定量校正因子的测定
色谱校正因子
色谱的检测器对不同物质有不同的响应,换句话说,1mg化合物A在检测器上能产生1000mAu的响应,但同样是1mg的化合物B在该检测器上也许就只能产生847mAu的响应,所以我们不能在检测器输出1000mAu的响应时就认定样品中一定含有1mg化合物,这时就必须引入定量校正因子;校正因子的作用就是反映某物质的量与检测器响应之间的关系;定量校正因子分为两种:1.绝对定量校正因子f;f=M/A,其中M代表被测物质的量,A代表检测器信号响应,可以是峰面积或峰高,其意义为单位响应所反映的物质量;2.相对定量校正因子f';f'=fi/fs=Mi/Ai/Ms/As=MiAs/MsAi,其中i代表被测定物质,s代表选定的基准物质;绝对定量校正因子一般用于外标法,相对定量校正因子一般用于内标法;色谱法的含量测定中之所以要先用待测成分的对照品来建立校准曲线,然后才用这个曲线来计算待测样品中该化合物的含量,实际上就是在测定样品前先确定校正因子;日常操作中我们都是以:M标/A标=M样/A样直接计算样品含量了,所以没太注意有什么校正因子,事实上只要将公式作一个简单的变形:M样=A样M标/A标,不难看出式中的M标/A标其实正是定量校正因子f,那么M样=A样f了;简单来说可以理解为标准曲线的斜率最后提醒一点,用面积百分比法做含量测定时,不可简单地认为各成分的峰面积百分比就是它们的含量百分比哦,理由如上所述,各成分含量与响应的比例关系可不一定都相同啊色谱定量分析的依据是被测组分量与检测器的响应信号峰面积或峰高成正比;但是同一种物质在不同类型检测器上往往有不同的响应灵敏度;同样,不同物质在同一检测器上的响应灵敏度也往往不同,即相同量的不同物质产生不同值的峰面积或峰高;这样,各组分峰面积或峰高的相对百分数并不等于样品中各组分的百分含量;因此引入定量校正因子,校正后的峰面积或峰高可以定量地代表物质的量;1定量校正因子的定义定量校正因子分为绝对定量校正因子;由上述峰面积与物质量之间的关系W=fA可知:f=W/Af′称为绝对定量校正因子,即单位峰面积所代表的物质量;这是以峰面积表示的定量校正因子,也可以用峰高来表示定量校正因子;此外,也有用它们的倒数来表示的,简称为响应值;绝对定量校正因子的值随色谱实验条件而改变,因而很少使用;在实际工作中一般采用相对校正因子;其定义为某物质i与所选定的基准物质s的绝对定量校正因子之比,即:上式中w以重量表示,因此f又称为相对重量校正因子,通常称为校正因子f;本书均使用重量校正因子;如果物质量用摩尔表示,则称为相对摩尔校正因子,即f和f二者间的关系如下:2定量校正因子的测定气相色谱的定量校正因子常可以从手册和文献查到;但是有些物质的校正因子查不到,或者所用检测器类型或载气与文献的不同,这时就需要自己测定;测定时,准确称取待测校正因子的物质i纯晶和所选定的基准物质s,混合均匀后进样,测得两色谱峰面积A和A,用式求得物质i的相对重量校正因子;显然,选择不同的基准物质测得的校正因子数值不同;气相色谱手册中数据常以苯或正庚烷为基准物质;也可以根据需要选择其他基准物质,如采用归一化法定量时,选择样品中某一组分为基准物质;测定校正因子的条件检测器类型应与定量分析的条件相同;还应该注意的是,使用热导检测器时,以氢气或氦气作载气测得的校正因子相差不超过3%,可以通用,但以氮气作载气测得的校正因子与前二者相差很大,不能通用;而氢焰检测器的校正因子与载气性质无关;在一定操作条件下,分析组分i的质量m i或其在载气中的浓度是与检测器的响应信号色谱图上表现为峰面积A i或峰高h i成正比的,可写作:m i=fˊi·A i一、峰面积测量法1.峰高乘半峰宽法A=h·Y1/2 A=·Y1/22.峰高乘峰底宽度法3.峰高乘平均峰宽法A=h×4.峰高乘保留值法A= h·Y1/2=h·b·t R b可以约去,于是:A= h·Y1/2=h·t R5.积分仪二、定量校正因子色谱定量分析是基于被测物质的量与其峰面积的正比关系;但是由于同一检测器对不同的物质具有不同的响应值,所以两个相等量物质出的峰面积往往不相等,这样就不能用峰面积来直接计算物质的含量;为了使检测器产生的响应信号能真实地反映物质的含量,就要对响应值进行校正,因此引入“定量校正因子”quantitative calibration factor;m i=f’i A i 或f’I=m i/A i1.质量校正因子f m f m= =2.摩尔校正因子f M f M= = =f M·3.体积校正因子f V f V= = =f M4.相对响应值s’s’=1/f’三、几种常用的定量计算方法1.归一化法假设试样中有n个组分,每个组分的质量分别为m1,m2,…,m n, 各组分含量的总和m为100%,其中组分I的质量分数可按下式计算:w i = m i/m×100%= ×100%= ×100%若各组分的f值相近或相同,例如同系物中沸点接近的各组分,则上式可简式为:w i = ×100%该法优点是:简便、准确,当操作条件、如进样量、流速等变化时,对结果影响小; 2.内标法内标法是将一定量的纯物质作为内标物,加入到准确称取的试样中,根据被测物和内标物的质量及其在色谱图上相应的峰面积比,求出某组分的含量;例如要测定试样中组分i 质量为m i的质量分数w i ,可于试样中加入质量为m s的内标物,试样质量为m,则:n i=f i A i m s=f s A sm i/m s=A i f i/A s f s m i=A i f i/A s f s·m sw i=m i/m×100%= A i f i/A s f s·m s/m×100%一般常以内标物为基准,则f s=1,此时计算可简化为:w i=A i/A s·m s/m·f i×100%我配置了从甲烷、乙烷,乙烯,丙烷,丙烯,异丁烷,正丁烷,1-丁烯,顺-2-丁烯,反-2-丁烯,异丁烯,1,3-丁二烯的标准气;他们的体积分数也就是mol分数分别为:甲烷%乙烷%乙烯%丙烷%丙烯%异丁烷%正丁烷%1-丁烯%顺-2-丁烯%反-2-丁烯%异丁烯%1,3-丁二烯%,其余采用N2平衡%采用氧化铝毛细柱,FID检测器检测;采用单点矫正;那么计算各物质的校正因子只输入他们各自的mol含量就可调试安装师傅告诉我的,也就说甲烷的校正因子f甲烷=A甲烷峰面积;乙烷的校正因子f乙烷=A乙烷峰面积......,以此类推,得出各物质的校正因子;分析未知物时,假设未知全部检出,且不超过以上物种;那么各物质的含量为CH4%=f甲烷A'甲烷峰面积/ΣfiA'i,其余类似;不知道上面的说法是否正确,而且得出的是摩尔分数,对吗我从色谱书了解到,FID检测器为质量型检测器,那么峰面积可以代表哪些信息体积摩尔数质量摩尔体积分数质量分数是都可以,还是仅其中某个另外,校正因子产生后,当我检测未知物时,检测条件发生变化比如分流比,柱温,比如程序升温变化,进样器或者检测器,对校正因子是否有影响FID的峰面积乘以校正因子后表示质量,各物质的校正因子不同是因为检测器对各物质的响应强度不同;个人认为校正因子只与检测器的工作状态有关;采用相对校正因子法:计算的理论基础是带校正因子的面积归一化法1.配制含有水和乙醇的标准溶液,并记录以下参数,需要精密测定:标准溶液的体积,含有的水和乙醇的质量;简单一点配置就是用一个容量瓶,称重,加入少量水,再定量加入乙醇,加入的乙醇量按照体积百分比为80%的乙醇溶液估计;称重,然后用水定容至刻度,再次称重;2.精密量标准溶液和供试溶液进样3.分别计算水和乙醇相对校正因子;以乙醇校正因子为1.计算式如下:、水的相对校正因子=水的校正因子/乙醇的校正因子水的校正因子=标准溶液中水的重量/水的峰面积乙醇的校正因子=标准溶液中乙醇的重量/乙醇的峰面积乙醇的相对校正因子=水的校正因子/乙醇的校正因子=14.供试品水和乙醇的质量百分含量计算如下:水的质量百分含量=水的峰面积水的相对校正因子/水的峰面积水的相对校正因子+乙醇的峰面积乙醇的相对校正因子乙醇的质量百分含量=乙醇的峰面积乙醇的相对校正因子/水的峰面积水的相对校正因子+乙醇的峰面积乙醇的相对校正因子5.用上式计算,直接建立峰面积和质量百分含量的关系,相对校正因子只用定期测定一次即可;。
审评中心关于校正因子的说明
20111207栏目化药药物评价>>化药质量控制标题HPLC法校正因子研究中的几个问题作者张哲峰部门化药药学二部正文内容HPLC法具有将不同物质分离后逐一定量的分离分析能力,在药品有关物质检测中发挥着越来越重要的作用,成为药品杂质控制中常用而有效的手段之一。
在杂质对照品法、加校正因子的主成分自身对照法、不加校正因子的主成分自身对照法、峰面积归一化法等几种常用的杂质定量方式中,校正因子的研究对于选择合适定量方式,准确定量杂质具有重要意义,因而成为杂质分析方法研究中的重要内容之一。
但从目前注册申报资料实际情况来看,校正因子的研究和使用中尚存在一些需要进一步思考和关注的问题。
1.校正因子的定义及特点一般来讲,HPLC定量测定中,物质的检测量W与色谱响应值(峰面积等)A之间的比值称为绝对校正因子,即单位响应值(峰面积等)所对应的被测物质的量(浓度或质量);而某物质i与所选定的参照物质s的绝对校正因子之比,即为相对校正因子,即通常所讲的校正因子。
目前校正因子主要用于“加校正因子的主成分自身对照法”定量相关特定杂质,这种定量方式因考虑了杂质与主成分的绝对校正因子的不同所引起的测定误差,将标准物质的赋值信息转化为常数,固化在质量标准中,且不需长期提供标准物质,因而成为现阶段杂质控制较为理想可行的手段。
但这种方法有时会因不同仪器及色谱条件的波动,可产生一定范围的误差,需进行充分的方法耐用性验证,并结合色谱峰定位控制等措施,将误差控制在一定范围内。
2.校正因子的测定在校正因子的研究和使用中,标准物质、色谱条件、溶剂、检测波长等均是重要的影响因素,研究中需要予以关注。
2.1 校正因子的测定需要用到特定杂质及主成分的标准物质,这些标准物质应具备量值准确的特点,符合标准物质(对照品)的相关要求;其次,确定校正因子的分析方法应与最终确定的质量标准方法一致,色谱条件等需经筛选优化后确定,如有变更,需考虑对校正因子的影响,必要时重新确定;第三,要关注影响待测物UV吸收的各种因素,如溶液制备所用溶剂最好与最终确定的流动相相同,检测波长最好在特定杂质及主成分UV曲线的峰或谷处,避开吸收值急剧变化波段,以保证测定方法具有较好的耐用性,并保持测定结果的恒定。
标准气体含量表示方法及换算和校正因子计算
Ⅰ、标准气体含量表示方法及换算一、标准气体含量表示方法1. 标准气体的摩尔分数(x b )(摩尔比)标准气体中组分气体B 的物质的量与标准气体中各组分物质的量的总和之比即为标准气体的摩尔分数。
此浓度是我们经常用的一种。
∑==ni iBB nn x 1式中:n B ─标准气体中组分气体B 的物质的量 n i ─标准气体中各组分物质的量的总和 常用10-2(%)、10-6表示2. 标准气体的质量分数(W B )(重量比)标准气体中组分气体B 的质量与标准气体中各组分的质量的总和之比即为标准气体的质量分数。
此也浓度是我们经常用的一种。
∑==ni iBB mm w 1式中:m B ─标准气体中组分气体B 的质量 m i ─标准气体中各组分质量的总和 常用10-2(%)、10-6表示3. 标准气体的质量摩尔浓度(mB )标准气体中组分气体B 的物质的量除以标准气体中各组分质量的总和为标准气体的质量摩尔分数。
ABB m n m =式中:n B ─标准气体中组分气体B 的物质的量 m A ─标准气体的总质量 常用mol/kg 、mol/g 、mmol/g 表示4. 标准气体的质量浓度(ρB ) 标准气体中组分气体B 的质量(m )除以标准气体的体积(v )和为标准气体的质量浓度。
Vm B =ρ式中:m ─标准气体中组分气体B 的质量 V ─标准气体的体积常用kg/m3、g/L 、mg/L ,ug/L 表示5.标准气体的物质的量浓度(c B )标准气体中组分气体B 的物质的量与标准气体的体积之比为标准气体的物质的量浓度。
Vn c BB =式中:n B ─标准气体中组分气体B 的物质的量 V ─标准气体的体积 常用mol/m3、mol/L 表示5. 标准气体的体积分数(ϕB )标准气体中组分气体B 的体积与标准气体中各组分物质体积的总和之比为标准气体的体积分数。
∑==ni iBB VV 1ϕ式中:V B ─标准气体中组分气体B 的体积 n i ─标准气体中各组分物质体积的总和常用10-2(%)、10-6表示,因为任何气体在标准状态下的摩尔体积均可近似为22.4L ,所以标准气体的体积分数可近似等于标准气体的摩尔分数。
实验三十三定量校正因子的测定
实验B-23 定量校正因子的测定实 验 目 的1.掌握色谱定量校正因子的测定方法。
2.进一步熟悉,了解色谱仪的操作和性能。
实 验 原 理在一定色谱操作条件下,被测组分i 的重量(W i )与检测器的响应信号峰面积(A i ),成正比,W i =f i ′²A i ,这就是色谱定量分析的依据,式中f i ′为比例常数,称为被测组分i 的绝对校正因子。
由于检测器对不同物质具有不同响应,就不能用峰面积来直接计算物质的含量,而需要对响应值进行校正,这就是校正因子的意义,即f i ′= W i / A i ,可见f i ′代表了单位面积物质的重量。
由于f i 值与色谱条件有密切关系,不易准确测定,因而常采用相对校正因子f i ,即被测物质i 与标准物质s 的绝对校正因子之比(通常把“相对”二字略去):is si s s i s i i A W A W A W A W f f f i ∙∙===//'' 式中f s ′、 W s 、A s 分别为标准物质的绝对校正因子,重量及峰面积。
仪器与试剂1.仪 器岛津GC-14气相色谱仪 载气钢瓶H 2 色谱柱(参见前一实验) 微量注射器10μL2.试 剂101白色硅烷化担体(60-80目) 有机皂土34 邻苯二甲酸二壬酯 苯(分析纯) 甲苯(分析纯) 邻二甲苯(分析纯)实 验 步 骤1.实验条件:检测器:热导池检测器(TCD ) 桥电流100mA 温度:色谱柱 90°C 检测器 110°C 汽化室 150°C 载气: H 2纸速: 30 mm/min 进样量: 4μL2.色谱操作:(1) 准确称取苯0.4g(±0.0001g),甲苯0.4g(±0.0001g),邻二甲苯0.5g(±0.0001g)于具塞试管中,摇匀备用。
(2) 吸取混合试样4μL 进样,得到各组分的色谱图,出峰顺序为苯,甲苯,邻二甲苯。
定量校正因子的测定
五、数据及处理 1、( 、(P27) 、( ) 2、处理色谱数据文件,记录各组分的 、处理色谱数据文件, 峰面积A、称量的质量m, 峰面积 、称量的质量 ,以邻二甲苯 为标准物质计算m 为标准物质计算 i/ms、Ai/As和fi等值列 入下表中。 入下表中。
m/g 苯 甲苯 乙苯 三甲苯 邻二甲苯 标物) (标物)
色谱过程
不同组分通过 色谱柱的迁移 速度不等
定量的依据: 定量的依据: 物质的质量或浓度与峰面积呈正比
mi mi = fi Ai ⇒ fi = Ai
' '
绝对校正因子
m样品 = fi A样品
'
'
m fi ⋅ A 相对校正因子 m A i i i i = ' ⇒ = fmi ⋅ ms fs ⋅ A ms A s s A 品 样 m 品 = fmi ⋅ ms 样 A s
四、实验步骤 1、混合试样的配制 称取 苯、1g甲 称取1g苯 、 甲 乙苯、 邻二甲苯 邻二甲苯, 苯、1g乙苯、 1g邻二甲苯,1g1,2, 乙苯 , , 3-三甲苯于容量瓶中,摇匀备用。 三甲苯于容量瓶中, 三甲苯于容量瓶中 摇匀备用。 2、( 、(P26) 、( ) 3、吸取混合试样 进样, 、吸取混合试样1uL-10uL进样,得 进样 到其色谱图,重复两次。 到其色谱图,重复两次。各组分出峰 顺序为: 甲苯、乙苯、邻二甲苯、 顺序为:苯、甲苯、乙苯、邻二甲苯、 1,2,3-三甲苯。 三甲苯。 , , 三甲苯
1
Байду номын сангаас
2
A 3
平均值
mi/ms Ai/As
fi
1
1
1
相对校正因子
定量校正因子的测定
色谱定量分析要点
色谱定量分析色谱分析的重要作用之一是对样品定量。
色谱法定量的依据是:组分的重量或在载气中的浓度与检测器的响应信号成正比。
在此,响应信号指峰面积或峰高,表示为:i i i A f w =,其中:w i 为欲测组分i 的量,A i 为组分i 的峰面积,f i 为比例系数,在此称为校正因子。
由此可见,要准确定量,首先要准确测出峰面积与定量校正因子。
一、峰面积的测量1. 对称峰面积的测量对称色谱峰近似地看作一个等腰三角形,按照三角形求面积的方法,峰面积为i w h A h i i 2=,经验证明该方法计算的面积只有实际面积的0.94倍,故再乘一系数1.065,i w h A h i i 2065.1=,这是目前应用较广的计算法。
2. 不对称峰面积的测量在色谱分析中,经常会遇到不对称峰,多数不对称峰为拖尾峰,峰面积的计算方法为:取峰高0.15倍处和0.85倍处峰宽的平均值,乘峰高:h W W A h h ⨯+=)(2185.015.0 3. 大色谱峰尾部的小峰面积的测量分析某主成分中痕量组分时,常会遇到主峰未到基线,杂质峰开始馏出的情况。
此时,杂质峰面积计算法如下:沿主峰尾部划出杂质峰的基线,由峰顶作主峰基线的垂线。
峰顶为A ,垂线与主峰尾部交点为B ,峰高一半处峰宽为b ,则A=AB·b 。
4. 基线漂移时峰面积的测量基线漂移时的峰面积,形状与大峰后面拖尾的小峰的峰缝相似,计算方法相同。
5. 重合峰面积的测量在色谱分析中,常会遇到分离不完全的重合峰,峰面积可如下计算:两峰重合,如果交点位于小峰半高以下,可由峰高乘半高峰宽法计算两峰面积。
如果两峰交点位于小峰半高以上,通常是由交点作基线的垂线,再用剪纸称重法计算。
6. 峰高乘保留时间法同系物间,半高峰宽与保留时间呈线形关系:a bt W R h +=2,对于填充柱0≈a 。
当色谱峰很尖、很窄、半高峰宽不易测准时,可用保留时间代替半高峰宽R bt h A ⋅=065.1。
定量校正因子
5
8.323 8.321
6
0
5
10
0
5
10
15
Time (min)
Time (min)
6
6
7
7
7
2.利用相对保留值γi,s定性
相对保留值γ i,s仅与柱温和固定液性质有关。
ris
t
' Ri
t
' Rs
VR' i VR' s
Ki Ks
因分配系数,取决于组分的性质、柱温与固定相的 性质,与固定相的用量、8柱长、柱填充情况(即固 定相的紧密情况)及流动相的流速等无关。
Ci a bAi 24
式中与分别为直线的截距与斜率。
24
24
② 外标一点法
只有在工作曲线通过原点,即截距为零时,
才可用外标—点法进行定量分析。
Ci
Cs
Ai As
25
25
25
图示
26
back
26
26
6.897
tR=6.897, A1=1001.5
0 Time (min)
5
10
6.895
0.0873
36
36
将以上酯量换算成相应的酸量(W2):
W2
0.0873 166 194
0.0747
Ci %
0.0747 0.3578
100
20.9
37
37
37
38
38
38
色谱-红外光谱仪联用仪; 组分的结构鉴定
1.0 DEG/MI N
HEWLET PT ACKAR
色谱定量分析中校正因子的使用
色谱定量分析中校正因子的使用在药物研发和QC岗位工作的人员在进行杂质定量时会经常遇到校正因子。
那么定量过程中为什么要使用校正因子、校正因子该怎么计算、得到的校正因子结果该怎么进行使用以及验证呢?下面小编将和大家一一进行分析这些问题,让大家透彻的了解校正因子。
1、为什么要使用校正因子?问题1:在做有关物质质量研究控制时,获得杂质是最让人头疼的一个问题,因有些杂质很难制备、稳定性差或者价格昂贵,难以长期提供杂质进行后续检测。
解决办法:因物质通过检测器时会有一个响应值,所以使用峰面积进行反应待测组分的含量就是一个很好的方法。
问题2:由于同一检测器对不同物质的响应值不同,所以当相同浓度的不同物质通过检测器时,产生的峰面积不一定相等,这种情况下使用峰面积进行反映待测组分的含量就会出现误差。
解决办法:为了消除这个误差,需要加入一个校正值,使得相同浓度的不同物质通过检测器时,产生的峰面积相等,以达到使用峰面积准确反映待测组分的含量,这个校正值就是我们常提到的校正因子。
举例如下:0.1mg/ml API的峰面积5000.1mg/ml 杂质峰面积是250测定某样品时检出API峰面积为500,待测组分为5。
当使用峰面积(面积归一化法)计算杂质的含量:5/500*100=1%当使用外标法进行计算杂质的含量:5*0.1/250/0.1*100=2%这样使用面积归一化法和外标法计算杂质结果就出现了误差。
当引入校正因子:500/250=2,进行计算杂质的含量:5*2/500*100=2%此时计算的结果就相吻合了。
以上就是我们在样品杂质定量时需要使用校正因子的原因。
2、校正因子的含义校正因子分为绝对校正因子和相对校正因子。
绝对校正因子:物质的检测量W与色谱响应值(峰面积等)A之间的比值相对校正因子:某物质i与所选定的参照物质s的绝对校正因子之比通常我们在实验过程中使用的就是相对校正因子,经常查阅USP药典的朋友会发现USP质量标准中使用的是响应因子,它是校正因子的倒数。
气相色谱常用定量和定性方法
fM
14
2020/10/20
3.2.2相对校正因子的查阅
3.2.3.1相对响应值(S ) 一种物质与相同量的参比物质的响应值之比 3.2.3.2 f =1/S
15
2020/10/20
3.2.3定量校正因子的测定
相对校正因子:采用的标准物因检测器不同而 不同: 热导池检测器TCD:苯 火焰离子化检测器FID:正庚烷
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
2.3.2.2方法
(1)将碳数为Z和Z+1的正构烷烃做标准物,加入到待测样品i中,测得这
三种物质的调整保留值,且tR(Z) < tR(i)< tR(Z+1)
I
100[Z
lg X i lg X Z lg X(Z 1) lg X Z
Xi%=fi×Ai Xs%=fs×As= fi×As Xi%/ Xs%= Ai/As Xi%= Xs% Ai/As
20
2020/10/20
3.3.4内标法
2.常用的色谱定性分析方法
2.1 根据保留值定性(用纯物质对照) 2.2 用双柱定性 2.3 利用文献值对照定性 2.4 GC-MS联用定性
4
2020/10/20
2.1 根据保留值定性--最常用的定性方法
2.1.1 依据 相同物质在相同的色谱条件下具有相同的保留值。
(1()即若:试若样tR中=ti某,组则分R的=i)保留值(tR) 与已知物相同,则试样中含有该物质。 (2)峰增高法:在待测物中加入已知物的纯物质,再与待测物色谱图比较,
]
(2)求出未知物的Ii,并与文献值对照定性 2.3.2.3注意
定量校正因子的测定
(3)、增加峰高法 该法是在样品中加入一种纯物质,测定未知物 色谱峰是否有增高,从而判断未知物与加入的 纯物质是否同一种物质。在试样中加入适量的 某纯物质,进样后峰高增加的色谱峰可能与加 入的纯物质为同一物质。 上述的3种定性方法的分析结果并非绝对可靠, 这是因为尽管保留值具有特征性,但却不具备 专一性,有些物质也可能具有相同或相近的保 留值,难免会造成错误的判断,较为可靠的方 法是以下两种。
1/ 2
A实际 1.065 h W 1/ 2
(2)、峰高乘以平均峰宽 当色谱峰的峰形不对称时,一般可采用此法。即先分 别测出峰高为 0.15 和 0.85 处的峰宽,然后按下式计 算面积:
A 1 h (W0.15 W0.85 ) 2
此法计算出的峰面积较准确。 对一些对称的狭窄峰,可直接以峰高代替峰面积, 这样做既简便快速,又准确。
(1)、绝对保留值法 该法是在相同的条件下分别测定未知物和已知 纯物质的保留值,通过对照比较两者的保留值 是否相同,判断两者是否同一种物质。保留值 相同时,可能 (2)、相对保留值法 该法是在样品中加入一种基准物,测定未知物 对基准物的相对保留值,通过对照文献数据判 断未知物是哪一种物质(文献上有各种常见物 质对某些基准物的相对保留值可供查阅)。相 对保留值仅与固定相及柱温有关,不受其他操 作条件的影响。在规定的固定相及柱温条件下, 测出未知组分对基准物的相对保留值,与文献 数据对照即可做出定性判断。
W i = fi Ai 式中的 f i称为组分的校正因子。由式可知,定量分 析必须测量其峰面积 A i和确定组分的校正因子 f i ,
再用适当的定量计算方法,将色谱峰面积换算为试样 中组分的含量。
初中化学定量测定实验教学与研究 实验中如何测定定量校正因子
初中化学定量测定实验教学与研究实验中如何测定定量校正因子随着课程改革的进一步加深,初中化学教学中的实验教升到定量测定的教学研究。
定量测定实验的要求非常高,因此也成为各地区初中生升学考试的压轴题。
定量测定的实验试题解答不但要求学生有科学严谨的态度、规范的操作要领、准确的定量观念而且要有较高的综合思维能力。
初中化学中简单的定量测定实验处理对学生今后进入高中阶段进行相关定量研究起到了铺垫作用。
因此,各地区在初中化学教学过程中,特别是复习中加大了对这方面的研究。
是由于定量测定实验对实验仪器的要求较高,教师在处理时也只是落实于相关试题的研究。
这种做法只利于提高学生的应试水平,不能让学生从思想上真正认识到定量研究实验的重要性。
笔者认为应从以下几个方面入手,将定量测定实验有机地渗透到平时的实验教学中。
一研究教材实验,设计定量实验教学初中化学实验设置主要分为基本操作实验、物质性质与制备实验、揭示概念和化学原理的实验等。
教师可以对教材实验进行充分的研究,对部分实验进行挖掘,设计有价值的定量实验,并有机地渗透到教学过程中。
如沪教版九年级上册第二章第二节“氧气的制法”中,可设计成利用高锰酸钾受热分解来收集一定体积的氧气的定量实验教学。
分组实验的实验装置见图1。
有条件的学校也可以利用量气管(如图2)使测定更为精确。
设计这样的实验既可以拓宽学生对气体的收集方法的认识,同时也有助于学生在探究物质纯度时联想到利用气体体积法来测定。
教材中可以设计为定量测定的实验很多,但是教师必须要细心打磨,不可以拿来就用,不提前试验就直接展示给学生看是不行的,需做一定的精心准备和研究。
二关注中考试题,提炼定量实验模型中考试题中的定量测定试题呈现给教师的不仅仅是将其转化为学生演练的试题,教师应有选择性地将其转化为可以操作的测定实验,这样更能加深学生对这类试题的把握和理解。
如江苏省扬州市xx年中考试题第27题中工业级NaN3中常含有少量的Na2CO3,需测定样品中Na2CO3的质量分数。
杂质测定中加校正因子的主成分自身对照法的校正因子测定问题
杂质测定中加校正因子的主成分自身对照法的校正因子测定问题杂质测定中加校正因子的主成分自身对照法:在杂质研究中,因某一杂质与主成分在某一波长下的响应因子不在0.9-1.1范围内,可考虑采用加校正因子的主成分自身对照法。
此校正因子可直接载入各品种项下,用于校正杂质的实测峰面积。
这些需做校正因子的杂质,通常以主成分为参照,采用相对保留时间定位,其数值一并载入各品种项下。
(可以理解为校正因子具有法律效应的作用)关于校正因子的理论知识如下:色谱定量分析的依据是被测组分量与检测器的响应信号(峰面积或峰高)成正比。
但是同一种物质在不同类型检测器上往往有不同的响应灵敏度;同样,不同物质在同一检测器上的响应灵敏度也往往不同,即相同量的不同物质产生不同值的峰面积或峰高。
这样,各组分峰面积或峰高的相对百分数并不等于样品中各组分的百分含量。
色谱的检测器对不同物质有不同的响应,换句话说,1mg化合物A在检测器上能产生1000mAu的响应,但同样是1mg的化合物B在该检测器上也许就只能产生847mAu的响应,所以我们不能在检测器输出1000mAu的响应时就认定样品中一定含有1mg化合物,这时就必须引入定量校正因子。
校正后的峰面积或峰高可以定量地代表物质的量,校正因子的作用就是反映某物质的量与检测器响应之间的关系。
定量校正因子分为两种:1、绝对定量校正因子f;f=M/A,(其中M代表被测物质的量,A代表检测器信号响应,可以是峰面积或峰高),其意义为单位响应所反映的物质量。
绝对定量校正因子,即单位峰面积所代表的物质量。
这是以峰面积表示的定量校正因子,也可以用峰高来表示定量校正因子。
此外,也有用它们的倒数来表示的,简称为响应值。
绝对定量校正因子的值随色谱实验条件而改变,因而很少使用。
2、相对定量校正因子f';f'=fi/fs=(Mi/Ai)/(Ms/As)=(Mi*As)/(Ms*Ai),(其中i代表被测定物质,s代表选定的基准物质)。
色谱校正因子
色谱的检测器对不同物质有不同的响应,换句话说,1mg化合物A在检测器上能产生1000mAu的响应,但同样是1mg的化合物B在该检测器上也许就只能产生847mAu的响应,所以我们不能在检测器输出1000mAu的响应时就认定样品中一定含有1mg化合物,这时就必须引入定量校正因子。
校正因子的作用就是反映某物质的量与检测器响应之间的关系。
定量校正因子分为两种:1.绝对定量校正因子f;f=M/A,(其中M代表被测物质的量,A代表检测器信号响应,可以是峰面积或峰高),其意义为单位响应所反映的物质量。
2.相对定量校正因子f';f'=fi/fs=(Mi/Ai)/(Ms/As)=(Mi*As)/(Ms*Ai),(其中i代表被测定物质,s代表选定的基准物质)。
绝对定量校正因子一般用于外标法,相对定量校正因子一般用于内标法。
色谱法的含量测定中之所以要先用待测成分的对照品来建立校准曲线,然后才用这个曲线来计算待测样品中该化合物的含量,实际上就是在测定样品前先确定校正因子。
日常操作中我们都是以:M标/A标=M样/A样直接计算样品含量了,所以没太注意有什么校正因子,事实上只要将公式作一个简单的变形:M样=A样*(M标/A标),不难看出式中的(M标/A标)其实正是定量校正因子f,那么M样=A样*f了。
(简单来说可以理解为标准曲线的斜率)最后提醒一点,用面积百分比法做含量测定时,不可简单地认为各成分的峰面积百分比就是它们的含量百分比哦,理由如上所述,各成分含量与响应的比例关系可不一定都相同啊!色谱定量分析的依据是被测组分量与检测器的响应信号(峰面积或峰高)成正比。
但是同一种物质在不同类型检测器上往往有不同的响应灵敏度;同样,不同物质在同一检测器上的响应灵敏度也往往不同,即相同量的不同物质产生不同值的峰面积或峰高。
这样,各组分峰面积或峰高的相对百分数并不等于样品中各组分的百分含量。
因此引入定量校正因子,校正后的峰面积或峰高可以定量地代表物质的量。
定量校正因子的测定
定量校正因子的测定【色谱世界】【本书名目】【引用网址】1.确定校正因子由此方法测定出的校正因子称为确定校正因子,它只适用于这一个检测器。
由于即使是换一个同一类型的检测器,甚至是换一个同一厂家生产的同一型号检测器,由于两个检测器的灵敏度总是有些差异的,这就使等量的同一种物质在这两个检测器上的响应值有所不同,因此计算出确实定校正因子也有所不同。
同一个检测器,随着使用时间和操作条件转变灵敏度也在转变。
这些都使确定校正因子在色谱定量分析中的使用有很大的局限性,为此引出了相对校正因子的概念。
2.相对校正因子常用的基准物质对不同检测器是不同的,热导检测器常用苯作基准物质,氢焰离子化检测器则常用正庚烷作基准物质。
通常人们将相对校正因子简称为校正因子,它是一个无因次量,数值与所用的计量单位有关。
依据物质量的表示方法不同,校正因子分为:3.峰高定量校正因子在用峰高进展色谱定量时要使用峰高定量校正因子。
由于峰高定量校正因子受操作条件影响较大,因此一般不能直接引用文献值,必需在实际操作条件下,用标准纯物质测定。
对于同系物的峰高定量校正因子与峰面积定量校正因子间有如下的关系:即可得到a,b 值。
此方法不适于保存时间过小和不对称的色谱峰。
4.响应值与校正因子的关系响应值即为组分通过检测器时所产生的信号强度,可以用来表示检测器的灵敏度。
响应值与校正因子间有肯定的关系。
即相对响应值为相对校正因子的倒数。
5.校正因子的试验测量方法准确称取色谱纯〔或准确含量〕的被测组分和基准物质,配制成准确浓度的样品,在已定的色谱试验条件下,取准确体积的样品进样,这样可以准确知道进入检测器的组分和基准物质的质量或摩尔数或体积,然后准确测量所得组分和基准物质的色谱峰峰面积,依据式〔2-3-6〕、式〔2-3-7〕和式〔2-3-8〕,就可以计算出质量校正因子、摩尔校正因子和体积校正因子。
在没有适宜的基准物质时,也可以测出确定校正因子,利用确定校正因子,在同一个检测器,一样的色谱试验条件下,也可作定量计算。
校正因子
定量校正因子(最常见)由于同一检测器对不同物质的响应值不同,所以当相同质量的不同物质通过检测器时,产生的峰面积(或峰高)不一定相等。
为使峰面积能够准确地反映待测组分的含量,就必须先用已知量的待测组分测定在所用色谱条件下的峰面积,以计算定量校正因子。
可见,相对校正因子就是当组分i的质量与标准物质s相等时,标准物质的峰面积是组分i 峰面积的倍数。
若某组分质量为m i ,峰面积A i ,则f i与A i之积代表了质量为m i的标准物质的对应峰面积。
也就是说,通过相对校正因子,可以把各个组分的峰面积分别换算成与其质量相等的标准物质的峰面积,于是比较标准就统一了。
这就是归一法求算各组分百分含量的基础。
相对校正因子的表示方法上面介绍的相对校正因子中组分和标准物质都是以质量表示的,故又称为相对质量校正因子;若以摩尔为单位,相对摩尔校正因子;另外相对校正因子的倒数还可定义为相对响应值(分别为相对质量响应值Sw¢、相对摩尔响应值)。
通常所指的校正因子都是相对校正因子。
相对校正因子的测定方法相对校正因子值只与被测物和标准物以及检测器的类型有关,而与操作条件无关。
因此,可自文献中查出引用。
若文献中查不到所需的,也可以自己测定。
常用的标准物质,对热导检测器(TCD)是苯,对氢焰检测器(FID)是正庚烷。
测定相对校正因子最好是用色谱纯试剂。
若无纯品,也要确知该物质的百分含量。
测定时首先准确称量标准物质和待测物,然后将它们混合均匀进样,分别测出其峰面积,再进行计算。
[2]校正因子的解释编辑1、校正因子是指原材料物耗物价的变动、工资增长、劳动生产率的提高制造费用的变动等因素对单位制造成本的影响系数即目标成本.上年平均单位成本X校正因子2、此误差通过实际测量得到,称为校正因子.系统工作时,通过温度测量单元可得到当前工作温图1精密程控电流源系统框图度,用此工作温度对应的设定电流值乘以校正因子,即可完成输出电流的非线性温度补偿,大大提高电流源的输出精度3、式中α称为校正因子,它是一个不大于1的数,在计算的槽宽大于600m时,可近似地认为α为1.计算的流量与对应的水位就是800m槽宽的水位流量关系的一个点据4、(3)式中非均衡误差ut-1的系数称为校正因子,表示误差修正项对△yt的调整速度,在这里可以解释为上一年度的非均衡误差以575、K为成新率的影响因素的量化值称为校正因子.该校正因子不仅对不同系统类别的设备不同即使对同一系统的不同设备来说它们的校正因子也是不同的.设备的校正因子通常有:平均利用小时数的校正因子6、A称为校正因子,它可以写成:A=12(HD)(LD)arctanLD1+2(hD)-arctanLD1+2(H0D)(13)式中,D=2r0./ZS)qpe-‘b(1)尸7、比较(2)、(3)、(4)、(5)式有C称为校正因子.我们规定复述准确率80%以上者为合格.计算合格率称为复述合格率。
气相色谱定量方法
附近或几个待测组分色谱峰之间。
E. 内标法优缺点
• 优点:定量准确,对试样含有不出峰的 组分情况下,也不影响测定。
• 缺点:每次测定都必须准确称取样品和 内标物质量,不适于快速分析。
(2)内标曲线法
用内标法待测组分含量计算式
ωi =
ms f ' iAi f ' sAs 100
• 前面已知:mi = fi Ai 即:fi = mi / Ai
2. 定量校正因子(二)
• fi 称绝对校正因子,定量分析中常用的是相 对校正因子f 'i,定义为组分的绝对校正因子 与标准物质的绝对校正因子之比:
f fi / fs mi / Ai Asmi 1 ms / As Aims Si
A = 1.065 h ×y1/2(相对计算可略去前面系数) (2)峰高乘平均峰宽法
不对称峰不能作前述近似,可于峰高0.15及 0.85处测得峰宽,取其平均值进行计算:
A = h× (y0.15+y0.85)/2
1. 峰面积 A 的测量方法(二)
(3)峰高乘保留时间法 • 难以量度半峰宽的狭窄峰或半峰宽以上重叠的峰
可用下式计算: • A = 1.065h× b× tR (相对计算可略去1.065和
常数b) (4)剪纸称重法 • 对于不对称或分离不完全的峰,可将峰剪下,以
质量代其面积,使用较少。
1. 峰面积 A 的测量方法(三)
(5)自动积分法 • 将记录仪与自动积分仪连接,可直接准确、快
速地测出峰的面积。 (6)以峰高代替峰面积定量法 • 当各种实验条件严格保持不变时,一定进样范
f fi / fs mi / Ai Asmi 1 ms / As Aims Si
(2)HPLC法校正因子研究中的几个问题
HPLC法校正因子研究中的几个问题张哲峰化药药学二部HPLC法具有将不同物质分离后逐一定量的分离分析能力,在药品有关物质检测中发挥着越来越重要的作用,成为药品杂质控制中常用而有效的手段之一。
在杂质对照品法、加校正因子的主成分自身对照法、不加校正因子的主成分自身对照法、峰面积归一化法等几种常用的杂质定量方式中,校正因子的研究对于选择合适定量方式,准确定量杂质具有重要意义,因而成为杂质分析方法研究中的重要内容之一。
但从目前注册申报资料实际情况来看,校正因子的研究和使用中尚存在一些需要进一步思考和关注的问题。
1.校正因子的定义及特点一般来讲,HPLC定量测定中,物质的检测量W与色谱响应值(峰面积等)A之间的比值称为绝对校正因子,即单位响应值(峰面积等)所对应的被测物质的量(浓度或质量);而某物质i与所选定的参照物质s的绝对校正因子之比,即为相对校正因子,即通常所讲的校正因子。
目前校正因子主要用于“加校正因子的主成分自身对照法”定量相关特定杂质,这种定量方式因考虑了杂质与主成分的绝对校正因子的不同所引起的测定误差,将标准物质的赋值信息转化为常数,固化在质量标准中,且不需长期提供标准物质,因而成为现阶段杂质控制较为理想可行的手段。
但这种方法有时会因不同仪器及色谱条件的波动,可产生一定范围的误差,需进行充分的方法耐用性验证,并结合色谱峰定位控制等措施,将误差控制在一定范围内。
2.校正因子的测定在校正因子的研究和使用中,标准物质、色谱条件、溶剂、检测波长等均是重要的影响因素,研究中需要予以关注。
2.1 校正因子的测定需要用到特定杂质及主成分的标准物质,这些标准物质应具备量值准确的特点,符合标准物质(对照品)的相关要求;其次,确定校正因子的分析方法应与最终确定的质量标准方法一致,色谱条件等需经筛选优化后确定,如有变更,需考虑对校正因子的影响,必要时重新确定;第三,要关注影响待测物UV吸收的各种因素,如溶液制备所用溶剂最好与最终确定的流动相相同,检测波长最好在特定杂质及主成分UV曲线的峰或谷处,避开吸收值急剧变化波段,以保证测定方法具有较好的耐用性,并保持测定结果的恒定。
色谱的定性与定量
谱峰的峰面积或峰高)---所测组分的数量或 浓度成正比,
即:
wi Ci f i Ai hi
w 式中: i –组分i的质量
ci —组分i的浓度
f i —组分的校正因子(与检测器的性质和被 测组分的性质有关)
Ai —组分i的峰面积,
②利用相对保留值定性
定义:相对保留值是组分i与基准物S的调整保留值之比:
i,s tR ,i / tR ,s VR,i /VR,s
优点:可以消除某些操作条件的影响,只要柱温、 固定相不变,即使柱径、柱长、填充情况及流动 相的流速有所变化,相对保留值γ仍然不变,它是 色谱定性分析的重要参数
③利用保留指数定性 表示物质在固定液上的保留行为,是目前使
绝对校正因子fi的大小主要由操作条件和 仪器的灵敏度所决定,既不容易准确测量,也 无统一标准;当操作条件波动时,fi也发生变 化。故fi无法直接应用,定量分析时,一般采 用相对校正因子。
(2)相对校正因子(校正因子):
f
fi fs
mi ci Ai hi ms cs As hs
式中:f -- 相对校正因子 ,简称为校正因子, 无因次量
hi —组分i的峰高
2.峰面积的准确测定
1)对称峰的峰高和峰面积 的测定
第一法:峰高×半高 峰宽
A h Wh 2
式中: h—从峰顶到峰底线 的垂直距离 W h/2—峰高1/2处的 峰宽
第二法:三角形法
A BM Wi
式中:BM—三角形的高 Wi—三角形KML的
半高宽,近似等于色 谱峰高0.607处的峰宽
0.40
Ethylparaben
0.35
【清华】实验四 利用保留值定性及归一法定量测定正己烷、环己烷及甲苯溶液中各组分的含量
利用保留值定性及归一法定量测定正已烷、乙酸乙酯及甲醇中各组分的含量实验时间:20151022组员:朱燚豪、毕可鑫、黄宁、何一白、李鹏飞、隋金凇一、实验目的1、掌握气相色谱中利用保留值定性和归一法定量的分析方法和特点;2、学会校正因子的测定方法;3、熟悉热导检测器原理及应用。
二、实验原理在混合物样品得到分离之后,利用已知物保留值对各色谱峰进行定性是色谱法中最常用的一种定性方法。
它的依据是在相同的色谱操作条件下,同一种物质应具有相同的保留值,当用已知物的保留时间(保留体积、保留距离)与未知物组值完全相同,则认为它们可能分的保留时间进行对照时,若两者的保留时间tR是相同的化合物。
这个方法是以各组分的色谱峰必须分离为单独峰为前题的,同时还需要有作为对照用的标准物质。
归一化法是色谱分析中一种简便的定量方法,当样品中所有组分都能得到良好的分离并都能被检测而得到色谱峰时,则可利用归一化法定量计算样品中各组分的百分含量。
(1)式中:Pi-- i组分的百分含量A1、A2…An-- 各组分的峰面积f1、f2 …fn- 各组分的相对校正因子(或绝对校正因子)公式中的峰面积A可用峰高h代替。
绝对校正因子是指在一定操作条件下,进样量(w)与峰面积(A)或峰高(h)成正比,即 f=w/A,比例因子f 称为绝对校正因子,因直接受操作条件的影响,不易测准,因此在定量分析中常采用相对校正因子,即指某组分与标准物质二者的绝对校正因子之比,此比值不受实验条件的影响,只与检测器类型有关。
三、仪器和试剂仪器:气相色谱仪带热导检测器,色谱柱: propark填充柱( 80~100目,* 4mm ×2M )试剂:乙酸乙酯、甲醇、正己烷标准样品,乙酸乙酯、甲醇、正己烷混合物未知样品四、实验内容及步骤1将纯组分样品与标准样品配置好,与位置样品一起放入样品架上;2.打开色谱仪,输入测量所需的各种参数;3.等待仪器自动进样取样测定;4.实验结束后。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定量校正因子的测定
【色谱世界】【本书目录】【引用网址】/books/C/71/0.html
1. 绝对校正因子
由此方法测定出的校正因子称为绝对校正因子,它只适用于这一个检测器。
因为即使是换一个同一类型的检测器,甚至是换一个同一厂家生产的同一型号检测器,由于两个检测器的灵敏度总是有些差异的,这就使等量的同一种物质在这两个检测器上的响应值有所不同,因此计算出的绝对校正因子也有所不同。
同一个检测器,随着使用时间和操作条件改变灵敏度也在改变。
这些都使绝对校正因子在色谱定量分析中的使用有很大的局限性,为此引出了相对校正因子的概念。
2. 相对校正因子
常用的基准物质对不同检测器是不同的,热导检测器常用苯作基准物质,氢焰离子化检测器则常用正庚烷作基准物质。
通常人们将相对校正因子简称为校正因子,它是一个无因次量,数值与所用的计量单位有关。
根据物质量的表示方法不同,校正因子分为:
3. 峰高定量校正因子
在用峰高进行色谱定量时要使用峰高定量校正因子。
因为峰高定量校正因子受操作条件影响较大,因此一般不能直接引用文献值,必须在实际操作条件下,用标准纯物质测定。
对于同系物的峰高定量校正因子与峰面积定量校正因子间有如下的关系:
即可得到a,b值。
此方法不适于保留时间过小和不对称的色谱峰。
4. 响应值与校正因子的关系
响应值即为组分通过检测器时所产生的信号强度,可以用来表示检测器的灵敏度。
响应值与校正因子间有一定的关系。
即相对响应值为相对校正因子的倒数。
5. 校正因子的实验测量方法
准确称取色谱纯(或已知准确含量)的被测组分和基准物质,配制成已知准确浓度的样品,在已定的色谱实验条件下,取准确体积的样品进样,这样可以准确知道进入检测器的组分和基准物质的质量或摩尔数或体积,然后准确测量所得组分和基准物质的色谱峰峰面积,根据式(2-3-6)、式(2-3-7)和式(2-3-8),就可以计算出质量校正因子、摩尔校正因子和体积校正因子。
在没有合适的基准物质时,也可以测出绝对校正因子,利用绝对校正因子,在同一个检测器,相同的色谱实验条件下,也可作定量计算。
6. 确定校正因子的其他方法
除了上述利用实验方法直接测定校正因子之外,还可以利用已有的文献查找校正因子和利用一些规律估算校正因子。
(1)从文献上查找校正因子从文献上查找校正因子,主要是用于气相色谱的热导检测
器和氢火焰离子化检测器。
也有文献给出气相色谱的电子捕获检测器的响应值和校正因子,但电子捕获检测器与热导检测器和氢火焰离子化检测器不同,电子捕获检测器的响应值和校正因子与许多操作参数和检测器结构有关,如检测器结构尺寸,放射源种类,载气种类以及载气流速,检测器温度,极化电压大小,脉冲周期及脉冲宽度都对其响应值和校正因子有影响,它们之间存在相互依赖的复杂关系。
各个化合物特别是不同类型的化合物,在使用电子捕获检测器时都有各自的最佳操作条件。
因此,文献上提供的相对响应值和相对校正因子也受到操作条件和检测器性能的严格限制,一般说仅可作色谱定量校正的参考,最好通过实际实验进行测定。
对于液相色谱,检测器的校正因子在文献中是查不到的,这是因为液相色谱的分析条件变化较大,不易完全重复文献中的条件,故使用时要自己进行测定。
表2-3-6 和表2-3-7 给出了某些化合物在气相色谱的热导检测器和氢火焰离子化检测器上的响应值和校正因子。
表2-3-6 部分有机化合物在TCD上的校正因子(/books/C/403/0.html)
表2-3-7 部分有机化合物在FID上的校正因子(/books/C/404/0.html)
(2)利用规律对校正因子进行估算目前能对校正因子进行估算的只有气相色谱用的热导检测器和氢火焰离子化检测器。
当从文献中查不到适当数据,又没有已知准确含量的样品进行测定时,可按下述方法进行估算。
①热导检测器校正因子的估算:热导检测器的相对响应值一般只与组分、参比物质和载气性质有关,而与热导池结构、热丝温度、桥流、所用敏感元件以及柱温、载气流速等无关。
各类化合物在热导检测器上的响应值可按以下方法估算。
a. 同系物在热导检测器上的相对摩尔响应值(RMR)与其分子中的碳数或摩尔质量呈线性关系(图2-3-15),即
表2-3-8 同系物物质的G1与F1值(/books/C/406/0.html)
这一规律对于同系物中第一、二个成员偏差较大,但根据这一规律,如已知同系物中二个较高级成员的RMR值,就可推算其他成员的RMR值。
b. 基团截面积法,即某一化合物的RMR值,可由该化合物中各结构基团的RMR值加合而得,各种结构基团的RMR值见表2-3-9。
表2-3-9 各种基团的RMR值(以苯为100)(/books/C/407/0.html)
根据此规律估算乙酸丁酯的RMR值:
按此规律估算乙酸丁酯在热导检测器上的RMR值为134,试验值为135,说明估算结果与实验值能很好吻合。
此法多适用于极性化合物,如:酮、醇、醛、醚、酯和卤化物。
C. 同系物相对质量响应值与分子中碳原子数作图(图2-3-16),得一条渐近线似的关系曲线。
曲线在较高碳原子数时呈水平,趋向一个常数。
所以当组分中只有一些分子量相差不大,或只有较高分子量的组分时,可直接采用它们各自的面积百分数来计算百分浓度,即可认为各组分的校正因子相等。
当组分中既有低分子量组分,又有高分子量组分时,作定量计算就必须用相对质量校正因子加以校正(见本章第二节“定量方法”)。
d. 热导检测器的响应值与载气有关。
文献上给出的相对摩尔响应值(RMR)大多是以氦气(He)为载气,很少有氢气为载气的,我国国内色谱实验室多用氢气为载气,两种载气下的RMR值之间是否有关系呢?Mata等人在1963年提出了在以氦气为载气测得的RMR值换算成以氢气为载气时的RMR值的关系式:
但是,Rosie认为用氦气作载气时的RMR值与用氢气作载气时的RMR值差别不大,一般可通用,误差不超过3%,但用氮气(N2)作载气时相差就大了。
故一般用热导检测器时不用氮气作载气(用氮气作载气检测灵敏度也低很多),只用氢气或氦气作载气。
①氢火焰离子化检测器校正因子的估算:氢火焰离子化检测器的相对响应值与其结构——收集电极的形状和大小、喷口的粗细、极化电极的位置和形状有一定的关系。
主要是结构不同时,离子的收集效率和线性范围不尽一致,使得同一标准混合物,在结构不同的氢火焰离子化检测器上,测得的混合物中各组分的相对离子化效率有所不同。
氢火焰离子化检测器的相对响应值还与操作压力以及载气与燃气的流速有关,主要也是影响离子化效率。
所以,在给出相对响应值数据或使用文献值时,要注意氢火焰离子化检测器的结构、操作压力和载气与燃气的流速等实验参数。
若原始文献未能提供上述条件,而又要用其数据时,可用几个已知物,在自己的实验条件下,校对文献数据。
如能相符,则其他数据亦可应用;如不相符,可调节载气与燃气流速比等条件,尽量使自己的数据与文献值相符。
这样,其他数据在新确定的实验条件下也可使用。
虽然氢火焰离子化检测器的相对响应值受检测器结构、操作压力以及载气和燃气的流速影响,但与热导检测器一样,还是有一定的规律可遵循,也可进行估算。
a. 与热导检测器相同,同系物在氢火焰离子化检测器上的相对摩尔响应值(rmr)与其分子中的碳原子数呈线性关系(图2-3-17),可由式(2-3-14)表示:
表2-3-10 不同类型化合物的F,G,N o值(/books/C/408/0.html)
有效碳数。
表2-3-11 各种原子在不同类型化合物中所体现的有效碳数(/books/C/410/0.html)
例如,计算叔丁醇在氢火焰离子化检测器上的相对质量响应值,以苯为基准物质。
叔丁醇分子式为C3H9OH,有效碳数按表2-3-11所列各类化合物中各种原子的有效碳数计算:
实验值为0.68,两者相符。