高中数学必修一函数知识点总结

合集下载

有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇有关高一数学必修一函数知识点总结4篇积累通识知识可以让我们对各种事物有更全面、更深刻的理解和把握。

积累专业知识可以让我们在自己的领域内成为专家,获得更高的社会地位和经济回报。

下面就让小编给大家带来高一数学必修一函数知识点总结,希望大家喜欢! 高一数学必修一函数知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。

多考查函数的单调性、最值和图象等。

五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学必修一函数知识点总结篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

高一数学必修一知识点归纳

高一数学必修一知识点归纳

高一数学必修一知识点归纳第一章二次函数1.1 一元二次方程及其解法一元二次方程的标准形式为ax^2 + bx + c = 0,可以通过公式法、配方法和因式分解等方式求解。

1.2 二次函数的图像及性质二次函数y=ax^2+bx+c的图像为抛物线,开口向上或向下,顶点坐标为(-b/2a,c-b^2/4a)。

1.3 二次函数与一元二次方程的关系一元二次方程可以通过二次函数的图像特征求解,二次函数的各项系数与一元二次方程的特征之间有一一对应的关系。

第二章直线与圆2.1 直线的方程及性质直线的一般方程为Ax+By+C=0,斜率为-k/A,其中k为直线的垂直距离。

2.2 圆的方程及性质圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。

第三章度量衡3.1 长度、面积和体积的计算长度、面积和体积的计算包括常见图形的计算公式和应用场景,如长方形、正方形、圆形等。

3.2 单位换算长度、面积和体积的不同单位之间的换算,包括长度单位、面积单位、体积单位等。

第四章三角函数4.1 弧度制下的角度角度的度量单位有度、分、秒和弧度制,弧度制下一周的角度为2π。

4.2 三角函数的概念三角函数包括正弦函数、余弦函数、正切函数等,它们与直角三角形的边和角之间有一一对应的关系。

4.3 三角函数的图像及性质三角函数的图像具有周期性、对称性,通过振幅和周期来描述函数的性质。

第五章概率5.1 随机事件及基本概率随机事件的基本概率计算方法包括等可能概率、加法原理和乘法原理等。

5.2 条件概率及事件的独立性条件概率描述了随机事件在已知其他事件发生的情况下自身发生的概率,事件的独立性指两个事件发生与否互不影响。

第六章初等数论6.1 整除、最大公因数、最小公倍数整除、最大公因数和最小公倍数概念及计算方法,涉及质数、合数、素数分解等内容。

6.2 同余式同余式描述了整数之间的某种特殊的相等关系,同余式的性质包括传递性、对称性和相容性等。

高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

高中数学必修一函数的概念知识点总结

高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念二、函数知识点8:函数的概念以及区间 1》函数概念设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2》区间和无穷大①设a 、b 是两个实数,且a<b ,则:{x|a ≤x ≤b}=[a,b] 叫闭区间; ②{x|a<x<b}=(a,b) 叫开区间;③{x|a ≤x<b}=[,)a b , {x|a<x ≤b}=(,]a b ,都叫半开半闭区间.④符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.典例分析题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( )A 、x y x f 21)(=→ B 、x y x f 31)(=→ C 、x y x f 32)(=→ D 、x y x f =→)(例2:下列对应关系是否是从A 到B 的函数:①}{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方;③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。

高一函数知识点总结(精品19篇)

高一函数知识点总结(精品19篇)

高一函数知识点总结(精品19篇)高一函数知识点总结(1)(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数、3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f—1(y);(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域、注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起、②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算、(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。

求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。

如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x ≠kπ,k∈Z)等。

应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。

(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

高中数学必修一第三章函数的应用知识点总结

高中数学必修一第三章函数的应用知识点总结

第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1○24(1(2(356Eg7、确定零点在某区间(),a b 个数是唯一的条件是:①()f x 在区间上连续,且()()0f a f b <②在区间(),a b 上单调。

Eg :求函数2)1lg(2)(-++=x x f x 的零点个数。

8、函数零点的性质:从“数”的角度看:即是使0)(=x f 的实数;从“形”的角度看:即是函数)(x f 的图象与x 轴交点的横坐标;若函数)(x f 的图象在0x x =处与x 轴相切,则零点0x 通常称为不变号零点; 若函数)(x f 的图象在0x x =处与x 轴相交,则零点0x 通常称为变号零点.Eg :一元二次方程根的分布讨论一元二次方程根的分布的基本类型 设一元二次方程02=++c bx ax (0≠a)的两实根为1x ,2x ,且21x x ≤.表二:(两根与k的大小比较)k k k表三:(根在区间上的分布)Eg :(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围?(2)关于x 的方程0142)3(22=++++m x m x 有两实根在[0,4]内,求m 的取值范围?(3)关于x 的方程0142)3(22=++++m x m mx 有两个实根,且一个大于4,一个小于4,求m 的取值范围?9)(x f10(1(2(3①若f ②若f ③若f (4~(41112① ② ③ ④ 还原:将用数学知识和方法得出的结论,还原为实际问题的意义.13、函数的模型不符合14。

数学必修一函数知识点

数学必修一函数知识点

在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。

接下来小编在这里给大家分享一些关于数学必修一函数知识点,供大家学习和参考,希望对大家有所帮助。

数学必修一函数知识点篇一1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

高一数学必修一函数概念的知识点

高一数学必修一函数概念的知识点

高一数学必修一函数概念的知识点高一数学必修一函数概念的知识点在日常过程学习中,是不是经常追着老师要知识点?知识点在教育实践中,是指对某一个知识的泛称。

哪些知识点能够真正帮助到我们呢?以下是店铺整理的高一数学必修一函数概念的知识点,仅供参考,欢迎大家阅读。

高一数学必修一函数概念的知识点 11、映射的定义2、函数的概念3、函数的三要素:定义域、值域和对应法则。

4、两个函数能成为同一函数的条件当且仅当两个函数的定义域和对应法则完全相同时,这两个函数才是同一函数。

5、区间的概念和记号6、函数的表示方法函数的表示方法有三种。

(1)解析法(2)列表法(3)图像法7、分段函数常见考法本节是段考和高考必不可少的考查部分,多以选择题和填空题的形式出现。

段考中常考查函数的定义域、值域、对应法则、同一函数、函数的解析式和分段函数。

高考中可以和高中数学的大部分章节知识联合考查,但是难度不大,属于容易题。

多考查函数的定义域、函数的表示方法和分段函数。

误区提醒1、映射是一种特殊的函数,映射中的集合A,B可以是数集,也可以是点集或其他集合,这两个集合有先后顺序。

A到B的映射与B到A的映射是不同的。

而函数是数集到数集的映射,所以函数是特殊的映射,但是映射不一定是函数。

2、函数的问题,要遵循“定义域优先”的原则。

无论是简单的函数,还是复杂的函数,无论是具体的函数,还是抽象的函数,必须优先考虑函数的定义域。

之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便。

3、分段函数是一个函数,而不是几个函数。

分段函数书写时,注意格式规范,一般在左边的区间写在上面,右边的区间写在下面,每一段自变量的取值范围的交集为空集,所有段的自变量的取值范围的并集是函数的定义域。

高一数学必修一函数概念的知识点 2一、函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,是对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。

高中数学必修一知识点归纳

高中数学必修一知识点归纳

高中数学必修一知识点归纳一、函数的概念与性质1. 函数的定义- 函数:从一个数集A(定义域)到另一个数集B(值域)的映射。

- 函数的表示:f(x) = y,其中x∈A,y∈B。

2. 函数的性质- 单调性:函数值随自变量增加而增加或减少。

- 奇偶性:f(-x) = f(x)(偶函数),f(-x) = -f(x)(奇函数)。

- 周期性:存在最小正数T,使得f(x+T) = f(x)。

- 有界性:函数的值在某个范围内。

3. 函数的图像- 坐标轴:x轴和y轴。

- 函数图像:表示函数关系的图形。

二、基本初等函数1. 幂函数- 定义:f(x) = x^n,n为实数。

- 性质:正整数幂、负整数幂、分数幂。

2. 指数函数- 定义:f(x) = a^x,a>0且a≠1。

- 性质:增长速度、指数律。

3. 对数函数- 定义:f(x) = log_a(x),a>0且a≠1。

- 性质:对数律、换底公式。

4. 三角函数- 正弦、余弦、正切函数:sin(x), cos(x), tan(x)。

- 性质:周期性、奇偶性、最值。

三、函数的运算1. 函数的四则运算- 加法、减法、乘法、除法。

2. 复合函数- 定义:f(g(x))。

- 性质:复合函数的值域。

3. 反函数- 定义:f(x)的反函数为g(x),满足f(g(x)) = x。

- 求法:通过解方程。

四、方程与不等式1. 一元一次方程- 解法:移项、合并同类项、系数化为1。

2. 一元二次方程- 解法:因式分解、配方法、公式法、图像法。

3. 不等式- 解法:移项、合并同类项、系数化为1。

- 性质:不等式的基本性质。

五、数列的概念与表示1. 数列的定义- 数列:按照一定顺序排列的一列数。

2. 等差数列- 定义:相邻两项之差为常数的数列。

- 通项公式:an = a1 + (n-1)d。

3. 等比数列- 定义:相邻两项之比为常数的数列。

- 通项公式:an = a1 * q^(n-1)。

高中数学必修一函数知识点总结

高中数学必修一函数知识点总结

函数的知识点总结及拓展函数的概念一.函数的概念:1.概念:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

2.函数三要素:①定义域:x的取值范围的集合;②值域:y的取值范围的集合;③对应关系:y与x的对应关系。

二.区间:设a,b∈R,且a<b,规定如下:三.函数的定义域和值域:1.函数定义域:①分母不为0;②被开方数大于等于0,a(a≥0);③a0=1(a≠0);④a-n=na⎪⎭⎫⎝⎛1(a≠0)。

2.复合函数的定义域:(1)若已知f (x)的定义域为[a,b],其复合函数f [g(x)]的定义域由不等式a≤g(x)≤b解出即可。

(2)若已知f [g(x)]的定义域为[a,b],求f (x)的定义域,相当于当x∈[a,b]时,求g(x)的值域(即f (x)的定义域)。

3.求值域的基本方法:(1)配方法:涉及到二次函数的相关问题可用配方法;(2)换元法:通过换元把一个复杂的函数变为简单易求值域的函数;(3)分离常数法:适用与分子分母次数为一次分式函数;(4)单调性法:利用函数单调性求最大值或最小值;(5)数形结合法:结合函数图像求值域;(6)判别式法:分子和分母有一个是二次的分式函数都可通用;(7)不等式法:利用基本不等式求函数的值域;(8)导数法:适用与高次多项式函数。

函数的性质一.函数的单调性:1.单调性的定义:①f (x)在区间M上是增函数⇔∀x1,x2∈M,x1<x2时有f (x1)< f (x2);②f (x)在区间M上是增函数⇔∀x1,x2∈M,x1<x2时有f (x1)> f (x2)。

2.单调性的判定:(1)定义法:一般要将式子f (x1)-f (x2)化为几个因式作积或商的形式,然后判断正负;(2)图像法:结合函数图像判断单调性;(3)复合函数单调性判定:①首先将原函数y =f [g(x)]分解为基本函数,内函数μ=g(x)与外函数y =f [μ];②分别判定内、外函数在各自定义域内的单调性;③根据“同增异减”来判定原函数在其定义域内的单调性。

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结第一章:集合与函数1. 集合的概念集合的定义元素与集合的关系集合的表示法2. 集合的运算交集、并集、补集的定义和性质子集和真子集3. 函数的概念函数的定义函数的三要素:定义域、值域、对应关系函数的表示方法:解析式、图象、列表4. 函数的性质单调性奇偶性周期性5. 反函数反函数的概念反函数的求法第二章:指数函数与对数函数1. 指数函数指数函数的定义指数函数的图象和性质2. 对数函数对数函数的定义对数函数的图象和性质3. 指数与对数的运算指数运算法则对数运算法则第三章:三角函数1. 角的概念任意角象限角2. 三角函数的定义正弦、余弦、正切函数的定义3. 单位圆上的三角函数单位圆的定义单位圆上的三角函数值4. 三角函数的图象正弦、余弦函数的图象正切函数的图象5. 三角函数的性质周期性奇偶性单调性第四章:解析几何1. 平面直角坐标系坐标系的建立点的坐标2. 直线的方程直线的斜率直线的点斜式、斜截式、一般式方程3. 圆的方程圆的标准方程圆的一般方程4. 点与圆的位置关系点与圆的切线点与圆的弦第五章:不等式1. 不等式的解法代数法图形法2. 不等式的性质不等式的基本性质不等式的传递性3. 一元一次不等式组不等式组的解法求解不等式组的技巧第六章:数学思维与方法1. 归纳推理归纳推理的定义归纳推理的应用2. 演绎推理演绎推理的定义演绎推理的应用3. 数学建模数学建模的概念数学建模的步骤第七章:数学文化1. 数学在日常生活中的应用数学在决策中的作用数学在数据分析中的应用2. 数学家的故事著名数学家的生平数学家的贡献3. 数学思想的发展数学思想的历史演变数学思想在现代科技中的应用。

高中数学必修一函数知识点总结

高中数学必修一函数知识点总结

高中数学必修一函数知识点总结高中数学必修一的函数部分主要包括函数的定义、函数的性质、函数的图像与变化规律、函数的应用等方面的知识点。

下面是一份关于该部分知识点的详细总结。

一、函数的定义1. 定义域和值域:函数的定义域是指使函数有意义的自变量的取值范围,值域是函数的所有可能的因变量的取值范围。

2. 函数的表示方法:函数可以用公式、关系式、图像、表格等形式表示。

3. 函数的图像:函数的图像是由函数的各个值构成的点的集合,可以用直角坐标系来表示。

二、函数的性质1. 奇函数和偶函数:若对于定义域内的任何实数x,有f(-x) = -f(x),则函数f为奇函数;若对于定义域内的任何实数x,有f(-x) = f(x),则函数f为偶函数。

2. 单调性:函数在定义域上的增减关系称为函数的单调性。

若对于定义域内的任意两个实数x1和x2,有f(x1) ≤ f(x2),则函数f在该区间上递增;若对于定义域内的任意两个实数x1和x2,有f(x1) ≥ f(x2),则函数f在该区间上递减。

3. 周期性:若存在常数T>0,对于定义域内的任意实数x,有f(x+T) = f(x),则称函数f具有周期性,T为函数f的周期。

4. 奇偶性:若函数f(x)满足f(-x) = f(x),则称函数f为偶函数;若函数f(x)满足f(-x) = -f(x),则称函数f为奇函数。

三、函数的图像与变化规律1. 零点:函数f(x)在定义域内的一个实数x,使得f(x) = 0,称为函数f(x)的零点。

即f(x) = 0的解即为函数的零点。

2. 极值点:函数在定义域内取得最大值或最小值的点称为函数的极值点。

极大值点是局部最大值点,极小值点是局部最小值点。

3. 拐点:函数图像上的一点,使得该点两侧的曲线分别凸向上和凸向下,并且在该点的左右连续性方向上函数的变化趋势相反,称为函数的拐点。

4. 渐近线:若函数的图像在某个方向上无限地靠近一条直线,且与该直线的距离无限缩小,那么称该直线为函数图像的渐近线。

高中数学必修一函数的概念知识点总结

高中数学必修一函数的概念知识点总结

高中数学必修一函数的概念知识点总结一、内容概述高中数学必修一的核心概念之一就是函数。

函数作为数学的基本工具,贯穿整个数学的学习过程。

在这一部分,学生将初步接触并理解函数的基本概念、性质和图像特征。

函数的概念是描述事物变化规律的数学模型,通过输入与输出的对应关系,描述了一个变量如何依赖于另一个变量的变化。

在必修一的学习中,学生需要掌握函数的基本定义、表示方法(包括解析法、列表法和图像法),理解函数的定义域和值域等基本概念。

还将学习函数的基本性质,如单调性、奇偶性、周期性等,这些性质有助于理解和描述函数的变化趋势。

函数的图像也是学习的重点,通过观察和分析函数的图像,可以更直观地理解函数的性质和行为。

1. 高中数学必修一的重要性高中数学必修一在整个数学课程体系中占有举足轻重的地位,其重要性不言而喻。

作为高中阶段的第一门数学课,必修一不仅为学生后续的数学课程学习打下坚实的基础,更在培养学生的逻辑思维、问题解决能力等方面扮演着关键角色。

这门课程中的函数概念是整个数学学科的核心部分之一,涉及到众多实际应用和理论基础,对学生建立数学思维模式和掌握数学语言有着极其重要的作用。

理解和掌握高中数学必修一中的函数概念,不仅有助于学生在数学学科上的深入学习和研究,更对学生未来的学术生涯和职业发展有着深远的影响。

我们将对高中数学必修一中的函数概念进行详细的知识点总结。

2. 函数概念在数学学习中的重要性函数概念是数学学习中的核心概念之一,其重要性无法忽视。

函数是数学分析的基础,无论是在初等数学还是高等数学中,函数都是研究自然现象和社会问题的重要工具。

函数的概念对于解决实际问题具有重要意义。

在物理、化学、经济、工程等领域中,许多实际问题都可以通过函数模型进行描述和解决。

函数的学习对于培养学生的逻辑思维能力和抽象思维能力也有重要作用。

通过学习和应用函数,学生可以理解变量之间的关系,掌握函数的性质,运用函数解决现实问题,从而提高自身的逻辑思维能力和抽象思维能力。

高中数学必修一知识点归纳

高中数学必修一知识点归纳

高中数学必修一知识点归纳高中数学必修一主要涵盖了一元二次函数、指数函数与对数函数、三角函数及其应用、平面向量和解析几何等知识点。

下面将对这些知识点进行详细介绍。

一、一元二次函数一元二次函数是高中数学中重要的知识点,也是高中数学必修一的核心内容之一。

一元二次函数的表达形式为f(x) = ax^2 + bx + c,其中a、b和c为实数且a≠0。

在学习一元二次函数时,首先需要掌握一元二次方程的基本概念和解法。

一元二次方程是指形如 ax^2 + bx + c = 0 的方程,其中a、b和c为实数且a≠0。

解一元二次方程的常用方法有因式分解法、配方法、根的公式法等。

在学习一元二次函数的图像时,需要理解抛物线的基本特征。

一元二次函数的图像是一个抛物线,可以通过求顶点、轴线和对称轴等信息来确定抛物线的形状和位置。

在应用方面,一元二次函数常用于解决实际问题,如抛射问题、最值问题等。

通过将实际问题抽象为一元二次函数,可以利用函数的性质和方程的解法来解决实际问题。

二、指数函数与对数函数指数函数是以常数e为底的指数幂函数,表达形式为f(x) = a^x,其中a为正实数且a≠1。

而对数函数是指数函数的反函数,表达形式为f(x) = loga(x),其中a为正实数且a≠1,x为正实数。

在学习指数函数时,需要掌握指数函数的性质和运算法则,如指数函数的定义域、值域、增减性、奇偶性等。

指数函数还与幂函数、指数方程和指数不等式等有密切的关系,需要通过解题来加深理解。

对数函数是指数函数的反函数,对数函数的性质和运算法则与指数函数有着密切的联系。

在学习对数函数时,需要理解对数函数的基本性质,如定义域、值域、单调性等。

对数函数还与指数方程和指数不等式等密切相关,可以通过解题来加深理解。

三、三角函数及其应用三角函数是高中数学中的重要知识点,包括正弦函数、余弦函数、正切函数等。

三角函数是描述直角三角形中角度与两个直角边长比例之间关系的函数,其定义域为实数集合 R。

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结

高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。

文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。

文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。

文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。

文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。

通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。

1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。

在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。

物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。

函数是数学体系中的核心和基础。

函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。

对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。

函数也是解决实际问题的重要工具。

在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。

在经济学、统计学、工程学等领域,函数的运用非常广泛。

函数概念的重要性不言而喻。

高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。

2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。

函数是数学中的核心概念之一,具有广泛的应用领域。

在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。

本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。

高中数学必修一函数知识点总结

高中数学必修一函数知识点总结

高中数学必修一函数知识点总结函数作为高中数学的重要内容,是数学思维的重要工具之一。

在学习函数时,不仅需要掌握函数的定义和性质,还需要理解函数与实际问题的应用。

本文将对高中数学必修一中的函数知识点进行总结。

一、函数的定义和性质1. 函数的定义:函数是一个自然数集合和一个对应关系的二元组,其中每一个自然数对应唯一的一个实数。

2. 定义域和值域:函数的定义域是自然数集合,值域是实数集合。

函数的定义域和值域可以是实数集合的一个子集。

3. 要素和表达式:函数由其对应关系和函数表达式两部分构成。

函数的对应关系是函数的要素,函数表达式是将自变量和因变量联系在一起的表达式。

4. 定义关系的表示:可以通过图像、函数表、显式表达式和隐式表达式等方式表示函数的定义关系。

5. 函数的性质:包括奇偶性、单调性、周期性和双射性等。

二、函数的基本类型1. 一次函数:函数表达式为y = kx + b,是一种线性函数,图像为直线。

其中k为斜率,b为截距。

2. 二次函数:函数表达式为y = ax^2 + bx + c,是一种抛物线函数,图像为开口向上或开口向下的U型曲线。

其中a为二次项系数,b为一次项系数,c为常数项。

3. 幂函数:函数表达式为y = x^a,是一种以底数为自变量的幂函数,其中a为指数。

4. 指数函数:函数表达式为y = a^x,是一种以指数为自变量的函数,其中a为底数。

5. 对数函数:函数表达式为y = logax,是一种以对数为自变量的函数,其中a为底数。

6. 三角函数:包括正弦函数、余弦函数和正切函数等,是以角度为自变量的函数。

三、函数的图像与性质1. 函数的图像:函数的图像反映了自变量和因变量之间的对应关系。

可以根据函数表达式找出函数的图像特点,如函数的开口方向、对称轴、零点等。

2. 函数的奇偶性:若对于定义域内的任意自变量x,函数满足f(-x) = f(x),则函数为偶函数;若对于定义域内的任意自变量x,函数满足f(-x) = -f(x),则函数为奇函数;若既不满足偶函数的性质,也不满足奇函数的性质,则函数既不是偶函数也不是奇函数。

高中函数必考知识点总结

高中函数必考知识点总结

高中函数必考知识点总结一、函数的概念与性质1. 函数的概念函数是一种特殊的关系,它是一个或多个自变量和因变量之间的对应关系。

在数学中,通常用f(x)表示函数,其中x为自变量,f(x)为因变量。

函数也可以用y表示,即y=f(x)。

函数的定义域为自变量能取得的值的集合,值域为函数在定义域内所有可能取得的值的集合。

2. 函数的性质(1)定义域和值域:一个函数的定义域和值域是描述这个函数在横坐标和纵坐标上的取值范围。

(2)奇函数与偶函数:奇函数的图像对称于原点,即f(-x)=-f(x);偶函数的图像对称于y 轴,即f(-x)=f(x)。

(3)周期函数:周期函数是指满足f(x+T)=f(x)的函数,其中T为函数的周期。

(4)单调性:函数在定义域上的单调性分为递增和递减两种情况。

二、函数的图像与性质1. 一次函数(1)一次函数的图像是一条直线,其表达式一般为y=kx+b,其中k为斜率,b为截距。

(2)一次函数的图像是一条直线,斜率k表示了直线的斜率,而截距b表示了直线与y 轴的交点。

2. 二次函数(1)二次函数的图像是一个抛物线,其表达式一般为y=ax^2+bx+c,其中a不为0。

(2)二次函数的顶点坐标为(-b/2a,c-b^2/4a),对称轴方程为x=-b/2a,开口向上或开口向下取决于a的正负。

3. 指数函数(1)指数函数的图像是一条过点(0,1)的递增曲线,其表达式一般为y=a^x,其中a为底数,a>0且a≠1。

(2)指数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。

(3)指数函数的图像在x轴上没有横截点,y轴上有一个横截点(0,1)。

4. 对数函数(1)对数函数的图像是一条过点(1,0)的递增曲线,其表达式一般为y=loga(x),其中a为底数,a>0且a≠1。

(2)对数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修一函数知识点总结
同学们,今天开始讲解函数章节学习,函数这章极其重要,因为函数是高中数学重要的枢纽章节,高中数学除了立体几何和概率统计和函数没有关系之外,所有章节多多少少和函数有关系,所以函数学不好高中数学很难突破100以上,那么从第一堂开始往下面讲,认真往下听把所有题目听懂按照肖老师的要求掌握函数,学好函数是没有问题。

函数这章我们应该讲什么内容呢?
函数先看他的树枝图,第一个点要了解函数定义讲完,讲解函数三要素(定义域、解析式、值域)
接下来讲解函数四性质(单调性、奇偶性、周期性、对称性)
接下来讲解函数类型主要讲解二次函数、指数、对数、幂函数、反函数这些内容讲完后,这个就是函数基础内容。

函数基础内容讲完后,准备了函数专题一:讲解函数零点问题分为了四个题型格外重要,一出题就是高考压轴题
那么第二个专题讲到恒成立问题
第三个专题总结一下函数压轴小题不能常规做,如果常规做,极有可能时间浪费掉正确答案也做不出来,有技巧的,有三个技巧方法非常高效。

第一种题型:三次函数的单调性、极值、最值及其应用,其实这个点,我们在六类不等式提到过。

第二种题型:差异取值验证法在解决函数选择难题中的妙用,全国卷做完百分之八十压轴选择题,除了一点函数题之外,其他章节题目也能用这个思想去做,同学可能或多或少有了解,带着大家把这种方法彻底让你掌握,高效去做压轴选择题
第三种题型:已知函数不等式求解抽象不等式这种题型是构造函数这些内容全部讲完相信你对函数这章体系特别完整,那么后续学习其他章节就不会因为函数这章没有学好而影响后面的学习。

那么开始进入第一个点函数三要素,一个点定义域,给大家讲解三个

1、已知解析式型
已知解析式型(四个类型)
根据四个类型讲解例题:
2、抽象函数型
例题1、已知f(x)的定义域为[3,5],求f(2x-1)的定义域。

(解题过程答案如图)
例题2、已知f(2x-1)的定义域为[3,5],求f(x)的定义域
例题3、已知f(2x-1)的定义域为[3,5]求f(4x-1)的定义域
已知定义域求参数范围:
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

相关文档
最新文档