实用文档之好好看看几何模型
数学常见几何模型
数学常见几何模型数学中常见的几何模型有很多种,这些模型在数学问题的解决过程中起着重要作用。
以下是一些常见的几何模型:1.对称全等模型:这个模型涉及角平分线、垂直或半角等作为对称轴进行截长补短或作边的垂线,形成对称全等。
这种模型常用于证明线段或角相等。
2.对称半角模型:这包括45°、30°、22.5°、15°等角度的对称(翻折),翻折成正方形、等腰直角三角形、等边三角形、对称全等形等。
这种模型常用于求解角度或边长。
3.旋转半角模型:当一个角含1/2角及相邻线段时,通过旋转将另外两个和为二分之一的角拼接在一起,形成对称全等。
这种模型常用于求解旋转后的图形位置或形状。
4.共旋转模型:当有两对相邻等线段时,可以直接寻找旋转全等。
这种模型常用于证明线段或角相等,或求解旋转后的图形位置。
5.中点旋转:通过倍长中点相关线段转换成旋转全等问题。
这种模型常用于求解与中点相关的旋转问题。
6.对称最值(点到直线垂线段最短):这种模型常用于求解点到直线的最短距离问题。
7.旋转最值(共线有最值):当多个点共线时,通过旋转可以求得最值问题。
这种模型常用于求解与旋转相关的最值问题。
8.剪拼模型:通过剪切和拼接图形来求解问题。
这种模型常用于求解面积或周长等问题。
9.面积等分:当需要将一个图形等分为几个部分时,可以通过构造等面积图形来求解。
这种模型常用于求解面积等分问题。
10.旋转相似模型:当两个图形通过旋转可以相互重合时,它们被称为旋转相似。
这种模型常用于证明两个图形相似或求解与相似相关的问题。
以上只是数学中常见的几何模型的一部分,实际上还有很多其他的几何模型。
这些模型在数学问题的解决过程中起着重要作用,熟练掌握这些模型可以帮助我们更好地理解和解决数学问题。
几何的五大模型学习资料
2)翅膀面积之和:尾巴面积=翅骨:尾骨 (SΔABG+ SΔACG): SΔBGC=AG:GE
3) BECFAD1 CE AF BD
例题:等积变换
例题1:一个长方形分成4个不同的三角形,绿色三角形面积占长方形 面积的15%,黄色三角形面积是21cm2。问:长方形的面积是 多少平方厘米?
分析:SΔ黄+SΔ绿=S长方形÷2(=宽×长÷2)
O
S2 S4
S1:S3:S2:S4=S3=a2:b2:ab:ab
S3
3、蝴蝶定理模型,把梯形肢解模块化,我们
D
EbF
C
可以假设最小的三角形面积为1份。想想?其它各部分所占的份数
4、 ∵ a:b=3:1,∴S2=S4=3份,S1=9份
5、 想想?正方形ABCD中,还有哪些没有包块进去,及与份数之间的关系
5
1G
2
E
43
B
C
F
想想?ΔHBE与ΔHAB、 ΔHBF与ΔHBC、 ΔHDG与ΔHCD之间的比例关系
都存在1:3的关系
所以:S阴影是S正的三分之一,即S阴影=12×12÷3=48
例题:鸟头(共角)模型
例题4:如图,已知三角形ABC面积为1,延长至D,使BD=AB,延长BC 至E,使CE=2BC,延长至F,使AF=3AC,求三角形DEF的面积
C
A
O
E
B
Dቤተ መጻሕፍቲ ባይዱ
例题:等积变换模型
例题4:图中的E、F、G分别是正方形ABCD三条边的三等分点,如果正 方形的边长是12,那么阴影部分的面积是多少?
分析: 正方形的各条边边长相等,都为12,E、F、G为
三等分点,想想?可采用什么模型
初中几何46种模型大全
初中几何46种模型大全初中几何46种模型大全正文:几何是初中数学的重要分支,其中涉及到的模型数量和种类非常丰富。
下面,我们将介绍初中几何中的46种模型,包括它们的定义、性质、应用等。
1. 等腰三角形模型定义:一个等腰三角形的两条边长度相等,且它们的腰角度数相等。
性质:1. 等腰三角形的两条底边长度相等;2. 等腰三角形的两条顶角角度数相等;3. 等腰三角形的顶角和等于180度-底边长度的夹角。
应用:等腰三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
2. 直角三角形模型定义:一个直角三角形的两条直角边长度相等,且它们的斜角角度数相等。
性质:1. 直角三角形的两条直角边长度相等;2. 直角三角形的斜角角度数相等;3. 直角三角形的斜边长度等于两条直角边长度的乘积。
应用:直角三角形模型可以用来解决直角三角形相关问题,如勾股定理等。
3. 等边三角形模型定义:一个等边三角形的三条边长度相等。
性质:1. 等边三角形的三条边长度相等;2. 等边三角形的任意两边长度都大于第三边;3. 等边三角形的任意角度数都小于180度。
应用:等边三角形模型可以用来证明三角形的性质,如边长相等、角度相等等。
4. 正方形模型定义:一个正方形的四条边长度相等。
性质:1. 正方形的四条边长度相等;2. 正方形的任意一个角都是90度;3. 正方形的任意两个角都是直角。
应用:正方形模型可以用来解决正方形相关问题,如面积、周长等。
5. 长方形模型定义:一个长方形的两条边长度相等,且它们的长度之和等于宽度。
性质:1. 长方形的两条边长度相等;2. 长方形的长、宽相等;3. 长方形的任意一个角都是直角。
应用:长方形模型可以用来解决长方形相关问题,如面积、周长等。
6. 菱形模型定义:一个菱形的四条边长度相等且互相平分,对角线互相垂直且相等。
性质:1. 菱形的四条边长度相等且互相平分;2. 菱形的对角线互相垂直且相等;3. 菱形的任意一个角都是45度。
常用几何模型总结
常用几何模型总结
几何模型是数学和物理学中用来描述特定现象或系统的抽象数学模型。
根据不同的应用领域,有许多不同的几何模型。
以下是一些常用的几何模型:
欧几里得几何模型:描述二维平面和三维空间中的点和线段的性质和关系。
拓扑几何模型:研究拓扑空间中元素之间的关系,包括连通性、紧致性、同胚等概念。
解析几何模型:通过解析式或函数来描述几何对象的位置、形状和大小。
微分几何模型:研究曲线、曲面等几何对象的微分性质,包括曲率、挠率等。
线性代数模型:描述向量空间和矩阵运算的性质和关系,广泛应用于物理学、工程学等领域。
极坐标模型:通过极坐标系来描述平面上的点和线段的性质和关系。
参数方程模型:通过参数方程来描述几何对象的形状和位置,常用于计算机图形学等领域。
代数几何模型:结合代数和几何的思想,研究代数方程组在几何空间中的解和性质。
概率几何模型:通过概率论和几何学的结合,描述随机现象的分布和性质。
微分流形模型:将流形和微分结构结合起来,描述复杂的几何对象和现象。
以上是一些常用的几何模型,每种模型都有其特定的应用场景和优势。
在实际应用中,需要根据具体问题选择合适的几何模型来进行描述和分析。
七年级数学几何模型大全
七年级数学几何模型大全七年级的小伙伴们,今天咱们来唠唠七年级数学里那些超有趣的几何模型。
一、角平分线模型1. 双角平分线模型- 想象一下,有一个角,然后从这个角的顶点引出两条角平分线。
比如说∠AOB,OC平分∠AOB,OD平分∠AOC。
这里面就有很多好玩的关系哦。
- 如果设∠AOB = 2α,那么∠AOC=α,∠AOD = α/2。
这里面的关键就是根据角平分线的定义,把角之间的关系找出来。
就像分蛋糕一样,角平分线就是把角这个“大蛋糕”分成相等的“小蛋糕”。
- 而且还有个重要的结论呢,如果两个角平分线所夹的角是β,那么β = 1/2∠AOB或者β = 1/2 (∠AOB - ∠COD),这就看具体的图形情况啦。
2. 邻补角角平分线模型- 当有两个邻补角的时候,它们的角平分线可是很特别的。
比如说∠AOC和∠BOC是邻补角,OE平分∠AOC,OF平分∠BOC。
- 因为∠AOC+∠BOC = 180°,又因为OE和OF是角平分线,所以∠EOC+∠FOC=1/2(∠AOC + ∠BOC)=90°。
这就像两个小伙伴,把相邻的两块“角蛋糕”各自分一半,然后这两半加起来正好是个直角呢。
二、平行线模型1. “Z”字形模型(内错角模型)- 当有两条平行线被第三条直线所截的时候,就会出现像“Z”字一样的图形。
比如说直线a∥b,直线c与a、b相交。
- 这里面的内错角是相等的哦。
就好像在两条平行的铁轨(a和b)上,有一根枕木(c)横过来,形成的内错角就像在铁轨两边对称的位置,它们的大小是一样的。
- 如果∠1和∠2是内错角,那么∠1 = ∠2。
这个结论在证明角相等或者计算角的度数的时候可太有用啦。
2. “F”字形模型(同位角模型)- 还是两条平行线被第三条直线所截,不过这个时候是同位角的关系。
就像“F”字的形状。
- 同位角也是相等的呢。
比如说∠3和∠4是同位角,只要a∥b,那么∠3 = ∠4。
可以想象成在平行的道路(a和b)上,同样位置的标记(∠3和∠4),它们的角度肯定是一样的呀。
66个常用几何模型分类汇编
66个常用几何模型分类汇编一、三角形模型1. 等边三角形:三条边长度相等的三角形。
2. 直角三角形:其中一个角为直角的三角形。
3. 等腰三角形:两条边长度相等的三角形。
4. 锐角三角形:三个内角都小于90度的三角形。
5. 钝角三角形:其中一个内角大于90度的三角形。
6. 等腰锐角三角形:两个角为锐角,且两条边长度相等的三角形。
7. 直角等腰三角形:一个角为直角,两条边长度相等的三角形。
8. 等腰钝角三角形:一个角为钝角,两条边长度相等的三角形。
9. 等边锐角三角形:三个内角都小于90度,三条边长度相等的三角形。
二、四边形模型10. 矩形:四个角都是直角的四边形。
11. 正方形:四条边长度相等,四个角都是直角的四边形。
12. 平行四边形:对角线相互平分,两对边平行的四边形。
13. 菱形:四个边长度相等,对角线相等的四边形。
14. 梯形:有且仅有一对对边平行的四边形。
15. 阳角梯形:其中一对边为直角的梯形。
16. 等腰梯形:有两边相等的梯形。
三、圆模型17. 圆:平面上所有到圆心距离相等的点的集合。
18. 圆环:由两个同心圆构成的几何图形。
四、多边形模型19. 六边形:有六条边的多边形。
20. 正六边形:六个角都是直角的六边形。
21. 正多边形:所有边和角都相等的多边形,如正三角形、正四边形等。
22. 不规则多边形:边长度或者角度不相等的多边形。
五、体积与表面积模型23. 正方体:六个面都是正方形的立体。
24. 长方体:六个面都是矩形的立体。
25. 正圆柱:底面为圆的圆柱。
26. 正圆锥:底面为圆的圆锥。
27. 正棱柱:底面为正多边形的棱柱。
28. 正棱锥:底面为正多边形的棱锥。
29. 正四面体:四个面都是三角形的立体。
30. 正六面体:六个面都是正方形的立体。
六、相似模型31. 相似三角形:对应角相等,对应边成比例的三角形。
32. 相似四边形:对应角相等,对应边成比例的四边形。
七、坐标几何模型33. 点:一个位置的坐标表示。
几何模型(小学奥数必会6大模型)
模型一:等高模型定义:三角形面积的大小,取决于三角形底和高的乘积。
如果固定三角形的底(或高)不变,另一者变大(小)n 倍,三角形的面积也就变大(小)n 倍。
六种基本类型:两个三角形高相等,面积比等于底之比;两个三角形底相等,面积比等于高之比公式:DCBDS S ADC ABD =∆∆;FCEDS S ABC ABD =∆∆其中,BC=EF 且两三角形的高相等公式:1=∆∆DEFABCS S夹在一组平行线之间的等积变形公式:1==∆∆∆ABDABCBCD ACD S S等底等高的两个平行四边形面积相等(长方形和正方形可看作特殊的平行四边形)公式:1=CDEFABCDS S三角形面积等于与它等底等高的平行四边形面积的一半公式:ABCDEDC S S 21=∆两个平行四边形高相等,面积比等于他们底的比公式:EFABS S DEFG ABCD =例题:长方形ABCD 的面积为36cm 2,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?()5.135.418185.43681211836212136212121=-=-=∴=⨯=⨯⨯=+=++=⨯=++=++∴=++====∴===∴=∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆BEF BEF BEF DGH BFH BEH CDH BCH ABH DGH BFH BEH CDH BCH ABH ABCD CDH DGH BCH BFH ABH BEH CGHDGH CFH BFH BEHAEH S S BF BE S S S S S S S S S S S S S S S S S S S S S S S S S S S S EB AE HC BH 阴影阴影,,,,同理,、如图,连接模型二:相似模型定义:形状相同,大小不相同的两个三角形,一切对应线段的长度成比例的模型。
两种基本类型:(一)金字塔模型(二)沙漏模型①相似三角形的一切对应线段的长度成比例,并且这个比例等于他们的相似比;公式:AGAFBC DE AC AE AB AD ===②相似三角形的面积比等于他们相似比的平方;公式:22::AG AF S S ABC ADE =∆∆③连接三角形两边中点的线段叫做三角形的中位线。
初中几何46种模型大全
初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。
在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。
本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。
正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。
正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。
2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。
长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。
长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。
3. 平行线模型平行线模型是相互平行的直线。
平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。
平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。
4. 菱形模型菱形模型是具有四个相等的直角边的矩形。
菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。
菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。
5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。
等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。
6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。
完整版)初中数学经典几何模型
完整版)初中数学经典几何模型初中数学经典几何模型(模型即套路),是初中数学里的重要部分。
在解决几何证明问题时,我们可以运用这些模型,从而更加高效地解决问题。
人们常说几何很困难,其中一个难点就在于辅助线的运用。
为了更好地运用辅助线,我们需要把握定理和概念,并且刻苦加钻研,找出规律凭经验。
在绘制图形时,我们可以利用角平分线向两边作垂线,或者将图形对折来寻找对称关系。
利用角平分线的平行线,我们可以构造等腰三角形。
同时,我们也可以尝试将角平分线加上垂线,从而将三条线合为一条。
线段垂直平分线时,我们可以将线段向两端延长或缩短来验证线段的倍数与半数关系。
在三角形中,连接两中点可以构造出中位线,同时延长中线也可以等于中线。
对于平行四边形,我们可以找到对称中心等分点。
在梯形中,我们可以利用高线平移一腰来解决问题。
同时,平行移动对角线,补成三角形也是常见的方法。
当证明相似时,我们可以通过比线段,添加平行线来构造相似三角形。
在等积式子比例换时,寻找线段也是很关键的。
直接证明有困难时,我们可以通过等量代换来简化问题。
在计算圆的相关问题时,我们可以利用半径与弦长计算,或者利用勾股定理来计算切线长度。
同时,在判断是否为切线时,我们可以通过半径垂线来进行辨别。
在解决相交圆的问题时,我们需要注意作公共弦。
对于内外相切的两个圆,我们可以通过切点来构造公切线。
同时,我们也可以利用连心线来确定切点。
在绘制图形时,我们需要注意勿改变虚线的位置。
基本作图也是很关键的,我们需要熟练掌握。
在解题时,我们需要多动脑筋,经常总结方法。
同时,我们也需要注意方法的灵活性,不要盲目乱添线。
在选用分析综合方法时,我们需要根据具体情况进行选择。
最重要的是,我们需要虚心勤学,加以苦练,才能在数学上取得更好的成绩。
斜边上作高线,比例中项一大片。
--。
在斜边上作高线,可以得到比例中项一大片。
半径与弦长计算,弦心距来中间站。
--。
通过计算半径和弦长,可以得到弦心距。
几何概念模型
几何概念模型
几何概念模型指的是在几何学中用于描述几何概念和关系的一种抽象模型。
这些模型可以是数学公式、图形、图表或其他形式的表达,用于清晰地阐述和解释几何概念。
以下是一些常见的几何概念模型:
1. 点:几何中最基本的概念,表示一个位置,通常用一个小圆点表示。
2. 线段:由两个点确定的直线的部分,用直线上的两个点表示。
3. 直线:划过两个点的最短路径,用一条长直线表示。
4. 射线:由一个点出发,通过另一个点的直线的部分,用一个起点和箭头表示。
5. 角:由两条射线共享一个端点所形成的图形,用小弧线和角内部的字母表示。
6. 平行线:在同一平面上永不相交的直线。
7. 垂直线:与平行线相交,形成直角的直线。
8. 同位角:由两条平行线和一条横穿它们的直线所形成的角,其对应角相等。
9. 三角形:由三条线段相连的三个点所形成的图形。
10. 圆:由所有到圆心距离相等的点所形成的图形。
这些几何概念模型能够帮助我们更好地理解和研究几何学中的基本概念和关系,并在实际问题中应用几何原理。
八年级下册数学几何模型大全
八年级下册数学几何模型大全数学几何模型是指通过数学方法和几何原理,将现实世界的物体、图形、结构等抽象为数学模型进行研究和分析。
数学几何模型的建立和研究,在实际应用和理论研究中起着重要的作用。
下面将从平面几何模型、立体几何模型以及几何变换模型等方面,介绍数学几何模型的相关内容。
一、平面几何模型1.点、线、面的模型平面几何模型的最基本元素是点、线、面。
点可以用坐标表示,线可以用两点或斜率截距等式表示,平面可以用点和法向量、点法式方程等表示。
2.三角形的模型三角形是平面几何中最基本也是最重要的图形,它可以通过三个顶点的坐标或边长、角度等参数进行描述。
三角形的性质和关系是平面几何模型中的重要内容。
3.圆的模型圆的模型是由圆心和半径来描述的,圆心可以用坐标表示,圆的方程可以用一元二次方程表示。
圆与直线、圆与圆之间的关系以及圆的切线、法线等性质也是数学几何模型的重要内容。
4.多边形的模型多边形是由多条线段构成的封闭图形,可以通过顶点坐标或各边长、角度等参数来描述。
多边形的性质包括内角和、边长和、面积、重心、外心等。
二、立体几何模型1.长方体、正方体的模型长方体和正方体是最基本的立体几何模型,可以通过边长、面积、体积等参数来描述。
它们在实际应用中广泛存在,如建筑、容器、器具等。
2.圆柱、圆锥、球体的模型圆柱、圆锥和球体是常见的曲面立体几何模型。
圆柱可以由轴线和底面圆描述,圆锥可以由轴线和底面描述,球体可以由球心和半径描述。
它们的体积、表面积以及与其他几何体的关系是数学几何模型的重要内容。
3.棱柱、棱锥的模型棱柱和棱锥是由棱和面构成的多面体。
棱柱可以通过底面形状和高度来描述,棱锥可以通过底面形状、高度和斜高来描述。
它们的体积、表面积以及与其他几何体的关系也是数学几何模型的重要内容。
4.多面体的模型多面体包括正多面体和一般多面体。
正多面体是指所有面都是相等正多边形的多面体,如四面体、六面体、八面体等。
一般多面体则是指不是正多边形的多面体,如五面体、十字切半正十二面体等。
初中数学48个几何模型及题型
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。
初中数学几何模型大全
几何模型大全---第一部分一、全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转模型一:对称全等模型以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
模型二:对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
模型三:旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题(一)旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
(二)自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称(三)共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。
通过“8”字模型可以证明。
模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
(三)中点旋转模型说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。
证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
初中数学几何模型大全及解析
初中数学几何模型大全及解析几何是数学中的重要分支,它研究的是形状、大小、结构和空间关系等内容。
初中数学中的几何部分主要包括平面几何和立体几何两个方面。
为了更好地理解和应用几何知识,我们可以通过各种模型来帮助我们进行学习和解析。
本文将介绍一些常见的初中数学几何模型及其解析,帮助学生更加直观地理解几何概念。
一、平面几何模型1. 平面图形模型平面图形模型可以通过纸片、卡纸或者其他材料制作而成。
例如,矩形模型可以通过两个相等的矩形纸片叠放而成,学生可以直观地观察到矩形的性质,如长宽相等、对角线相等、相邻边互相垂直等。
类似地,三角形、正方形、梯形等不同的图形也可以通过相应的材料来制作模型,帮助学生更好地理解其性质和特点。
2. 折纸模型折纸模型是平面几何中常用的模型之一。
学生可以通过纸张的折叠来制作出不同的图形。
例如,通过将一个正方形纸张对折,可以制作出一个正方形、一个矩形或者一个等边三角形。
通过折纸模型的制作和观察,学生可以更好地理解各种图形的性质,并且锻炼了空间想象能力和手工操作能力。
3. 各类角度模型角度是几何中的重要概念。
为了更好地理解和判断各类角度,可以使用角度模型进行学习和实践。
例如,通过两条相交的直线和一把量角器或者两个相等的直角三角形,可以制作出不同的角度模型,比如直角、锐角和钝角。
通过观察和实践,学生可以深入了解角度的概念和性质,并且能够通过角度模型进行角度测量和判断。
二、立体几何模型1. 空间几何模型立体几何模型可以帮助学生更好地理解和判断空间关系。
例如,通过连接适量的珠子和棍子,可以制作出不同的空间模型,如正方体、长方体、圆柱体等。
这样的模型能够帮助学生深入理解不同立体图形的性质,如面数、棱数和顶点数,并且能够帮助学生进行体积和表面积的计算。
2. 立体切割模型立体切割模型可以将复杂的立体图形简化为多个平面图形的组合。
例如,通过将一个长方体切割成多个长方形和正方形,可以帮助学生更好地理解长方体的各种性质和关系。
初中数学常用几何模型
目录1. 8字模型与飞镖模型2.手拉手全等模型3.三垂直全等模型4.角平分线平行线模型5. 角平分线+两垂线段模型6.等腰三角形的存在性问题7.A型、8型相似模型8.一线三等角相似模型8字模型与飞镖模型资料编号:202109012143关键词 8字模型 飞镖模型8字模型如图所示,AC 、BD 相交于点O ,连结AD 、BC ,则有C BD A ∠+∠=∠+∠.OACBD因为这个图形像数字8,所以我们把这个模型称为8字模型. 8字模型的证明:证法一:∵D A AOB ∠+∠=∠ C B AOB ∠+∠=∠ ∴C B D A ∠+∠=∠+∠.(三角形的一个外角等于与它不相邻的两个内角之和) 证法二:∵︒=∠+∠+∠180AOD D A ︒=∠+∠+∠180BOC C B ∴AOD D A ∠-︒=∠+∠180 BOC C B ∠-︒=∠+∠180 ∵BOC AOD ∠=∠ ∴C B D A ∠+∠=∠+∠.点评 8字模型的结论常被用来求角度或证明两个角相等,多出现在几何综合题中.有些复杂的几何问题,应用8字模型的结论,往往会出奇制胜,达到意想不到的效果(见后面的例题).如图所示,有结论:DBABCD∠+∠+∠=∠.因为这个图形像飞镖,所以我们把这个模型称为飞镖模型. 飞镖模型常被用来推导几何图形中角之间的等量关系.AB CD飞镖模型的证明:证法一:延长BC,交AD于点E,如下图所示.∵BADBCD∠+∠=∠∠+∠=∠1,1∴DBABCD∠+∠+∠=∠.证法二:作射线AC,如下图所示.∵DB∠+∠=∠∠+∠=∠42,31∴DB∠+∠+∠+∠=∠+∠4321∴DBBADBCD∠+∠+∠=∠.FBECADAEAE例1. 如图所示,求证:︒=∠+∠+∠+∠+∠180E D C B A .B EC AD证法一:(飞镖模型)设BD 与CE 相交于点F ,如图所示. ∵︒=∠+∠+∠180BFE E B CFD BFE ∠=∠ ∴︒=∠+∠+∠180CFD E B ∵D C A CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B A . 证法二:(8字模型) 连结CD ,如图所示,则有21∠+∠=∠+∠E B∵︒=∠+∠+∠180ADC ACD A∴︒=∠+∠+∠+∠+∠18021ADB ACE A ∴︒=∠+∠+∠+∠+∠180E ADB ACE B A . 证法三:(利用三角形内角和定理与外角和定理) ∵︒=∠+∠+∠18021ADB EC ∠+∠=∠∠+∠=∠21 ∴︒=∠+∠+∠+∠+∠180ED C B A .BECDA例2. 如图所示,=∠+∠+∠+∠+∠+∠F E D C B A _________.F CBEAD解法一:(利用8字模型) ∵32∠+∠=∠+∠B A3121∠+∠=∠+∠∠+∠=∠+∠F E D C∴=∠+∠+∠+∠+∠+∠F E D C B A()3212∠+∠+∠∵︒=∠+∠+∠180321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A . 解法二:(利用三角形内角和定理与外角和定理) ∵B A ∠+∠=∠1DC FE ∠+∠=∠∠+∠=∠32∴=∠+∠+∠321F E D C B A ∠+∠+∠+∠+∠+∠ ∵︒=∠+∠+∠360321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A .例3. 如图所示,=∠+∠+∠+∠+∠E D C B CAD _________.解:(利用飞镖模型)设BD 与CE 相交于点F ,如图所示.FBECD A∵︒=∠+∠+∠180BFE E B ∴︒=∠+∠+∠180CFD E B ∵D C CAD CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B CAD .例4. 如图,△ABC 和△DCE 均是等腰三角形,CE CD CB CA ==,,=∠BCADCE ∠.(1)求证:AE BD =;(2)若︒=∠70BAC ,求BPE ∠的度数.NMPDABCE(1)证明:∵=∠BCA DCE ∠ ∴ACD DCE ACD BCA ∠+∠=∠+∠ ∴ACE BCD ∠=∠ 在△BCD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD ACE BCD CA CB ∴△BCD ≌△ACE (SAS ) ∴AE BD =; (2)解:方法一:∵△BCD ≌△ACE∴21∠=∠ ∵CB CA =∴︒=∠=∠70ABC BAC ∵PBA PAB BPE ∠+∠=∠ ∴PBA BAC BPE ∠+∠+∠=∠2︒=︒+︒=∠+︒=∠+∠+︒=140707070170ABC PBA方法二:∵︒=∠=70,BAC CB CA ∴︒=∠=∠70ABC BAC ∵︒=∠+∠+∠180ABC BAC ACB ∴︒=︒-︒-︒=∠407070180ACB ∵△BCD ≌△ACE ∴21∠=∠∵APB ACB ∠+∠=∠+∠21 ∴︒=∠=∠40APB ACB ∵︒=∠+∠180APB BPE ∴︒=︒-︒=∠14040180BPE .点评 方法二用到了“8”字模型的结论,如下图所示.例5. 如图所示,△ABC 和△ADE 都是等腰 直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥.证明:(1)∵△ABC 和△ADE 都是等腰直角三角形 ∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12(8字模型) ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例6.(1)问题发现 如图1,△ABC 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连结BE .填空: ①AEB ∠的度数为_________;②线段AD 、BE 之间的数量关系为_________;(2)拓展探究如图2,△ABC 和△DCE 均为等腰直角三角形,︒=∠=∠90DCE ACB ,点A 、D 、E 在同一直线上,CM 为△DCE 的高,连结BE ,请写出AEB ∠的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由.图 1ECAB D图 2MEBCAD解:(1)①︒60; ②BE AD =;提示: ∵△ABC 和△DCE 均为等边三角形 ∴CE CD CB CA ==,︒=∠=∠60DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠ ∴BCE ACD ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS ) (属于“手拉手”全等模型) ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB (属于“8”字模型) ∴︒=∠=∠60ACB AEB . (2)解:︒=∠90AEB ,CM BE AE 2=-; 理由如下:∵︒=∠=∠90DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠∴BCE ACD ∠=∠∵△ABC 和△DCE 均为等腰直角三角形 ∴CE CD CB CA ==, 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS )……………………………………7分 ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB ∴︒=∠=∠90ACB AEB……………………………………8分 ∵DE CM CE CD ⊥=, ∴CM 平分DCE ∠∴︒=∠=∠=∠=∠45ECM DCM CED CDE ∴EM DM CM == ∴CM DE 2= ∵AD AE DE -= ∴CM BE AE 2=-.手拉手全等模型资料编号:202108292312关键词 手拉手全等模型 三角形全等手拉手全等模型介绍手拉手全等模型常见的有三种图形形式:两个等腰直角三角形组成的手拉手全等模型、两个等边三角形组成的手拉手全等模型以及两个普通等腰三角形组成的手拉手全等模型.必须说明的是,组成手拉手全等模型的两个等腰三角形,共用顶角的顶点(即两个顶角的顶点重合),且两个等腰三角形的顶角相等.如图1、图2、图3所示,如果把大等腰三角形的腰长看作大手,小等腰三角形的腰长看作小手,两个等腰三角形共用顶角的顶点,类似大手拉着小手,所以把这种模型称为手拉手模型(手拉手模型还有手拉手相似模型).图中两个等腰三角形的相对位置发生变化时,始终存在一对全等三角形. 手拉手模型常和旋转结合,作为几何综合题出现.图 1图 2图 3在图1、图2、图3中,△ABC 和△ADE 均为等腰三角形,AE AD AC AB ==,,且DAE BAC ∠=∠,连结BD 、CE ,则△ABD ≌△ACE . 结论证明:(以图1为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ). 结论证明:(以图2为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ).点评 手拉手全等模型的依据都是SAS. 重要推论推论1 如图所示,△ABC 和△ADE 均为等腰直角三角形,︒=∠=∠90DAE BAC ,连结BD 、CE ,则有: (1)△ABD ≌△ACE ; (2)CE BD CE BD ⊥=,.推论1证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)∵△ABD ≌△ACE ∴21,∠=∠=CE BD延长BD 交CE 于点F ,如图所示. ∵BCF DBC BFE ∠+∠=∠ ∴ACB DBC BFE ∠+∠+∠=∠2︒=∠+∠=∠+∠+∠=901ACB ABC ACBDBC∴CE BD ⊥.推论2 如图所示,△ABD 和△BCE 均为等边三角形,点A 、B 、C 在同一直线上,连结AE 、CD ,则有:FGHEDACB(1)△ABE ≌△DBC ; (2)DC AE =; (3)︒=∠60DHA ; (4)△ABG ≌△DBF ; (5)△BEG ≌△BCF ; (6)连结GF ,则AC GF //; (7)连结HB ,则HB 平分AHC ∠.推论2证明:(1)∵△ABD 和△BCE 均为等边三角形 ∴BC BE DB AB ==,,︒=∠=∠60CBE ABDFGHEDCAB∵点A 、B 、C 在同一直线上 ∴︒=∠=∠120DBC ABE 在△ABE 和△DBC 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE DBC ABE DB AB ∴△ABE ≌△DBC ;(2)由(1)可知:△ABE ≌△DBC ∴DC AE =;(3)∵△ABE ≌△DBC ∴21∠=∠∵12∠+∠=∠+∠ABD DHA ∴︒=∠=∠60ABD DHA ; (“8”字模型)(4)∵︒=∠=∠60CBE ABD ∴︒=︒-︒-︒=∠606060180DBF ∴DBF ABG ∠=∠ 在△ABG 和△DBF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠DBF ABG DB AB 21 ∴△ABG ≌△DBF (ASA ); (5)∵△ABG ≌△DBF ∴BF BG =由前面可知:︒=∠=∠60CBF EBG 在△BEG 和△BCF 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE CBF EBG BF BG ∴△BEG ≌△BCF (SAS );(6)连结GF ,如图所示.∵BF BG =,︒=∠60FBG ∴△BFG 为等边三角形 ∴︒=∠=∠60ABD BGF ∴AC GF //;(7)连结HB ,如图所示,作DC BN AE BM ⊥⊥,.∵△ABE ≌△DBC ∴DBC ABE S S ∆∆=,DC AE = ∴BN DC BM AE ⋅=⋅2121 ∴BN BM =∵DC BN AE BM ⊥⊥,,BN BM = ∴点B 在AHC ∠的平分线上 ∴HB 平分AHC ∠.点评 要求学生能从复杂的几何图形中辨识出手拉手全等模型,并能用SAS 证明两个三角形全等.模型举例例1. 如图,在△ABC 和△ADE 中,AE AD AC AB DAE BAC ==︒=∠=∠,,90,点C 、D 、E 在同一条直线上,连结BD . 求证:(1)△ABD ≌△ACE ;(2)试猜想BD 、CE 有何关系,并证明.ECAB D分析:由条件可知△ABC 和△ADE 均为等腰直角三角形,所以该图形中存在手拉手全等模型,手拉手全等模型的依据都是SAS . 证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)CE BD CE BD ⊥=,. 理由如下:∵△ABD ≌△ACE ∴E CE BD ∠=∠=1, ∵︒=∠=90,DAE AE AD ∴︒=∠=∠45E ADE ∴︒=∠451C ∴︒=︒+︒=∠+∠=∠9045451ADE BDE ∴CE BD ⊥.例2. 如图,△OAB 和△OCD 都是等边三角形,连结AC 、BD 相交于点E . (1)求证:①△OAC ≌△OBD ;②︒=∠60AEB ; (2)连结OE ,OE 是否平分AED ∠?请说明理由.EDOABC(1)证明:①∵△OAB 和△OCD 都是等边三角形 ∴OD OC OB OA ==,︒=∠=∠60COD AOB∴BOC COD BOC AOB ∠+∠=∠+∠ ∴BOD AOC ∠=∠ 在△OAC 和△OBD 中∵⎪⎩⎪⎨⎧=∠=∠=OD OC BOD AOC OB OA ∴△OAC ≌△OBD (SAS ); ②∵△OAC ≌△OBD ∴21∠=∠∵︒=∠+∠+∠180ABE EAB AEB ∴︒=∠+∠+∠+∠1802ABO EAB AEB ∴︒=∠+∠+∠+∠1801ABO EAB AEB ∴()︒=∠+∠+∠+∠1801ABO EAB AEB∴︒=∠+∠+∠180ABO OAB AEB ∴OAB ABO AEB ∠-∠-︒=∠180︒=︒-︒-︒=606060180C(2)OE 平分AED ∠. 理由如下:作BD ON AC OM ⊥⊥, ∵△OAC ≌△OBD ∴OBD OAC S S ∆∆=,BD AC = ∴ON BD OM AC ⋅=⋅2121 ∴ON OM =∵BD ON AC OM ⊥⊥,,ON OM = ∴OE 平分AED ∠.(到角两边距离相等的点在角的平分线上)例3. 如图所示,△ABC 和△ADE 都是等腰直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥. 证明:(1)∵△ABC 和△ADE 都是等腰直角三角形∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12 ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例4. 如图,在线段AE 的同侧作等边△ABC 和等边△CDE (︒<∠120ACE ),点P 与点M 分别是线段BE 和AD 的中点. 求证:△CPM 是等边三角形.PMDBA EC分析:本题图形中包含手拉手全等模型,我们可以证明△ACD 和△BCE 全等.另外,关于等边三角形的判定,可先证明三角形是等腰三角形,再证明三角形有一个角等于︒60.证明:∵△ABC 和△CDE 都是等边三角形 ∴CE CD BC AC ==,,︒=∠=∠60DCE ACB ∴ACE DCE ACE ACB ∠+∠=∠+∠∴ACD BCE ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD BC AC ∴△ACD ≌△BCE (SAS ) ∴BE AD =∠=∠,21∵点P 与点M 分别是线段BE 和AD 的中点 ∴AM BP =在△ACM 和△BCP 中∵⎪⎩⎪⎨⎧=∠=∠=BP AM BC AC 21 ∴△ACM ≌△BCP (SAS ) ∴CP CM =,43∠=∠∴︒=∠=∠+∠=∠+∠=∠6043ACB ACP ACP PCM ∵CP CM =,︒=∠60PCM ∴△CPM 是等边三角形.三垂直全等模型资料编号:202108282255关键词 三垂直全等模型 一线三等角全等模型 三角形全等三垂直全等模型介绍如图1、图2、图3所示,为三种常见的三垂直全等模型.图 1图 2图 3如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,. 结论:△BCD ≌△CAE .结论的证明:∵DE AE DE BD ⊥⊥, ∴︒=∠=∠90E D ,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠901BCD ∴1∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC E D B 1 ∴△BCD ≌△CAE (AAS ).重要推论推论1 如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,,则有:BD AE DE +=;图 1证明:由前面可知:△BCD ≌△CAE ∴BD CE AE CD ==, ∵CE CD DE += ∴BD AE DE +=.推论2 如图2所示,BC AC BC AC CD BD CD AE =⊥⊥⊥,,,,则有:BD AE DE -=.图 2证明:∵CD BD CD AE ⊥⊥, ∴︒=∠=∠9021,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠903BCD ∴3∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC B 213 ∴△BCD ≌△CAE (AAS ) ∴AE CD CE BD ==, ∵CE CD DE -= ∴BD AE DE -=.说明 三垂直全等模型是一种常见的几何模型,同学们要记住这种几何模型的图形特征和题目特点,以后遇到这种模型常常要证明两个三角形全等. 模型举例例1. 如图,直线l 上有三个正方形c b a ,,,若c a ,的面积分别是5和11,则b 的面积是_________.l cba IH JFEBADCGlcba IHJFEBADCG分析 三垂直全等模型作为一种重要且常见的几何模型,要求同学们能从复杂的几何图形中辨识出这种模型,若能找出这种模型,往往要证明两个三角形全等,从而解决相关的问题.解析:根据“三垂直全等模型”,本题易证:△BCG ≌△GJF . ∴JF CG =由题意可得:11,522====JF S BC S c a ∴112=CG在Rt △BCG 中,由勾股定理得:16115222=+=+==CG BC BG S b .∴b 的面积是16.例2. 如图1所示,已知在△ABC 中,︒=∠90BAC ,AC AB =,点P 为BC 上一动点(CP BP <),分别过点B 、C 作AP BE ⊥于点E ,AP CF ⊥于点F . (1)求证:BE CF EF -=;(2)如图2,若点P 为BC 延长线上一点,其他条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.图 1图 2PCBA(1)证明:∵AP BE ⊥,AP CF ⊥ ∴︒=∠=∠901E ,︒=∠+∠903CAE ∵︒=∠90BAC ∴︒=∠+∠902CAE ∴32∠=∠在△ABE 和△CAF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB E 321 ∴△ABE ≌△CAF (AAS ) ∴CF AE AF BE ==, ∵AF AE EF -= ∴BE CF EF -=;(2)如图3所示.图 3BECFEF+=.提示:关键在于证明△ABE≌△CAF.例3.如图,在△ABC中,BCACACB=︒=∠,90,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,求证:BEADDE-=;(3)当直线MN绕点C旋转到图3的位置时,请直接写出DE、AD、BE之间的数量关系.图 1图 2图 3图 1(1)证明:①∵MNAD⊥,MNBE⊥∴︒=∠=∠9021∵︒=∠90ACB ∴︒=∠+∠904ACD ∵︒=∠+∠903ACD ∴43∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC 4321 ∴△ADC ≌△CEB (AAS ); ②∵△ADC ≌△CEB ∴BE CD CE AD ==, ∵CD CE DE += ∴BE AD DE +=;图 2(2)∵MN AD ⊥,MN BE ⊥ ∴︒=∠=∠90CEB ADC ∵︒=∠90ACB ∴︒=∠+∠902ACD ∵︒=∠+∠901ACD ∴21∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC CEB ADC 21 ∴△ADC ≌△CEB (AAS )∴BE CD CE AD ==, ∵CD CE DE -= ∴BE AD DE -=; (3)AD BE DE -=.提示:仍然是证明△ADC ≌△CEB .图 3例4.(1)如图1所示,已知在△ABC 中,AC AB BAC =︒=∠,90,直线m 经过点A ,m BD ⊥于点D ,m CE ⊥于点E ,求证:CE BD DE +=;(2)如图2,将(1)中的条件改为:在△ABC 中,AC AB =,D 、A 、E 三点都在直线m 上,且有α=∠=∠=∠BAC AEC BDA ,其中α为任意锐角或钝角,请问结论CE BD DE +=是否成立?若成立,请你给出证明;若不成立,请说明理由.m 图 1EDCBA m图 2ECD A B(1)证明:∵m BD ⊥,m CE ⊥ ∴︒=∠=∠9021 ∴︒=∠+∠903BAD ∵︒=∠90BAC ∴︒=∠+∠904BAD ∴43∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB 4321 ∴△ABD ≌△CAE (AAS ) ∴CE AD AE BD ==, ∵AE AD DE += ∴BD CE DE +=;(2)成立. 理由如下:∵︒=∠+∠+∠1801BAD BDA ∴α-︒=∠+∠1801BAD ∵︒=∠+∠+∠1802BAD BAC ∴α-︒=∠+∠1802BAD ∴21∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB AEC BDA 21∴△ABD≌△CAE(AAS)∴AE=,AD=CEBD∵AE=ADDE+∴BD=.DE+CE点评第二问所涉及到的几何模型为“一线三等角全等模型”,而我们在前面花大篇幅所介绍的“三垂直全等模型”属于“一线三等角全等模型”的特殊情况.BEFDBCA角平分线平行线模型资料编号:202108310011关键词 角平分线 平行线 等腰三角形角平分线平行线模型介绍如图所示,OM 平分AOB ∠,点P 是OM 上一点,过点P 作OB PC //,交OA 于点C ,则△POC 是等腰三角形. 下图就是角平分线平行线模型.MOBACP模型证明:∵OM 平分AOB ∠ ∴21∠=∠ ∵OB PC // ∴31∠=∠ ∴32∠=∠ ∴CP CO =∴△POC 是等腰三角形.点评 在角平分线的条件下,常过角平分线上一点作一边的平行线,构造等腰三角形. 重要推论推论1 如图所示,在△ABC 中,ABC ∠、ACB ∠ 的平分线交于点D ,过点D 作BC EF //,交AB 于 点E ,交AC 于点F ,则有: (1)FC FD ED EB ==,; (2)CF BE EF +=; (3)AC AB C AEF +=∆.推论1证明: (1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; (2)∵DF DE EF += ∴CF BE EF +=;(3)∵AF EF AE C AEF ++=∆ ∴AF DF DE AE C AEF +++=∆ AF CF BE AE +++= AC AB +=.推论2 如图所示,四边形ABCD 为平行四边形,把△BCD 沿对角线BD 折叠,得到△D BC ','BC 交AD 于点E ,则△BDE 为等腰三角形.EC'DBCA说明:由折叠可知:BD C CBD '∠=∠,即BD 平分BC C ',所以上图中包含角平分线平行线模型.推论2证明:由折叠可知:21∠=∠∵四边形ABCD 为平行四边形 ∴BC AD // ∴31∠=∠ ∴32∠=∠∴EDEB=∴△BDE为等腰三角形.模型举例例1.如图,把一张长方形的纸片ABCD沿BD对折,使点C落在点E处,BE与AD 相交于点O.(1)由折叠可知△BCD≌△BED,除此之外,图中还存在其他的全等三角形,请写出一组全等三角形:________________;(2)图中有等腰三角形吗?请你找出来:__________;(3)若8AB,求OB的长度.,6==BC解:(1)△ABD≌△EDB;(或△ABD≌△CDB或△AOB≌△EOD)(2)△BOD;提示:如图上所示,由折叠可知:=∠1∠2∵BCAD//(为什么?)∴3=∠1∠∴3∠2∠=∴OD OB =,即△BOD 为等腰三角形. (3)由(2)可知:OD OB =. 设x OD OB ==,则x OA -=8 ∵四边形ABCD 为长方形 ∴︒=∠90A在Rt △AOB 中,由勾股定理得:222OB AB OA =+∴()22268x x =+-解之得:425=x ∴425=OB . 例2. 如图,点O 是△ABC 的边AC 上一个动点,过点O 作直线BC MN //.直线MN 交ACB ∠的平分线于点E ,交ACB ∠的外角平分线于点F . (1)求证:OF OE =;(2)若6,8==CF CE ,求OC 的长.DNMEF BCAO(1)证明:∵CE 平分ACB ∠ ∴21∠=∠ ∵BC MN // ∴32∠=∠ ∴31∠=∠ ∴OC OE = 同理可证:OC OF = ∴OF OE =;(2)解:∵CF 平分ACD ∠ ∴ACD ∠=∠215 ∵51∠+∠=∠ECF ∴ACD ACB ECF ∠+∠=∠2121 ()︒=︒⨯=∠+∠=901802121ACD ACB在Rt △ECF 中,由勾股定理得:10682222=+=+=CF CE EF由(1)可知:521==EF OC . 例3. 如图,在△ABC 中,AD 平分BAC ∠,点E 、F 分别在BD 、AD 上,AB EF //,且CD DE =. 求证:AC EF =.EDBCAF证明:作AB CG //交AD 的延长线于点G . ∴G ∠=∠1 ∵AD 平分BAC ∠ ∴21∠=∠ ∴G ∠=∠2 ∴GC AC = ∵AB EF // ∴31∠=∠ ∴G ∠=∠3在△EDF 和△CDG 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DC DE G 543 ∴△EDF ≌△CDG (AAS ) ∴CG EF = ∴AC EF =. 例4. 解答下列问题:(1)如图1所示,在△ABC 中,BC EF //,点D 在EF 上,BD 、CD 分别平分ACB ABC ∠∠、,写出线段EF 与BE 、CF 的数量关系;(2)如图2所示,BD 平分ABC ∠,CD 平分外角ACG ∠,BC DE //交AB 于点E ,交AC 于点F ,写出线段EF 与BE 、CF 的数量关系,并说明理由;(3)如图3所示,BD 、CD 为外角BCN CBM ∠∠、的平分线,BC DE //交AB 的延长线于点E .交AC 的延长线于点N ,直接写出线段EF 与BE 、CF 的数量关系.图 1EFDBCAG图 2FEDBC AMN图 3F EDBCA(1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF += ∴CF BE EF +=; (2)CF BE EF -=. 理由如下:∵BD 平分ABC ∠ ∴21∠=∠ ∵BC DE //∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF -= ∴CF BE EF -=; (3)CF BE EF +=.例5. 如图,在梯形ABCD 中,BC AD //,点E 在CD 上,且AE 平分BAD ∠,BE 平分ABC ∠.求证:BC AB AD -=.EB CAD证明:延长AE 交BC 的延长线于点F . ∵AE 平分BAD ∠ ∴21∠=∠ ∵BC AD // ∴F ∠=∠2 ∴F ∠=∠1 ∴BF BA =∵BF BA =,BE 平分ABC ∠ ∴FE AE =在△ADE 和△FCE 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠FEC AED FE AE F 2F∴△ADE ≌△FCE (ASA ) ∴FC AD = ∵BC BF FC -= ∴BC AB AD -=.点评 利用右图所示的辅助线也能证明问题.角平分线+两垂线段模型资料编号:202112022157关键词 角平分线性质定理 等腰三角形 三角形全等 辅助线 垂线段 模型介绍 角平分线+两垂线段模型如图1,点P 是AOB ∠的平分线上一点,过点P 作OB PE OA PD ⊥⊥,,由角平分线的性质定理则有PE PD =.这就是角平分线+两垂线模型.这种模型蕴含了边相等、角相等和三角形全等,还可以构造出等腰三角形.在图1中,若连结DE ,则得到等腰三角形PDE 和等腰三角形DOE .图 1模型推论(1)PED PDE ∠=∠; (2)Rt △POD ≌Rt △POE ; (3)OE OD =.证明:(1)∵OP 平分AOB ∠,OB PE OA PD ⊥⊥, ∴PE PD = ∴PED PDE ∠=∠; (2)∵OB PE OA PD ⊥⊥, ∴△POD 和△POE 都是直角三角形 在Rt △POD 和Rt △POE 中∵⎩⎨⎧==PE PD OP OP∴Rt △POD ≌Rt △POE (HL );(3)由(2)可知: Rt △POD ≌Rt △POE ∴OE OD =.模型应用例1. 如图2所示,在△ABC 中,︒=∠90C ,AD 平分CAB ∠,若4,6==BD BC ,那么点D 到直线AB 的距离是__________.图 2图 3分析 本题条件中有角平分线,有角平分线上一点到一边的垂线段(距离),唯独缺少该点到另一边的垂线段(距离),若作出该垂线段,则可构造出角平分线+两垂线段模型. 解:作AB DE ⊥,则线段DE 的长度即为点D 到直线AB 的距离. ∵AD 平分CAB ∠,AB DE AC DC ⊥⊥, ∴DC DE = ∵4,6==BD BC∴246=-=-=BD BC DC ∴2=DE∴点D 到直线AB 的距离是2.例2. 如图4所示,在△ABC 中,︒=∠︒=∠70,50C B ,AD 是△ABC 的角平分线,AB DE ⊥于点E .(1)求EDA ∠的度数;(2)若3,8,10===DE AC AB ,求ABC S ∆.图 4图 5分析 对于(1),可根据直角三角形的两个锐角互余解决问题;对于(2),可构造角平分线+两垂线段模型求出AC 边上的高DF ,从而求出△ACD 的面积,继而求出△ABC 的面积. 解:(1)∵︒=∠︒=∠70,50C B∴︒=︒-︒-︒=∠-∠-︒=∠607050180180C B CAB ∵AD 平分CAB ∠ ∴︒=∠=∠30211CAB ∵AB DE ⊥ ∴︒=∠+∠901EDA∴︒=︒-︒=∠-︒=∠603090190EDA ; (2)作AC DF ⊥.∵AD 平分CAB ∠,AB DE ⊥,AC DF ⊥ ∴3==DF DE∴DF AC DE AB S S S ACD ABD ABC ⋅+⋅=+=∆∆∆2121 382131021⨯⨯+⨯⨯=27=.例3. 如图6所示,在△ABC 中,︒=∠90C ,AD 是BAC ∠的平分线,AB DE ⊥,DF BD =,求证: (1)EB CF =; (2)EB AF AB 2+=.图 6图 7分析 根据条件知图6中存在角平分线+两垂线段模型,故有DE DC =,这就为Rt △DCF 和Rt △DEB 全等提供了条件.证明:(1)∵AD 平分BAC ∠,AB DE ⊥,AC DC ⊥(︒=∠90C ) ∴DE DC =在Rt △DCF 和Rt △DEB 中∵⎩⎨⎧==DE DC DB DF∴Rt △DCF ≌Rt △DEB (HL ) ∴EB CF =;(2)在Rt △ACD 和Rt △AED 中∵⎩⎨⎧==DE DC AD AD∴Rt △ACD ≌Rt △AED (HL ) ∴AE AC = ∵EB AE AB +=∴EB AF EB EB AF EB CF AF EB AC AB 2+=++=++=+=.例4. 如图8所示,在四边形ABCD 中,BD DC AD AB BC ,,=>平分ABC ∠. 求证:︒=∠+∠180BCD BAD .图 8ABC D图 9E分析 本题难度较高,要证明︒=∠+∠180BCD BAD ,可证明BCD ∠等于BAD ∠的邻补角,而证明两个角相等,可通过证明两个角所在的三角形全等完成,必要时需要添加辅助线来构造全等三角形.题中已有角平分线的条件,过角平分线上的点向角的两边作垂线段,即作出角平分线+两垂线段模型,即可构造出全等三角形. 证明:过点D 作BC DE ⊥,BA DF ⊥,交BA 的延长线于点F . ∵BD 平分ABC ∠,BC DE ⊥,BA DF ⊥ ∴DF DE =在Rt △DCE 和Rt △DAF 中∵⎩⎨⎧==DF DE DA DC∴Rt △DCE ≌Rt △DAF (HL ) ∴1∠=∠C ,即1∠=∠BCD ∵︒=∠+∠1801BAD ∴︒=∠+∠180BCD BAD .例5. 如图10所示,AD 平分BAC ∠,DE 所在直线是BC 的垂直平分线,E 为垂足,过点D 作AC DN AB DM ⊥⊥,.求证:(1)CN BM =; (2)()AC AB AM +=21. 图 10图 11分析 对于(1),我们能想到的最直接的方法是全等法,那就是证明BM 和CN 所在的三角形全等即可,图中只需连结DB 、DC ,就可以构造出全等三角形;对于(2),直接下手证明会比较困难,于是我们把等式转化为AM AC AB 2=+,证明这个等式成立即可,当然,第(1)问的结论会为我们提供重要的条件. 证明:(1)连结DB 、DC ,如图11所示. ∵DE 垂直平分BC ∴DC DB =∵AD 平分BAC ∠,AC DN AB DM ⊥⊥, ∴DN DM =在Rt △DBM 和Rt △DCN 中∵⎩⎨⎧==DNDM DC DB ∴Rt △DBM ≌Rt △DCN (HL )∴CN BM =;(2)在Rt △ADM 和Rt △ADN 中∵⎩⎨⎧==DN DM AD AD∴Rt △ADM ≌Rt △AND (HL ) ∴AN AM =∵CN AN BM AM AC AB -++=+ ∴AM AN AM AC AB 2=+=+ ∴()AC AB AM +=21.等腰三角形的存在性问题资料编号:202111182021关键词 等腰三角形 分类讨论 尺规作图 垂直平分线在八年级数学中,学完了等腰三角形的性质和判定后,我们会遇到等腰三角形的存在性问题,这类问题往往需要学生根据情况分类讨论,确定等腰三角形的各种存在形态,然后根据每种形态解决相关问题.然而我看到的是,学生不能考虑到每一种可能的形态,从而造成漏解.究其原因,我想是学生分类讨论思想方法欠缺,不会借助于圆和线段垂直平分线的性质辅助解决问题造成的.下面,我将教会大家如何借助于圆的知识和线段垂直平分线的性质,将等腰三角形的各种存在性(形态)“一网打尽”.如图1所示,已知线段AB ,现确定一点C ,使△ABC 为等腰三角形.图 1AB由于没有指明线段AB 是腰长还是底边长,所以我们需要分为两种情况进行讨论:(1)当AB 为等腰三角形的腰长时:①以点A 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图2所示;图 2B图 3②以点B 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图3所示;(2)当AB为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB的垂直平分线l,垂足为点D,则垂直平分线l上任一异于点D的点都可以作为点C,如图4所示.B图 4使△ABC为等腰三角形.下面讨论已知线段AB和直线m,在直线m上确定一点C,B Array m图 5由于没有指明线段AB是腰长还是底边长,所以我们需要分为两种情况进行讨论: (1)当AB为等腰三角形的腰长时:①以点A为圆心,AB的长为半径画圆(或圆弧),则圆(或圆弧)与直线m的交点即为点C,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图6所示;m图 6②以点B 为圆心,AB 的长为半径画圆(或圆弧),则圆(或圆弧)与直线m 的交点即为点C ,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图7所示;m图 7(2)当AB 为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB 的垂直平分线l ,直线l 与直线m 的交点即为点C ,如图8所示.m图 8我们知道,角平分线和平行线组合在一起,即构成角平分线+平行线模型,这种模型中就存在等腰三角形,如图9所示.B图 9若要在OB边上确定一点D,使得△COD为等腰三角形,根据角平分线+平行线模型的特征,我们过点C作OA边的平行线,该平行线与OB边的交点,即为其中一个点D的位置,如图10所示,该点D也是线段OC的垂直平分线与OB边的交点,只不过作平行线更容易找出该点.B图 10其余各点D的确定如图(11)、(12)所示,你是否知道这些点是怎样确定出来的吗?B图 11图 12以上共有3个点D,使得△COD为等腰三角形.解决等腰三角形的存在性问题,一般分为三步:分类、画图、计算.当然,随着学习的深入,以后我们还会遇到因动点而产生的等腰三角形问题,让我们拭目以待.应用例1.如图所示,在正方形网格中,网格线的交点称为格点.已知A、B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有__________个.第 6 题图图 1图 2答案 8解析 本题考查等腰三角形的存在性问题.分别以点A 、B 为圆心,以AB 的长为半径作圆,如图1所示,则可以找到这样的点C 有4个.这两种情况下,△ABC 是以AB 为腰长的等腰三角形.若AB 为底边长,则作出AB 的垂直平分线,如图2所示,可以找到这样的点C 有4个.综上所述,符合条件的点C 有8个.例2. 如图所示,︒=∠60AOB ,OC 平分AOB ∠,如果射线OA 上的点E 满足△OCE是等腰三角形,那么OEC ∠的度数为__________.解:∵OC 平分AOB ∠,∴︒=∠=∠3021AOB AOC 分为三种情况:①当CE CO =时,如图1所示,∴︒=∠=∠30EOC OEC ;图 1图 2②当OE OC =时,如图2所示. ∵OE OC = ∴OCE OEC ∠=∠ ∴︒=︒-︒=∠75230180OEC ; ③当EC EO =时,如图3所示.图 3(说明:此时,点E 在线段OC 的垂直平分线上或OB CE //) ∵EC EO =∴︒=∠=∠30ECO EOC∴︒=︒-︒-︒=∠1203030180OEC .综上所述,OEC ∠的度数为︒30或︒120或︒75.点评 在讨论一个三角形为等腰三角形时,常常需要分为三种情况进行讨论.。
数学48个几何模型总结
数学48个几何模型总结摘要数学中的几何模型是研究几何形状和空间关系的工具,具有广泛的应用。
本文总结了48个常见的几何模型,包括点、线、面和立体等,介绍了它们的定义、特点、性质和应用领域等内容。
1. 点(Point)点是几何学中最基本的概念,用于表示位置,没有大小和形状。
点常用大写字母标记,如A、B、C等。
2. 线(Line)线由无限多个点构成,是一维的,没有宽度和厚度。
线可用一条直线符号表示,如AB。
3. 线段(Segment)线段是由两个点确定的线段部分,有起点和终点。
线段通常用两个点的大写字母标记,如AB。
4. 射线(Ray)射线由一个起点和一个方向确定,可以无限延伸。
射线通常用一个点和一个方向符号表示,如AB→。
5. 直线(Angle)角是由两条相交的线段组成,分为内角和外角。
角常用顶点的大写字母来标记,如∠ABC。
6. 三角形(Triangle)三角形是由三条线段组成的图形,有三个顶点和三条边。
三角形根据边长和角度可以分为等边三角形、等腰三角形、直角三角形等不同类型。
7. 直角三角形(Right Triangle)直角三角形是其中一个角为直角的三角形。
直角三角形的斜边和直角边之间存在特殊的关系,如勾股定理。
8. 矩形(Rectangle)矩形是由四条边组成的四边形,有四个顶点和四个直角。
矩形的对角线相等且垂直,可以用长和宽来定义。
9. 正方形(Square)正方形是一种特殊的矩形,具有四个相等的边和四个直角。
10. 平行四边形(Parallelogram)平行四边形是一个有两对平行边的四边形,对角线不相交,相邻两边相等。
11. 梯形(Trapezoid)梯形是一个有一对平行边的四边形。
梯形的两条非平行边叫做腰,两个腰之间的距离叫做高。
12. 菱形(Rhombus)菱形是具有四条相等边的四边形,对角线相交于垂直的角。
13. 正多边形(Regular Polygon)正多边形是指边长和内角都相等的多边形,如正三角形、正四边形等。
初中数学42个几何模型
初中数学42个几何模型初中数学中的几何模型是学生们熟悉且重要的一部分,这些模型通过具体的图形和实例让抽象的几何概念更加直观和易于理解。
本文将介绍42个初中数学中常见的几何模型,帮助学生更好地掌握这些概念。
首先,我们来讨论平面图形的几何模型。
在初中数学中,学生会学习到许多常见的平面图形,如三角形、四边形、正方形等。
通过这些图形的模型,学生可以更加直观地理解它们的性质和特点。
比如,三角形的三条边之和等于180度,正方形的四条边长度相等且角度为90度等。
在学习这些平面图形的模型时,可以通过拼图、折纸等方式让学生亲自动手制作,增强他们的学习兴趣和理解能力。
接下来是立体几何的模型。
在初中数学中,学生会学习到一些立体图形,比如立方体、圆柱体、圆锥等。
这些立体图形的模型可以通过使用建模软件、手工制作等方式来展示。
通过观察这些立体图形的模型,学生可以更好地理解它们的体积、表面积等性质。
例如,立方体的六个面都是正方形,而圆柱体的底面和顶面都是圆形等。
通过制作这些立体图形的模型,学生可以更加直观地理解它们的特点,提高他们的几何学习效果。
除了常见的平面图形和立体图形,初中数学中还会涉及到一些几何变换的模型,比如平移、旋转、对称等。
这些几何变换的模型可以通过使用图形、图像等方式进行展示和讨论。
通过观察这些几何变换的模型,学生可以更好地理解它们的性质和应用。
比如,平移是将图形沿着给定方向平行地移动一段距离,对称是将图形关于某一条直线或某一点进行镜像翻转等。
通过制作这些几何变换的模型,学生可以更好地理解它们的作用和应用,提高他们的数学素养。
综上所述,初中数学中的42个几何模型涵盖了平面图形、立体图形、几何变换等各个方面,通过这些模型的展示和讨论,学生可以更好地理解和掌握这些几何概念。
通过制作这些模型,学生可以增强他们的学习兴趣和探究能力,促进他们对数学的深入理解和运用。
希望本文对初中数学学生们的学习有所帮助,让他们在几何学习中能够更加轻松地掌握这些知识,提高他们的学习成绩和数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档之"全等三角形相关模型总
结"
一、角平分线模型
(一)角平分线的性质模型
辅助线:过点G作GE⊥射线AC
A、例题
1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是cm.
2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC.
3、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.
(二)角平分线+垂线,等腰三角形必呈现
A、例题
辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F .
求证:
1
()
2
BE AC AB
=-.
例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作
CM⊥AD交AD的延长线于M. 求证:
1
()
2
AM AB AC
=+.
(三)角分线,分两边,对称全等要记全
两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC .
A、例题
1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ 平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ .
2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.
3、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合).
求证:AB-AC>PB-PC .
4、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D,求证:AD+BD=BC .
5、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D,求证:AC +CD=AB .
二、等腰直角三角形模型
(一)旋转中心为直角顶点,在斜边上任取一点的旋转全等:
操作过程:
(1)将△ABD逆时针旋转90°,得△ACM ≌△ABD,从而推出△ADM为等腰直角三角形.
(2)辅助线作法:过点C作MC⊥BC,使CM=BD,连结AM.
(二)旋转中心为斜边中点,动点在两直角边上滚动的旋转全等:
操作过程:连结AD.
(1)使BF=AE(或AF=CE),导出△BDF ≌△ADE.
(2)使∠EDF+∠BAC=180°,导出△BDF ≌△ADE.
1、如图,在等腰直角△ABC中,∠BAC=90°,点M、N在斜边BC上滑动,且∠MAN=45°,试探究BM、MN、CN之间的数量关系.
2、两个全等的含有30°,60°角的直角三角板ADE和ABC,按如图所示放置,
E、A、C三点在一条直线上,连接BD,取BD的中点M,连接ME、MC.
试判断△EMC的形状,并证明你的结论.
3、已知,如图所示,Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,若M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.
(1)试判断△OMN的形状,并证明你的结论.
(2)当M、N分别在线段AC、AB上移动时,四边形AMON的面积如何变化?
4、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF为多少度.
(三)构造等腰直角三角形
(1)利用以上(一)和(二)都可以构造等腰直角三角形(略);
(2)利用平移、对称和弦图也可以构造等腰直角三角形.
(四)将等腰直角三角形补全为正方形,如下图:
1、如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,P为三角形ABC内部一点,
满足PB=PC,AP=AC,求证:∠BCP=15°.
三、三垂直模型(弦图模型)
A、例题
已知:如图所示,在△ABC中,AB=AC,∠BAC=90°,D为AC中点,AF⊥BD 于点E,交BC于F,连接DF .
求证:∠ADB=∠CDF .
变式1、已知:如图所示,在△ABC中,AB=AC,AM=CN,AF⊥BM于E,交BC于F,连接NF .求证:(1)∠AMB=∠CNF;(2)BM=AF+FN .
变式2、在变式1的基础上,其他条件不变,只是将BM和FN分别延长交于点P,
求证:(1)PM=PN;(2)PB=PF+AF .
四、手拉手模型
1、△ABE和△ACF均为等边三角形
结论:(1)△ABF≌△AEC .
(2)∠BOE=∠BAE=60°.
(3)OA平分∠EOF .(四点共圆证)
拓展:△ABC和△CDE均为等边三角形
结论:(1)AD=BE;
(2)∠ACB=∠AOB;
(3)△PCQ为等边三角形;
(4)PQ∥AE;
(5)AP=BQ;
(6)CO平分∠AOE;(四点共圆证)
(7)OA=OB+OC;
(8)OE=OC+OD .
((7),(8)需构造等边三角形证明)
例、如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;
(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;
(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,
分别以△ABC 的AB 、AC 为一边向外作等边△ABE 和等边△ACF ,连接CE 、BF ,设交点为M ,则点M 即为△ABC 的费尔马点.试说明这种作法的依据.
2、△ABD 和△ACE 均为等腰直角三角形
结论:(1)BE =CD ;(2)BE ⊥CD .
3、四边形ABEF 和四边形ACHD 均为正方形。
结论:(1)BD =CF ;(2)BD ⊥CF .
变式1、四边形ABEF 和四边形ACHD 均为正方形,
AS ⊥BC 交FD 于T ,
求证:(1)T 为FD 中点;(2)ABC ADF S S = .
变式2、四边形ABEF 和四边形ACHD 均为正方形,T 为FD 中点,TA 交BC 于S , 求证:AS ⊥BC .
4、如图,以△ABC 的边AB 、AC 为边构造正多边形时,总有:36012180n
︒∠=∠=︒-
五、半角模型
条件:
1
,+=180
2
αββθβ
=︒
且,两边相等.
思路:1、旋转
辅助线:①延长CD到E,使ED=BM,连AE或延长CB到F,使FB=DN,连AF
②将△ADN绕点A顺时针旋转90°得△ABF,注意:旋转需证F、B、M 三点共线
结论:(1)MN=BM+DN;(2)=2
CMN
C AB;(3)AM、AN分别平分∠BMN、
∠MND .
2、翻折(对称)
辅助线:①作AP⊥MN交MN于点P ②将△ADN、△ABM分别沿AN、AM翻折,但一定要证明M、P、N三点共线 .
A、例题
例1、在正方形ABCD中,若M、N分别在边BC、CD
上移动,且满足MN=BM+DN,
求证:(1)∠MAN=45°;
(2)=2
CMN
C AB;
(3)AM、AN分别平分∠BMN和∠DNM .
变式:在正方形ABCD中,已知∠MAN=45°,若M、N分别在边CB、DC的延长线上移动,
AH⊥MN,垂足为H,
(1)试探究线段MN、BM、DN之间的数量关系;
(2)求证:AB=AH
例2、在四边形ABCD中,∠B+∠D=180°,AB=AD,若E、F分别为边BC、
CD上的点,且满足EF=BE+DF,求证:
1
2
EAF BAD ∠=∠.
变式:在四边形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分别为
边BC、CD上的点,且
1
2
EAF BAD
∠=∠,求证:EF=BE+DF .。