00023高等数学(工本)201004 历年真题及答案解析
最新10月全国自学考试高等数学(工本)试题及答案解析
全国2018年10月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 向量a ={-1,-3,4}与x 轴正向的夹角α满足( )A. 0<1<α<2πB. α=2π C. 2π<α<π D. α=π2. 设函数f (x , y )=x +y, 则点(0,0)是f (x ,y )的( )A. 极值点B. 连续点C. 间断点D. 驻点3. 设积分区域D :x 2+y 2≤1, x ≥0, 则二重积分⎰⎰D ydxdy 的值( ) A. 小于零B. 等于零C. 大于零D. 不是常数 4. 微分方程xy ′+y =x +3是( )A. 可分离变量的微分方程B. 齐次微分方程C. 一阶线性齐次微分方程D. 一阶线性非齐次微分方程 5. 设无穷级数∑∞=1n p n收敛,则在下列数值中p 的取值为( )A. -2B. -1C. 1D. 2二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 已知向量a ={3,0,-1}和b ={1,-2,1} 则a -3b =___________.7. 设函数z =2x 2+y 2,则全微分dz=___________.8. 设积分区域D 由y =x , x =1及y =0所围成,将二重积分⎰⎰Ddxdy y x f ),(化为直角坐标下的二次积分为___________.9. 微分方程y ″+3y =6x 的一个特解y *=___________.10. 无穷级数14332232323232+++++n nΛ+…的和为___________. 三、计算题(本大题共12小题,每小题5分,共60分)11. 求过点(-1,-2,3)并且与直线223-=-=z y x 垂直的平面方程. 12. 求曲线x =t , y =t 2, z =t 3在点(1,1,1)处的切线方程.13. 求函数f (x , y , z )=xy 2+yz 2+zx 2在点P (1,2,1)处的梯度.14. 设方程e z -x 2y +z =3确定函数z =z (x , y ), 求xz ∂∂. 15. 计算二重积分⎰⎰--Dy x dxdy e 22,其中积分区域D :x 2+y 2≤2. 16. 计算三重积分⎰⎰⎰Ωxdxdydz ,其中积分区域Ω是由x =0, y =0, z =0及x +y +z =1所围成.17. 计算对坐标的曲线积分⎰++C dy x y xdx )(, 其中C 为从点(1,0)到点(2,1)的直线段.18. 计算对面积的曲面积分⎰⎰∑xyzdS ,其中∑为球面x 2+y 2+z 2=a 2(a >0). 19. 求微分方程(1+x )dx -(1+y )dy =0的通解.20. 求微分方程y ″+ y ′-12y =0的通解.21. 判断级数∑∞=+⋅13)1(2n n n n 的敛散性. 22. 求幂级数∑∞=12n n nx 的收敛区间. 四、综合题(本大题共3小题,每小题5分,共15分)23. 求函数f (x , y )=x 3+3xy 2-15x -12y 的极值点.24. 求曲面z=22y x +(0≤z ≤1)的面积.25. 将函数f (x )=ln(1+x )展开为x 的幂级数.。
自学考试 《高等数学(工本)》历年真题全套试题
自考00023《高等数学(工本)》历年真题集电子书目录1. 目录 (2)2. 历年真题 (5)2.1 00023高等数学(工本)200404 (5)2.2 00023高等数学(工本)200410 (7)2.3 00023高等数学(工本)200504 (9)2.4 00023高等数学(工本)200507 (11)2.5 00023高等数学(工本)200510 (14)2.6 00023高等数学(工本)200604 (15)2.7 00023高等数学(工本)200607 (18)2.8 00023高等数学(工本)200610 (21)2.9 00023高等数学(工本)200701 (24)2.10 00023高等数学(工本)200704 (26)2.11 00023高等数学(工本)200707 (28)2.12 00023高等数学(工本)200710 (29)2.13 00023高等数学(工本)200801 (34)2.14 00023高等数学(工本)200804 (35)2.15 00023高等数学(工本)200807 (36)2.16 00023高等数学(工本)200810 (38)2.17 00023高等数学(工本)200901 (39)2.18 00023高等数学(工本)200904 (40)2.19 00023高等数学(工本)200907 (42)2.20 00023高等数学(工本)200910 (43)2.21 00023高等数学(工本)201001 (45)2.22 00023高等数学(工本)201004 (46)2.23 00023高等数学(工本)201007 (47)2.24 00023高等数学(工本)201010 (49)2.25 00023高等数学(工本)201101 (50)2.26 00023高等数学(工本)201104 (52)2.27 00023高等数学(工本)201107 (54)2.28 00023高等数学(工本)201110 (55)2.29 00023高等数学(工本)201204 (57)3. 相关课程 (59)1. 目录历年真题()00023高等数学(工本)200404()00023高等数学(工本)200410()00023高等数学(工本)200504()00023高等数学(工本)200507()00023高等数学(工本)200510()00023高等数学(工本)200604()00023高等数学(工本)200607()00023高等数学(工本)200610()00023高等数学(工本)200701()00023高等数学(工本)200704() 00023高等数学(工本)200707() 00023高等数学(工本)200710() 00023高等数学(工本)200801() 00023高等数学(工本)200804() 00023高等数学(工本)200807() 00023高等数学(工本)200810() 00023高等数学(工本)200901() 00023高等数学(工本)200904() 00023高等数学(工本)200907()00023高等数学(工本)200910()00023高等数学(工本)201001()00023高等数学(工本)201004()00023高等数学(工本)201007()00023高等数学(工本)201010()00023高等数学(工本)201101()00023高等数学(工本)201104()00023高等数学(工本)201107()00023高等数学(工本)201110()00023高等数学(工本)201204() 相关课程()2. 历年真题2.1 00023高等数学(工本)200404高等数学(工本)试题(课程代码0023)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
(整理)年4月全国自考高等数学(工本)试题和参考答案.
精品文档全国2011年4月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知a ={-1,1,-2),b =(1,2,3},则a ×b =( )A.{-7,-1,3}B.{7,-1,-3}C.{-7,1,3}D.{7,1,-3)2.极限222200)(3sin lim y x y x y x ++→→( ) A.等于0B.等于31C.等于3D.不存在3.设∑是球面x 2+y 2+z 2=4的外侧,则对坐标的曲面积分⎰⎰∑x 2dxdy =( ) A.-2B.0C.2D.4 4.微分方程22y x xy dx dy +=是( ) A.齐次微分方程 B.可分离变量的微分方程C.一阶线性齐次微分方程D.一阶线性非齐次微分方程 5.无穷级数∑∞=023n n n的前三项和S 3=( )A.-2B.419C.827D.865精品文档 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.已知向量a ={2,2,-1),则与a 反方向的单位向量是_________.7.设函数f (x ,y )=yx y x +-,则f (1-x ,1+x )=_________. 8.设积分区域D :x 2+y 2≤2,则二重积分⎰⎰Df (x ,y )dxdy 在极坐标中的二次积分为________. 9.微分方程y 〞+y =2e x 的一个特解是y *=_________.10.设f (x )是周期为2π的函数,f (x )在[-π, π],上的表达式为f (x )=⎩⎨⎧∈-∈),0[,)0,[,0ππx e x x S (x )为f (x )的傅里叶级数的和函数,则S (0)=_________.三、计算题(本大题共12小题,每小题5分,共60分)11.求过点P (-1,2,-3),并且与直线x =3+t ,y =t ,z =1-t 垂直的平面方程.12.设函数z =,求全微分dz |(2,1).13.设函数z=f (cos (xy ),2x-y ),其中f (u ,v )具有连续偏导数,求x z ∂∂和dyz ∂. 14.已知方程e xy -2z +x 2-y 2+e z =1确定函数z=z (x,y ),求x z ∂∂和y z ∂∂. 15.设函数z=e x (x 2+2xy ),求梯度grad f (x ,y ).16.计算二重积分⎰⎰D y 22x e -dxdy .其中积分区域D 是由直线y=x , x =1及x 轴所围成的区域. 17.计算三重积分⎰⎰⎰Ω(1-x 2-y 2)dxdydz ,其中积分区域Ω是由x 2+y 2=a 2,z =0及z =2所围成的区域.18.计算对弧长的曲线积分⎰C xds ,其中C 是抛物线y=x 2上由点A (0,0)到点B (2,4)的一段弧.精品文档19.验证对坐标的曲线积分⎰C (x+y )dx +(x-y )dy 与路径无关, 并计算I=⎰-++)3,2()1,1()()(dy y x dx y x20.求微分方程x 2y 〞=2ln x 的通解.21.判断无穷级数∑∞=+1)11ln(n n 的敛散性. 22.将函数f (x )=x arctan x 展开为x 的幂级数.四、综合题(本大题共3小题,每小题5分,共15分)23.设函数z =arctan yx ,证明.02222=∂∂+∂∂y z x z 24.求由曲面z =xy ,x 2+y 2=1及z =0所围在第一卦限的立体的体积.25.证明无穷级数∑∞==+1.1)!1(n n n精品文档精品文档精品文档。
2010年10月全国自考高等数学(工本)试题
= 1- 2+ n 2 n 1 = 1- 2+
1 ,而且 lim S n =1- 2 , n n 2+ n 1
(
n 1
n 2 - 2 n 1 n) = 1- 2
4/4
2010 年 10 月全国自考高等数学(工本)试题
课程代码:00023
一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分) 1.在空间直角坐标系下,方程 2x +3y =6 表示的图形为(B) A.椭圆
2 2 2
B.柱面
1 x 2 y 0
C.旋转抛物面
D.球面
2.极限 lim arcsin(x+y )=(A)
2 2
C
解:C:x=2cost,y=2sint(0≤t≤π),
x ds
2
c
0
4 cos t 2dt 4
2
0
1 (1 cos 2t )dt 4 t sin 2t 4 2 0
19.计算对坐标的曲线积分 ≤1 的正向边界曲线。 解:由格林公式
2z 。 xy
A -4 D AC D 0 得 C -3D 5 A 7 C D 0
2010-2014年高等数学(工本)00023历年精彩试题及参考问题详解
2010-2014年高等数学(工本)00023历年试题及参考答案 全国2010年10月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π201022)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。
高等数学(工本)历年试题及参考答案
2010-2014年高等数学(工本)00023历年试题及参考答案 全国2010年10月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆. 19.计算对坐标的曲线积分⎰+-+-C dy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。
2010年7月全国自考高等数学(工本)试题.
y
y2 x2 x2 y2 2
13.设函数 z=xy+1,求全微分 dz.
解:
z x
(y
1)x y ,
z y
x y1
ln
x, dz
z x
dx
z x
dy
(y
1)x ydx
x y1
ln
xdy
14.设函数 z=f
(x,
sin(2x+y)),
其中 f
(u,
v)具有连续偏导数,求
sin
nx)
,则傅里叶系数
a2=(0).
1/4
三、计算题(本大题共 12 小题,每小题 5 分,共 60 分)
11.已知直线 L 过点 P(2,-1,-1),并且与平面 π : x-y+z=0 垂直,求直线 L 的方程.
解:直线 L 的方向向量为{1,-1,1}, 且经过 P(2,-1,-1),所以直线 L 的方程为
π 2
A.连续
B.间断
C.可微
D.偏导数存在
3.设函数 P(x, y),Q(x, y)具有连续的偏导数,且 P (x,y)dx+Q(x, y)dy 是某函数 u
(x, y)的全微分,则(A)
A.
P y
Q x
B.
Q y
P x
C.
P y
Q x
D.
Q y
P x
4.下列方程中,是一阶级性非齐次微分方程的是(B)
解:
f x
x x2
y2
,
f y
00023高等数学(工本)试题(B)
高等数学(工本)(课程代码 00023)一、单项选择题1、函数Z=f(x,y)在点()000,y x p 处不连续,则 ( )(a )函数在点0p 处一定无定义, (b )函数在点0p 处极限一定不存在, (c )函数在点0p 处可能有定义,也可能有极限,(d )函数在点0p 处一定有定义,且有极限,但极限值不等于该点的函数值。
2、()=⎰⎰δd y x f D,()iiih y x f linδ∆∑→,0,其中h 是 ( )(a )小区域最大面积, (b )最小面积小区域的直径 (c )小区域直径的最大值, (d )小区域的平均直径 3、L 为A (0,0)到B (4,3)的直线,则()=-⎰ds y x L( )(a )dx x x ⎰⎪⎭⎫ ⎝⎛-4043 (b )()dx x x 1694431+-⎰(c )()dy y y ⎰-334 (d)()dy y y 1693341+-⎰4、幂函数nn n ∑∞=1!1的收敛区间是 ( )(a ) (-∞,+∞), (b ) (-∞,0), (c ) (0,+∞), (d ) [0,+∞],5、比较I=σd y x D⎰⎰+2)(与J=σd y x D⎰⎰+3)(的大小,其中D :1)1()(22=-++y y x ,则( )(a )I=J , (b )I >J ,(c )I ≤J, (d) 无法比较. 6、方程( )是可分离变量的微分方程 (a)()()0x yxx yyeedx eedy ++-++= , ( b) y y x '-=(c)1dx dy yx+= , ( d) ()()22220x xy dx y xy dy -+-=7、若常数项级数∑∞=1n na 收敛,n S 是此级数的部分和,则必有( )(a) ∑∞=1n na (b) 0lim =∞→n n S (c) n S 有极限 (d) n S 是单调的.8、函数()22,yx y x f +=在点()0,0处 ( )(a) 连续、偏导数不存在 (b) 连续、偏导数存在 (c) 连续且可微 (d) 不连续、偏导数不存在 9、设(),21y x Z -=()232,Y X Z y x Z -=-=,则( )(a )1Z 与2Z 是相同的函数, (b )1Z 与3Z 是相同的函数, (c )2Z 与3Z 是相同的函数, (d )其中任意两个都不是相同的函数。
全国2020年10月自考00023高等数学(工本)试题及答案
D020·00023(附参考答案)绝密★考试结束前2020年10月高等教育自学考试全国统一命题考试高等数学(工本)(课程代码:00023)1.请考生按规定用笔将所有试题的答案涂、写在答题纸上。
2.答题前,考生务必将自己的考试课程名称、姓名、准考证号黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
选择题部分注意事项:每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.在空间直角坐标系中,点(2,-1,-9)在A.第一卦限B.第四卦限C.第五卦限D.第八卦限 2.极限()y xy y x 3sin lim 02→→ A.等于2B.等于3C.等于6D.不存在 3.已知dy e dx e y x y x ---是某函数u (x ,y )的全微分,则u (x ,y )=A.y x e -B.y x e --C.x y e -D.x y e -- 4.方程y dxdy =的通解为 A.Cx e y = B.x Ce y = C.x e C y += D.x C e e y +=5.下列无穷级数中,条件收敛的无穷级数是A.()∑∞=--111n n nB.()∑∞=•-1251n n n nC.()∑∞=+•-111n n n nD.()∑∞=--1121n nn非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题:本大题共5空,每空2分,共10分。
6.设向量{}{}1,2,3,0,1,1--=βα,则βα-2= .7.已知()()2,y x y x xy f +=-,则()y x f ,= . 8.设()404:≤≤=+x y x C ,则对弧长的曲线积分()ds y x C+⎰2= . 9.微分方程2x '=y 满足初始条件()00=y 的特解•y = .10.设函数()x f 是周期为π2的周期函数,()x f 的傅里叶级数为()nx n n n sin 212111∑∞=+•-+,则()x f 的傅里叶系数1a = .三、计算题:本大题共12小题,每小题5分,共60分。
00023高等数学(工本)200410【答案在试卷后】
2004年下半年高等教育自学考试福建省统一命题考试高等数学(工本) 试题课程代码:0023一、单项选择题(本大题共20小题,每小题2分,共40分) 1.函数f(x)=xxx +-11lg1的定义域是( ) A.-1<x<1 B.0<x<1 C.-1<x<0 D.0<|x|<1 2.设函数f(x)=3x ,则f[f(x)]=( ) A.9x B.6x 2 C. 3x3 D. 3x33.极限+∞→x limxarctgx=( ) A.0 B.1C.+∞D.不存在4.当x→0时,下列表达式不正确的是( ) A. e x -1~x B.sinx~x C.ln(1+x)~x 2D.x x 21~11-+ 5.曲线y=x 3在点(0,0)处的切线方程为( ) A.x=0 B.y=0 C.x=y D.不存在 6.设函数y=sec 2xtgx ,则dxdy=( ) A.sec 2x(3tg 2x - 1) B.3sec 4x - 2sec 2x C.2sec 4xtgx D.2sec 2xtgx+21sec xx+ 7.函数f(x)=(5-x)x 32的临界点的个数为( ) A.0 B.1 C.2 D.3 8.曲线y=3ln -x x( ) A.有一条渐近线 B.有二条渐近线 C.有三条渐近线 D.不存在渐近线 9.若⎰+=C x F dx x f )()(,则dx e f ex x)(--⎰=( )A. F(e x)+C B. -F(e x-)+C C. F(x)+C D. -F(x)+C10.设函数f(x)在[-a,a]上连续,则下列正确的结论是( ) A. ⎰-aa dx x f )(=⎰--aadx x f )( B.⎰-aa dx x f )(=⎰--adx x f x f 0)]()([C.⎰-aadx x f )(=2⎰adx x f 0)( D.⎰-aadx x f )(=011.下列广义积分收敛的是( ) A.dx xx ⎰+∞1ln 1B. dx x ⎰101C.dx x ⎰-22)2(1D.dx x⎰+∞+021112.设向量a=2i+3k ,b=i+j-k ,则a×b=( ) A.-3i+5j+2k B.-3i-5j+2k C.-3i+2j-k D.-113.曲面394222=++z y x 在(-2,3,-1)处的切平面方程是( ) A. x-32y+2z=0 B.3x-2y+6z+18=0 C.x+32y+2z+2=0 D.3x-2y-6z+6=014.极限22200)sin(lim x y x y x →→=( ) A.0 B.1C.9D.不存在 15.设u=222z y x ++,则( )A.x u ∂∂ +y u ∂∂+z u∂∂=1 B. 22x u ∂∂+22y u ∂∂+22zu ∂∂=1 C. 22x u ∂∂+22y u ∂∂+22z u ∂∂=0 D. (x u ∂∂)2+(y u ∂∂)2+(zu ∂∂)2=116.已知B:y=x,y=0及y=22x a -(x≥0)所围成的第一象限区域,则⎰⎰Bd σ=( )A.281a π B. 241a πC. 283a π D. 221a π17.下列各组函数中,哪组是线性相关的( ) A.e x,sinx B.x,x-3 C.ex 3cos4x,ex3sin4x D. )1ln(),1ln(22x x x x -+++18.微分方程yy ’=y ’2的通解是( ) A.y= e Cx B.y=C 1exC 2C.y=C 1x+C 2D.y=C 1+ e xC 219.下列级数中,收敛的级数是( )A.∑∞=11.01n nB. ∑∞=11sin n nnC. ∑∞=178n n nD.∑∞=11.01n n 20.幂级数n n n nx ∑∞=-+1])3(21[的收敛半径是( )A.31 B. 21C.2D.3二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。
高等数学(工本)00023历年试题及参考答案
高等数学(工本)历年试题及参考答案 自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。
【全国自考历年真题10套】00023高等数学(工本)2012月10月至2019年10月试题
∫∫∫ 8.设积分区域 Ω : x2 + y2 + z2 ≤ 9 ,三重积分 f (x2 + y2 + z2 )dv 在球面坐标下三次积分为 Ω
__________.
9.微分方程 y′′ + y =2ex 的一个特解 y*=__________.
∑ 10.已知无穷级数
∞
un
n =1
=1 +
2 3
h→0
h
D. lim f (x0 + h, y0 ) − f (x0 , y0 )
h→0
h
∫ 3.设积分曲线 L : x2 + y2 = 1 ,则对弧长的曲线积分 (x + y)ds = L
A.0 C. π 4.微分方程 xy′ + y=
x2 + y2 是
B.1 D.2 π
A.可分离变量的微分方程
B.齐次微分方程
24.求由平面 z= 0, x + y= 1 及曲 z = xy 面所围立体的体积. 25.将函数 f (x) = sin 2x 展开为 x 的幂级数.
00023# 高等数学(工本)试题 第3页(共3页)
绝密 ★ 考试结束前
全国 2013 年 10 月高等教育自学考试
高等数学(工本)试题
课程代码:00023
00023# 高等数学(工本)试题 第1页(共3页)
C.一阶线性齐次微分方程
D.一阶线性非齐次微分方程
5.已知函数 f (x) 是周期为 2π 的周期函数,它在 [-π,π) 上的表达式为
f
(x)
=
0, −π ≤ x 1, 0 ≤ x <
< π
0
自考00023高等数学(工本)201004
2010年4月高等教育自学考试全国统一命题考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在空间直角坐标系中,方程1222222=++cz b y a x 表示的图形是( ) A.椭圆抛物面B.圆柱面C.单叶双曲面D.椭球面 2.设函数z =x 2y ,则=∂∂x z ( ) A.212-y yxB.x x y ln 2C.x x y ln 22D.()12-y yx 3.设Ω是由平面01=-+-z y x 及坐标面所围成的区域,则三重积分=⎰⎰⎰Ωdxdydz ( ) A.81 B.61 C.31 D.21 4.已知微分方程)()(x Q y x P y =+'的两个特解为y 1=2x 和y 2=cos x ,则该微分方程的通解是y =( )A.2C 1x +C 2cos xB.2Cx +cos xC.cos x +C (2x -cos x )D.C (2x -cos x ) 5.设幂级数∑∞--1)3(n n n x a在x =1处收敛,则在x =4处该幂级数( )A.绝对收敛B.条件收敛C.发散D.敛散性不定 二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数y x y z cos sin =,则=∂∂xz .7.已知dy e dx ey x y x +++是某函数()y x u ,的全微分,则()=y x u , . 8.设∑是上半球面()01222≥=++z z y x ,则对面积的曲面积分⎰⎰∑=dS .9.微分方程x y 2sin =''的通解为y= .10.无穷级数∑∞=0!2n nn 的和为 . 三、计算题(本大题共12小题,每小题5分,共60分)11.求过点P (3,-1,0)并且与直线0321-=-=z y x 垂直的平面方程. 12.设函数()y x x f z -=,3,其中f 是可微函数,求x z ∂∂,y z ∂∂. 13.设方程xy x ln =确定函数()y x z z ,=,求全微分dz. 14.求函数()22,xy y x y x f +=在点(1,-1)沿与x 轴正向成30°角的方向l 的方向导数.15.求空间曲线t z t y t x ===,sin ,cos 在点⎪⎪⎭⎫⎝⎛4,22,22π处的切线方程. 16.计算二重积分()dxdy eI D y x ⎰⎰+-=22,其中区域D :.0,422≥≤+y y x17.计算二次积分⎰⎰=20 2 sin ππy dx x x dy I . 18.计算对弧长的曲线积分()⎰+-L ds y x 132,其中L 是直线2-=x y 上从点(-1,-3)到点(1,-1)的直线段.19.计算对坐标的曲线积分⎰+L ydx xdy 其中L 是抛物线2x y =上从点(-2,4)到点(2,4)的一段弧. 20.求微分方程034=+'-''y y y 满足初始条件()8)0(,40='=y y 的特解.21.判断级数()∑∞=-+-131321n n n n 是否收敛,如果收敛,是条件收敛还是绝对收敛?22.设函数()⎩⎨⎧<≤<≤-=ππx x x x f 0,0,0的傅里叶级数展开式为()∑∞=++10sin cos 2n n n nx b nx a a ,求系数b 7.四、综合题(本大题共3小题,每小题5分,共15分)23.求函数()y x xy y x y x f 311381021,22-----=的极值. 24.设曲线()x y y =在其上点(x ,y )处的切线斜率为x +y ,且过点(-1,e -1),求该曲线方程.25.将函数()2312+-=x x x f 展开为(x +1)的幂级数.。
(完整)自考《高等数学(工专)》课后习题答案详解
自考《高等数学(工专)》课后习题答案详解《高等数学(工专)》真题:积分的性质单选题正确答案:A答案解析:本题考查积分的性质。
由于在[0,1]上,根号x大于x,所以I1>I2。
《高等数学(工专)》真题:微分概念单选题《高等数学(工专)》真题:驻点的概念单选题1.函数f(x,y)=x2+xy+y2+x-y+1的驻点为()。
A.(1,-1)B.(-1,-1)C.(-1,1)D.(1,1)正确答案:C答案解析:本题考查驻点的概念。
对x的偏导数为2x+y+1,对y的偏导数为x+2y-1,由于求驻点,也就是偏导数为0的点,所以2x+y+1=0,x+2y-1=0,得到x=-1,y=1。
《高等数学(工专)》真题:矩阵逆的求法单选题1.如果A2=10E,则(A+3E)-1=()。
A.A-2EB.A+2EC.A+3ED.A-3E正确答案:D答案解析:本题考查矩阵逆的求法。
A2-9E=E,(A+3E)(A-3E)=E,(A+3E)-1=A-3E《高等数学(工专)》真题:连续的概念单选题A.f(x)在(-∞,1)上连续B.f(x)在(-1,+∞)上连续C.f(x)在(-∞,0)∪(0,+∞)上连续D.f(x)在(-∞,+∞)上连续正确答案:C答案解析:本题考查连续的概念。
《高等数学(工专)》真题:矩阵的计算性质单选题1.设A是k×l阶矩阵,B是m×n阶矩阵,如果A·CT·B有意义,则C是()矩阵。
A.k×nB.k×mC.l×mD.m×l正确答案:D答案解析:本题考查矩阵的计算性质。
首先我们判断CT是l×m阶矩阵,所以C是m×l阶矩阵。
《高等数学(工专)》真题:连续的定义单选题1.试确定k的值,使f(x)在x=1处连续,其中()A.k=-2B.k=-1C.k=0D.k=2正确答案:D答案解析:本题考查连续的定义。
《高等数学(工专)》真题:矩阵的性质单选题1.关于矩阵的乘法的说法,正确的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年4月高等教育自学考试全国统一命题考试
高等数学(工本)试题
课程代码:00023
一、单项选择题(本大题共5小题,每小题3分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在空间直角坐标系中,方程122
2222=++c
z b y a x 表示的图形是( ) A.椭圆抛物面
B.圆柱面
C.单叶双曲面
D.椭球面 2.设函数z =x 2y ,则
=∂∂x z ( ) A.212-y yx
B.x x y ln 2
C.x x y ln 22
D.()
12-y yx 3.设Ω是由平面01=-+-z y x 及坐标面所围成的区域,则三重积分=⎰⎰⎰Ω
dxdydz ( ) A.8
1 B.
61 C.31 D.21 4.已知微分方程)()(x Q y x P y =+'的两个特解为y 1=2x 和y 2=cos x ,则该微分方程的通解是y =( )
A.2C 1x +C 2cos x
B.2Cx +cos x
C.cos x +C (2x -cos x )
D.C (2x -cos x ) 5.设幂级数∑∞--1)3(n n n x a
在x =1处收敛,则在x =4处该幂级数( )
A.绝对收敛
B.条件收敛
C.发散
D.敛散性不定 二、填空题(本大题共5小题,每小题2分,共10分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数y x y z cos sin =,则=∂∂x
z .
7.已知dy e dx e
y x y x +++是某函数()y x u ,的全微分,则()=y x u , . 8.设∑是上半球面()01222≥=++z z y x ,则对面积的曲面积分⎰⎰∑
=dS .
9.微分方程x y 2sin =''的通解为y= .
10.无穷级数∑∞
=0!2n n
n 的和为 . 三、计算题(本大题共12小题,每小题5分,共60分)
11.求过点P (3,-1,0)并且与直线0
321-=-=z y x 垂直的平面方程. 12.设函数()y x x f z -=,3,其中f 是可微函数,求
x z ∂∂,y z ∂∂. 13.设方程x
y x ln =确定函数()y x z z ,=,求全微分dz. 14.求函数()22,xy y x y x f +=在点(1,-1)沿与x 轴正向成30°角的方向l 的方向导数.
15.求空间曲线t z t y t x ===,sin ,cos 在点⎪⎪⎭⎫
⎝⎛4,22,22π处的切线方程. 16.计算二重积分()dxdy e
I D y x ⎰⎰+-=22,其中区域D :.0,422≥≤+y y x
17.计算二次积分⎰⎰
=2
0 2 sin ππy dx x x dy I . 18.计算对弧长的曲线积分
()⎰+-L ds y x 132,其中L 是直线2-=x y 上从点(-1,-3)到点(1,-1)的直线段.
19.计算对坐标的曲线积分
⎰+L ydx xdy 其中L 是抛物线2x y =上从点(-2,4)到点(2,4)的一段
弧. 20.求微分方程034=+'-''y y y 满足初始条件()8)0(,40='=y y 的特解.
21.判断级数()∑∞=-+-131321n n n n 是否收敛,如果收敛,是条件收敛还是绝对收敛?
22.设函数()⎩
⎨⎧<≤<≤-=ππx x x x f 0,0,0的傅里叶级数展开式为()∑∞=++10sin cos 2n n n nx b nx a a ,求系数b 7.
四、综合题(本大题共3小题,每小题5分,共15分)
23.求函数()y x xy y x y x f 311381021,2
2-----=的极值. 24.设曲线()x y y =在其上点(x ,y )处的切线斜率为x +y ,且过点(-1,e -1),求该曲线方程.
25.将函数()2
312+-=
x x x f 展开为(x +1)的幂级数.。