离散系统的最优输出反馈控制是一种基 于系统输出的反馈控制策略,通过最优 控制算法计算出在当前输出下的最优控 制输入,使得系统状态在有限时间内达 到预期目标。
VS
详细描述
离散系统的最优输出反馈控制是一种有效 的最优控制策略,它根据系统的输出信息 ,通过最优控制算法计算出在当前输出下 的最优控制输入,使得系统状态在有限的 时间步内以最优的方式达到目标状态。这 种控制策略的关键在于如何根据输出信息 快速、准确地计算出最优控制输入。
控制问题分类
确定性和不确定性控制、线性与 非线性控制、连续和离散控制等 。
重要性及应用领域
重要性
在实际工程和科学问题中,许多问题 都需要通过最优控制理论来解决,如 航天器轨道控制、机器人运动控制、 电力系统优化等。

7 随机系统最优控制

7 随机系统最优控制

角线元素ai求和。则有
i 1
( t ) A( t ) P ( t ) P ( t ) A T ( t ) G ( t )Q ' ( t )G T ( t ) P x x x
将x(t)的方差阵 Px ( t )满足的(7-4-9)式代入上式,并注意到Tr [ MN ] Tr [ NM ] (M、N为相同维数方阵),则上式可改写为 t 1 J Tr { Px ( t 0 ) P ( t 0 ) G ( t )Q' ( t )G T ( t ) P ( t )dt } t 2 其中,P(t)必须满足矩阵微分方程 ( t ) P ( t ) A( t ) AT ( t ) P ( t ) Q( t ) 0 P 以及终值条件
iii) x(t)的协方差阵为 Px ( t , t ) ( t , t ) Px ( t ) 0 Px ( t , t ) Px ( t ) T ( t , t ) 其中 ( t , t )为系统(7-4-1)的状态转移矩阵。 iv) x( t ) 与w(t)的协方差阵为 0 ( t , t )G ( t )Q' ( t )
1 1 T 0 P ( t 0 )0 Tr { Px ( t 0 ) P ( t 0 )} 2 2
T 0 T 0
n
1 1 tf J Tr { Px ( t f ) Pt f Px ( t )Q( t )dt } (7-4-17) 2 2 t0 1 tf d ' 在上式右边加上一项 { t 0 [ Px ( t ) P ( t )]dt [ Px ( t f ) P ( t f ) Px ( t 0 ) P ( t 0 )]} 0, 2 dt 并令 P (t f ) Pt f ,及考虑 Px' (t0 ) Px (t0 ) ,则上式可表示为

最优控制问题的主要方法

最优控制问题的主要方法

最优控制问题的主要方法最优控制问题是控制理论中的一个重要分支,其目标是在给定系统动力学和性能指标的情况下,寻找最优的控制策略,使系统达到最优性能或目标。

以下是最优控制问题的一些主要方法:1.变分法( Calculus(of(Variations):(变分法是一种数学工具,用于寻找泛函的极值。

在最优控制中,系统的性能指标通常可以表示为一个泛函。

变分法可以通过最小化或最大化泛函来导出最优控制问题的欧拉-拉格朗日方程。

2.动态规划 Dynamic(Programming):(动态规划是一种用于解决具有递归结构且满足最优子结构性质的问题的优化方法。

在最优控制中,动态规划可以用于处理具有离散或连续时间的动态系统,并通过构建状态转移方程来找到最优策略。

3.最优控制理论(Optimal(Control(Theory):(最优控制理论是处理连续时间动态系统最优化问题的数学工具。

它利用微分方程和变分法来分析系统,并确定最优控制策略,以使系统性能指标达到最优。

4.Pontryagin最大值原理( Pontryagin's(Maximum(Principle):(Pontryagin最大值原理是最优控制中的一个重要概念,它提供了寻找连续时间系统最优控制策略的方法。

该原理基于最优控制问题的哈密顿函数和共轭动态系统,通过最大化哈密顿函数来确定最优控制。

5.线性二次型调节器 LQR):(线性二次型调节器是一种针对线性动态系统设计最优控制器的方法。

它通过最小化系统状态和控制输入的二次型代价函数来设计最优控制器。

6.模型预测控制 Model(Predictive(Control,MPC):(模型预测控制是一种基于离散时间模型的最优控制方法。

它使用系统的预测模型来预测未来状态,并通过优化控制序列来实现性能指标的最优化。

这些方法可以根据系统的特性、动力学模型、性能指标和实际应用场景选择和应用。

最优控制问题在工程、经济学、生物学等领域有着广泛的应用,能够优化系统的性能并提高控制效果。

数学建模——最优控制

数学建模——最优控制

30
H对最优控制取极小值.
H x * (t ), u * (t ), * (t ), t
u ( t )U , tt 0 ,T
min
H ( x * (t ), u (t ), * (t ), t )
40 在最优轨线上:
H * (t ) H * (T ) T H t t
dh v dt dv u g dt m dm (k>0 为常数) ku dt
v h
.
o
图 2
( 5 )
要求飞船从初始状态
h(0) h0 v (0) v0 m(0) M F
( 7 )
实现软着陆
h (T ) 0 v (T ) 0
( 8 )
发动机的最大推力为 a ,故
单位时间单位产品的库存费用为b, 则t时刻单位时间的成本为:
L(t , x(t ), u(t )) h(u(t )) bx(t )
故总成本为
T J (u) L(t , x(t ), u (t ))dt t0
(4)
于是问题归结为:求满足条件(2)的生产速率u(t),使库存量满 足(3),且使J(u)为最小.
续表:
按末端 状态分 末端自由 末端时间固定 末端时间自由 定常问题 按函数 类型分 末值状态可以任意 到达末态的时刻 T固定 到达末态的时刻 T 不固定 状态方程,性能指标和末态约束中的函数均不显含时间 t
时变问题
线性系统问题 非线性系统问题 调节器问题 跟踪问题
状态方程,性能指标和末态约束中的函数有显含时间 t 的 状态方程中的函数关于 x(t), u(t)均是线性的
1 最优控制问题实例 最优控制问题是从大量的实际问题中提炼出来 的。下面通过几个典型例子说明什么是最优控制。 例1 生产计划问题 某工厂制定从t0到T时间间隔的生产计划,即要 选择适当的生产速率,使得在时间[t0 , T]内,在保 证供应的前提下,花费的成本最低。

数学中的最优控制与系统优化

数学中的最优控制与系统优化

数学中的最优控制与系统优化【正文】数学中的最优控制与系统优化在数学领域中,最优控制与系统优化是一门研究如何在给定约束条件下寻找系统中最优解的学科。

它广泛应用于各个领域,如经济学、工程学、物理学等。

本文将介绍最优控制与系统优化的基本概念、应用领域以及解决问题的数学方法。

一、基本概念最优控制的目标是通过优化系统的某些性能指标,使得系统能够在给定约束条件下达到最佳状态。

在最优控制中,通常会有一个控制器对系统进行调节,以实现系统的最佳性能。

最优控制问题可以分为连续时间和离散时间两种情况,分别对应着控制参数的连续和离散变化。

系统优化是通过调整系统参数,使系统能够达到预期的性能指标。

例如,在工程领域中,可以通过优化电路参数来提高电路的性能。

系统优化问题通常包括目标函数、约束条件和控制变量等要素,通过数学方法求解最优解。

二、应用领域1. 工程学:最优控制与系统优化在工程领域中具有广泛应用。

例如,自动化控制系统可以通过最优控制方法实现对工业生产过程的优化,以提高生产效率和产品质量。

此外,电力系统、通信系统等领域也可以通过最优控制与系统优化方法来提高系统的性能。

2. 经济学:经济学中的最优控制与系统优化被广泛应用于经济管理和决策问题。

例如,在货币政策制定中,可以利用最优控制方法来确定最佳的利率调整策略,以实现经济的稳定增长。

3. 物理学:物理学中的最优控制与系统优化用于研究如何在给定能量限制下,使系统达到最佳状态。

例如,在量子力学中,可以通过最优控制方法探索如何在给定时间内实现某种量子操作。

4. 生物学:生物学中的最优控制与系统优化被用于研究生物系统的优化策略。

例如,在神经科学中,可以通过最优控制方法来研究动物行为的优化原理,以及生物神经系统是如何实现最佳控制的。

三、数学方法最优控制与系统优化问题通常需要运用数学方法进行求解。

常用的方法包括动态规划、最优化理论、变分法等。

1. 动态规划:动态规划是一种常用的求解最优控制问题的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u * t 1, t 0, t1 u * t 0, t t1 , t2 u * t 1, t t2 ,1
5
路径值
时间路径
图 7.2 连续时间动态优化问题的时间路径和目标函数
6

泛函(functional)
x(t ) 或函数 x() 与相对应的值 J [ x()] 之间体现的
是从时间路径(或函数)到实数的映射

泛函 J [] 取决于函数 x() 或整条路径 x(t ) 泛函的变化意味着整条路径位置的变动

转移函数 g t , x t , u t 描述给定的动态系统。 控制变量 u(t ) 和状态变量 x(t ) 是成对的
10

典型的最优控制问题:
u ( ), x1
max J x(), u() f t , x(t ), u(t ) dt
多有有限个间断点 如图 7.3(b)
14
图 7.3 分段连续与分段光滑
15

控制集 U M
M 中任意不变的开集或闭集
特别有意义的是 U 是 M 中的闭集 鲁棒控制(bang-bang control) 设控制集 U 0,1 最优控制路径如下跳跃:
n 1, 2,, N
A3. 关于 1 N M 变量 (t , x, u) , f () xn C 0 ,其中
n 1, 2, , N
A4. 关于 1 N M 变量 (t , x, u) ,g j () xi C 0 , 其中
i, j 1, 2,, N 。
7

泛函值:
(t ) dt J [ x()] F t , x(t ), x
t0
t1

上式是变分法(calculus of variations)的目标泛函的 原型

注意: 1.
J [] 并非积分 x(t )dt
t0
t1
t 有关 2. 在多数问题中, F () 只与 x
u : M 分段连续(piecewise continuous)
除有限个不连续跳跃点之外是连续的 图 7.3(a)
x : N 分段光滑的(piecewise smooth)
n () 至 即分量函数 xn () 是连续,而导数函数 x
和资源收成率等

控制变量 u t U M , U 称为控制集 (control set)或控制域(control region)。

x t 对 u(t ) 的依赖为状态方程(state equation):
(t ) g t , x(t ), u(t ) x n (t ) g n t , x(t ), u(t ) , n 1,, N x
第 7 章 最优控制
动态优化方法 1. 变分法(calculus of variations) 2. 最优控制(optimal control):变分法的一般化 3. 动态规划(dynamic programming) 4. Lagrange 法: Kuhn-Tucker 定理的拓展
1
7.1 最优控制问题 7.2 自由端点问题 7.3 各种终结条件 7.4 最优控制原理的经济学情形 7.5 最大值原理
2
7.1 最优控制问题 7.1.1 目标泛函 7.1.2 最优控制问题的典型表示 7.1.3 最优控制问题的特征
3
7.1.1 目标泛函
静态优化问题 经济主体的最优决策一次性完成 决策不涉及未来的规划和决策
4
动态优化问题的解 规划期界(planning horizon)内的最优决策序列 (离散时间)或时间路径(连续时间) (图 7.2) 动态优化问题的目标函数 在规划期界内,为每一时点的决策变量赋值, 并将其加总 和计算某一时期的净收入流的现值相似。 动态优化问题的典型情形 寻找时间路径 x(t ) 或函数 x() ,以最大化目标 函数 J []

最优控制问题要求:决策者能够支配至少一个转移方 程中的至少一个控制变量。
11

施加在被积函数 f () 和转移函数 g() 上的连续性限制:
A1. 关于 1 N M 变量 (t , x, u) , f () C 0 A2. 关于 1 N M 变量 (t , x, u) , g n () C 0 ,其中

f () 和 g() 关于 u t 的可微性非必需
12
例 7.1 (跨期效用最大化)
max J k (), c() e t u c(t ) dt
T c() 0
(t ) w ik (t ) c(t ), s.t. k k (0) k0 , k (T ) kT
8
7.1.2 最优控制问题的典型表示
最优控制理论的优势 最优控制理论是变分法的推广和一般化 最优控制理论更容易反映经济直觉
9

状态变量 x t N 与控制变量 u (t ) M
x t -存量(stock),如消费、资产、产量等
u(t ) -流量(flow),如商品消费率、资产投ห้องสมุดไป่ตู้率
t1 t0
(t ) g t , x(t ), u(t ) s.t. x x(t0 ) x 0 , x(t1 )自由

x t0 给定的, x t1 可自由选择
控制变量 u(t ) 不仅直接影响目标泛函 J x(), u() , 而且借助 x(t ) 间接影响目标泛函 J x(), u()
例 7.2 (最优存货积累)
min J x(), u () c1 u (t ) c2 x(t ) dt
T 2 x() 0


(t ) u (t ) s.t. x x(0) 0, x(T ) xT
13
7.1.3 最优控制问题的特征
两个特征
相关文档
最新文档