第七章季节性时间序列分析方法
季节性时间序列分析方法
![季节性时间序列分析方法](https://img.taocdn.com/s3/m/42c9253e1a37f111f0855b29.png)
第七章季节性时间序列分析方法由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。
本章的学习重点是季节模型的一般形式和建模。
§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。
一、季节性时间序列1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这里S为周期长度。
注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1)将原序列分解成S个子序列(Buys-Ballot 1847)对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。
但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。
启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。
定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=∇=)1(。
季节性时间序列分析方法
![季节性时间序列分析方法](https://img.taocdn.com/s3/m/75a8b273a98271fe910ef9b8.png)
季节性时间序列分析方法在经济领域中得到的观测数据一般都具有较强的随时间变化的趋势,如果是季度或月度数据又有明显的季节变化规律。
因此研究经济时间序列必须考虑其趋势性和季节性的特点,既要考虑趋势变动,又要考虑季节变动,建立季节模型。
第一节 简单的时间序列模型一、 季节时间序列序列是季度数据或月度数据(周,日)表现为周期的波动。
二、随机季节模型例1 假定t x 是一个时间序列,通过一次季节差分后得到的平稳序列,且遵从一阶自回归季节模型,即有 t s s t t t x B x x w )1(-=-=-1tt s t w w 或 1(1)s t t B w 将t w =t s x )B (-1代入则有1(1)(1)s s t t B B x SARIMA(1,1,0)更一般的情况,随机序列模型的表达式为11(1)(1)(1)s s S t t B B x B SARIMA(1,1,1)第二节 乘积模型值得注意的是t a 不一定是白噪声序列。
因为我们仅仅消除了不同周期相同周期点之间具有的相关部分,相同周期而不同周期点之间的也有一定的相关性。
所以,在此情况下,模型有一定的拟合不足,如果假设t 是),(q p ARMA 模型,则1(1)(1)s s t t B B x 式可以改为1()(1)(1)()s s t t B B B x B如果序列}{t x 遵从的模型为()()()()s d D s s t t B U B x B V B (3.26) 其中ks k s s s B BB B U ΓΓΓ----= 2211)(ms m s s s B B B B V H H H ----= 2211)(p p B B B φφΦ---= 11)(q q B B B θθΘ---= 11)(d d B )1(-=∇D s D s B )1(-=∇则称(3.26)为乘积季节模型,记为),,(),,(q d p m D k ARIMA ⨯。
时间序列分析的方法和应用
![时间序列分析的方法和应用](https://img.taocdn.com/s3/m/a4ec645ef4335a8102d276a20029bd64783e62aa.png)
时间序列分析的方法和应用时间序列是指在时间轴上按一定规律产生的一组数据,它具有时间的先后顺序和时间对数据波动的影响。
时间序列分析是一种重要的统计方法,它能够帮助我们预测未来的趋势,发现异常情况以及判断某一事件对整体趋势的影响。
本文将就时间序列分析的方法和应用展开讨论。
时间序列分析的主要方法时间序列分析的主要方法包括时间序列图、移动平均、指数平滑、季节性分解、ARIMA(自回归移动平均)模型以及传统的回归分析等。
时间序列图时间序列图是通过按时间顺序排列的数据图形来展示时间序列的趋势和变化规律。
观察时间序列图可以直观地发现趋势和周期性的变化。
移动平均移动平均是利用时间序列中连续若干个时间点的平均值来代替原数据,平滑时间序列趋势和随机波动。
移动平均的阶数选择要根据实际数据而定,通常选择3、5、7等奇数阶。
移动平均可以帮助我们减少瞬间的波动和不规则的趋势。
指数平滑指数平滑是用来平滑时间序列数据,同时估计未来数值的方法。
它主要是通过一个权重系数来加权历史观测值,随着时间的推移,之前的观测值对最终结果的影响逐渐减弱。
指数平滑方法的好处是它可以对于新增的观测值进行更快速的反应。
季节性分解季节性分解是将时间序列拆分成趋势部分、季节性部分和随机波动部分。
可以采用季节因子、半平均、平滑和x-11等四种方法进行分解。
此方法的好处是,可以检验一个数据集中是否存在季节性效应。
如果存在,则可以将其季节性分解,减少这些效应对整体趋势的干扰。
ARIMA模型ARIMA模型是一种以时间序列的历史数据预测未来数据的模型,它是包括自回归(AR)过程、移动平均时间序列(MA)过程和整合(I)过程的三个部分。
在ARIMA模型的实施过程中,可以通过差分等方法,保证原始数据的差分与残差满足平稳随机长度论条件。
选择最合适的ARIMA模型可以帮助我们更好地预测未来的趋势和趋势变化。
传统回归分析传统回归分析可以把需要预测的时间序列看作因变量,并找到与它有相关性的自变量。
季节性分析方法
![季节性分析方法](https://img.taocdn.com/s3/m/09680225e2bd960590c67789.png)
yt M
t
Tt S t I t Tt
St It
平均数趋势整理法
建立趋势预测模型
根据年的月平均数,建立年趋势直线模型:
ˆ T t = a + bt
其中t是以年为单位
用最小平方法估计参数a,b,幵取序列{ y }的中点年为时 间原点.再把此模型转变为月趋势直线模型
(t )
Tˆt = a 0 + b 0 t b a0 = a + 24 , b0 = b 12
时间序列分析模型
加法模型
Y=T+S+C+I
乘法模型 Y=T×S×C×I
Y T
T S I T
S I
时间序列的分解分析
分解步骤:
① 分析和测定现象变动的长期趋势,求趋势值T。 ② 对时间序列进行调整,即减去或除以T,得出丌包含趋势 变动的时间序列资料。 乘法模型:
Y T T S I T S I
同月平均数与季节指数对比
元/吨 1.04 1.02 1 0.98 0.96 1 2 3 4 5 6 7 8 9 10 11 12 季节指数 同月平均 3400 3350 3300 3250 3200 3150 3100 3050 3000
yt M
t
Tt S t I t Tt
St It
计算季节比率及其平均数
y Mt tBiblioteka Tt St
It
S
Tt
t
It
计算季节指数
yt M
t
Tt S t I t Tt
St It
移动平均趋势剔除法
移动平均季节指数
第七章 季节时间序列分析
![第七章 季节时间序列分析](https://img.taocdn.com/s3/m/e53200234b73f242336c5f5f.png)
② 阶数判定要点: ◇差分与季节差分阶数d、D的选取,可采 用试探的方法,一般宜较低阶(如1、2、 3阶).对于某一组d、D,计算差分后序列 的SACF与SPACF,若呈现较好的截尾或拖 尾性,则d、D适宜.此时若增大d、D,相 应SACF与SPACF会呈现离散增大及不稳定 状态; ◇通常D不会超过1阶,特别对S=12的月份 数据(B-J); ◇SARIMA模型应慎重使用,特别序列长度 不够理想时(B-J).
• 构造原理
– 短期相关性用低阶ARIMA(p,d,q)模型提取 – 季节相关性用以周期步长S为单位的 ARIMA(P,D,Q)模型提取 – 假设短期相关和季节效应之间具有乘积关系.
(一) 乘积季节模型的一般形式
1、 et 可能是平稳的,也可能是非平稳的,
不妨设一般情况,
et 适合ARIMA(p,d,q)
季节差分后序列ACF、PACF特征
(1)若季节差分后序列适合MA模型: S=12 Xt-Xt-12=(1- 12B12)et=(1- 1B)(1-12B12)at =at- 1at-1- 12at-12+ 112at-12-1 季节差分后,适应MA(13),其中i=0 (i=2,3,…,11),ACF截尾(k=1,11,12,13不 为零,其余显著为零),PACF拖尾. 1 0 12 0 11 13 1112
(2)D阶季节差分 s)X sXt=Xt-Xt-s=(1-B t
s D Xt=(1-Bs) dXt s 2 Xt =(1-Bs) 2Xt=(1-2 Bs+ B 2s)Xt Xt=Xt-Xt-1 sXt=Xt-Xt-s a D: a:相减的时期 D:差分的阶数
设s D Xt=Wt ,则s D Xt-s=Wt-s 若Wt适合AR(1) Wt 1Wt s t , (1 1Bs )Wt t
时间序列分析
![时间序列分析](https://img.taocdn.com/s3/m/e671f9a75ff7ba0d4a7302768e9951e79a89697b.png)
时间序列分析时间序列分析是一种重要的统计学方法,用于研究随时间变化的数据。
它可以帮助我们了解数据的趋势、周期性和季节性,预测未来的变化趋势,并做出相应的决策。
本文将介绍时间序列分析的基本概念、常见的方法和应用领域。
一、时间序列的基本概念时间序列是按时间先后顺序排列的一组观察数据。
它可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售量。
时间序列的分析要求数据点之间存在一定的相关性和规律性。
二、时间序列的组成部分时间序列通常由三个主要组成部分构成:趋势、季节性和随机性。
趋势是时间序列在长期内呈现的整体变化趋势;季节性是时间序列在较短的时间内出现的重复周期性变化;随机性是时间序列中无法解释的随机波动。
三、时间序列分析的方法1. 描述性分析描述性分析是对时间序列数据进行可视化和概括的方法。
常用的方法包括绘制折线图、直方图和自相关图等,以帮助我们了解数据的分布和相关性。
2. 平稳性检验平稳性是时间序列分析的基本假设。
平稳序列的统计特性在时间上是不随时间变化的,包括均值、方差和自相关性等。
常见的平稳性检验方法有单位根检验和ADF检验。
3. 建立模型建立时间序列模型是对数据进行预测和分析的关键步骤。
常用的时间序列模型有ARIMA模型、AR模型和MA模型等。
通过对历史数据的拟合,我们可以得到模型的参数,从而进行未来值的预测。
4. 模型诊断与改进在建立模型之后,需要对其进行诊断和改进。
常见的诊断方法包括残差检验、模型稳定性检验和模型比较等。
根据诊断结果,我们可以对模型进行改进,提高预测的准确性。
四、时间序列分析的应用领域时间序列分析在许多领域都有广泛的应用,例如经济学、金融学、气象学和市场营销等。
在经济学中,时间序列分析可以用于预测经济增长趋势和通货膨胀率。
在金融学中,它可以帮助我们预测股票价格和利率走势。
在气象学中,时间序列分析可以用于预测天气变化和自然灾害。
在市场营销中,它可以帮助我们预测销售量和用户行为。
时间序列分析方法概述
![时间序列分析方法概述](https://img.taocdn.com/s3/m/c82aea2c001ca300a6c30c22590102020740f20c.png)
时间序列分析方法概述时间序列分析是一种研究时间相关数据的统计方法,它涉及分析数据在一段时间内的趋势和模式,以便预测未来的发展。
时间序列分析方法可应用于各种领域,如经济学、金融学、气象学和市场调研等。
时间序列分析方法的基本步骤包括数据收集、数据预处理、模型选择、参数估计和模型评估。
首先,需要收集时间序列数据,这可以是按照时间顺序排列的一系列观测值,如月度销售额、每日气温或股票价格等。
然后需要对数据进行预处理,如去除异常值、填补缺失值和平滑数据等,以确保数据的可靠性和一致性。
在模型选择阶段,需要根据数据的性质和特征选择适当的时间序列模型。
常用的模型包括平稳ARMA模型、非平稳ARIMA模型、季节性模型和ARCH/GARCH模型等。
平稳ARMA模型适用于平稳数据,可以描述数据的自相关结构和噪声。
非平稳ARIMA模型可以处理非平稳数据,并考虑差分操作来提高平稳性。
季节性模型适用于具有季节性变动的数据,并通过季节性差分操作来消除季节性成分。
ARCH/GARCH模型则用于建模数据的波动性和条件异方差性。
在参数估计阶段,需要使用最大似然估计法或最小二乘法等统计方法来估计模型的参数。
这些参数对于分析和预测时间序列数据非常关键,因为它们决定了模型的准确度和可靠性。
最后,在模型评估阶段,需要使用残差分析、模型诊断和模型比较等方法来评估选定模型的拟合优度和质量。
如果模型拟合不好,则需要对模型进行修改和改进。
时间序列分析方法在预测未来的趋势和模式方面具有广泛的应用。
例如,经济学家可以使用时间序列分析方法来预测国内生产总值(GDP)、通货膨胀率和失业率等经济指标。
金融学家可以利用时间序列分析方法来预测股票价格、汇率和利率等金融变量。
气象学家可以使用时间序列分析方法来预测气温、降水量和风速等气象数据。
市场调研人员可以利用时间序列分析方法来预测销售额、用户行为和市场趋势等。
总之,时间序列分析是一种基于统计方法的数据分析技术,可用于研究历史数据的趋势和模式,并预测未来的发展。
经济时间序列的季节调整、分解和平滑方法
![经济时间序列的季节调整、分解和平滑方法](https://img.taocdn.com/s3/m/1f623837a36925c52cc58bd63186bceb18e8ed79.png)
季节调整的方法与步骤
方法
移动平均法、指数平滑法、ARIMA模 型等。
步骤
识别季节性影响、选择合适的季节调 整方法、进行季节调整、评估调整效 果。
季节调整的注意事项
选择合适的季节调整方法需要根据数据的特性 和研究目的来确定,不同的方法可能得到不同
的结果。
季节调整后的数据需要进行进一步的分析和处理,以 揭示其内在的基本趋势和周期性变化。
意义
季节调整、分解和平滑有助于揭示经济时间序列数据中的长期趋势和周期性变 化,为政策制定者、经济学家和投资者提供更准确的决策依据。
季节调整、分解和平滑的目的
01
02
03
季节调整
消除时间序列数据中的季 节性成分,以分解为趋 势成分、季节成分和不规 则成分,以便更好地理解 数据的结构和变化。
季节调整适用于存在明显季节性影响的时间序 列数据,对于非季节性数据,进行季节调整可 能没有意义。
季节调整可能无法完全消除季节性影响,特别是 对于一些强季节性数据,调整效果可能不理想。
04 分解方法
分解的原理
01 时间序列数据由趋势、季节和随机三部分组成。
02 分解的目的是将这三部分分离出来,以便更好地 理解数据的内在结构和变化规律。
研究展望
改进季节调整方法
尽管现有的季节调整方法已经取得了很大的成功,但仍然存在一些问题,如对异常值的敏 感性、对季节性成分变化的适应性等。未来的研究可以探索新的季节调整方法和技术,以 提高季节调整的准确性和稳定性。
开发新的分解方法
现有的分解方法虽然已经比较成熟,但仍然存在一些局限性,如对不规则成分的估计和解 释等。未来的研究可以开发新的分解方法和技术,以更好地揭示时间序列数据的结构和变 化规律。
季节趋势的时间序列预测
![季节趋势的时间序列预测](https://img.taocdn.com/s3/m/ea01a744e97101f69e3143323968011ca300f7d6.png)
季节趋势的时间序列预测季节趋势的时间序列预测是指对时间序列数据中呈现出明显季节性变化趋势的情况进行预测和分析。
季节趋势可以是每年、每季度、每月或每周重复出现的波动情况,对于一些具有季节性特征的数据,如销售额、股票价格、天气数据等,进行季节趋势的预测可以帮助我们了解和预测未来的趋势。
在季节趋势的时间序列预测中,常用的方法有季节分解法、移动平均法、指数平滑法等。
一种常见的方法是季节分解法。
季节分解法首先将时间序列数据分解为三个部分:长期趋势分量、季节分量和随机波动分量。
长期趋势分量反映了时间序列数据的总体变化趋势,季节分量描述了季节性变化的规律,而随机波动分量反映了不可预测的随机波动。
季节分解法的步骤如下:1. 对时间序列数据进行平滑处理,例如可以使用移动平均法。
2. 对平滑处理后的数据进行季节性分量的估计,可以使用季节指数法或回归方法。
3. 得到季节性分量后,通过拟合趋势分量和随机波动分量来估计长期趋势分量和随机波动分量。
4. 根据长期趋势分量和季节性分量,得到未来的季节趋势预测结果。
另一种常见的方法是移动平均法。
移动平均法通过计算一定时间窗口内数据的平均值来平滑时间序列数据,以减少随机波动的影响。
常用的移动平均法有简单移动平均法、加权移动平均法等。
移动平均法的步骤如下:1. 确定时间窗口的大小,即要计算的数据个数。
2. 根据时间窗口的大小,计算每个时间点的平均值。
3. 根据计算的平均值,进行未来季节趋势的预测。
指数平滑法是另一种常见的方法,它通过对时间序列数据进行指数加权来平滑数据,较好地反映了时间序列的趋势和季节性变化。
指数平滑法的步骤如下:1. 初始化权重,通常为0.1到0.3之间的值。
2. 对时间序列数据进行指数平滑计算,得到平滑后的数据。
3. 根据平滑后的数据,进行未来季节趋势的预测。
在季节趋势的时间序列预测中,选择合适的方法需要根据数据的特点和需求来进行判断。
需要考虑的因素包括数据的周期性、趋势性以及随机波动的程度等。
第七章__季节性时间序列分析方法
![第七章__季节性时间序列分析方法](https://img.taocdn.com/s3/m/3b5ddc13ba1aa8114431d9ad.png)
三、季节性模型的建模方法
利用B-J建模型方法来建立季节性时间序 列模型,首先需要判明周期性,即S的取 值,然后根据自相关和偏自相关函数提 供的信息来判别模型的类型(AR、MA 和ARMA)和阶数,最后进行参数估计 和检验,具体步骤可概括如下:
第一步,对时间序列进行差分和季节差分以得到 一个平稳序列。 第二步,计算差分后序列的自相关和偏自相关函 数,选择一个暂定(尝试性的)模型。 第三步,由差分序列的适当自相关和偏自相关值 求得模型的初始估计值。并将这些估计值作为 最小二乘估计的初始值,对模型参数进行最小 二乘估计。 第四步,对估计得到的暂定模型的剩余进行适应 性检验,决定是否接受暂定模型。当模型的适 应性检验表明暂定模型不是最优模型时,可根
2.(1 B12 ) X t (1 1 B)(1 12 B12 )at
显然这个模型也是由两个模型组合而成:一个是 ( 1 B12 ) X t (1 12 B12 )et 它刻画不同年份同月的资料之间 的相关关系;另一个是 et (1 1 B)at 它表示同年不同月份 之间几乎不存在依赖关系,但受前一期扰动的影响,即时间 序列资料消除了季节因素之后适合一个MA( 1 )模型。
推而广之,季节模型的 ARMA形式 U ( B S )Wt V ( B S )et
D 或 U ( B S ) S X t V ( B S )et
(7.1.5) (7.1.6)
其中, U ( B S ) 1 u1 B S u2 B 2 S u p B pS V ( B S ) 1 v1 B S v2 B 2 S vq B qS 这里,et 是原序列消除了周期点 之间相关部分(即季节 分量)之后 的剩余序列。et 不一定独立。因为我们 仅消除了不同周期的同 一周期点上 的相关部分,作为响应 系统,除了不同周期的 同一周期点之间具有一 定相关 随机季节模型有一定的 不足,在一定程度上说 它是一个不完备的模型 。
时间序列中的季节趋势
![时间序列中的季节趋势](https://img.taocdn.com/s3/m/dbe552ec77a20029bd64783e0912a21614797ff3.png)
时间序列中的季节趋势
季节趋势是时间序列数据中的一种周期性变动,与季节因素有关。
在许多领域,如销售数据、天气数据等,季节因素常常会对数据产生影响。
季节趋势通常是指随着时间变化而周期性地出现的明显的模式或趋势。
这种周期性变动在不同的时间尺度上可能呈现出不同的模式。
在季节趋势中,一个周期通常是一年,因为季节因素按照自然的季节变化进行循环。
然而,在某些情况下,一个周期也可以是其他时间周期,如一周、一个月等。
在时间序列分析中,可以使用各种方法来分析和处理季节趋势。
常见的方法包括季节分解、季节指数和回归分析等。
季节分解是一种将时间序列数据分解为趋势、季节和误差部分的方法。
这样可以更好地理解数据中的季节性变动。
季节指数是一种用于衡量不同季节期间数据变化的方法。
它可以用来计算每个季节的相对比例,并用于预测未来的季节趋势。
回归分析是一种用于分析和建模时间序列数据中的趋势和季节变动的方法。
它可以帮助确定季节趋势对数据的影响以及其他相关因素。
总之,季节趋势是时间序列数据中的一种周期性变动,可以通过季节分解、季节指数和回归分析等方法进行分析和处理。
这有助于更好地理解和预测数据中的季节性变动。
第七章-季节性时间序列模型
![第七章-季节性时间序列模型](https://img.taocdn.com/s3/m/59928aa0de80d4d8d05a4f61.png)
1.一阶自回归季节模型
Wt 1Wts et 或 (11BS )Wt et 若还原为X t序列,有: (11BS )SD X t et
2.一阶移动平均季节模型
Wt et 1ets 或 Wt (11BS )et 还原为 X t序列,有:SD X t (11BS )et
3.季节性的SARIMA
1996 1909.1 1911.2 1860.1 1854.8 1898.3
1966 1888.7 1916.4 2083.5 2148.3 2290.1 2848.6
1997 2288.5 2213.5 2130.9 2100.5 2108.2 2164.7 2102.5 2104.4 2239.6
xt Tt St It
X1图
趋势拟合图
随机波动序列图
第二节 季节性时间序列模型
一、随机季节模型 二、乘积季节模型 三、常见的随机季节模型
一、 随机季节模型
❖ 随机季节模型,是对季节性随机序列中不同 周期的同一周期点之间的相关关系的拟合。 (列关系)
上一页 下一页 返回本节首页
例2 对1993年——2000年中国社会消费品零售总额
序列进行确定性时序分析
月份 1 2 3 4 5 6 7 8 9 10 11 12
1993 977.5 892.5 942.3 941.3 962.2 1005.7 963.8 959.8 1023.3 1051.1 1102 1415.5
2004 26.0 19.1 15.7 21.6
2005 25.1 18.6 15.1 20.8
二、季节时间序列重要特征 周期性
时序图
三、季节指数
❖ 季节指数的概念
所谓季节指数就是用简单平均法计算的周期内各 时期季节性影响的相对数
季节性时间序列分析方法
![季节性时间序列分析方法](https://img.taocdn.com/s3/m/5e187d7fa8114431b90dd87f.png)
季节性时间序列分析方法Revised at 2 pm on December 25, 2020.第七章季节性时间序列分析方法由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。
本章的学习重点是季节模型的一般形式和建模。
§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。
一、季节性时间序列1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这里S为周期长度。
注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1) 将原序列分解成S 个子序列(Buys-Ballot 1847)对于这样每一个子序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独立的。
但是这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。
启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。
#7-预测技术和方法 第七章 博克斯—詹金斯方法
![#7-预测技术和方法 第七章 博克斯—詹金斯方法](https://img.taocdn.com/s3/m/ec28f4757fd5360cba1adb8b.png)
xt xt xt xt 1 xt 2xt 1 xt 2
2
x t的趋势属于t的d次多项式,则经d次差分后可 完全消除趋势
x t x t (1) Cd x t r
d r r r 1
d
一般情况,非平稳序列经一次或二次差分后都 可平稳化
三、B-J法预测流程图
n
x t t k x
xt2
t 1
偏自相关系数和自相关系数配合共同辨认适当的ARMA模型
3、自相关分析图
• 将时间序列的自相关系数和偏自相关系数绘制 成图,并标出一定的置信区间,这样的图称为 自相关分析图。
在自相关分析图中,自相关系数和偏自相关系数的置信区间都取
2 2 , n n
• 二阶季节差分序列为:
2T x t T x t T x t T x t 2x t T x t 2T
(t>2T)
二、ARMA模型的自相关分析 1、p阶自回归模型的自相关分析 xt~AR(p) AR(p)
AR(k 1)
AR(k)
x t 1x t 1 2 x t 2 k1x t k1 u t
模型的识别→模型中参数的估计和检验→预测应用 1、模型的识别:通过样本序列,计算出时间序列的 具体特征,求出AR、MA模型的阶数。 • 计算时间序列样本自相关系数和偏自相关系数, 与理论模型的相应特征进行比较后加以确认。 利用自相关系数和偏自相关系数 ↓ 分析时间序列的随机性、平稳性、季节性 ↓ 选定模型拟合所分析的时间序列
x t 1x t 1 2 x t 2 k1x t k1 k x t k u t
如果 k 0,xt-k 附加在模型中无意义,用AR(k-1)模型比较合适 否则,xt-k 应附加在模型中,用AR (k)模型合适
高级计量分析(时间序列分解——季节调整)
![高级计量分析(时间序列分解——季节调整)](https://img.taocdn.com/s3/m/440259e8c8d376eeaeaa3149.png)
时间序列分解——季节调整一、研究目的经济指标的月度或季度时间序列包含4种变动要素:长期趋势要素T 、循环要素C 、季节变动要素S 和不规则要素I 。
长期趋势要素代表经济时间序列长期的趋势特征。
循环要素是以数年为周期的一种周期性变动,它可能是一种景气变动、也可能是经济变动或其他周期变动。
季节变动要素是每年重复出现的循环变动,以12个月或4个季度为周期的周期性影响,是由温度、降雨、每年中的假期和政策等因素引起的。
季节要素和循环要素的区别在于季节变动时固定间距(如季或月)中的自我循环,而循环要素是从一个周期变动到另一个周期,间距比较长且不固定的一种周期性波动。
不规则要素又称随机因子、残余变动或噪声,其变动无规则可循,这类因素是由偶然发生的事件引起的,如罢工、意外事故、地震、水灾、恶劣气候、战争、法令更改和预测误差等。
在经济分析中,季节变动要素和不规则要素往往掩盖了经济发展中的客观变化,给研究和分析经济发展趋势和判断目前经济所处的状态带来困难。
因此,需要在经济分析之前将经济时间序列进行季节调整,剔除其中的季节变动要素和不规则要素。
而利用趋势分解方法可以把趋势和循环要素分离开来,从而研究经济的长期趋势变动和景气循环变动。
二、季节调整的原理时间序列的季度、月度观测值常常显示出月度或季度的循环变动。
例如,冰激凌的销售量在每一年的夏季最高。
季节性变动掩盖了经济发展的客观规律,因此,在利用月度或季度时间序列进行计量分析之前,需要进行季节调整。
季节调整就是从时间序列中去除季节变动要素S ,从而显示出序列潜在的趋势循环分量(TC ,季节调整无法将趋势要素和循环要素进行分离)。
只有季度、月度数据才能做季节调整。
目前比较常用的季节调整方法有4种:CensusX12方法、X11方法、移动平均方法和Tramo/Seats 方法。
1、X11季节调整方法该方法是1965年美国商务部人口调查局研究开发的季节调整程序。
它是基于移动平均法的季节调整方法,通过几次迭代来进行分解,每一次都对组成因子的估算进一步精化。
数据分析中常用的时间序列分析方法
![数据分析中常用的时间序列分析方法](https://img.taocdn.com/s3/m/3f5081fb2dc58bd63186bceb19e8b8f67c1cef29.png)
数据分析中常用的时间序列分析方法时间序列分析是数据分析中常用的一种方法,它可以帮助我们理解和预测时间序列数据的行为和趋势。
在这篇文章中,我们将介绍一些常用的时间序列分析方法,包括平滑法、分解法、自回归移动平均模型(ARMA)和季节性模型。
平滑法是时间序列分析中最简单的方法之一。
它通过计算一系列数据点的平均值来平滑数据,从而减少噪音和随机波动的影响。
平滑法常用的方法有简单平均法、加权平均法和指数平滑法。
简单平均法是最简单的平滑法之一,它计算一系列数据点的平均值作为平滑后的数值。
然而,简单平均法对异常值非常敏感,可能导致平滑结果不准确。
为了解决这个问题,我们可以使用加权平均法,其中每个数据点的权重根据其重要性进行调整。
指数平滑法是另一种常用的平滑方法,它使用指数衰减函数来赋予最近的数据点更大的权重,从而更好地捕捉趋势。
分解法是一种将时间序列数据分解为趋势、季节性和残差三个部分的方法。
趋势是时间序列数据长期的变化趋势,可以通过拟合一个线性或非线性模型来估计。
季节性是时间序列数据在特定时间段内重复出现的周期性变化,可以通过计算每个季节的平均值来估计。
残差是剩余的未解释部分,可以通过将趋势和季节性从原始数据中减去来估计。
自回归移动平均模型(ARMA)是一种常用的时间序列分析方法,它结合了自回归模型(AR)和移动平均模型(MA)。
自回归模型是基于过去观测值的线性组合来预测未来观测值,而移动平均模型是基于过去观测值的线性组合和随机误差项来预测未来观测值。
ARMA模型可以通过拟合数据的自相关函数和偏自相关函数来估计模型的参数。
季节性模型是一种用于处理具有明显季节性变化的时间序列数据的方法。
它可以帮助我们理解和预测季节性变化的趋势和规律。
常用的季节性模型包括季节性自回归移动平均模型(SARMA)和季节性分解模型。
SARMA模型是ARMA模型的季节性扩展,它考虑了季节性的影响。
季节性分解模型将时间序列数据分解为趋势、季节性和残差三个部分,类似于分解法。
时间序列分析方法
![时间序列分析方法](https://img.taocdn.com/s3/m/9652c7576ad97f192279168884868762caaebbf9.png)
时间序列分析方法
时间序列分析是一种重要的统计分析方法,它在许多领域都有着广泛的应用。
时间序列数据是按照时间顺序排列的一系列数据点,例如股票价格、气温变化、销售额等。
对于这类数据,我们通常会使用时间序列分析方法来揭示其中的规律和特征,以便进行预测和决策。
首先,时间序列分析的基本步骤包括数据的收集和整理、模型的选择和拟合、
模型的诊断和预测。
在进行时间序列分析时,我们需要先对数据进行收集和整理,确保数据的完整性和准确性。
然后,我们需要选择合适的模型来描述时间序列数据的特征,常见的模型包括ARIMA模型、指数平滑模型、回归模型等。
接着,我们
对选择的模型进行拟合,即利用历史数据来估计模型的参数。
在拟合完成后,我们需要对模型进行诊断,检验模型是否符合统计假设,是否能够很好地描述数据的特征。
最后,我们可以利用拟合好的模型进行预测,以便进行决策和规划。
在实际应用中,时间序列分析方法有着广泛的应用。
例如,在金融领域,我们
可以利用时间序列分析方法来预测股票价格的走势,以指导投资决策;在气象领域,我们可以利用时间序列分析方法来预测未来的气温变化,以便进行灾害预防和气候调控;在经济领域,我们可以利用时间序列分析方法来预测未来的销售额和需求量,以指导生产和营销策略。
总之,时间序列分析方法是一种重要的统计分析方法,它在许多领域都有着重
要的应用。
通过对时间序列数据的收集、整理、模型选择、拟合、诊断和预测,我们可以揭示数据中的规律和特征,以指导决策和规划。
希望本文能够帮助读者更好地理解时间序列分析方法,从而在实际应用中取得更好的效果。
非平稳和季节时间序列模型分析方法
![非平稳和季节时间序列模型分析方法](https://img.taocdn.com/s3/m/bce076c3e43a580216fc700abb68a98270feac11.png)
非平稳和季节时间序列模型分析方法非平稳时间序列是指在时间序列数据中,均值、方差、自相关函数等统计性质随时间变化的数据。
这种时间序列模型常常由于其自身的特性而较难进行分析和预测。
不过,季节时间序列是非平稳时间序列的一种特殊类型,其特点是在数据中存在明显的季节性变化。
对于这种时间序列,可以采用不同的分析方法进行预测和建模。
一、非平稳时间序列分析方法:1.差分法:差分法是通过对序列数据进行相邻时间点的差分,使得序列转变为平稳时间序列。
差分法有一阶差分、二阶差分等。
通过差分法可以使得序列的单位根等统计性质得到稳定。
2.滑动平均法:滑动平均法基于序列的平均值,将序列转化为平稳时间序列。
该方法通过计算序列的滑动平均值来消除序列的变化趋势。
3.指数平滑法:指数平滑法是一种通过加权平均的方法来消除序列的变化趋势。
指数平滑法可以根据实际情况选择不同的权重系数来进行计算。
4.回归分析:对于非平稳时间序列,通过引入自变量,建立回归模型来描述序列的变化。
回归分析可以通过多个变量的关系来解释序列的变动。
二、季节时间序列分析方法:1.季节分解法:季节分解法是将季节时间序列分解为长期趋势、季节性和随机成分的组合。
这种方法可以将季节性的变动独立出来,从而更好地进行建模和预测。
2.季节移动平均法:季节移动平均法通过计算时间序列在相邻季节的平均值,消除序列的季节性变动。
这种方法可以降低季节时间序列的变化趋势。
3.季节差分法:季节差分法是将季节时间序列转化为其相邻时间点的差分。
通过差分法可以去除序列的季节性变化,使得序列更为平稳。
4.季节ARIMA模型:季节ARIMA模型是一种结合了季节差分和ARIMA 模型的方法。
该方法可以同时考虑序列的季节性变化和非平稳性,通过建立ARIMA模型来进行预测和分析。
以上所述是常用的非平稳和季节时间序列模型分析方法。
根据实际情况,我们可以选择合适的方法来分析和预测时间序列数据,以提高分析的准确性。
季节性时间序列模型PPT课件
![季节性时间序列模型PPT课件](https://img.taocdn.com/s3/m/4d76d153fe00bed5b9f3f90f76c66137ee064fa7.png)
数据。
SARIMA模型
02
季节性自回归积分滑动平均模型,适用于具有明显季节性的时
间序列数据。
SARIMA-X模型
03
基于SARIMA模型的扩展,适用于具有特定季节性和非季节性
特征的时间序列数据。
季节性时间序列模型的参数
AR参数
自回归模型的参数,用于描述时间序列数据 的自相关关系。
P参数
季节性自回归模型的参数,用于描述时间序 列数据的季节性特征。
在股票价格的时间序列分析中,可以使用季节性自回归积分滑动 平均模型(SARIMA)等季节性时间序列模型来拟合数据,并预 测未来的股票价格走势。
通过对股票价格的时间序列数据进行季节性分析和预测,可以帮 助投资者制定更加科学和有效的投资策略,提高投资收益。
案例二:气温变化的季节性分析
01
气温变化的季节性分析是另一个应用季节性时间序列模型的案例。通过对气温 历史数据的季节性分析,可以了解气温变化的规律和趋势,为气象预测和气候 变化研究提供支持。
感谢您的观看
02
03
季节性时间序列模型的分类:根据不同 的分类标准,季节性时间序列模型可以 分为不同的类型。常见的分类标准包括 模型的复杂度、季节性周期的长度等。 常见的季节性时间序列模型包括季节性 自回归积分滑动平均模型(SARIMA)、 季节性指数平滑模型(SEAS)等。
季节性时间序列模型的应用实例: SARIMA模型在股票市场预测中取得 了较好的效果;SEAS模型在电力需求 预测中得到了广泛应用。这些应用实 例证明了季节性时间序列模型在数据 分析和预测中的实用性和有效性。
对未来研究方向的展望
改进现有模型的性能
尽管现有的季节性时间序列模型取得 了一定的成果,但仍存在一些局限性 ,如对异常值的敏感性、对非平稳数 据的适应性等。未来的研究可以针对 这些局限性,对现有模型进行改进, 提高模型的预测精度和稳定性。
{时间管理}第七章季节性时间序列分析方法
![{时间管理}第七章季节性时间序列分析方法](https://img.taocdn.com/s3/m/c37012ac6c85ec3a87c2c5e6.png)
(时间管理)第七章季节性时间序列分析方法第七章季节性时间序列分析方法由于季节性时间序列于经济生活中大量存于,故将季节时间序列从非平稳序列中抽出来,单独作为壹章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。
本章的学习重点是季节模型的壹般形式和建模。
§1简单随机时序模型于许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
比如:建筑施工于冬季的月份当中将减少,旅游人数将于夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们能够说,变量同它上壹年同壹月(季度,周等)的值的关系可能比它同前壹月的值的关联更密切。
一、季节性时间序列1.含义:于壹个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这里S为周期长度。
注:①于经济领域中,季节性的数据几乎无处不于,于许多场合,我们往往能够从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建立组合模型;(1)将原序列分解成S个子序列(Buys-Ballot1847)对于这样每壹个子序列均能够给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。
可是这种做法不可取,原因有二:(1)S个子序列事实上且不相互独立,硬性划分这样的子序列不能反映序列的总体特征;(2)子序列的划分要求原序列的样本足够大。
启发意义:如果把每壹时刻的观察值和上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),于经济上,就是考查和前期相比的净增值,用数学语言来描述就是定义季节差分算子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7.3.4)
当 S 12时,有 Xt at 1at1 12at12 112at13 (7.3.5)
(7.3.5)式是一个 MA(13)模型,其自相关系数计算为
0
(1 12
2 12
12122
)
2 a
(1
12
)(1
2 12
)
2 a
1
1 112
(1
12
)(1
2 12
)
1 1 12
2 L 10 0
二、季节性 AR 模型的偏自相关函数
将季节性 AR(1)模型(11B)(1S BS ) Xt at
(7.3.8)
展开,得
ห้องสมุดไป่ตู้
(1 1B S BS 1S BS1) Xt at 。
由此可求得偏自相关函数。这种方法可以推广到 AR(n)模型
(11B L nBn )(1S BS ) Xt at 或更一般的情形 (B)U (BS ) Xt at , 即 (11B L nBn )(1 u1BS u2B2S L upB pS )Xt at 。
对于季节时间序列来说,除了建立随机序列模型来刻画 周期规律外,还可以在理论分析证明系统确实存在确定性的 周期波动的情况下,用一个确定性的模型予以描述。
破性实证研究,否则不采用季节模型。 当判明周期后,第二个问题的解决主要依靠自相关函数
提供的信息来选择暂定模型。为了便于应用,B-J 给出了一些 常用的季节模型的自协方差。(见参考书目(1))。
破性实证研究,否则不采用季节模型。 当判明周期后,第二个问题的解决主要依靠自相关函数
提供的信息来选择暂定模型。为了便于应用,B-J 给出了一些 常用的季节模型的自协方差。(见参考书目(1))。
当然,不论如何选择暂定模型,拟合模型之后都要进行 适应性检验,直到得到最优模型为止。也可运用 Pandit-Wu 方法,经过试误检验探寻最适应模型。
ARIMA 模型是乘积季节模型的一个特例。
二、常用的随机季节模型
1. (1 B12 )(1 B) Xt (11B)(112B12 )at 模型由两个模型组合而成。
(7.2.5)
(1) (1 B12 ) Xt (112B12 )et
(7.2.5a)
只考虑不同年份同月的资料之间的相关关系。
(2) (1 B)et (11B)at
Wt (11B)(112B12 )at at 1at1 12at12 112at13。
如果一个序列适合上述模型,则其理论自相关函数满足
1 0, 12 0, 13 112,其他的 k 0。 (7.3.12)
在具体应用中,如果序列 Xt 的样本自相关函数持续较 大 , 启 示 我 们 应 该 对 序 列 Xt 进 行 一 阶 差 分 处 理 , 即 Yt (1 B) Xt。
第七章 季节性时间序列分析方法
第一节 简单随机时序模型 一、季节时间序列 定义 在一个时间序列中,若经过 S 个时间间隔后呈 现出相似性,就说该序列具有以 S 为周期的周期特性。具 有周期特性的序列就称为季节性序列。S 为周期长度,一 个周期内所包含的时间点称为周期点。 有的时间序列可能同时含有长度不同的若干周期。通 常根据周期长度及其作用程度称之为主周期、谐波、次谐 波等。
或
U
(
BS
)
D S
X
t
V (BS )et
其中
U (BS ) 1 u1BS L upB pS V (BS ) 1 v1BS L vqBqS
et 内容与性质: (1) et 是原序列消除了不同周期的同一周期点之间相关 部分(即季节分量)之后的剩余序列。 (2) et 不一定相互独立。这是因为同一周期的不同周期点 之间也可能有一定的相关关系。因此季节性模型有一定的不 足,在一定程度上讲,它是一个不完备的模型。
11
112
(1
12
)(1
2 12
)
12
1212
2 12
(1
12
)(1
2 12
)
12
1
2 12
13
112
(1
12
)(1
2 12
)
14 15 L 0
可见,1实际上是模型(7.3.2)的一阶自相关系数,而 12
则是模型(7.3.1)的一阶自相关系数。因此,不难求出1, 12
的估计式。
类似地,当各周期点之间的关系适合一个 MA(m)模型
根据偏自相关函数在周期点的截尾性来判定模型的阶
数。但需要注意的是,样本的偏自相关函数不可能精确为零,
因此偏自相关函数的截尾性只能提供一些定阶信息。
二、季节性模型的建模方法 利用 B-J 建模方法来建立季节性时间序列模型,首先需 要判明周期性,即 S 的取值,然后根据自相关和偏自相关函 数提供的信息来判断模型的类型和阶数,最后进行参数估计 和检验。具体的步骤概括如下: 第一步,对时间序列进行差分和季节差分,以得到一个 平稳序列。 第二步,计算差分后序列的自相关和偏自相关函数,选 择一个暂定(尝试性的)模型。
(
B)U
(
B
S
)d
D S
X
t
V (BS )(B)det
(7.2.2)
根据(7.2.1)式,即有
(
B)U
(
B
S
)
d
D S
X
t
V (BS )(B)at
(7.2.3)
(
B)U
(
B
S
)
d
D S
X
t
V (BS )(B)at
(7.2.3)
在(7.2.3)中,(B)d Xt 仅表示同一周期内不同周期点
的相关关系;而U
和 MA 算子V (BS )的阶数很少超过 1 阶,当可利用数据序列
的长度不足以支持 p>1 和 q>1 的复杂模型时尤为如此。
(2) 在具体建模过程中,要特别注意利用自相关函数提
供的信息。例如在模型
(1 B12 )(1 B) Xt (11B)(112B12 )at
(7.2.5)
中,假设Wt (1 B12 )(1 B) Xt ,则有
(3) 从应用的角度来看,由于估计和检验可以借助计算 机统计分析软件来实现,因此应用的关键问题有两个:一是 如何知道所研究的序列含有周期性规律以及周期的长度;二 是拟合一个什么样的模型最为适合。
关于第一个问题,解决的方法就是对所研究序列进行检 验。最简单易行的办法就是绘制数据图,也可以根据序列的 相关系数所提供的信息建立试探性的三角函数模型来判断。 但是,不论用什么方法得到的判断,都要符合所研究系统的 机理。如果没有一定的理论分析能够支持定量测试的结论, 则一般不宜建立季节时序模型,除非是要对现有理论进行突
(
B
S
)
D S
则描述不同周期的同一周期点上的
相关关系。二者结合起来便同时刻画了两个因素的作用。另
一方面,从(7.2.3)式结构形式上看,它是随机性季节模型
与 ARIMA 模型的结合式,故称为乘积季节模型,其阶数用
(n, d, m) ( p, d, q)S 来表示。
将(7.2.3)式展开,则可得到一般的 ARIMA 模型。例如
et (11B)at , (7.3.2)
则得到一个周期为 S 的季节性 MA(1)模型,即(0,0,1)(0,0,1)S
模型
Xt (11B)(1S BS )at
(7.3.3)
Xt (11B)(1S BS )at 将(7.3.3)式展开,可得
(7.3.3)
Xt at 1at1 S atS 1S atS1
如果Yt序列滞后 12、24、48、…期的样本自相关函数持 续较大,则应该对Yt 序列进行 12 阶季节差分,即Wt (1 B12 )Yt 。
再计算Wt 的样本自相关函数。若计算结果与条件(7.3.12) 式基本一致,则可认为对 Xt 序列拟合模型(7.2.5)是适合的。
实例:1987-1996 年甲地某商品月销售量资料的时间序 列分析。(P189-190)。
当然,不论如何选择暂定模型,拟合模型之后都要进行 适应性检验,直到得到最优模型为止。也可运用 Pandit-Wu 方法,经过试误检验探寻最适应模型。
对于季节时间序列来说,除了建立随机序列模型来刻画 周期规律外,还可以在理论分析证明系统确实存在确定性的 周期波动的情况下,用一个确定性的模型予以描述。
时,有
Xt (B)(1S BS )at
上式可以等价地写成
(7.3.6)
Xt (11B L mBm )(1S BS )at (11B L m Bm S BS 1S BS1 L mS BSm )at
这样就可以求出自相关函数。
这种做法可以推广到更一般的情形:
Xt (B)V (BS )at , 其中V (BS ) 1 v1BS v2B2S L vqBqS 。
第二节 乘积季节模型
一、乘积季节模型的一般形式
在随机季节模型
U
(
B
S
)
D S
X
t
V (BS )et
(7.1.6)
中,由于et 不是独立的,因此不妨假设et 适合一个
ARIMA(n,d,m):(B)det (B)at ,
(7.2.1)
这里at 为白噪声序列。在(7.1.6)式两端同乘以(B)d ,得
对于季节性时间序列通常按周期进行重新排列,得到 一个以周期点为行、以周期为列的二维表(见 P182 表 7.1 和表 7.2)。这样做不仅有助于加深理解序列的周期特性, 而且有助于形成建模思想和理解季节模型的结构。
二、随机季节模型 在确定性时序分析中,常用的处理方法是对季节时间 序列的季节分量拟合一个三角函数模型或求一个固定的 季节指数。随机季节模型,是对季节性随机序列中不同周 期之间相关关系的拟合。 如周期为 12 个月的月份资料,就是研究不同年份的 同一个月份的观察值之间的记忆性。