半导体器件工艺与物理期末必考题材料汇总

合集下载

半导体器件物理与工艺期末考试题

半导体器件物理与工艺期末考试题

半导体器件物理与工艺期末考试题一、简答题1.什么是半导体器件?半导体器件是利用半导体材料的电子特性来实现电流的控制与放大的电子元件。

常见的半导体器件包括二极管、晶体管、场效应管等。

2.请简述PN结的工作原理。

PN结是由P型半导体和N型半导体连接而成的结构。

当外加正向偏置时,P端为正极,N端为负极,电子从N端向P端扩散,空穴从P 端向N端扩散,形成扩散电流;当外加反向偏置时,P端为负极,N端为正极,由于能带反向弯曲,形成电势垒,电子与空穴受到电势垒的阻拦,电流几乎为零。

3.简述晶体管的工作原理。

晶体管是一种三极管,由一块绝缘体将N型和P型半导体连接而成。

晶体管分为三个区域:基区、发射区和集电区。

在正常工作状态下,当基极与发射极之间施加一定电压时,发射极注入的电子会受到基区电流的控制,通过基区电流的调节,可以控制从集电区流出的电流,实现电流的放大作用。

4.请简述场效应管的工作原理。

场效应管是利用电场的作用来控制电流的一种半导体器件。

根据电场的不同作用方式,场效应管分为增强型和耗尽型两种。

在增强型场效应管中,通过控制栅极电压,可以调节漏极与源极之间的通导能力,实现电流的控制与放大。

5.简述MOSFET的结构和工作原理。

MOSFET(金属-氧化物-半导体场效应管)是一种常用的场效应管。

它由金属栅极、氧化物层和P型或N型半导体构成。

MOSFET的工作原理是通过改变栅极电势来控制氧化物层下方的沟道区域的电阻,从而控制漏极与源极之间的电流。

6.什么是集电极电流放大系数?集电极电流放大系数(β)是指集电区电流(Ic)与发射区电流(Ie)之间的比值。

在晶体管中,β值越大,表示电流放大效果越好。

7.简述三极管的放大作用。

三极管作为一种电子元件,具有电流放大的功能。

通过控制基区电流,可以影响发射极与集电极之间的电流,从而实现电流的放大作用。

二、计算题1.已知一个PN结的硅材料的势垒高度为0.7V,求该PN结的电势垒宽度。

半导体器件物理与工艺复习题(2024)

半导体器件物理与工艺复习题(2024)

半导体器件物理复习题其次章:1) 带隙:导带的最低点和价带的最高点的能量之差,也称能隙。

物理意义:带隙越大,电子由价带被激发到导带越难,本征载流子浓度就越低,电导率也就越低2)什么是半导体的干脆带隙和间接带隙?其价带顶部与导带最低处发生在相同动量处(p =0)。

因此,当电子从价带转换到导带时,不须要动量转换。

这类半导体称为干脆带隙半导体。

3)能态密度:能量介于E ~E+△E 之间的量子态数目△Z 与能量差△E 之比4)热平衡状态:即在恒温下的稳定状态.(且无任何外来干扰,如照光、压力或电场). 在恒温下,连续的热扰动造成电子从价带激发到导带,同时在价带留下等量的空穴.半导体的电子系统有统一的费米能级,电子和空穴的激发与复合达到了动态平衡,其浓度是恒定的,载流子的数量与能量都是平衡。

即热平衡状态下的载流子浓度不变。

5)费米分布函数表达式?物理意义:它描述了在热平衡状态下,在一个费米粒子系统(如电子系统)中属于能量E 的一个量子态被一个电子占据的概率。

6本征半导体价带中的空穴浓度:7)本征费米能级Ei :本征半导体的费米能级。

在什么条件下,本征Fermi 能级靠近禁带的中心:在室温下可以近似认为费米能级处于带隙中心8)本征载流子浓度n i : 对本征半导体而言,导带中每单位体积的电子数与价带每单位体积的空穴数相同,即浓度相同,称为本征载流子浓度,可表示为n =p =n i . 或:np=n i 29) 简并半导体:当杂质浓度超过肯定数量后,费米能级进入了价带或导带的半导体。

10)非简并半导体载流子浓度:且有: n p=n i 2 其中: n 型半导体多子和少子的浓度分别为:p 型半导体多子和少子的浓度分别为: 第三章:1)迁移率:是指载流子(电子和空穴)在单位电场作用下的平均漂移速度,即载流子在电场作用下运动速度的快慢的量度,运动得越快,迁移率越大。

定义为:2)漂移电流: 载流子在热运动的同时,由于电场作用而产生的沿电场力方向的定向运动称作漂移运动。

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。

为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。

二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。

答案:半导体材料具有介于导体和绝缘体之间的导电特性。

与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。

与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。

2. 什么是本征半导体?请举例说明。

答案:本征半导体是指不掺杂任何杂质的半导体材料。

例如,纯净的硅(Si)和锗(Ge)就是本征半导体。

3. 简述P型半导体和N型半导体的形成原理。

答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。

施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。

这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。

N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。

受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。

这样就使得半导体中存在了大量的自由电子,形成了N型半导体。

4. 简述PN结的形成原理及特性。

答案:PN结是由P型半导体和N型半导体的结合所形成。

P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。

PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。

三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。

答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。

半导体物理和器件复习题

半导体物理和器件复习题

半导体物理和器件复习题半导体物理和器件复习题在现代科技发展的浪潮中,半导体物理和器件是一个非常重要的领域。

从智能手机到电子汽车,从计算机到太阳能电池,半导体器件的应用无处不在。

因此,对半导体物理和器件的深入了解和掌握是非常关键的。

为了帮助大家复习和巩固相关知识,下面将提供一些半导体物理和器件的复习题。

1. 什么是半导体?半导体是介于导体和绝缘体之间的一类物质。

它的导电性介于导体和绝缘体之间,可以通过控制外界条件来改变其导电性能。

常见的半导体材料有硅和锗。

2. 什么是P型半导体和N型半导体?P型半导体是在纯硅中掺杂了少量的三价元素(如硼),使得硅晶体中存在空穴(缺电子)。

N型半导体是在纯硅中掺杂了少量的五价元素(如磷),使得硅晶体中存在额外的自由电子。

3. 什么是PN结?PN结是由P型半导体和N型半导体直接接触形成的结构。

在PN结中,由于P型半导体和N型半导体之间的电子和空穴的扩散,形成了电子和空穴的聚集区域,称为耗尽区。

耗尽区中存在电场,阻止了电子和空穴的进一步扩散。

4. 什么是二极管?二极管是一种最简单的半导体器件,由P型半导体和N型半导体组成。

它具有只允许电流在一个方向流动的特性。

当正向偏置(P端连接正电压,N端连接负电压)时,二极管导通;当反向偏置时,二极管截止。

5. 什么是晶体管?晶体管是一种三极管,由P型半导体、N型半导体和P型半导体组成。

它可以用作放大器和开关。

当基极电流较小时,晶体管处于截止状态;当基极电流较大时,晶体管处于饱和状态。

6. 什么是场效应管?场效应管是一种三极管,由P型或N型半导体和金属栅极组成。

它的导电性能是通过改变栅极电场来控制的。

当栅极电压为零或负电压时,场效应管截止;当栅极电压为正电压时,场效应管导通。

7. 什么是集成电路?集成电路是将大量的电子元件集成在一块半导体芯片上的电路。

根据集成度的不同,可以分为小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)和超大规模集成电路(VLSI)。

半导体器件物理考试重点

半导体器件物理考试重点

一、选择题
1.半导体材料中最常用的元素是:
A.硅(正确答案)
B.铜
C.铁
D.铝
2.在半导体中,载流子主要包括:
A.电子和质子
B.电子和空穴(正确答案)
C.空穴和离子
D.质子和中子
3.PN结的正向偏置是指:
A.P区接高电位,N区接低电位(正确答案)
B.N区接高电位,P区接低电位
C.P区和N区都接高电位
D.P区和N区都接低电位
4.二极管的正向特性是指:
A.正向电压下,电流随电压指数增长(正确答案)
B.正向电压下,电流随电压线性增长
C.反向电压下,电流随电压指数增长
D.反向电压下,电流保持不变
5.MOSFET(金属-氧化物-半导体场效应晶体管)的栅极电压主要控制:
A.源极和漏极之间的电阻(正确答案)
B.源极和栅极之间的电阻
C.漏极和栅极之间的电阻
D.源极、栅极和漏极之间的总电阻
6.在CMOS(互补金属氧化物半导体)逻辑电路中,主要利用的是:
A.二极管的单向导电性
B.MOSFET的开关特性(正确答案)
C.双极型晶体管的放大特性
D.JFET(结型场效应晶体管)的电压控制特性
7.半导体器件中的“阈值电压”是指:
A.使器件开始导电的最小电压(正确答案)
B.使器件达到最大导电能力的电压
C.器件正常工作时的电压范围
D.器件击穿时的电压
8.在半导体存储器中,DRAM(动态随机存取存储器)需要定期刷新是因为:
A.DRAM中的电容会漏电(正确答案)
B.DRAM的访问速度较慢
C.DRAM的存储容量较小
D.DRAM的制造成本较高。

半导体物理考试复习资料

半导体物理考试复习资料

半导体物理考试复习资料半导体物理考试复习资料概念题:1、半导体硅、锗的晶体结构(⾦刚⽯型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。

2、熟悉晶体中电⼦、孤⽴原⼦的电⼦、⾃由电⼦的运动有何不同:孤⽴原⼦中的电⼦是在该原⼦的核和其它电⼦的势场中运动,⾃由电⼦是在恒定为零的势场中运动,⽽晶体中的电⼦是在严格周期性重复排列的原⼦间运动(共有化运动),单电⼦近似认为,晶体中的某⼀个电⼦是在周期性排列且固定不动的原⼦核的势场以及其它⼤量电⼦的平均势场中运动,这个势场也是周期性变化的,⽽且它的周期与晶格周期相同。

3、晶体中电⼦的共有化运动导致分⽴的能级发⽣劈裂,是形成半导体能带的原因,半导体能带的特点:①存在轨道杂化,失去能级与能带的对应关系。

杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电⼦,导带全空,⾼温下价带中的⼀部分电⼦跃迁到导带,使晶体呈现弱导电性。

③导带与价带间的能隙(Energy gap )称为禁带(forbidden band ).禁带宽度取决于晶体种类、晶体结构及温度。

④当原⼦数很⼤时,导带、价带内能级密度很⼤,可以认为能级准连续。

4、晶体中电⼦运动状态的数学描述:⾃由电⼦的运动状态:对于波⽮为k 的运动状态,⾃由电⼦的能量E ,动量p ,速度v 均有确定的数值。

因此,波⽮k 可⽤以描述⾃由电⼦的运动状态,不同的k 值标志⾃由电⼦的不同状态,⾃由电⼦的E 和k 的关系曲线呈抛物线形状,是连续能谱,从零到⽆限⼤的所有能量值都是允许的。

晶体中的电⼦运动:服从布洛赫定理:晶体中的电⼦是以调幅平⾯波在晶体中传播。

这个波函数称为布洛赫波函数。

求解薛定谔⽅程,得到电⼦在周期场中运动时其能量不连续,形成⼀系列允带和禁带。

⼀个允带对应的K 值范围称为布⾥渊区。

5、⽤能带理论解释导带、半导体、绝缘体的导电性。

6、理解半导体中求E (k )与k 的关系的⽅法:晶体中电⼦的运动状态要⽐⾃由电⼦复杂得多,要得到它的E (k )表达式很困难。

半导体制造工艺期末考试重点复习资料

半导体制造工艺期末考试重点复习资料

1、三种重要的微波器件:转移型电子晶体管、碰撞电离雪崩渡越时间二极管、MESFET。

2、晶锭获得均匀的掺杂分布:较高拉晶速率和较低旋转速率、不断向熔融液中加高纯度多晶硅,维持熔融液初始掺杂浓度不变。

3、砷化镓单晶:p型半导体掺杂材料镉和锌,n型是硒、硅和锑硅:p型掺杂材料是硼,n型是磷。

4、切割决定晶片参数:晶面结晶方向、晶片厚度(晶片直径决定)、晶面倾斜度(从晶片一端到另一端厚度差异)、晶片弯曲度(晶片中心到晶片边缘的弯曲程度)。

5、晶体缺陷:点缺陷(替位杂质、填隙杂质、空位、Frenkel,研究杂质扩散和氧化工艺)、线缺陷或位错(刃型位错和螺位错,金属易在线缺陷处析出)、面缺陷(孪晶、晶粒间界和堆垛层错,晶格大面积不连续,出现在晶体生长时)、体缺陷(杂质和掺杂原子淀积形成,由于晶体固有杂质溶解度造成)。

6、最大面为主磨面,与<110>晶向垂直,其次为次磨面,指示晶向和导电类型。

7、半导体氧化方法:热氧化法、电化学阳极氧化法、等离子化学汽相淀积法。

8、晶体区别于非晶体结构:晶体结构是周期性结构,在许多分子间延展,非晶体结构完全不是周期性结构。

9、平衡浓度与在氧化物表面附近的氧化剂分压值成正比。

在1000℃和1个大气压下,干氧的浓度C0是5.2x10^16分子数/cm^3,湿氧的C0是3x10^19分子数/cm^3。

10、当表面反应时限制生长速率的主要因素时,氧化层厚度随时间呈线性变化X=B(t+)/A线性区(干氧氧化与湿氧氧化激活能为2eV,);氧化层变厚时,氧化剂必须通过氧化层扩散,在二氧化硅界面与硅发生反应,并受扩散过程影响,氧化层厚度与氧化时间的平方根成正比,生长速率为抛物线X^2=B(t+)抛物线区(干氧氧化激活能是1.24Ev,湿氧氧化是0.71eV)。

11、线性速率常数与晶体取向有关,因为速率常数与氧原子进入硅中的结合速率和硅原子表面化学键有关;抛物线速率常数与晶体取向无关,因为它量度的是氧化剂穿过一层无序的非晶二氧化硅的过程。

半导体物理期末试题及答案

半导体物理期末试题及答案

半导体物理期末试题及答案第一题:1. 请简述什么是半导体材料?并举例说明。

半导体材料是介于导体和绝缘体之间的材料,具有介于宽禁带和窄禁带之间的带隙能量。

在常温下,半导体材料既可以导电又可以绝缘。

它的导电性质可以通过控制掺杂来改变。

例如,纯净的硅元素是绝缘体,而掺杂的硅元素可以成为半导体材料。

第二题:2. 请解释什么是PN结?并简述其工作原理。

PN结是由P型半导体和N型半导体之间形成的结。

P型半导体中的杂质具有正电荷,被称为施主杂质;N型半导体中的杂质具有负电荷,被称为受主杂质。

PN结的形成是通过将P型半导体和N型半导体紧密接触,使得施主和受主杂质间发生电荷转移。

工作原理:在PN结中,由于施主杂质和受主杂质之间的电荷转移,使得PN结两侧形成了电场。

这个电场导致了电子从N区向P区漂移,同时空穴从P区向N区漂移。

这种漂移现象产生了空间电荷区,称为耗尽层。

在没有外加电压时,由于耗尽层的存在,PN结处于平衡状态。

当施加外加电压时,可以改变耗尽层的宽度。

正偏压(P极接正电,N极接负电)会使得耗尽层变窄,增加电流流过的机会,从而形成导通。

而负偏压(P极接负电,N极接正电)则会使得耗尽层变宽,阻止电流流过,从而形成截止。

第三题:3. 请解释什么是PN结的击穿电压?并说明几种常见的击穿方式。

PN结的击穿电压是指当施加外加电压达到某一临界值时,PN结内的电场强度足以克服材料的绝缘性,导致电流剧增的电压。

击穿电压是PN结失去绝缘特性的临界电压。

常见的击穿方式包括:- 穿越击穿:在高反向电压下,电子从PN结中的价带直接穿越到导带。

这种击穿一般发生在高纯度的材料中。

- 雪崩击穿:在高反向电压下,少数载流子加速并与相邻的原子碰撞,释放更多的载流子。

这种击穿一般发生在掺杂较多的材料中。

- 隧道击穿:在高反向电压下,载流子通过突破禁带形成隧道效应而穿越PN结。

这种击穿一般发生在材料的禁带很窄的情况下。

第四题:4. 请介绍几种常见的半导体器件,并简要说明其原理和应用。

半导体器件工艺与物理期末必考题材料汇总

半导体器件工艺与物理期末必考题材料汇总

半导体器件⼯艺与物理期末必考题材料汇总半导体期末复习补充材料⼀、名词解释1、准费⽶能级费⽶能级和统计分布函数都是指的热平衡状态,⽽当半导体的平衡态遭到破坏⽽存在⾮平衡载流⼦时,可以认为分就导带和价带中的电⼦来讲,它们各⾃处于平衡态,⽽导带和价带之间处于不平衡态,因⽽费⽶能级和统计分布函数对导带和价带各⾃仍然是适⽤的,可以分别引⼊导带费⽶能级和价带费⽶能级,它们都是局部的能级,称为“准费⽶能级”,分别⽤E F n、E F p表⽰。

2、直接复合、间接复合直接复合—电⼦在导带和价带之间直接跃迁⽽引起电⼦和空⽳的直接复合。

间接复合—电⼦和空⽳通过禁带中的能级(复合中⼼)进⾏复合。

3、扩散电容PN结正向偏压时,有空⽳从P区注⼊N区。

当正向偏压增加时,由P区注⼊到N区的空⽳增加,注⼊的空⽳⼀部分扩散⾛了,⼀部分则增加了N区的空⽳积累,增加了载流⼦的浓度梯度。

在外加电压变化时,N扩散区内积累的⾮平衡空⽳也增加,与它保持电中性的电⼦也相应增加。

这种由于扩散区积累的电荷数量随外加电压的变化所产⽣的电容效应,称为P-N结的扩散电容。

⽤CD表⽰。

4、雪崩击穿随着PN外加反向电压不断增⼤,空间电荷区的电场不断增强,当超过某临界值时,载流⼦受电场加速获得很⾼的动能,与晶格点阵原⼦发⽣碰撞使之电离,产⽣新的电⼦—空⽳对,再被电场加速,再产⽣更多的电⼦—空⽳对,载流⼦数⽬在空间电荷区发⽣倍增,犹如雪崩⼀般,反向电流迅速增⼤,这种现象称之为雪崩击穿。

1、PN结电容可分为扩散电容和过渡区电容两种,它们之间的主要区别在于扩散电容产⽣于过渡区外的⼀个扩散长度范围内,其机理为少⼦的充放电,⽽过渡区电容产⽣于空间电荷区,其机理为多⼦的注⼊和耗尽。

2、当MOSFET器件尺⼨缩⼩时会对其阈值电压V T产⽣影响,具体地,对于短沟道器件对V T的影响为下降,对于窄沟道器件对V T的影响为上升。

3、在NPN型BJT中其集电极电流I C受V BE电压控制,其基极电流I B受V BE电压控制。

(完整word版)半导体物理器件期末考试试题(全)

(完整word版)半导体物理器件期末考试试题(全)

半导体物理器件原理(期末试题大纲)指导老师:陈建萍一、简答题(共6题,每题4分)。

代表试卷已出的题目1、耗尽区:半导体内部净正电荷与净负电荷区域,因为它不存在任何可动的电荷,为耗尽区(空间电荷区的另一种称呼)。

2、势垒电容:由于耗尽区内的正负电荷在空间上分离而具有的电容充放电效应,即反偏Fpn结的电容。

3、Pn结击穿:在特定的反偏电压下,反偏电流迅速增大的现象。

、欧姆接触:金属半导体接触电阻很低,且在结两边都能形成电流的接触.5、饱和电压:栅结耗尽层在漏端刚好夹断时所加的漏源电压。

、阈值电压:达到阈值反型点所需的栅压。

、基区宽度调制效应:随C-E结电压或C-B结电压的变化,中性基区宽度的变化。

8、截止频率:共发射极电流增益的幅值为1时的频率。

9、厄利效应:基带宽度调制的另一种称呼(晶体管有效基区宽度随集电结偏置电压的变化而变化的一种现象)10、隧道效应:粒子穿透薄层势垒的量子力学现象。

11、爱因斯坦关系:扩散系数和迁移率的关系:12、扩散电容:正偏pn结内由于少子的存储效应而形成的电容.、空间电荷区:冶金结两侧由于n区内施主电离和p区内受主电离而形成的带净正电荷与净负电荷的区域.14、单边突变结:冶金结的一侧的掺杂浓度远大于另一侧的掺杂浓度的pn结。

15、界面态:氧化层—-半导体界面处禁带宽度中允许的电子能态。

16、平带电压:平带条件发生时所加的栅压,此时在氧化层下面的半导体中没有空间电荷区。

17、阈值反型点:反型电荷密度等于掺杂浓度时的情形.18、表面散射:当载流子在源极和源漏极漂移时,氧化层--半导体界面处载流子的电场吸引作用和库伦排斥作用.19、雪崩击穿:由雪崩倍增效应引起的反向电流的急剧增大,称为雪崩击穿.20、内建电场:n区和p区的净正电荷和负电荷在冶金结附近感生出的电场叫内建电场,方向由正电荷区指向负电荷区,就是由n区指向p区。

21、齐纳击穿:在重掺杂pn结内,反偏条件下结两侧的导带与价带离得非常近,以至于电子可以由p区的价带直接隧穿到n区的导带的现象。

2本科半导体物理期末试题及总结

2本科半导体物理期末试题及总结

2本科半导体物理期末试题及总结期末题1、假设一束光稳定照射在掺杂浓度为315/10cm N d =、厚度为p n L L L ,<<的Si层表面,Si 的另一表面的复合率为无穷大,画出Si 层中准费米能级的变化,并计算稳定情形下Si 层中的电流密度。

(一个绩点)2、试分析说明金属-n 型半导体肖特基势垒在正、反向偏压下电子和空穴的准费米能级如何变化?(一个绩点)3、假定在掺杂浓度不均匀(掺杂浓度为N(x))的N 型半导体中,在室温时杂质完全电离。

求出热平衡状态时半导体内的电势、电场分布的表达式,并定性画出其平衡能带图、电势和电场分布图。

设在x=0处电势为0(电势参考点),载流子浓度分别为为n 和p ,在x=x0处的电势为V ,求x=x0出的载流子浓度表达式。

(二个绩点)4、设在均匀掺杂的半无穷大N 型Si 半导体中,施主掺杂浓度为315/10cm N d =。

如果在Si 表面禁带中的E t (G V t E E E 31=?)能级处存在态密度为216/10cm N it =的界面态。

1)求出平衡情形的Si 表面的自建势大小;2)如果有功函数为eV M 8.4=φ的金属M1与该半导体接触形成肖特基势垒结构,求出该肖特基势垒的参数B φ和i φ的值。

(二个绩点)5、设在厚度为W 的N 型半导体的表面(x=0)在有光照情形下,有过剩载流子产生,其产生率为G 0,在该表面的复合率为R 0;在半导体内存在密度呈高斯分布的复合中心(高斯分布的峰值出现在另一表面(x=W )),过剩载流子的复合率与复合中心密度成正比。

假设过剩载流子的运动满足扩散方程,扩散率为D 0,忽略半导体中的电场,在交变光照条件下,求解半导体表面的过剩少子的浓度变化。

(三个绩点)6、MOS 结构的Si 与氧化层界面存在连续分布的界面态,假设在禁带中本征费米E i 能级以上的界面态为类施主型,以下的是类受主型,讨论分析界面态对CV 特性曲线的影响(以理想情形为标准画图说明);如果在在禁带中本征费米E i 能级以上的界面态为受主类型,以下的是类施主型,界面态对CV 特性曲线的影响又如何(以理想情形为标准画图说明)?(一个绩点)---------------------------------------第一题:名词解释1.直接禁带半导体和间接禁带半导体2.准费米能级3.pn结的自建势4.非平衡载流子的复合5.欧姆接触第二题:问答题1.雪崩击穿和齐那击穿的机制,搀杂浓度和禁带宽度对它们的影响2.半导体电流输运的方式和电导率的公式3.SRH相关一题,光照后载流子产生复合的变化,准费米能级的变化第三题:MS接触的题目画出ms接触平衡时的图画出有钉扎效应的图计算耗尽层电容画出C-V特性曲线第四题:nmos画出C-V曲线,标出VBF画出平衡和平带的图计算电场分布.-----------------------------------------05.6一、(每小题6分,共30分)名词解释:1、半导体能带结构和E-K关系2、本征费米能级3、施主杂质4、过剩载流子寿命5、肖特基势垒二、(每题10分,共30分)1. 简述半导体中的载流子输运机制及其电流表达式。

半导体制造工艺期末考试重点复习资料

半导体制造工艺期末考试重点复习资料

半导体制造工艺期末考试重点复习资料1、三种重要的微波器件:转移型电子晶体管、碰撞电离雪崩渡越时间二极管、MESFET。

2、晶锭获得均匀的掺杂分布:较高拉晶速率和较低旋转速率、不断向熔融液中加高纯度多晶硅,维持熔融液初始掺杂浓度不变。

3、砷化镓单晶:p型半导体掺杂材料镉和锌,n型是硒、硅和锑硅:p型掺杂材料是硼,n型是磷。

4、切割决定晶片参数:晶面结晶方向、晶片厚度(晶片直径决定)、晶面倾斜度(从晶片一端到另一端厚度差异)、晶片弯曲度(晶片中心到晶片边缘的弯曲程度)。

5、晶体缺陷:点缺陷(替位杂质、填隙杂质、空位、Frenkel,研究杂质扩散和氧化工艺)、线缺陷或位错(刃型位错和螺位错,金属易在线缺陷处析出)、面缺陷(孪晶、晶粒间界和堆垛层错,晶格大面积不连续,出现在晶体生长时)、体缺陷(杂质和掺杂原子淀积形成,由于晶体固有杂质溶解度造成)。

6、最大面为主磨面,与<110>晶向垂直,其次为次磨面,指示晶向和导电类型。

7、半导体氧化方法:热氧化法、电化学阳极氧化法、等离子化学汽相淀积法。

8、晶体区别于非晶体结构:晶体结构是周期性结构,在许多分子间延展,非晶体结构完全不是周期性结构。

9、平衡浓度与在氧化物表面附近的氧化剂分压值成正比。

在1000℃和1个大气压下,干氧的浓度C0是5.2x10^16分子数/cm^3,湿氧的C0是3x10^19分子数/cm^3。

10、当表面反应时限制生长速率的主要因素时,氧化层厚度随时间呈线性变化X=B(t+)/A线性区(干氧氧化与湿氧氧化激活能为2eV,);氧化层变厚时,氧化剂必须通过氧化层扩散,在二氧化硅界面与硅发生反应,并受扩散过程影响,氧化层厚度与氧化时间的平方根成正比,生长速率为抛物线X^2=B(t+)抛物线区(干氧氧化激活能是1.24Ev,湿氧氧化是0.71eV)。

11、线性速率常数与晶体取向有关,因为速率常数与氧原子进入硅中的结合速率和硅原子表面化学键有关;抛物线速率常数与晶体取向无关,因为它量度的是氧化剂穿过一层无序的非晶二氧化硅的过程。

半导体物理学期末总复习

半导体物理学期末总复习
热平衡态的定义
半导体中的热平衡态
载流子的扩散
在半导体中,不同区域的载流子浓度不同,浓度高的区域的载流子会向浓度低的区域扩散,这种现象称为载流子的扩散。
载流子的漂移
当半导体中存在电场时,载流子会受到电场力的作用,从高电场强度区域向低电场强度区域移动,这种现象称为载流子的漂移。
载流子的输运过程
在半导体中,载流子的浓度分布取决于载流子的产生、复合、扩散、漂移等过程的综合作用。
太阳能电池
利用半导体物理器件的能带结构,可以制造出高效的太阳能电池。
半导体物理器件在新能源和环境中的应用
风能发电装置
利用半导体物理器件的高频特性,可以制造出高效的风能发电装置。
水质监测和污水处理
利用半导体物理器件的化学传感器作用,可以制造出用于水质监测和污水处理中的传感器。
THANK YOU.
谢谢您的观看
04
半导体的光学性质
光吸收
半导体对光的吸收主要取决于材料中的电子和原子结构。在光子能量大于或等于半导体带隙时,光子会被吸收并产生电子-空穴对。
光发射
光发射是半导体中电子从束缚态跃迁到自由态并辐射出光子的过程。光发射的能量与带隙密切相关,带隙越大,发射光的能量越高。
半导体中的光吸收与光发射
光电效应
5G和6G通信技术
随着5G和6G通信技术的不断发展,现代半导体器件需要适应更高的频率和更复杂的通信协议。
半导体物理器件在集成电路中的应用
存储器
半导体物理器件还可以应用于存储器中,例如动态随机存储器和闪存等。
传感器
半导体物理器件还可以应用于传感器中,例如光传感器、温度传感器和压力传感器等。
微处理器
半导体物理器件在集成电路中的应用最为广泛,其中微处理器是其中的代表。

(完整版)半导体器件物理试题库

(完整版)半导体器件物理试题库

(完整版)半导体器件物理试题库半导体器件试题库常⽤单位:在室温(T = 300K )时,硅本征载流⼦的浓度为 n i = 1.5×1010/cm 3电荷的电量q= 1.6×10-19C µn =1350 2cm /V s ? µp =500 2cm /V s ?ε0=8.854×10-12 F/m ⼀、半导体物理基础部分(⼀)名词解释题杂质补偿:半导体内同时含有施主杂质和受主杂质时,施主和受主在导电性能上有互相抵消的作⽤,通常称为杂质的补偿作⽤。

⾮平衡载流⼦:半导体处于⾮平衡态时,附加的产⽣率使载流⼦浓度超过热平衡载流⼦浓度,额外产⽣的这部分载流⼦就是⾮平衡载流⼦。

迁移率:载流⼦在单位外电场作⽤下运动能⼒的强弱标志,即单位电场下的漂移速度。

晶向:晶⾯:(⼆)填空题1.根据半导体材料内部原⼦排列的有序程度,可将固体材料分为、多晶和三种。

2.根据杂质原⼦在半导体晶格中所处位置,可分为杂质和杂质两种。

3.点缺陷主要分为、和反肖特基缺陷。

4.线缺陷,也称位错,包括、两种。

5.根据能带理论,当半导体获得电⼦时,能带向弯曲,获得空⽳时,能带向弯曲。

6.能向半导体基体提供电⼦的杂质称为杂质;能向半导体基体提供空⽳的杂质称为杂质。

7.对于N 型半导体,根据导带低E C 和E F 的相对位置,半导体可分为、弱简并和三种。

8.载流⼦产⽣定向运动形成电流的两⼤动⼒是、。

9.在Si-SiO 2系统中,存在、固定电荷、和辐射电离缺陷4种基本形式的电荷或能态。

10.对于N 型半导体,当掺杂浓度提⾼时,费⽶能级分别向移动;对于P 型半导体,当温度升⾼时,费⽶能级向移动。

(三)简答题1.什么是有效质量,引⼊有效质量的意义何在?有效质量与惯性质量的区别是什么?2.说明元素半导体Si 、Ge 中主要掺杂杂质及其作⽤?3.说明费⽶分布函数和玻⽿兹曼分布函数的实⽤范围?4.什么是杂质的补偿,补偿的意义是什么?(四)问答题1.说明为什么不同的半导体材料制成的半导体器件或集成电路其最⾼⼯作温度各不相同?要获得在较⾼温度下能够正常⼯作的半导体器件的主要途径是什么?(五)计算题1.⾦刚⽯结构晶胞的晶格常数为a ,计算晶⾯(100)、(110)的⾯间距和原⼦⾯密度。

半导体物理学期末总复习

半导体物理学期末总复习
▪ 共有化运动
Si原子的能级
▪ 电子的能级是量子化的
n=3 四个电子
n=2 8个电子
+14
n=1
H
2个电子
Si
原子的能级的分裂
▪ 孤立原子的能级 4个原子能级的分裂
原子的能级的分裂
▪ 原子能级分裂为能带
半导体的能带结构
导带 Eg
价带
价带:0K条件下被电子填充的能量的能带 导带:0K条件下未被电子填充的能量的能带 带隙:导带底与价带顶之间的能量差
热平衡状态
▪ 在一定温度下,载流子的产生和载流子的复 合建立起一动态平衡,这时的载流子称为热 平衡载流子。
▪ 半导体的热平衡状态受温度影响,某一特定 温度对应某一特定的热平衡状态。
▪ 半导体的导电性受温度影响剧烈。
态密度的概念
▪ 能带中能量 E 附近每单位能量间隔内的量子态
数。 ▪ 能带中能量为 E (E dE)无限小的能量间隔内
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构 九.半导体的光学性质和光电与发光现象
晶体结构
▪ 半导体的晶格结构和结合性质 ▪ 半导体中的电子状态和能带 ▪ 半导体中的电子运动和有效质量 ▪ 本征半导体的导电机构 ▪ 空穴 ▪ 回旋共振 ▪ 硅和锗的能带结构 ▪ III-V族化合物半导体的能带结构 ▪ II-VI族化合物半导体的能带结构
k0T
k0T
k0T
k0T
玻尔兹曼分布函数
▪ 导带中电子分布可用电子的玻尔兹曼分布函数 描写(绝大多数电子分布在导带底);价带中 的空穴分布可用空穴的玻尔兹曼分布函数描写 (绝大多数空穴分布在价带顶)

半导体物理期末考复习材料

半导体物理期末考复习材料

福州大学至诚学院09级《半导体物理学》期末考复习材料信息工程系微电子学专业 1 班姓名:陈长彬学号:210991803第一章半导体中的电子状态1.元素半导体硅和锗都是金刚石结构。

2.结构上,金刚石结构由两套面心立方格子沿其立方体对角线位移1/4 的长度套构而成的,3.在四面体结构的共价晶体中,四个共价键是sp3杂化。

4.第III族元素铝、镓、铟和第V族元素磷、砷、锑组成的III-V族化合物。

也是正四面体结构,四个共价键也是sp3杂化,但具有一定程度的离子性。

是闪锌矿结构。

5.ZnS、GeS、ZnSe和GeSe等Ⅱ-Ⅵ族化合物都可以闪锌矿型和纤锌矿型两种方式结晶,也是以正四面体结构为基础构成的,四个混合共价键也是sp3 杂化,也有一定程度的离子性。

6.Ge、Si的禁带宽度具有负温度系数。

禁带宽度E g随温度增加而减小( 负温度系数特性)7.半导体与导体的最大差别:半导体的电子和空穴均参与导电。

半导体与绝缘体的最大差别:在通常温度下,半导体已具有一定的导电能力。

8.有效质量的意义半导体中的电子在外场作用下运动时,外力并不是电子受力的总和,电子一方面受到外电场力的作用,另一方面还和内部的原子、电子相互作用着。

电子的加速度应该是半导体内部势场和外电场作用的综合效果。

为了简化问题,借助有效质量来描述电子加速时内部受到的阻力。

引入有效质量的意义在于它概括了半导体内部势场的作用。

使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及到半导体内部势场的作用。

有效质量可以通过实验直接测得。

有效质量的大小取决于晶体内电子与电子周围环境的作用。

电子有效质量的意义是什么?它与能带有什么关系?答:有效质量概括了晶体中电子的质量以及内部周期势场对电子的作用,引入有效质量后,晶体中电子的运动可用类似于自由电子运动来描述。

有效质量与电子所处的状态有关,与能带结构有关:(1)、有效质量反比于能谱曲线的曲率:(2)、有效质量是k的函数,在能带底附近为正值,能带顶附近为负值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体期末复习补充材料一、名词解释1、准费米能级费米能级和统计分布函数都是指的热平衡状态,而当半导体的平衡态遭到破坏而存在非平衡载流子时,可以认为分就导带和价带中的电子来讲,它们各自处于平衡态,而导带和价带之间处于不平衡态,因而费米能级和统计分布函数对导带和价带各自仍然是适用的,可以分别引入导带费米能级和价带费米能级,它们都是局部的能级,称为“准费米能级”,分别用E F n、E F p表示。

2、直接复合、间接复合直接复合—电子在导带和价带之间直接跃迁而引起电子和空穴的直接复合。

间接复合—电子和空穴通过禁带中的能级(复合中心)进行复合。

3、扩散电容PN结正向偏压时,有空穴从P区注入N区。

当正向偏压增加时,由P区注入到N区的空穴增加,注入的空穴一部分扩散走了,一部分则增加了N区的空穴积累,增加了载流子的浓度梯度。

在外加电压变化时,N扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。

这种由于扩散区积累的电荷数量随外加电压的变化所产生的电容效应,称为P-N结的扩散电容。

用CD表示。

4、雪崩击穿随着PN外加反向电压不断增大,空间电荷区的电场不断增强,当超过某临界值时,载流子受电场加速获得很高的动能,与晶格点阵原子发生碰撞使之电离,产生新的电子—空穴对,再被电场加速,再产生更多的电子—空穴对,载流子数目在空间电荷区发生倍增,犹如雪崩一般,反向电流迅速增大,这种现象称之为雪崩击穿。

1、PN结电容可分为扩散电容和过渡区电容两种,它们之间的主要区别在于扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。

2、当MOSFET器件尺寸缩小时会对其阈值电压V T产生影响,具体地,对于短沟道器件对V T的影响为下降,对于窄沟道器件对V T的影响为上升。

3、在NPN型BJT中其集电极电流I C受V BE电压控制,其基极电流I B受V BE电压控制。

4、硅-绝缘体SOI器件可用标准的MOS工艺制备,该类器件显著的优点是寄生参数小,响应速度快等。

5、PN结击穿的机制主要有雪崩击穿、齐纳击穿、热击穿等等几种,其中发生雪崩击穿的条件为V B>6E g/q。

6、当MOSFET进入饱和区之后,漏电流发生不饱和现象,其中主要的原因有沟道长度调制效应,漏沟静电反馈效应和空间电荷限制效应。

二、简答题1、发射区重掺杂效应及其原因。

答:发射区掺杂浓度过重时会引起发射区重掺杂效应,即过分加重发射区掺杂不但不能提高注入效率γ,反而会使其下降。

原因:发射区禁带宽度变窄和俄歇复合效应增强2.MOSFET与双极晶体管相比有何优点?(6分)MOS管:多子器件,驱动能力强,易集成,功耗低,适合于大规模集成电路,现已成为超大规模集成电路的主流形式。

双极器件:少子器件,速度较快,但集成度较低,功耗大,不适合于大规模集成电路。

7、对于PNP型BJT工作在正向有源区时载流子的输运情况;答案:对于PNP型晶体管,其发射区多数载流子空穴向集电区扩散,形成电流I EP,其中一部分空穴与基区的电子复合,形成基极电流的I B的主要部分,集电极接收大部分空穴形成电流I CP,它是I C的主要部分。

8、热平衡时突变PN结的能带图、电场分布,以及反向偏臵后的能带图和相应的I-V特性曲线。

(每个图2分)答案:热平衡时突变PN结的能带图、电场分布如下所示,反向偏臵后的能带图和相应的I-V特性曲线如下所示。

9、 在NPN 双极型晶体管正向有源区工作时,)exp(kTqV I I BE S C =,]1)[exp(-=kTqV I I BE F S B β,试求该器件正向电流增益F β,并说明提高F β的几种途径。

其中,)exp(2kT qV W D N n qA I BE B B B i E C =,]1)[exp(2-=kTqV W D N n qA I BE E E E i E B 。

(计算推导9分,措施6分) 答案:经推导计算可得,BE E B B E B CF W W D D N N I I ≈=β,提高F β的措施有:(1)增大发射区/基区浓度比,即发射区采取重掺杂;(2)增大基区少数载流子的扩散系数,即选用NPN 型器件;(3)增大发射区/基区厚度比,即减薄基区的厚度。

10、肖特基二极管(SBD )是一种低功耗、大电流、超高速半导体器件。

其显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V 左右,而整流电流却可达到几千安培。

肖特基二极管多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。

常用在彩电的二次电源整流,高频电源整流中。

肖特基二极管是以其发明人肖特基博士(Schottky )命名的,SBD 是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD )的简称。

SBD 不是利用P 型半导体与N 型半导体接触形成PN 结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。

因此,SBD 也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

肖特基二极管是贵金属(金、银、铝、铂等)A 为正极,以N 型半导体B 为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。

因为N 型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B 中向浓度低的A 中扩散。

显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。

随着电子不断从B扩散到A,B 表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。

但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。

当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。

基本原理是:在金属和N型硅片的接触面上,用金属与半导体接触所形成的势垒对电流进行控制。

肖特基与PN结的整流作用原理有根本性的差异。

其耐压程度只有40V左右,大多不高于60V,以致于限制了其应用范围。

其特长是:开关速度非常快:反向恢复时间特别地短。

因此,能制作开关二极和低压大电流整流二极管。

肖特基二极管(SBD)的主要特点: 1)正向压降低:由于肖特基势垒高度低于PN结势垒高度,故其正向导通门限电压和正向压降都比PN结二极管低(约低0.2V)。

2)反向恢复时间快:由于SBD是一种多数载流子导电器件,不存在少数载流子寿命和反向恢复问题。

SBD的反向恢复时间只是肖特基势垒电容的充、放电时间,完全不同于PN结二极管的反向恢复时间。

由于SBD的反向恢复电荷非常少,故开关速度非常快,开关损耗也特别小,尤其适合于高频应用。

3)工作频率高:由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC 时间常数限制,因而,它是高频和快速开关的理想器件。

其工作频率可达100GHz。

4)反向耐压低:由于SBD的反向势垒较薄,并且在其表面极易发生击穿,所以反向击穿电压比较低。

由于SBD比PN结二极管更容易受热击穿,反向漏电流比PN结二极管大。

3.MIS结构中,P型半导体表面在什么情况下成为积累层?什么情况下出现耗尽层和反型层?并请画出相应的能带图。

(10分)E FM E C E C E CE V E FM E V E FM E V积累状态耗尽状态反型状态积累状态:当金属与半导体之间加负电压时,表面势为负值,表面处能带向上弯曲,表面层内就会出现空穴的堆积。

(2分)耗尽状态:当金属与半导体之间加正电压时,表面势为正值,表面处能带向下弯曲,表面处的空穴浓度较体内的低得多,这种状态就叫做耗尽状态。

(2分)反型状态:当正电压进一步增加时,能带进一步向下弯曲,使表面处的费米能级高于中央能级E I,这意味着表面的电子浓度将超过空穴浓度,形成反型层。

(2分)(图4分)1.简述肖特基二极管的优缺点。

(6分,每小点1分)优点:(1)正向压降低(2)温度系数小(3)工作频率高。

(4)噪声系数小缺点:(1)反向漏电流较大(2)耐压低2.MIS结构中,以金属—绝缘体—P型半导体为例,半导体表面在什么情况下成为积累层?什么情况下出现耗尽层和反型层?(6分,每小点2分)积累状态:当金属与半导体之间加负电压时,表面势为负值,表面处能带向上弯曲,表面层内就会出现空穴的堆积。

(2分)耗尽状态:当金属与半导体之间加正电压时,表面势为正值,表面处能带向下弯曲,表面处的空穴浓度较体内的低得多,这种状态就叫做耗尽状态。

(2分)反型状态:当正电压进一步增加时,能带进一步向下弯曲,使表面处的费米能级高于中央能级E i,这意味着表面的电子浓度将超过空穴浓度,形成反型层。

(2分)3.如何加电压才能使NPN晶体管起放大作用。

请画出平衡时和放大工作时的能带图。

(10分,回答4分,其中每一点各2分;图6分,其中无偏压能带2分,加偏压能带2分,标注势垒高度2分)答:要使NPN晶体管起放大作用,发射结要加正向偏压(2分),集电结反向偏压。

(2分)放大工作时的能带图如下:1、PN结电击穿的产生机构两种;答案:雪崩击穿、隧道击穿或齐纳击穿。

2、双极型晶体管中重掺杂发射区目的;答案:发射区重掺杂会导致禁带变窄及俄歇复合,这将影响电流传输,目的为提高发射效率,以获取高的电流增益。

3、晶体管特征频率定义;答案:随着工作频率的上升,晶体管共射极电流放大系数下降为时所对应的频率,称作特征频率。

4、P沟道耗尽型MOSFET阈值电压符号;答案:。

5、MOS管饱和区漏极电流不饱和原因;答案:沟道长度调制效应和漏沟静电反馈效应。

6、BV含义;CEO答案:基极开路时发射极与集电极之间的击穿电压。

7、MOSFET短沟道效应种类;答案:短窄沟道效应、迁移率调制效应、漏场感应势垒下降效应。

8、扩散电容与过渡区电容区别。

答案:扩散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。

1、内建电场;答案:P型材料和N型材料接触后形成PN结,由于存在浓度差,N区的电子会扩散到P区,P区的空穴会扩散到N区,而在N区的施主正离子中心固定不动,出现净的正电荷,同样P区的受主负离子中心也固定不动,出现净的负电荷,于是就会产生空间电荷区。

在空间电荷区内,电子和空穴又会发生漂移运动,它的方向正好与各自扩散运动的方向相反,在无外界干扰的情况下,最后将达到动态平衡,至此形成内建电场,方向由N区指向P区。

2、发射极电流集边效应;答案:在大电流下,基极的串联电阻上产生一个大的压降,使得发射极由边缘到中心的电场减小,从而电流密度从中心到边缘逐步增大,出现了发射极电流在靠近基区的边缘逐渐增大,此现象称为发射极电流集边效应,或基区电阻自偏压效应。

相关文档
最新文档