1.7定积分在几何中应用(1)
【全程复习方略】2014-2015学年高中数学 1.7.1 定积分在几何中的应用课件 新人教A版选修2-2
排除A;当阴影有在x轴上方也有在x轴下方时,a f(x)dx是两
面积之差,排除B;无论什么情况C都对,故应选C.
b
【误区警示】曲线f(x)与直线x=a,x=b,y=0围成图形的面积 不能均用 f(x)dx表示,要根据图形位置分不同情况选用适当
a b
的积分值表示.
【补偿训练】过原点的直线l与抛物线y=x2-2ax(a>0)所围成的 图形面积为 9 a3,则直线l的方程为(
【方法技巧】求函数图象围成平面图形面积的方法 (1)画出两个函数的图象,先将两个函数方程联立方程组求解, 得到函数图象的交点的横坐标a,b(a<b),确定积分区间[a, b]. (2)在公共的积分区间上,由上界函数减去下界函数作为被积
函数,定积分的值就等于两个函数图象围成平面图形的面积,
即S= [f1(x)-f2(x)]dx(其中f1(x)>f2(x)).
(2-x)dx.
1 2
2
(3)正确,曲线y=3-x2与直线y=-1的交点为(-2,-1),
(2,-1),所以围成的图形面积为 2[(3-x2)-(-1)]dx=
2
2
(4-x2)dx. (2)√ (3)√
答案:(1)×
2.做一做(请把正确的答案写在横线上)
(1)如图中阴影部分的面积是____________.
b
1.判一判 (正确的打“√”,错误的打“×”) (1)曲线y=sin x,x∈[ , ],与x轴围成的图形的面积为
3 2 2
3 2 2
sin xdx.(
)
1 0
(2)曲线y=x3与直线x+y=2,y=0围成的图形面积为 x3dx+
定积分的几何意义 (1)讲解
一,学习目标:
1,掌握定积分几何意义。 2,会利用几何意义求定积分。
二,学习重点,难点
利用几何意义求定积分
复习回顾 如何求曲边梯形面积 定积分的概念是怎样的。
定积分表达式:
积分上限
被积式
b a
f ( x)dx
I
lim 0
n i 1
f (i )xi.
积分下限
③
(x
1)2
④
1在[1,2]
上连续,且在[1,0]上f (x) 0,在[0,2]上f (x) 0,
根据定积分的几何意义可得阴影部分的面积为
A 01[(x 1)2 1]dx 02[(x 1)2 1]dx
例:
利用定积分的几何意义说明等式
2
sin
xdx
上连续,且f (x) 0,根据定积分的几何意
义,可得阴影部分的面积为 A 21x2dx
4.应用
例1.用定积分表示图中四个阴影部分面积
y
y
f(x)=x2
f(x)=x2
y
y f(x)=(x-1)2-1
f(x)=1
0a
x -1 0 2
xa0
b x -1 0
2x
①
②
③
④
解:(3)在图③中,被积函数f (x) 1在[a,b]
1.利用定积分的几何意义,判断下列定积分 值的正、负号。
1). 2 sin xdx 0
2). 2 x 2dx 1
2.利用定积分的几何意义,说明下列各式。
成立:
1).
2
sin xdx 0
0
2).
高中数学-定积分在几何中的应用-课件
求由一条曲线 y=f(x)和直线 x=a,x=b(a<b)及 y=0 所围成平面图形的面积 S.
①如图 1 所示,f(x)>0, bf(x)dx>0. a
∴S= bf(x)dx. a
②如图 2 所示,f(x)<0, bf(x)dx<0, a
∴S=| bf(x)dx|=- bf(x)dx.
a
a
2×23x32
|
2 0
=136,
8
S2=2 [4-x-(- 2x)]dx
=4x-12x2+2
3
2x32|
8 2
=338,
于是 S=136+338=18.
方法二:选y作为积分变量,
将曲线方程写为x=y22及x=4-y.
则S=2-44-y-y22dy
=4y-y22-y63|
2 -4
=18.
变式训练 1:由曲线 y= x,直线 y=x-2 及 y 轴所围成
解.
由方程组
y2=2x y=4-x
解出抛物线和直线的交
点为(2,2)及(8,-4).
方法一:选 x 作为积分变量,由图可看出 S=S1+S2,
由于抛物线在 x 轴上方的方程为 y= 2x,
在 x 轴下方的方程为 y=- 2x,
2
所以 S1=0 [ 2x-(- 2x)]dx
=2
2 1
20x2 dx=2
❖1.7 定积分的简单应用
❖1.7.1 定积分在几何中的应用
自主学习 新知突破
❖ 1.理解定积分的几何意义.
❖ 2.会通过定积分求由两条或多条曲线 围成的平面图形的面积.
复习回顾
[问题 1]定积分的几何意义.
由三条直线 x=a,x=b(a<b),x 轴及 一条曲线 y=f(x)(f(x)≥0)围成的曲边 梯形的面积 S=________.
推荐高中数学第一章导数及其应用1.7定积分的简单应用学案含解析新人教A版选修2_2
1.7定积分的简单应用积为S 1.由直线x =a ,x =b ,曲线y =g(x )和x 轴围成的曲边梯形的面积为S 2.问题1:如何求S 1? 提示:S 1=⎠⎛a b f(x)d x.问题2:如何求S 2? 提示:S 2=⎠⎛ab g(x)d x.问题3:如何求阴影部分的面积S? 提示:S =S 1-S 2.平面图形的面积由两条曲线y =f (x ),y =g (x )和直线x =a ,x =b (b >a )所围图形的面积.(1)如图①所示,f (x )>g (x )>0,所以所求面积S =⎠⎛ab d x .(2)如图②所示,f (x )>0,g (x )<0,所以所求面积S =⎠⎛a b f (x )d x +⎪⎪⎪⎪⎠⎛a b=⎠⎛ab d x .相交曲线所围图形的面积求法如下图,在区间上,若曲线y =f (x ),y =g (x )相交,则所求面积S =S 1+S 2=⎠⎛ac d x +⎠⎛c b-=⎠⎛ab |f (x )-g (x )|d x .问题:在《1.5.2 汽车行驶的路程》中,我们学会了利用积分求物理中物体做变速直线运动的路程问题,利用积分还可以解决物理中的哪些问题?提示:变力做功.1.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间上的定积分,即s =⎠⎛ab2.变力做功如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b(a<b),那么变力F(x)所做的功为W =⎠⎛ab F(x )d x.求变速直线运动的路程的注意点对于给出速度-时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意的是分段解析式要分段求路程,然后求和.计算曲线由⎩⎪⎨⎪⎧y =x +3,y =x2-2x +3,解得x =0或x =3.如图.因此所求图形的面积为S =⎠⎛03(x +3)d x -⎠⎛03(x 2-2x +3)d x=⎠⎛03d x =⎠⎛03(-x 2+3x )d x =⎝ ⎛⎭⎪⎫-13x3+32x23=92.求由两条曲线围成的平面图形的面积的解题步骤(1)画出图形;(2)确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数图象上、下位置; (4)写出平面图形面积的定积分表达式;(5)运用微积分基本定理计算定积分,求出平面图形的面积.求曲线y =e x,y =e -x及x =1所围成的图形面积.解:作图,并由⎩⎪⎨⎪⎧y =ex ,y =e -x ,解得交点(0,1). 所求面积为⎠⎛01(e x-e -x)d x =(e x +e -x)1=e +1e-2.先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为,将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022xd x +⎠⎛28(2x -x +4)d x=423x322+⎝ ⎛⎭⎪⎫223x -12x2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为,如图得所求的面积为 S =⎠⎛-42⎝ ⎛⎭⎪⎫4-y -y22d y =⎝ ⎛⎭⎪⎫4y -12y2-16y324-=18.需分割的图形的面积的求法由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间上位于上方和下方的曲线不同.求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间上曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下.试求由抛物线y =x 2+1与直线y =-x +7以及x 轴、y 轴所围成图形的面积.解:画出图形(如下图).解方程组⎩⎪⎨⎪⎧y =x2+1,y =-x +7,得⎩⎪⎨⎪⎧x =2,y =5或⎩⎪⎨⎪⎧x =-3,y =10(舍去),即抛物线与直线相交于点(2,5).于是所求面积为S =⎠⎛02(x 2+1)d x +⎠⎛27(7-x)d x=⎝ ⎛⎭⎪⎫13x3+x 20+⎝⎛⎭⎪⎫7x -12x272=143+252 =1036.A ,BC 点,这一段的速度为1.2t m/s ,到C 点的速度为24 m/s ,从C 点到B 点前的D 点以等速行驶,从D 点开始刹车,速度为(24-1.2t ) m/s ,经t s 后,在B 点恰好停车.试求:(1)A ,C 间的距离; (2)B ,D 间的距离. (1)设A 到C 的时间为t 1, 则1.2t 1=24,t 1=20 s ,则AC =⎠⎛0201.2t d t =0.6t220=240(m).(2)设D 到B 的时间为t 2, 则24-1.2t 2=0,t 2=20 s , 则DB =⎠⎛020 (24-1.2t )d t求变速直线运动的路程、位移应关注三点(1)分清运动过程中的变化情况;(2)如果速度方程是分段函数,那么要用分段的定积分表示;(3)明确是求位移还是求路程,求位移可以正负抵消,求路程不能正负抵消.一点在直线上从时刻t =0(单位:s )开始以速度v =t 2-4t +3(单位:m /s )运动,求: (1)在t =4 s 时的位置; (2)在t =4 s 时运动的路程. 解:(1)在t =4 s 时该点的位移为⎠⎛04(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 40=43(m ), 即在t =4 s 时该点距出发点43m .(2)∵v(t)=t 2-4t +3=(t -1)(t -3), ∴在区间及上v(t)≥0, 在区间上,v(t)≤0. ∴在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝ ⎛⎭⎪⎫13t3-2t2+3t 10-⎝ ⎛⎭⎪⎫13t3-2t2+3t 31+13t 3-2t 2+3t43=4(m ), 即在t =4 s 时运动的路程为4 m .一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力位移曲线如图所示.求该物体从x =0 m 处运动到x =4 m 处力F (x )做的功.由力位移曲线可知F (x )=⎩⎪⎨⎪⎧10,0≤x≤2,3x +4,2<x≤4,因此该物体从x =0处运动到x =4处力F (x )做的功为W =⎠⎛0210d x +⎠⎛24(3x +4)d x =10x 2+⎝ ⎛⎭⎪⎫32x2+4x 42=46(J).解决变力做功应关注两点(1)首先将变力用其方向上的位移表示出来,这是关键的一步; (2)根据变力做功的公式将其转化为求定积分的问题.设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功.解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N).由题意F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,解得即0.05k =100,∴k =2 000, ∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =⎠⎛00.152 000x d x =1 000x 2.015=22.5(J).4.利用定积分求面积的策略由抛物线y 2=8x (y >0)与直线x +y -6=0及y =0所围成图形的面积为( ) A .16-3223B .16+3223C.403D.403+3223由题意,作图形如图所示,由⎩⎪⎨⎪⎧y2=>,x +y -6=0,得⎩⎪⎨⎪⎧x =2,y =4,所以抛物线y 2=8x (y >0)与直线x +y -6=0的交点坐标为(2,4).法一:(选y 为积分变量)S =⎠⎛04⎝ ⎛⎭⎪⎫6-y -18y2d y=⎝⎛⎭⎪⎫6y -12y2-124y340=24-8-124×64=403.法二:(选x 为积分变量)S =⎠⎛02(8x)d x +⎠⎛26(6-x )d x=8×23x 322+⎝⎛⎭⎪⎫6x -12x262=163+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫6×6-12×62-⎝ ⎛⎭⎪⎫6×2-12×22=403.C1.本题易搞错被积函数及积分上、下限,误认为S =⎠⎛04-x -8x)d x ,从而得出S =16-3223的错误答案.2.求平面图形面积时,应首先求出交点坐标,确定积分上、下限,然后确定被积函数,判定积分的正负,用公式求解面积.如本例法一中的被积函数为f(y)=6-y -18y 2,y ∈(0,4],法二中的被积函数为f(x)=⎩⎨⎧8x ,,2],6-x ,,6].3.利用定积分求面积时,应根据具体问题选择不同的方法求解,常见类型有以下几种: (1)换元积分:当两区域所围成图形纵坐标一致时,换元变成对y 积分可简化运算.如本例中的法一. (2)分割求和:当两曲线处于不同区间时,可分割成几块,分别求出面积再相加,如本节例2的求解法.事实上,本例中的法二就是分割求和.(3)上正下负:若a ≤x ≤c 时,f(x)<0,则⎠⎛a c f(x)d x <0;若c ≤x ≤b 时,f(x)≥0,则⎠⎛cb f(x)d x ≥0.此时曲线y =f(x)和直线x =a ,x =b(a <b)及y =0所围图形的面积是 S =⎪⎪⎪⎪⎠⎛ac +⎠⎛c b f(x)d x =-⎠⎛ac f(x)d x +⎠⎛c bd x.例:求正弦曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,3π2和直线x =0,x =3π2及y =0所围图形的面积S .解:作出曲线y =sin x 和直线x =0,x =3π2,y =0的草图,如图所示,所求面积为图中阴影部分的面积.由图可知,当x ∈时,曲线y =sin x 位于x 轴的上方; 当x ∈⎣⎢⎡⎦⎥⎤π,3π2时,曲线位于x 轴下方. 因此,所求面积应为两部分的和,即S =π⎰32|sin x |d x =⎠⎛0πsin x d x -ππ⎰32sin x d x =-cos xπ+cos xππ32=3.(4)上下之差:若在区间上f (x )>g (x ),则曲线f (x )与g (x )所围成的图形的面积S =⎠⎛a b d x .例:求由曲线y 2=x ,y =x 3所围图形的面积S .解:作出曲线y 2=x ,y =x 3的草图,如图所示,所求面积为图中阴影部分的面积.解方程组⎩⎪⎨⎪⎧y2=x ,y =x3得交点的横坐标为x =0及x =1.因此,所求图形的面积为S =⎠⎛01xd x -⎠⎛01x 3d x =23x 321-14x 41=512.1.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .22B .4 2 C .2 D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02-=⎝⎛⎭⎪⎫2x2-14x42=4.2.一物体沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该物体在3 s ~6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m解析:选B s =⎠⎛36 (3t +2)d t =⎝ ⎛⎭⎪⎫32t2+2t 63=(54+12)-⎝ ⎛⎭⎪⎫272+6=46.5(m).3.(天津高考)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.解析:如图,阴影部分的面积即为所求.由⎩⎪⎨⎪⎧y =x2,y =x 得A(1,1).故所求面积为S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫12x2-13x3⎪⎪⎪10=16. 答案:164.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 解析:由已知得S =⎠⎛0a xd x =23x 32a=23a 32=a 2,所以a 12=23,所以a =49. 答案:495.一物体在变力F (x )=36x2(x 的单位:m ,F 的单位:N)的作用下沿坐标平面内x 轴的正方向由x =8处运动到x =18处,求力F (x )在这一过程中所做的功.解:由题意得力F (x )在这一过程中所做的功为F (x )在上的定积分,从而W =⎠⎛818F (x )d x =-36x -1188=(-36×18-1)-(-36×8-1)=(-2)-⎝ ⎛⎭⎪⎫-92=52(J).从而可得力F (x )在这一过程中所做的功为52 J.一、选择题1.用S 表示下图中阴影部分的面积,则S 的值是( )A .⎠⎛a c f (x )d xB.⎪⎪⎪⎪⎠⎛acC.⎠⎛a b f(x)d x +⎠⎛bc f(x)d x D .⎠⎛b c f (x )d x -⎠⎛ab f (x )d x解析:选D 由图可知,x 轴上方阴影部分的面积为⎠⎛b c ,x 轴下方阴影部分的面积为-⎠⎛ab f (x )d x ,故D 正确. 2.曲线y =x 3与直线y =x 所围图形的面积等于( ) A.⎠⎛-11(x -x 3)d x B.⎠⎛-11(x 3-x )d x C .2⎠⎛01(x -x 3)d xD .2⎠⎛-10(x -x 3)d x解析:选C 由⎩⎪⎨⎪⎧y =x ,y =x3,求得直线y =x 与曲线y =x 3的交点分别为(-1,-1),(1,1),(0,0),由于两函数都是奇函数,根据对称性得S =2⎠⎛01(x -x 3)d x .3.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3 解析:选D 结合函数图象可得所求的面积是定积分∫π3-π3cos x d x =sin x π3-π3= 3. 4.一质点运动的速度与时间的关系为v (t )=t 2-t +2,质点做直线运动,则它在时间内的位移为( )A.176B.143C.136 D.116解析:选A 质点在时间内的位移为⎠⎛12(t 2-t +2)d t =⎝ ⎛⎭⎪⎫13t3-12t2+2t 21=176. 5.由抛物线y =x 2-x ,直线x =-1及x 轴围成的图形的面积为( ) A.23 B .1 C.43 D.53解析:选B S =⎠⎛0-1(x 2-x )d x +⎠⎛01(x -x 2)d x=⎝ ⎛⎭⎪⎫13x3-12x20-1+⎝ ⎛⎭⎪⎫12x2-13x310=1.二、填空题6.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为________.解析:由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为∫5π6π6sin x -12d x =-cos x -12x 5π6π6=3-π3.答案:3-π37.物体A 以速度v =3t 2+1(t 的单位:s ;v 的单位:m/s)在一直线上运动,在此直线上,物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,则两物体相遇时物体A 运动的距离为________m.解析:设t =a 时两物体相遇,依题意有⎠⎛0a (3t 2+1)d t -⎠⎛0a 10t d t =(t 3+t )a 0-5t 2a 0=5,即a 3+a -5a 2=5,(a -5)(a 2+1)=0,解得a =5,所以⎠⎛05(3t 2+1)d t =53+5=130.答案:1308.有一横截面面积为4 cm 2的水管控制往外流水,打开水管后t s 末的流速为v (t )=6t -t 2(单位:cm/s)(0≤t ≤6),则t =0到t =6这段时间内流出的水量为________.解析:由题意可得t =0到t =6这段时间内流出的水量V =⎠⎛064(6t -t 2)d t =4⎠⎛6(6t -t 2)d t =4⎝⎛⎭⎪⎫3t2-13t360=144(cm 3).故t =0到t =6这段时间内流出的水量为144 cm 3. 答案:144 cm 3三、解答题9.求由曲线y =x 2和直线y =x 及y =2x 所围图形的面积S .解:由⎩⎪⎨⎪⎧y =x2,y =x 得A (1,1),由⎩⎪⎨⎪⎧y =x2,y =2x 得B (2,4).如图所示,所求面积(即图中阴影部分的面积)为S =⎠⎛01(2x -x )d x +⎠⎛12-x 2)d x =⎠⎛01x d x +⎠⎛12-x 2)d x =12x 210+⎝⎛⎭⎪⎫x2-13x321=76.10.有一动点P 沿x 轴运动,在时间t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).(1)点P 从原点出发,当t =6时,求点P 离开原点的路程和位移; (2)求点P 从原点出发,经过时间t 后又返回原点时的t 值. 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4, 即当0≤t ≤4时,P 点向x 轴正方向运动; 当t >4时,P 点向x 轴负方向运动.最新中小学教案、试题、试卷故t =6时,点P 离开原点的路程为s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t=⎝⎛⎭⎪⎫4t2-23t340-⎝ ⎛⎭⎪⎫4t2-23t364=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝ ⎛⎭⎪⎫4t2-23t360=0. (2)依题意⎠⎛0t (8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6,而t =0对应于P 点刚开始从原点出发的情况, ∴t =6是所求的值.。
定积分在几何学上的应用
成的图形的面积.
解 两曲线的交点
y2 2x y x4
(2 , 2 )(,8 ,4 ).
yx4
y2 2x
选 y为积分变量 y[2,4]
dAy4y2dy
4
A dA18.
2
2
整理ppt
6
如果曲边梯形的曲边为参数方程
x y
(t) (t)
曲边梯形的面积 A t2(t)(t)d.t t1
( 其 中 t 1 和 t 2 对 应 曲 线 起 点 与 终 点 的 参 数 值 )
就得半径为a
的球体的体积
4 3
a3
.
整理ppt
21
2
2
2
例 9 求星形线 x 3 y 3 a 3 (a 0)绕 x轴旋转
构成旋转体的体积.
y
2
2
2
解 y3 a3 x3,
y2
a32
2
x3
3
a
x[a,a]
o
ax
旋 转 体 的 体 积
V
aaa32
2
x3
3
dx
32 a3 105
.
整理ppt
22
25
绕 y 轴 旋 转 的 旋 转 体 体 积 2ayC B xx2(y)
可看作平面图OABC与OBC o xx1(y)
A
2a x
分别绕y轴旋转构成旋转体的体积之差.
Vy
2ax22(y)dt
0
2ax12(y)dt
0
a2(tsit)n 2asitn dt 2 a2(tsit)n 2asitn dt 0
0
整理ppt
28
例 求曲线 y3x21 与 x 轴围成的封闭图形
高中数学人教A版选修2-2学案:第一章 1.7 定积分的简单应用含解析
定积分的简单应用预习课本P56~59,思考并完成下列问题(1)利用定积分求平面图形的面积时,需要知道哪些条件?(2)两条曲线相交围成的平面图形能否用定积分求其面积?[新知初探]1.定积分与平面图形面积的关系(1)已知函数f (x )在[a ,b ]上是连续函数,由直线y =0,x =a ,x =b 与曲线y =f (x )围成的曲边梯形的面积为S .f (x )的符号 平面图形的面积与定积分的关系f (x )≥0 S =⎠⎛a bf (x )d x f (x )<0S =-⎠⎛a b f (x )d x(2)一般地,如图,如果在公共的积分区间[a ,b ]上有f (x )>g (x ),那么直线x =a ,x =b 与曲线y =f (x ),y =g (x )围成的平面图形的面积为S =⎠⎛a b[f (x )-g (x )]d x .[点睛] 对于不规则平面图形面积的处理原则定积分只能用于求曲边梯形的面积,对于非规则的曲边梯形,一般要将其分割或补形为规则的曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.2.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛a bv (t )d t .3.力做功(1)恒力做功:一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s ,则力F 所做的功为W =Fs .(2)变力做功:如果物体在变力F (x )的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b (a <b ),那么变力F (x )所做的功为W =⎠⎛a bF (x )d x .[点睛] 变速直线运动物体的路程、位移与定积分的关系如果做变速直线运动物体的速度-时间函数为v =v (t ),则物体在区间[a ,b ]上的位移为定积分⎠⎛a bv (t )d t ;物体在区间[a ,b ]上的路程为⎠⎛a b|v (t )|d t .[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)曲线y =x 3与直线x +y =2,y =0围成的图形面积为⎠⎛01x 3d x +⎠⎛12(2-x )d x .( ) (2)曲线y =3-x 2与直线y =-1围成的图形面积为⎠⎛-2 2(4-x 2)d x .( )(3)速度是路程与时间的函数关系的导数.( )(4)一个物体在2≤t ≤4时,运动速度为v (t )=t 2-4t ,则它在这段时间内行驶的路程为⎠⎛24(t 2-4t )d t .( )答案:(1)√ (2)√ (3)√ (4)×2.曲线y =cos x ⎝⎛⎭⎫0≤x ≤3π2与坐标轴所围成的图形面积是( ) A .2 B .3 C.52 D .4答案:B3.已知做自由落体运动的物体的速度为v =gt ,则物体从t =0到t =t 0所走过的路程为( )A.13gt 20B. gt 20C. 12gt 20D.14gt 20答案:C4.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车从刹车到停车所前进的路程为________.答案:405利用定积分求平面图形的面积[典例] 求抛物线y 2=2x 和直线y =-x +4所围成的图形的面积.[解] 先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为[0,8],将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022x d x +⎠⎛28()2x -x +4d x =423x 3220+⎝⎛⎭⎫223x 32-12x 2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为[-4,2],如图得所求的面积为 S =⎠⎛2-4⎝⎛⎭⎫4-y -y22d y =⎝⎛⎭⎫4y -y 22-y362-4=18.利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.(5)运用微积分基本定理计算定积分,求出平面图形的面积. [活学活用]求曲线y =e x ,y =e -x 及直线x =1所围成的图形的面积.解: 如图,由⎩⎪⎨⎪⎧y =e x ,y =e -x ,解得交点为(0,1), 所求面积为S =⎠⎛01(e x -e -x )d x =(e x +e -x )10=e +1e -2.求变速直线运动的路程、位移[典例] 有一动点P 从原点出发沿x 轴运动,在时刻为t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求(1)t =6时,点P 离开原点后运动的路程和点P 的位移; (2)经过时间t 后又返回原点时的t 值. [解] (1)由v (t )=8t -2t 2≥0得0≤t ≤4, 即当0≤t ≤4时,P 点沿x 轴正方向运动, 当t >4时,P 点向x 轴负方向运动. 故t =6时,点P 离开原点后运动的路程 s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪ 40-⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪64=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪60=0.(2)依题意,⎠⎛0t(8t -2t 2)d t =0, 即4t 2-23t 3=0,解得t =0或t =6,因为t =0对应于点P 刚开始从原点出发的情况,所以t =6为所求,(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.[活学活用]一质点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求点在t =4 s 时的位置及经过的路程.解:在t =4 s 时该点的位移为 ⎠⎛04(t 2-4t +3)d t =⎝⎛⎭⎫13t 3-2t 2+3t ⎪⎪⎪4=43(m). 即在t =4 s 时该点距出发点43m.又因为v (t )=t 2-4t +3=(t -1)(t -3), 所以在区间[0,1]及[3,4]上的v (t )≥0, 在区间[1,3]上,v (t )≤0.所以在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪1-⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪31+⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪ 43=4(m).求变力做功[典例] 一物体在变力F (x )=⎩⎪⎨⎪⎧2x +4,0≤x ≤2,x 2+2x ,2≤x ≤5,(x 的单位:m ,F 的单位:N)的作用下,沿着与力F 相同的方向从x =0运动到x =5处,求变力所做的功.[解] 变力F (x )所做的功为 W =⎠⎛02(2x +4)d x +⎠⎛25(x 2+2x )d x=(x 2+4x ) ⎪⎪⎪2+⎝⎛⎭⎫13x 3+x 2⎪⎪⎪52=12+60=72(J).求变力做功的方法步骤(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =⎠⎛ab F (x )d x 计算.(3)注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳. [活学活用]在弹性限度内,用力把弹簧从平衡位置拉长10 cm 所用的力是200 N ,求变力F 做的功. 解:设弹簧所受到的拉力与弹簧伸长的函数关系式为F (x )=kx (k >0),当x =10 cm =0.1 m 时,F (x )=200 N ,即0.1k =200,得k =2 000,故F (x )=2 000x , 所以力F 把弹簧从平衡位置拉长10 cm 所做的功是W =⎠⎛0 0.12 000x d x =1 000x 2⎪⎪⎪1=10(J).层级一 学业水平达标1.在下面所给图形的面积S 及相应的表达式中,正确的有( )A .①③B .②③C .①④D .③④解析:选D ①应是S =⎠⎛a b[f (x )-g (x )]d x ,②应是S =⎠⎛0822x d x -⎠⎛48(2x -8)d x ,③和④正确.故选D.2.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0 s 到t =3 s 时间段内的位移是( )A .31 mB .36 mC .38 mD .40 m解析:选B S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)30=33+32=36(m),故应选B. 3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323D.353解析:选C S =⎠⎛-3 1(3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2,则F (1)=3-13-1=53,F (-3)=-9+9-9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.4.由y =x 2,y =14x 2及x =1围成的图形的面积S =( )A.14B.12C.13D .1解:选A 图形如图所示,S =⎠⎛01x 2d x -⎠⎛0114x 2d x=⎠⎛0134x 2d x=14x 310=14. 5.曲线y =x 3-3x 和y =x 围成的图形面积为( ) A .4 B .8 C .10D .9解析:选B 由⎩⎪⎨⎪⎧ y =x 3-3x ,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =-2,y =-2.∵两函数y =x 3-3x 与y =x 均为奇函数,∴S =2⎠⎛02[x -(x 3-3x )]d x =2·⎠⎛02(4x -x 3)d x=2⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪20=8,故选B.6.若某质点的初速度v (0)=1,其加速度a (t )=6t ,做直线运动,则质点在t =2 s 时的瞬时速度为________.解析:v (2)-v (0)=⎠⎛02a (t )d t =⎠⎛026t d t =3t 2⎪⎪⎪2=12,所以v (2)=v (0)+3×22=1+12=13. 答案:137.一物体沿直线以速度v =1+t m/s 运动,该物体运动开始后10 s 内所经过的路程是______.解析:S =⎠⎛0101+t d t =23(1+t )32 ⎪⎪⎪10=23⎝⎛⎭⎫1132-1. 答案: 23⎝⎛⎭⎫1132-1 8.由y =1x,x =1,x =2,y =0所围成的平面图形的面积为________.解析:画出曲线y =1x (x >0)及直线x =1,x =2,y =0,则所求面积S 为如图所示的阴影部分面积.∴S =⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2-ln 1=ln 2.答案:ln 29.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.解:由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3,解得x =0及x =3.从而所求图形的面积S =⎠⎛03[(x +3)-(x 2-2x +3)]d x =⎠⎛03(-x 2+3x )d x =⎝⎛⎭⎫-13x 3+32x 2⎪⎪⎪30=92. 10. 设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积. 解:(1)∵y =f (x )是二次函数且f ′(x )=2x +2, ∴设f (x )=x 2+2x +c . 又f (x )=0有两个等根,∴4-4c =0,∴c =1,∴f (x )=x 2+2x +1.(2)y =f (x )的图象与两坐标所围成的图形的面积S =⎠⎛-10(x 2+2x +1)d x =13x 3+x 2+x ⎪⎪⎪-1=13. 层级二 应试能力达标1.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8 JB .10 JC .12 JD .14 J解析:选D 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x ) ⎪⎪⎪31=14(J),故应选D.2.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( )A.12B .3-322 C .6+3 2D .6-3 2解析:选D ⎠⎛3636t d t =6t ⎪⎪⎪63=6-32,故应选D.3.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 m B.803 m C.403m D.203m 解析:选A 由v =40-10t 2=0,得t 2=4,t =2. ∴h =⎠⎛02(40-10t 2)d t =⎝⎛⎭⎫40t -103t 3⎪⎪⎪2=80-803=1603(m).故选A. 4.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02(4x -x 3)d x=⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪2=4.5.椭圆x 216+y 29=1所围区域的面积为________.解析:由x 216+y 29=1,得y =±3416-x 2.又由椭圆的对称性知,椭圆的面积为S =4⎠⎛043416-x 2d x =3⎠⎛0416-x 2d x. 由y =16-x 2,得x 2+y 2=16(y ≥0).由定积分的几何意义知⎠⎛0416-x 2d x 表示由直线x =0,x =4和曲线x 2+y 2=16(y ≥0)及x 轴所围成图形的面积,∴⎠⎛0416-x 2d x =14×π×16=4π,∴S =3×4π=12π.答案:12π6.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为____________.解析:∵S 阴=2⎠⎛01(e -e x )d x =2(e x -e x ) ⎪⎪⎪1=2,S 正方形=e 2,∴P =2e 2.答案:2e27.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝⎛⎭⎫13,3;由⎩⎪⎨⎪⎧xy =1,y =x , 得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去), 故B(1,1);由⎩⎪⎨⎪⎧y =x ,y =3得⎩⎪⎨⎪⎧x =3,y =3,故C(3,3),8.函数f(x)=ax 3+bx 2-3x ,若f(x)为实数集R 上的单调函数,且a ≥-1,设点P 的坐标为(b ,a ),试求出点P 的轨迹所形成的图形的面积S .解:当a =0时,由f (x )在R 上单调,知b =0.当a ≠0时,f (x )在R 上单调⇔f ′(x )≥0恒成立或f ′(x )≤0恒成立.∵f ′(x )=3ax 2+2bx -3,∴⎩⎪⎨⎪⎧Δ=4b 2+36a ≤0,a ≥-1.∴a ≤-19b 2且a ≥-1.因此满足条件的点P (b ,a )在直角坐标平面xOy 的轨迹所围成的图形是由曲线y =-19x 2与直线y =-1所围成的封闭图形.联立⎩⎪⎨⎪⎧y =-19x 2,y =-1,解得⎩⎪⎨⎪⎧ x =-3,y =-1或⎩⎪⎨⎪⎧x =3,y =-1,如图,其面积S =⎠⎛3-3⎝⎛⎭⎫1-19x 2d x =⎝⎛⎭⎫x -x 327⎪⎪⎪3-3=(3-1)-(-3+1)=4.(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=sin α-cos x ,则f ′(x )等于( ) A .sin x B .cos x C .cos α+sin xD .2sin α+cos x解析:选A 函数是关于x 的函数,因此sin α是一个常数.2.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 解析:选A y ′=cos x ,∵cos x ∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:选A 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1,x 3是极大值点,只有x 2是极小值点.4.函数f (x )=x 2-ln x 的单调递减区间是( ) A. ⎝⎛⎦⎤0, 22 B.⎣⎡⎭⎫22,+∞ C. ⎝⎛⎦⎤-∞,-22,⎝⎛⎭⎫0, 22 D.⎣⎡⎭⎫-22, 0,⎝⎛⎦⎤0, 22 解析:选A ∵f ′(x )=2x -1x =2x 2-1x ,当0<x ≤22时,f ′(x )≤0,故f (x )的单调递减区间为⎝⎛⎦⎤0,22. 5.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是( ) A .1 B.12 C .0D .-1解析:选A f ′(x )=3-12x 2,令f ′(x )=0, 则x =-12(舍去)或x =12,f (0)=0,f (1)=-1,f ⎝⎛⎭⎫12=32-12=1,∴f (x )在[0,1]上的最大值为1.6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a =( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,∵f ′(-3)=0. ∴3×(-3)2+2a ×(-3)+3=0,∴a =5.7.函数f (x )=13ax 3+12ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )A.⎝⎛⎭⎫-310,67 B.⎝⎛⎭⎫-85,-316 C.⎝⎛⎭⎫-83,-116 D.⎝⎛⎭⎫-∞,-310∪⎝⎛⎭⎫67,+∞ 解析:选D f ′(x )=ax 2+ax -2a =a (x +2)(x -1),要使函数f (x )的图象经过四个象限,则f (-2)f (1)<0,即⎝⎛⎭⎫103a +1⎝⎛⎭⎫-76a +1<0,解得a <-310或a >67. 故选D.8.已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )解析:选D 由导函数图象可知,当x <0时,函数f (x )递减,排除A 、B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.9.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}解析:选B 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0,∴当x <1时, g (x )<0,即2f (x )<x +1,故选B.10.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2,生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A .6千台B .7千台C .8千台D .9千台解析:选A 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3,y ′=36x -6x 2,令y ′=0得x =6或x =0(舍),f (x )在(0,6)上是增函数,在(6,+∞)上是减函数,∴x =6时y 取得最大值.11.已知定义在R 上的函数f (x ),f (x )+x ·f ′(x )<0,若a <b ,则一定有( ) A .af (a )<bf (b ) B .af (b )<bf (a ) C .af (a )>bf (b )D .af (b )>bf (a )解析:选C [x ·f (x )]′=x ′f (x )+x ·f ′(x )=f (x )+x ·f ′(x )<0, ∴函数x ·f (x )是R 上的减函数, ∵a <b ,∴af (a )>bf (b ).12.若函数f (x )=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系是( )A .a >bB .a <bC .a =bD .a ,b 的大小不能确定解析:选A f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x-cos x =-x sin x .∵0<x <1,∴g ′(x )<0,即函数g (x )在(0,1)上是减函数,得g (x )<g (0)=0,故f ′(x )<0,函数f (x )在(0,1)上是减函数,得a >b ,故选A.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.若f (x )=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.解析:f ′(x )=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.答案:2314.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =__________.解析:S =⎠⎛0ax d x =23x 32a0=23a 32=a 2,∴a =49. 答案:4915.已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.解析:f (2)=f (π-2),f (3)=f (π-3), 因为f ′(x )=1+cos x ≥0, 故f (x )在⎝⎛⎭⎫-π2,π2上是增函数, ∵π2>π-2>1>π-3>0, ∴f (π-2)>f (1)>f (π-3),即c <a <b . 答案:c <a <b 16.若函数f (x )=4xx 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.解析:f ′(x )=4-4x 2(x 2+1)2,令f ′(x )>0,得-1<x <1,即函数f (x )的增区间为(-1,1). 又f (x )在(m,2m +1)上单调递增, 所以⎩⎪⎨⎪⎧m ≥-1,m <2m +1,2m +1≤1.解得-1<m ≤0.答案:(-1,0]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.(1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点. 解:(1)由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0, 解得a =0,b =-3. (2)由(1)知f (x )=x 3-3x . 因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2, 于是函数g (x )的极值点只可能是1或-2. 当x <-2时,g ′(x )<0;当-2<x <1时, g ′(x )>0,故-2是g (x )的极值点. 当-2<x <1或x >1时,g ′(x )>0, 故1不是g (x )的极值点. 所以g (x )的极值点为-2.18. (本小题满分12分)(北京高考)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. 解:(1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设有⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f(x)=x e2-x+e x.由f′(x)=e2-x(1-x+e x-1)及e2-x>0知,f′(x)与1-x+e x-1同号.令g(x)=1-x+e x-1,则g′(x)=-1+e x-1.所以当x∈(-∞,1)时,g′(x)<0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g′(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知,f′(x)>0,x∈(-∞,+∞),故f(x)的单调递增区间为(-∞,+∞).19.(本小题满分12分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.(1)求a,b的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.解:(1)由投资额为零时收益为零,可知f(0)=-a+2=0,g(0)=6ln b=0,解得a=2,b=1.(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).设投入经销B商品的资金为x万元(0<x≤5),则投入经销A商品的资金为(5-x)万元,设所获得的收益为S(x)万元,则S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).S′(x)=6x+1-2,令S′(x)=0,得x=2.当0<x<2时,S′(x)>0,函数S(x)单调递增;当2<x≤5时,S′(x)<0,函数S(x)单调递减.所以当x=2时,函数S(x)取得最大值,S(x)max=S(2)=6ln 3+6≈12.6万元.所以,当投入经销A商品3万元,B商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.20.(本小题满分12分)已知函数f (x )=ax 2+2ln(1-x )(a 为常数).(1)若f (x )在x =-1处有极值,求a 的值并判断x =-1是极大值点还是极小值点; (2)若f (x )在[-3,-2]上是增函数,求a 的取值范围. 解:(1)f ′(x )=2ax -21-x,x ∈(-∞,1), f ′(-1)=-2a -1=0, 所以a =-12.f ′(x )=-x -21-x =(x +1)(x -2)1-x. ∵x <1,∴1-x >0,x -2<0, 因此,当x <-1时f ′(x )>0, 当-1<x <1时f ′(x )<0, ∴x =-1是f (x )的极大值点.(2)由题意f ′(x )≥0在x ∈[-3,-2]上恒成立, 即2ax -21-x≥0在x ∈[-3,-2]上恒成立 ∴a ≤1-x 2+x 在x ∈[-3,-2]上恒成立,∵-x 2+x =-⎝⎛⎭⎫x -122+14 ∈[-12,-6], ∴1-x 2+x ∈⎣⎡⎦⎤-16,-112, ∴⎝⎛⎭⎫1-x 2+ x min =-16,a ≤-16.即a 的取值范围为⎝⎛⎦⎤-∞,-16. 21.(本小题满分12分)已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的取值范围.解:(1)由f (x )≥h (x ), 得m ≤xln x在(1,+∞)上恒成立. 令g (x )=xln x ,则g ′(x )=ln x -1(ln x )2, 当x ∈(1,e)时,g ′(x )<0;当x ∈(e ,+∞)时,g ′(x )>0,所以g (x )在(1,e)上递减,在(e ,+∞)上递增. 故当x =e 时,g (x )的最小值为g (e)=e. 所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a . 函数k (x )在(1,3)上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点. φ′(x )=1-2x =x -2x,当x ∈(1,2)时,φ′(x )<0,φ(x )递减, 当x ∈(2,3)时,φ′(x )>0,φ(x )递增. 又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3, 要使直线y =a 与函数φ(x )=x -2ln x 有两个交点, 则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).22.(本小题满分12分)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则l n(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x∈(1,ln(-2a))时,f′(x)<0;当x∈(ln(-2a),+∞)时,f′(x)>0.因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明:不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),又f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.。
定积分的意义及其在几何中的应用
定西师范高等专科学校本科毕业论文(设计)题目:定积分的意义及其在几何中的应用学院兰州大学数学与统计学院专业数学应用班级 09数学教育二班学号 **********姓名蔡兴盛指导教师王宾国兰州大学教务处制二O一二年三月定积分的意义及其在几何中应用定积分在大学数学中起着非常重要的作用,是大学数学的基础,在我们的生活中也起着很重要的作用!内容摘要: 一直以来定积分问题就是大学数学学习的重点,也是本科及研究生入学考试重点考察的内容之一,所以本文对定积分的起源、发展以及它在数学、几何学的应用做了重点研究。
幷利用一些例题对这些问题做除了详细解析。
关键词: 定积分 柯西 微分 方程 几何一、定积分的概念 1.1定积分的定义一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()n nn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分.记为:()baS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限.说明:(1)定积分()ba f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()ni i b af nξ=-∑; ④取极限:()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰(3)曲边图形面积:()baS f x dx =⎰;变速运动路程21()t t S v t dt =⎰;变力做功 ()baW F r dr =⎰1.2定积分的几何意义如果在区间[,]a b 上函数连续且恒有()0f x ≥,那么定积分()baf x dx ⎰表示由直线,x a x b ==(a b ≠),0y =和曲线()y f x =所围成的曲边梯形的面积.说明:一般情况下,定积分()ba f x dx ⎰的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值. 考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆++∆不妨设1(),(),,()0i i n f x f x f x +<于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆++∆--∆++-∆()b af x dx ∴=⎰阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)1.3定积分的性质性质1 a b dx ba -=⎰1性质2 ⎰⎰=bab adx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)性质3 1212[()()]()()b b baaaf x f x dx f x dx f x dx ±=±⎰⎰⎰ (定积分的线性性质)性质4 ()()()b c baacf x dx f x dx f x dx =+⎰⎰⎰ (其中a<c<b )1.4用定积分求解简单的问题 1.4.1 求立体图形的体积用类似求图形面积的思想我们也可以求一个立体图形的体积,常见的已知几何体的截面积求几何体的体积,另一种是求旋转体的体积,解此类题常用的方法是我们将此物体划分成许多基本的小块,每块的厚度为)(x σ,假设每一个基本的小块横截面积为A (x ),则此小块的体积是A(x))(x σ,将所有的小块加起来,另0)(→x σ,我们可以得到其体积v=lim ∑==bx a x x x A )()(σ其中 a 和 b 分别为计算体积的起始值和终了值. 下面来看几个例题例1 求椭圆面1222222=++cz b y a x 所围立体的体积解:以平面0x x =a x ≤0()截椭球面,得椭圆在YOZ 平面上的正投影1)1()1(22222222=-+-ax c z ax b y所以截面面积函数为)1()(22a x bc x A -=π []a a x ,-∈于是求得椭球体积abc dx ax bc v aa ππ34)1(22=-=⎰-显然当c b a ===r 时,就等于球的体积334r π1.4.2定积分在初等数学里的应用近些年来,定积分还越来越多的被广泛应用到初等数学中的一些问题上来,下面来讨论一下定积分在证明不等式,等式和一些数列的极限的方面的应用一、证明不等式运用积分来证明不等式,一般要利用到积分的如下性质:设)(x f 与)(x g 都在[]b a 上可积且)()(x g x f ≤;则⎰⎰≤babax g dx x f )()(特别的当0)(≡x f 时,有0)(≥⎰badx x g例2 证明贝努利不等式 已知1->x 且N n x ∈≠0且2≥n求证:nx x n +≥+1)1(证明:若01<<-x 或110<+<x 且2≥n 时,1)1(1<+-n x 。
1.7定积分的几何应用
2
2
围成图形的面积.
解:作出y2=x,y=x2的图象如图所示:
解方程组 x 0 x 1 y x 或 2 y 0 y 1 y x
y
y
y xx
2
B
2
即两曲线的交点为(0,0),(1,1)
S = S曲 边 梯 形 OABC - S曲 边 梯 形 OABD
B(1,- 1). ∴围成图形 (阴影部分 )面积为
S=
-2
1
(- x2- x+ 2)dx 9 = . 2
1 3 1 2 = (- x - x + 2x) 3 2
9 答案: (1) 2
例 2 计算由曲线 y 围成的图形的面积.
2x
,直线 y
x 4 以及
y 2x
x 轴所
解:
两曲线的交点
2
|0 8
8
X型求解法
40 3
x 1 2 y
2
16 2 8
1 2
3
2
[( 4 y )
y ]d y
4
(4 y
44
1 2 1
2
y
2
2
1 6
x 4 y
y ) |0
1 6
3
4
4
40 3
Y型求解法
练习 1(例 2 变式题) : 计算由曲线 y 2 x 和直线 y x 4 所围成的图形的面积
2π 4 A. B. 5 3 3 π C. D. 2 2 解析:选 B.由图象可知二次函数的表达式为 f(x)= 1- x2,∴ S= 1 3 1 1 4 1 2 = (1- )-(- 1+ )= . -1 (1- x )dx= (x-3x ) 3 3 3
1.7.1 定积分在几何中的简单应用
a
O a
b
f (x )d x f (x )d x
a
c
b
a
b
f (x )d x -S f (x )d x
a
c
f
c
f (x )d x 。
c
yf (x)
b x
当f(x)0时,由yf (x)、xa、xb 与 x 轴所围成
的曲边梯形位于 x 轴的下方,
一、复习回顾
2、牛顿—莱布尼茨公式
2 2
-1
O
1A
x
-1
=
2 3
3
1
x
2
0
1 3
x
3
1 0
=
2 3
-
1 3
=
1 3
归纳
定 积 分 的 简 单 应 用
求由曲线围成的平面图形面积的解题步骤:
(1)画草图,求出曲线的交点坐标
(2)将曲边形面积转化为曲边梯形面积 (3)确定被积函数及积分区间 (4)计算定积分,求出面积
四、例题实践求曲边形面积
1.7.1定积分在几何中的简单应用
定 积 分 的 简 单 应 用
一、复习回顾 1、定积分的几何意义:
当 f(x ) 0 时 , 积 分
a f ( x ) dx
b
在 几 何 上 表 示 由 y = f (x )、
xa、xb与 x轴所围成的曲边梯形的面积。
y yf (x) O a b y
x
b
思考
如图, 一桥拱的形状为抛 定 积 物线, 已知该抛物线拱的高为 分 常数h, 宽为常数b. 的 2 简 求证: 抛物线拱的面积 S bh 3 单 应 用 建立平面直角坐标系 确定抛物线方程
定积分在几何上的应用
2
a
y x2 y 2 2 1 2 b a b
4ab sin tdt ab.
2 0
2019/4/7 第六章 定积分的应用
2
o
图6-2-5
a x
8
2.极坐标情形
设由曲线 ( ) 及射线
d
()
d 、 围成一曲边扇 ( ) 形,求其面积.这里, 在[ , ]上连续,且 ( ) 0 . 1 o 面积元素 dA [ ( )]2 d x 2 图6-2-6
3
a
o
a x
旋转体的体积
V a x a
2 3
图6-2-12
2019/4/7
第六章 定积分的应用
32 3 dx a . 105
16
类似地,如果旋转体是由连续曲线
x ( y ) 、直线 y c 、 y d 及y 轴所围 成的曲边梯形绕y 轴旋转一周而成的立体,
第六章 定积分的应用
1
b
例 1 计算由两条抛物线y 2 x 和 y x 2 所围成的 图形的面积.
解
两曲线的交点
(0,0) (1,1)
选 x 为积分变量 x [0,1]
面积元素 dA ( x x 2 )dx
2 3 x 1 2 A 0 ( x x )dx x . 3 0 3 3
R 2 2
1 2 R x dx R h. 2
23
第六章 定积分的应用
三、平面曲线的弧长
设 A、 B 是曲线弧上的两 个端点,在弧上插入分点
y
M2
M1
A M0
M n1
高中数学(新课标)选修2课件1.7.1-2定积分的应用
a
a
=b[f(x)-g(x)]dx.
a
③如图(6)所示,所求面积 S=S1+S2=ac[f(x)-g(x)]dx+cb[g(x)-f(x)]dx
=b|f(x)-g(x)|dx.
a
知识点二 定积分在物理中的应用 1.变速直线运动的路程 我们知道,做变速直线运动的物体所经过的路程 s,等于其速 度 函数 v= v(t)(v(t)≥0)在 时间 区间 [a, b] 上的定 积分 ,即 s = ____b_v_(_t)_d_t ___.
【解析】 (1)由 v(t)=8t-2t2≥0 得 0≤t≤4,即当 0≤t≤4 时, P 点向 x 轴正方向运动,t>4 时,P 点向 x 轴负方向运动.
故 t=3 时,点 P 离开原点的路程
s1=03(8t-2t2)dt=4t2-23t330 =18. (2)当 t=5 时,点 P 离开原点的位移 s2=5(8t-2t2)dt
解析:由题意 v=x′=8t,t=12 x,所以 v=4 x.
又 F=kv(k 是比例系数),且当 v=10 米/秒时 F=2 牛,
所以 2=10k,所以 k=15,所以 F=45 x,
又 F 与物体运动的方向相反,
所以 W=-245 0
xdx=-185x3220
=-1165
2(焦耳).
所以物体从 x=0 到 x=2 阻力所做的功为-1165 2焦耳.
解得 t=0 或 t=6,
t=0 对应于 P 点刚开始从原点出发的情况,
∴t=6 是所求的值.
状元随笔 首先要确定的是所需求的是路程还是位移,然后 用相应的方法求解.
方法归纳
(1)用定积分解决变速直线运动的位移和路程问题时,将物理问 题转化为数学问题是关键.
2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.7 1.7.1 定积分在几何中的应用
答案:C
自 测 自 评
2.由曲线 y=x2,y=x3 围成的封闭图形的面积为( 1 A. 12 1 B. 4 1 C. 3 7 D. 12
)
解析: 由题可知 y=x2, y=x3 围成的封闭图形的面积为
1 2 3 ( x - x )dx= 0
栏 目 链 接
1 3 1 41 1 1 1 x - x 0= - = . 4 3 4 12 3
栏 目 链 接
基 础 梳 理
b 图 ① 中 , f(x)>0 , a f(x)dx>0 , 因 此 面 积 S =
a f(x)dx ; ________
b
图②中, f(x)<0 , b a f(x)dx<0 ,因此面积 S =
b - a f(x)dx ; =__________
栏 目 链 接
第一章
导数及其应用
1.7 定积分的简单应用 1.7.1 定积分在几何中的应用
栏 目 链 接
1.了解定积分的几何意义. 2.会用求定积分的方法求曲边梯形的面积.
栏 目 链 接
栏 目 链 接
基 础 梳 理
1.平面图形面积的求法:在利用定积分求平面图形的 面积时,一般要先画出它的草图,再借助图形直观确定出被 积函由一条曲线 y=f(x) 和直线 x=a, x=b(a<b), 及 y=0 所围成平面图形的面积 S.
图③中,当 a≤x≤c 时,f(x)<0,当 c≤x≤b 时,
b c b a f(x)dx+ c f(x)dx f(x)>0,因此面积 S= a |f(x)|dx=- __________.
自 测 自 评
1.由曲线 y= x,直线 y=x-2 及 y 轴所围成的图形 面积为( 10 A. 3 ) B. 4 16 C. 3 D.6
1.7 定积分的简单应用(1)
W F ( x)dx
0
L
L
0
1 2 L 1 2 kxdx kx |0 kL 2 2
练习
1.一物体沿直线以v=2t+3(t的单位为s,v的 单位为m/s)的速度运动,求该物体在3~5s 间行进的路程.
S (2t 3)dt 22m
3 5
2.一物体在力F(x)=3x+4(单位:N)的作用下, 沿着与力F相同的方向,从x=0处运动到 x=4处(单位:m),求F(x)所作的功. 40
3 2
(2)S (e e x )dx 1
0
1
定积分在物理中的应用
一辆汽车的速度一时间曲线如图所示,求 汽车在这 1 min 行驶的路程。
3t vt 30 - 1.5t 90 (0 t 10) (10 t 40) (40 t 60)
的图形的面积.
解 两曲线的交点
y x 6x (0,0), ( 2,4), ( 3,9). 2 y x
3
y x2
A1
0
2
(x 6 x x )dx
3 2
y x3 6x
A2 ( x x 6 x)dx
2 3 0
3
于是所求面积
0 3
A A1 A2
2
4 2 3 2 2 2 3 1 2 16 64 26 8 2 2 x |0 ( x x 4 x) |2 18 3 3 2 3 3 3
练习
求下列曲线所围成的图形的面积:
(1)y=x2,y=2x+3;
(2)y=ex,y=e,x=0.
32 (1) S ((2 x 3) x )dx 1 3
专题1.5 定积分的概念 1.6 微积分基本定理 1.7 定积分的简单应用-20届高中数学同步讲义(理)
1.定积分的概念一般地,如果函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=,作和式11()()nni i i i b af x f nξξ==-∆=∑∑(其中x ∆为小区间长度),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分,记作________,即1()d lim ()nbi an i b af x x f nξ→∞=-=∑⎰. 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()d f x x 叫做被积式.2.定积分的几何意义从几何上看,如果在区间[,]a b 上函数()f x 连续且恒有()0f x ≥,那么定积分()d baf x x ⎰表示由直线,()x a x b a b ==≠,0y =和曲线()y f x =所围成的__________.这就是定积分()d baf x x ⎰的几何意义.3.定积分的性质由定积分的定义,可以得到定积分的如下性质: ①()d __________(ba kf x x k =⎰为常数); ②1212[()()]d ()d ()d bb ba aaf x f x x f x x f x x ±=±⎰⎰⎰;③()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰(其中a c b <<). 4.微积分基本定理一般地,如果()f x 是区间[,]a b 上的连续函数,并且()()F x f x '=,那么___________.这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.为了方便,我们常常把()()F b F a -记成()|ba F x ,即()d ()|()()bb a af x x F x F b F a ==-⎰.微积分基本定理表明,计算定积分()d baf x x ⎰的关键是找到满足()()F x f x '=的函数()F x .通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出()F x .学&科网5.定积分在几何中的应用定积分在几何中的应用主要是计算由两条曲线所围图形的面积.由曲边梯形面积的求法,我们可以将求由两条曲线所围图形的面积问题转化为求两个曲边梯形的面积问题,进而用定积分求出面积.6.定积分在物理中的应用①变速直线运动的路程:我们知道,做变速直线运动的物体所经过的路程s ,等于其速度函数()(()0)v v t v t =≥在时间区间[,]a b 上的定积分,即________s =.②变力做功:一物体在恒力F (单位:N )的作用下做直线运动,如果物体沿着与F 相同的方向移动了s (单位:m ),则力F 所做的功为W Fs =.已知某物体在变力()F x 的作用下做直线运动,并且该物体沿着与()F x 相同的方向从x a =移动到()x b b a =>,求变力()F x 所做的功W ,与求曲边梯形的面积及求变速直线运动的路程一样,可用“四步曲”解决,得到_________W =.K 知识参考答案:6.①()d bav t t ⎰②()d baF x x ⎰K —重点 定积分的几何意义,定积分的基本性质,运用微积分基本定理计算定积分,定积分的应用 K —难点 运用微积分基本定理计算定积分,用定积分求几何图形的面积 K —易错 运用微积分基本定理计算定积分时,弄错积分的上、下限利用定积分的几何意义计算定积分利用定积分所表示的意义求()d baf x x ⎰的值的关键是确定由曲线()y f x =,直线x a =,直线x b =及x轴所围成的平面图形的形状.利用定积分的几何意义求π22π22()sin d d cos x x f x x x --+⎰⎰,其中21,0()31,0x x f x x x -≥⎧=⎨-<⎩.【答案】6-. 【解析】ππ20222ππ2222d d d ()sin cos (31)(21)sin cos d d f x x x x x x x x x x x x ----+=-+-+⎰⎰⎰⎰⎰.∵sin cos y x x =为奇函数,∴π2π2sin cos d 0x x x -=⎰.利用定积分的几何意义,如下图:学科@网∴271(31)28d 2x x -+-=-⨯=-⎰,2031(21)122d x x +-=⨯=⎰,故π22π22()sin co 6d s 820d f x x x x x --+=-++=-⎰⎰.【名师点睛】(1)利用定积分的几何意义求解时,常见的平面图形的形状是三角形、直角梯形、矩形、圆等可求面积的平面图形.(2)设函数()f x 在闭区间[,]a a -上连续,则若()f x 是偶函数,则0()d 2()d aaaf x x f x x -=⎰⎰;若()f x 是奇函数,则()d 0aaf x x -=⎰.利用微积分基本定理计算定积分求函数()f x 在某个区间上的定积分时,要注意:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解导数等于被积函数的函数.当这个函数不易求时,可将被积函数适当变形后再求解.具体方法是能化简的化简,不能化简的变为幂函数、正弦函数、余弦函数、指数函数、对数函数与常数的和或差. (2)精确定位积分区间,分清积分下限与积分上限.计算下列定积分:(1)221(23)d x x x ++⎰; (2)πcos d (e )x x x --⎰; (3)π22d sin 2x x⎰;(4)94(1)d x x x +⎰.【答案】(1)253;(2)π11e -;(3)π24-;(4)2716.【名师点睛】微积分基本定理揭示了导数与定积分之间的关系,即求定积分与求导互为逆运算,求定积分时只需找到被积函数的一个原函数.定积分在几何中的应用对于简单图形的面积求解,我们可以直接运用定积分的几何意义,此时, (1)确定积分上、下限,一般为两交点的横坐标. (2)确定被积函数,一般是上曲线与下曲线对应函数的差. 这样所求的面积问题就转化为运用微积分基本定理计算定积分了.求由曲线22y x =+与3y x =,0x =,2x =所围成的平面图形的面积(画出图形).【答案】图形见解析,平面图形的面积为1S =.【解析】画出曲线22y x =+与3y x =,则下图中的阴影部分即为所要求的平面图形.解方程组223y x y x ⎧=+⎨=⎩,可得12x x ==或.故平面图形的面积为322312221201133(2)3d 3(2)d (2)|(2)|3223x x x x S x x x x x x x x =+-+-+=+-+--⎰⎰1=,所以所求图形的面积为1.【名师点睛】(1)定积分可正、可负或为零,而平面图形的面积总是非负的.(2)若图形比较复杂,可以求出曲线的交点的横坐标,将积分区间细化,分别求出相应区间上平面图形的面积再求和,注意在每个区间上被积函数均是由上减下.学科&网定积分在物理中的应用(1)已知变速直线运动的方程,求在某段时间内物体运动的位移或者经过的路程,就是求速度方程的定积分.(2)利用定积分求变力做功的问题,关键是求出变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即可.设有一长25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm ,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm 伸长到40 cm 所做的功. 【答案】将弹簧由25 cm 伸长到40 cm 时所做的功为22.5J .【名师点睛】求解时注意单位的换算,把cm 换算为m .1.定积分()d baf x x ⎰的大小A .与()f x 和积分区间[],a b 有关,与i ξ的取法无关B .与()f x 有关,与区间[],a b 以及i ξ的取法无关C .与()f x 以及i ξ的取法有关,与区间[],a b 无关D .与()f x 、区间[],a b 和i ξ的取法都有关2.在求由抛物线26y x =+与直线1x =,2x =,0y =所围成的平面图形的面积时,把区间[1,2]等分成n 个小区间,则第i 个区间为 A .1[,]i in n- B .1[,]n i n in n +-+ C .[1,]i i -D .1[,]i i n n+3.已知31()d 56f x x =⎰,则A .21()d 28f x x =⎰ B .32()d 28f x x =⎰C .212()d 56f x x =⎰D .2312()d ()d 56f x f x x x +=⎰⎰4.定积分1(2e )d x x x +=⎰A .e 2+B .e 1+C .eD .e 1-5.直线34x y x y ==与曲线在第一象限内围成的封闭图形的面积为 A .22B .42C .2D .46.计算:11||d x x -=⎰A .11d x x -⎰B .11d x -⎰C .11()d d x x x x --+⎰⎰D .110d ()d x x x x -+-⎰⎰7.由直线0y =,e x =,2y x =及曲线xy 2=所围成的封闭图形的面积S = A .2ln 23+ B .3 C .22e 3-D .e8.定积分0|sin cos |d x x x π-=⎰A .22+B .22-C .2D .229.已知1201d 3x x =⎰,2217d 3x x =⎰,则220(1)d x x +=⎰________________. 10.计算:121(sin )d x x x -+=⎰________________.11.计算π220sin d 2xx =⎰________________.12.若11(2)d 3ln 2ax x x+=+⎰,则实数a =________________.13.已知函数22()31f x x x =++,若11()()d 2f x x f a -=⎰成立,则实数a =________________. 14.已知函数2max (),{}f x x x =,则22()d f x x -=⎰________________.15.已知()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+.(1)求()f x 的解析式;(2)求曲线()y f x =与曲线241y x x =--+所围成的图形的面积S .16.如图,抛物线的方程为21y x =-,则图中阴影部分的面积可表示为A .220()1d x x -⎰ B .|220()1d x x -⎰|C .220||1d x x -⎰D .1222011d 1)d (()x x x x -+-⎰⎰17.设113d a x x =⎰,120d b x x =⎰,130d c x x =⎰,则a ,b ,c 的大小关系是A .c a b >>B .a b c >>C .a b c =>D .a c b >>18.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25()731v t t t=-++(t 的单位:s ,v 的单位:m /s )行驶至停止.在此期间汽车继续行驶的距离(单位:m )是 A .125ln5+ B .11825ln3+ C .425ln5+D .450ln 2+19.下列命题不正确的是A .若()f x 是连续的奇函数,则()d 0aa f x x -=⎰B .若()f x 是连续的偶函数,则0()d 2()d aa af x f x x x -=⎰⎰C .若()f x 在[],a b 上连续且恒正,则()d 0bax f x >⎰D .若()f x 在[),a b 上连续且()d 0baf x x >⎰,则()f x 在[),a b 上恒正20.如图,阴影区域是由函数cos y x =的一段图象与x 轴围成的封闭图形,那么这个阴影区域的面积是A .1B .2C .π2D .π21.已知()f x 是一次函数,若1()d 5f x x =⎰,117()d 6x x x f =⎰,则函数()f x 的解析式为 A .3(4)f x x =+B .4(3)f x x =+C .2(4)f x x =-+D .4(3)f x x =-+22.已知分段函数21,0()e ,0x x x f x x -⎧+≤⎪=⎨>⎪⎩,则31(2)d f x x -=⎰A .13e + B .2e - C .713e-D .12e-23.已知π207sin()d 4x x ϕ-=⎰,则sin 2ϕ=________________. 24.若0cos 2cos d tt x x =-⎰,其中,()0t ∈π,则t =________________.25.已知函数21,10()1,01x x f x x x +-≤≤⎧⎪=⎨-<≤⎪⎩,则11()d f x x -=⎰________________. 26.如图,求由曲线1y x=,2y x =与直线2x =,0y =所围成的阴影部分的面积.1.【答案】A【解析】由定积分定义及求曲边梯形面积的四个步骤,可知定积分()d baf x x ⎰的大小与()f x 和积分区间[],a b 有关,与i ξ的取法无关,故选A .学#科网2.【答案】B【解析】在区间[1,2]上等间隔地插入1n -个点,将它等分成n 个小区间[1,1n n +],[1n n +,2n n+], (1),]n i n i n n +-+,…,[21n n-,2],所以第i 个区间为1[,]n i n in n +-+ 1,2,(),i n =.故选B .3.【答案】D 【解析】由题可得323112()d ()d ()d 56f x f x x x x f x =+=⎰⎰⎰,故选D .4.【答案】C 【解析】121212000(2e )d (e )|(1e )(0e )e x x x x x +=+=+-+=⎰,故选C .5.【答案】D【解析】由已知得23242001(4)d (2)|44S x x x x x =-=-=⎰,故选D . 6.【答案】C7.【答案】B【解析】由题可得1e21e010122d d 2ln 3S x x x x x x=+=+=⎰⎰,故选B .8.【答案】D 【解析】44044|sin cos |d (cos sin )d (sin cos )d (sin cos )(sin cos )x x x x x x x x x x x x x πππππππ-=-=-=++--=⎰⎰⎰22,故选D .9.【答案】143【解析】根据定积分的性质可得2122220011714(1)d d d 22333x x x x x x +=++=++=⎰⎰⎰. 10.【答案】23【解析】12311112(sin )d (cos )33x x x x x --+=-=⎰.学*科网 11.【答案】π24- 【解析】πππ22220001cos 1π2sin d d (sin )2224x x x x x x --==-=⎰⎰. 12.【答案】2【解析】221111111(2)d 2d d ln 1ln 3ln 2aa a aa x x x x x x xa a xx +=+=+=-+=+⎰⎰⎰,解得2a =.13.【答案】1-或1314.【答案】112【解析】如图,可得222,0(){},01,1max ,x x x f x x x x x x ⎧≤=⎪=<<⎨⎪≥⎩,所以201222221d d d d 11()2f x x x x x x x x --=++=⎰⎰⎰⎰. 15.【答案】(1)2()21f x x x =++;(2)9.【解析】(1)设2()(0)f x ax bx c a =++≠,由题意可得240222b ac ax b x ⎧-=⎨+=+⎩,所以1,2,1a b c ===,所以2()21f x x x =++.(2)由2221341y x x x y x x ⎧=++⎪⇒=-⎨=--+⎪⎩或0x =, 所以022320332[(41)(21)]d (3)|93S x x x x x x x --=--+-++=--=⎰. 16.【答案】C【解析】由图形可知阴影部分的面积为1222011d 1)d (()x x x x -+-⎰⎰,而21220||(1)d 1d x x x x -=-+⎰⎰221()1d x x -⎰,故选C .17.【答案】B【解析】由题可得141133033d 44a x x x===⎰,1231011d 33b x x x ===⎰,1341011d 44c x x x===⎰,因为113434<<,所以a b c >>.故选B . 18.【答案】C【解析】令25()7301v t t t =-+=+,解得4t =或83t =-(舍去).故所求距离是4025(73)d 1t t t -+=+⎰242033[725ln(1)]|74425ln 5425ln 522t t t -++=⨯-⨯+=+,故选C . 19.【答案】D20.【答案】B【解析】根据余弦函数的对称性可得,曲线从π2x =-到π2x =与x 轴围成的面积与从π2x =到3π2x =与x 轴围成的面积相等,故阴影部分的面积ππ22ππ22cos d sin 2S x x x--===⎰,故选B .21.【答案】A【解析】由题可设((0))f x ax b a =+≠,则11001()d ()d 52f x ax b x x a b =+=+=⎰⎰,1()d xf x x =⎰11117()d 326x ax b x a b +=+=⎰,所以152a b +=且1117326a b +=, 解得4a =,3b =,所以3(4)f x x =+.故选A .学科@网 22.【答案】C23.【答案】916【解析】由题可得πππ2220sin()d (sin cos cos sin )d (cos cos sin sin )|x x x x x x x ϕϕϕϕϕ-=-=-+=⎰⎰7(sin cos )4ϕϕ--=,两边同时平方可得71sin 216ϕ-=,所以9sin 216ϕ=.24.【答案】π2【解析】由于00cos 2co s s s d in in tt t t x xx -=--==⎰,所以22sin sin 10t t --=,所以sin 1t =(负值舍去),又,()0t ∈π,所以t =π2. 25.【答案】124π+ 【解析】由题可得21012011121π1()d ()d d ()1|22144f x x x x x x x x ---π=+=++++=-⎰⎰⎰.26.【答案】2ln 23+.【解析】由题图知阴影部分的面积3121220101122d d|ln|ln233S x x x x xx=+=+=+⎰⎰.。
高中数学选修本(理科)定积分在几何上的应用
定积分在几何上的应用目的要求1.掌握定积分解决实际问题的思想方法:分割、近似代替、作和、求极限.能应用定积分求出某些平面图形的面积,知道某些简单的定积分表达式的几何意义.2.通过学习,对“面积〞的概念有较为完整的认识.知道在求平面图形的面积时,定积分是一种普遍适用的方法.内容分析1.定积分在几何中的应用源于最初对积分的研究.但是,作为一种数学方法,定积分有广泛的应用.本节课主要研究运用定积分求一些平面图形的面积,同时,通过应用加深对定积分概念的理解,进一步体会学习微积分的重要性.2.本节的教学重点是运用定积分求一些平面图形的面积,教学难点是使学生理解“当x∈[a,b]时,假设f(x)<0,即f(x)的图象位于x轴下3.微积分的思想方法产生于实践,形成一般理论后,又回过来广泛应用于实践.它表达了唯物主义的认识论,教学中要充分发挥教科书的优势,寓思想教育于教学过程之中,这对正在成长中的青年一代世界观的形成,将会产生积极的影响.教学过程1.复习引入(1)板演练习:分别用初等数学方法和定积分方法计算由x=0、x=3、x轴及直线y=x+3围成的梯形的面积.(2)复习:在练习的基础上复习定积分的几何意义、微积分基本公式(3)提出问题:如果图形由曲线y1=f1(x)、y2=f2(x)(不妨设f1(x)≥f2(x)≥0),及直线x=a、x=b(a<b)围成(见课本图4-13),那么所围成的图形的面积如何用定积分表示?2.尝试探索(1)推导公式观察图形,由学生归纳出面积公式:练习:完成教科书第170页练习第(1)、(2)、(3)题.(2)尝试应用例1 计算由曲线y2=x、y=x2所围成的图形的面积.解:(见教科书例1)归纳:求由两条曲线围成的平面图形的面积的解题步骤.①画出图形;②确定图形X围,通过解方程组求出交点的横坐标,定出积分上、下限;③确定被积函数,特别要注意分清被积函数的上、下位置;④写出平面图形面积的定积分表达式;⑤运用微积分基本公式计算定积分,求出平面图形的面积.变式一:求由曲线y=x2、y=2x+3所围成的图形的面积.[D]A.①、③B.③、④C.②、③D.②、④(3)变形公式在变式二的基础上,推导出以下变形公式:①如图54-1,在区间[a,b]上f(x)≤0,这时曲边梯形的面积②如图54-2,在区间[a,c]上f(x)≤0,在区间[c,b]上f(x)≥0,那么阴影部分的面积为(此公式应用了定积分的性质,即定积分对积分区间的可加性.)③如图54-3,在区间[a,b]上,g(x)<f(x)<0,那么图中阴影部分面积为(4)拓广公式①如图54-4,由曲线x=g(y)和三条直线y=c、y=d、x=0围成的曲边梯形的面积为②如图54-5,阴影部分图形的面积为3.强化训练例2 利用定积分的几何意义说明解:(见教科书例2解答)例3 计算由曲线y2=2x、y=x-4所围成的图形的面积.解法一:(见教科书例3解答)解法二:假设取x为自变量,这时应分为两段求积分:教师引导学生对比解法一、解法二的繁简程度.变式一:教科书练习第5、6题.变式二:由y=sinx、y=cosx、x=0、x=π所围成的图形的面积可表示为[B]4.归纳总结1.求平面图形面积的基本步骤、理论根据及“面积〞概念的完整认识.2.各种图形中的曲边梯形的面积公式(分两大类).3.能利用定积分表达式的几何意义求定积分.布置作业1.教科书习题4.5第1、3题.2.求由抛物线y=-x2+4x-3及其在点M(0,-3)和N(3,0)处的两条切线所围成图形的面积.3.(1996年某某高考题)A(-1,2)为抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切,直线l2:x=a(a≠-1)交抛物线C于点B,交直线l1于点D.(1)求直线l1的方程;(2)设△ABD的面积为S1,求|BD|及S1的值;(3)设由抛物线C及直线l1、l2所围成的图形的面积为S2,求证:S1∶S2的值为与a无关的常数.(答案:4x+y+2=0;|BD|=2(a+1)2,S1=|a+b|3;S1∶S2=3∶2.)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)确定积分变量及被积函数;
(4)列式求解.
定积分在几何中的应用
1.求下列曲线所围成的图形的面积:
(1)y=x2,y=2x+3;
(2)y=ex,y=e,x=0.
32 (1)S 1 ((2 x 3) x )dx 3 1 x (2)S 0 (e e )dx 1
定积分的简单应用:
1.7.1定积分在几何中的 应用
复习引入
定积分
一.定积分的几何意义是什么?
1、如果函数f(x)在[a,b]上连续且f(x)≥0时,那么:
b
a
f ( x)dx 就表示以y=f(x)为曲边的曲边梯形面积。 y y f ( x)
A a f ( x )dx
b
A
o
a
b x
f ( x ) 0,
3 2
2、计算由曲线 y 2 x 和直线 y x 4 所围成
2
的图形的面积.
解: 求两曲线的交点:
y 2x
S1 S1 2
y x4
8
y2 2 x
y2 2 x ( 2,2), (8,4). y x4
S 2S1 S2 2
2 0
2 8
S2
0
f ( x ) 0,
a f ( x )dx A
a f ( x )dx A
b
b
曲边梯形的面积 曲边梯形的面积的负值
2、定积分
b
a
ห้องสมุดไป่ตู้
f ( x)dx 的数值在
S1 S2
S3
几何上都可以用曲边梯形面积的
代数和来表示。
y
b
a
f ( x )dx S1 S 2 S 3
y f2 ( x)
4
(
4
0
2 xdx
4
2 xdx) ( x 4)dx
4
8
8
0
2 xdx ( x 4)dx
4
8
2 2 3 1 2 40 8 2 8 x |0 ( x 4 x) |4 3 2 3
s
8
0
1 2 xdx 4 (8 4) 2
3 2 8 0
A
o
y f1 ( x )
b x
3、A [ f 2 ( x) f1 ( x)]dx
a
b
a
二、微积分基本定理内容是什么?
设函数f(x)在区间[a,b]上连续,并且F’(x)=f(x),
则,
b
a
f ( x)dx F (b) F (a)
这个结论叫微积分基本定理(fundamental theorem of calculus),又叫牛顿-莱布尼茨公式(Newton-Leibniz Formula).
或记作
f ( x)dx F ( x) F (b) F (a).
b a
b a
例 1. 计算由两条抛物线 y 2 x 和 y x 2 所围成 的图形的面积.
解:作出y2=x,y=x2的图象如图所示: y x x 0 x 1 解方程组 得 :{y 0 ,{y 1, y 2 y x 2 y y xx B 即两曲线的交点为(0,0),(1,1) 2
2 2 x | 8 3 2 2 40 16 2 8 3 3
1 2 s [(4 y ) y ]dy 0 2
4
1 2 1 3 4 (4 y y y ) |0 2 6
1 2 1 3 40 4 4 4 4 2 6 3
点评:求两曲线围成的平面图形的面积的一般步骤:
k=2x0 设切点(x 0,x 0 )则,切线的斜率 2 y x0 2x0 ( x x0 )
A
x
即,y 2x0 ( x x0 ) x0
2
o
S
x0
0
1 1 1 2 x dx x0 x0 12 2 2
2
解之得:x0 1 所以,切线方程为: y=2x- 1;
解:作出y=x-4, y 2x 的图象 如图所示: y 2x x=8 解方程组 得 :{y=4 , y x 4 直线y=x-4与x轴交点为(4,0)
S S1 S2
4 0
y 2x
S2
S1
y x4
8
2 xdx [
8
8
4
2 xdx ( x 4)dx]
S = S曲边梯形OABC - S曲边梯形OABD
C o
yx
2 x 1 1 S = ( x - x )dx ( x ) |0 . 0 3 3 3
1 2
3 2
1
0
xdx x dx
2 0
1
O
3
D
2 y xx
A
例 2.计算由曲线 y 2x , 直线 y x 4以及 x 轴所围 成的图形的面积.
2 xdx ( 2 x x 4)dx
2
2 2 xdx ( 2 x x 4)dx
2
8
4 2 2 2 1 2 16 64 26 8 x | ( x x 4 x) |2 18 3 3 2 3 3 3
3 2 2 0
3 2
思考题:在曲线y=x2 (x≥0)上某点A处作切线, 使之与曲线及x轴围成图形的面积为1/12。 求过点A的切线方程. 2 y y=x 2
三.小结
求两曲线围成的平面图形的面积的一般步骤:
(1)作出示意图;(弄清相对位置关系) (2)求交点坐标;(确定积分的上限,下限)
(3)确定积分变量及被积函数; (4)列式求解.