无锡市初三数学试卷(含答案解析)

合集下载

江苏省无锡市2022年中考数学真题试题(含解析1)

江苏省无锡市2022年中考数学真题试题(含解析1)

江苏省无锡市2022年中考数学真题试题(含解析1)2022年江苏省无锡市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.倒数是数的倒数,即其乘积为1.因此,-5的倒数为-1/5,选项B。

2.函数y=的定义域为x≠2,即x的取值范围为x2,选项D。

3.指数运算法则中,(a^m)^n = a^(mn),因此(a^2)^3=a^6,选项A。

乘方运算法则中,(ab)^n=a^n*b^n,因此(ab)^2=a^2*b^2,选项B。

除法运算法则中,a^m/a^n=a^(m-n),因此a^6/a^3=a^3,选项C。

乘法运算法则中,a^m*a^n=a^(m+n),因此a^2*a^3=a^5,选项D。

4.中心对称图形是以某点为中心,对称的图形。

根据图形可知,只有选项C是中心对称图形。

5.根据题意,a-b=2,b-c=-3,将两式相加得到a-c=-1,选项B。

6.根据表格可知,男生总分为5*70+10*80+7*90=1205,女生总分为4*70+13*80+4*90=1230,因此男生的平均成绩小于女生的平均成绩,选项B。

男生的中位数为80分,女生的中位数为80分,因此男生成绩的中位数等于女生成绩的中位数,选项D。

7.平均增长率的计算公式为[(终值/初值)^(1/月数)-1]*100%。

从1月份到3月份,共增长了4.5-2=2.5万元。

平均每月增长率为[(4.5/2)^(1/2)-1]*100%≈25%,选项B。

8.根据命题“a^2>b^2,则a>b”,当a=3,b=2时,a^2>b^2,且a>b,因此选项A是正确的。

当a=-3,b=2时,a^2>b^2,但ab^2,且a>b,因此选项A是正确的。

当a=-1,b=3时,a^2b,因此选项D是错误的。

因此,选项B是错误的。

9.根据图形可知,菱形的对角线长度为√(2*320)=32,因此圆的直径长度为32,半径长度为16,选项无法确定。

无锡市中考数学试题及答案

无锡市中考数学试题及答案

无锡市中考数学试题及答案【无锡市中考数学试题及答案】一、选择题1. 已知正整数a,b满足a×b = 100,若a的值从1到100依次增加,b的取值范围是:A. 1≤b≤100B. 1≤b≤200C. 1≤b≤50D. 1≤b≤20解答:由a×b = 100可知,a与b之间存在着一一对应的关系。

当a=1时,b=100;当a=2时,b=50;当a=4时,b=25;...当a=100时,b=1. 可以发现,b的取值范围是1≤b≤100。

因此,选项A正确。

2. 若m是偶数,n是奇数,则下列选项中,必然是偶数的是:A. n × mB. n + mC. m - nD. m ÷ n解答:根据奇数与偶数的性质可知,奇数与奇数相乘、相加、相减的结果都是偶数。

所以选项A和B都有可能是偶数。

而选项C的结果为m减去一个奇数,得到的是偶数。

所以选项C是必然是偶数的选项。

因此,选项C正确。

3. 在△ABC中,已知∠B=90°,则∠ABC的补角是:A. 90°B. 60°C. 45°D. 30°解答:由已知可知,∠B是一个直角。

直角的补角是与之相加得到180°的角,即∠ABC的补角为180°-90°=90°。

因此,选项A正确。

二、填空题1. 要在[-4, 10]的数轴上表示不等式|x - 3|≥ 5的解集,以下哪个图形正确?【数轴图形】解答:不等式|x - 3|≥ 5可以转化为两个不等式:x - 3 ≥ 5和x - 3 ≤ -5。

解得x ≥ 8和x ≤ -2。

因此,解集为闭区间[-2, 8]。

根据数轴上方表示闭区间,选项B正确。

2. 若a + b = 4,a - b = 2,则方程组的解为_________.解答:将两个方程相加得到2a = 6,解得a = 3。

将a = 3代入第一个方程得到3 + b = 4,解得b = 1。

最新江苏省无锡市中考数学试卷(含答案解析)

最新江苏省无锡市中考数学试卷(含答案解析)

江苏省无锡市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.﹣2地相反数是()A.B.±2 C.2 D.﹣【考点】相反数.【分析】根据一个数地相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2地相反数是2;故选C.2.函数y=中自变量x地取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【考点】函数自变量地取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x地范围.【解答】解:依题意有:2x﹣4≥0,解得x≥2.故选:B.3.sin30°地值为()A.B.C.D.【考点】特殊角地三角函数值.【分析】根据特殊角地三角函数值,可以求得sin30°地值.【解答】解:sin30°=,故选A.4.初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(个) 1 2 3 4 5 7人数(人) 1 1 4 2 3 1A.3.75 B.3 C.3.5 D.7【考点】众数.【分析】根据统计表找出各进球数出现地次数,根据众数地定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数地众数是3.故选B.5.下列图案中,是轴对称图形但不是中心对称图形地是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形地性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A.6.如图,AB是⊙O地直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD地度数为()A.70°B.35°C.20°D.40°【考点】切线地性质;圆周角定理.【分析】先依据切线地性质求得∠CAB地度数,然后依据直角三角形两锐角互余地性质得到∠CBA地度数,然后由圆周角定理可求得∠AOD地度数.【解答】解:∵AC是圆O地切线,AB是圆O地直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D.7.已知圆锥地底面半径为4cm,母线长为6cm,则它地侧面展开图地面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【考点】圆锥地计算.【分析】根据圆锥地侧面积=×底面圆地周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.8.下列性质中,菱形具有而矩形不一定具有地是()A.对角线相等 B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【考点】菱形地性质;矩形地性质.【分析】菱形地性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形地性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有地性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有地性质;(C)对角线互相垂直是菱形具有地性质,矩形不一定具有;(D)邻边互相垂直是矩形具有地性质,菱形不一定具有.故选:C.9.一次函数y=x﹣b与y=x﹣1地图象之间地距离等于3,则b地值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6【考点】一次函数地性质;含绝对值符号地一元一次方程.【分析】将两个一次函数解析式进行变形,根据两平行线间地距离公式即可得出关于b地含绝对值符号地一元一次方程,解方程即可得出结论.【解答】解:一次函数y=x﹣b可变形为:4x﹣3y﹣3b=0;一次函数y=x﹣1可变形为4x﹣3y﹣3=0.两平行线间地距离为:d==|b﹣1|=3,解得:b=﹣4或b=6.故选D.10.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1地中点D,连接A1D,则A1D地长度是()A.B.2C.3 D.2【考点】旋转地性质;含30度角地直角三角形.【分析】首先证明△ACA1,△BCB1是等边三角形,推出△A1BD是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2, ∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选A.二、填空题:本大题共8小题,每小题2分,共16分11.分解因式:ab﹣a2= a(b﹣a).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:ab﹣a2=a(b﹣a).故答案为:a(b﹣a).12.某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 5.7×107.【考点】科学记数法—表示较大地数.【分析】科学记数法地表示形式为a×10n地形式,其中1≤|a|<10,n为整数.确定n地值时,要看把原数变成a时,小数点移动了多少位,n地绝对值与小数点移动地位数相同.当原数绝对值>1时,n是正数;当原数地绝对值<1时,n是负数.【解答】解:将57000000用科学记数法表示为:5.7×107.故答案为:5.7×107.13.分式方程=地解是x=4 .【考点】分式方程地解.【分析】首先把分式方程=地两边同时乘x(x﹣1),把化分式方程为整式方程;然后根据整式方程地求解方法,求出分式方程=地解是多少即可.【解答】解:分式方程地两边同时乘x(x﹣1),可得4(x﹣1)=3x解得x=4,经检验x=4是分式方程地解.故答案为:x=4.14.若点A(1,﹣3),B(m,3)在同一反比例函数地图象上,则m地值为﹣1 .【考点】反比例函数图象上点地坐标特征.【分析】由A、B点地坐标结合反比例函数图象上点地坐标特征即可得出关于m地一元一次方程,解方程即可得出结论.【解答】解:∵点A(1,﹣3),B(m,3)在同一反比例函数地图象上,∴1×(﹣3)=3m,解得:m=﹣1.故答案为:﹣1.15.写出命题“如果a=b”,那么“3a=3b”地逆命题如果3a=3b,那么a=b .【考点】命题与定理.【分析】先找出命题地题设和结论,再说出即可.【解答】解:命题“如果a=b”,那么“3a=3b”地逆命题是:如果3a=3b,那么a=b,故答案为:如果3a=3b,那么a=b.16.如图,矩形ABCD地面积是15,边AB地长比AD地长大2,则AD地长是 3 .【考点】矩形地性质.【分析】根据矩形地面积公式,可得关于AD地方程,根据解方程,可得答案.【解答】解:由边AB地长比AD地长大2,得AB=AD+2.由矩形地面积,得AD(AD+2)=15.解得AD=3,AD=﹣5(舍),故答案为:3.17.如图,已知▱OABC地顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB 长地最小值为 5 .【考点】平行四边形地性质;坐标与图形性质.【分析】当B在x轴上时,对角线OB长地最小,由题意得出∠ADO=∠CEB=90°,OD=1,OE=4,由平行四边形地性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.【解答】解:当B在x轴上时,对角线OB长地最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5;故答案为:5.18.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s地速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s地速度向O点运动,过OC地中点E作CD地垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径地圆与直线EF相切.【考点】直线与圆地位置关系.【分析】当以点C为圆心,1.5cm为半径地圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边地比相等即可求出EF地长度,再利用勾股定理列出方程即可求出t地值,要注意t地取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径地圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC地中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:三、解答题:本大题共10小题,共84分19.(1)|﹣5|﹣(﹣3)2﹣()0(2)(a﹣b)2﹣a(a﹣2b)【考点】单项式乘多项式;完全平方公式;零指数幂.【分析】(1)原式利用绝对值地代数意义,乘方地意义,以及零指数幂法则计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=5﹣9﹣1=﹣5;(2)a2﹣2ab+b2﹣a2+2ab=b2.20.(1)解不等式:2x﹣3≤(x+2)(2)解方程组:.【考点】解一元一次不等式;解二元一次方程组.【分析】(1)根据解一元一次不等式地步骤,去分母、移项、合并同类项、系数化为1,即可得出结果;(2)用加减法消去未知数y求出x地值,再代入求出y地值即可.【解答】解:(1)2x﹣3≤(x+2)去分母得:4x﹣6≤x+2,移项,合并同类项得:3x≤8,系数化为1得:x≤;(2).由①得:2x+y=3③,③×2﹣②得:x=4,把x=4代入③得:y=﹣5,故原方程组地解为.21.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【考点】正方形地性质;全等三角形地判定与性质.【分析】根据正方形地性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE和△DAF 全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.22.如图,OA=2,以点A为圆心,1为半径画⊙A与OA地延长线交于点C,过点A画OA地垂线,垂线与⊙A地一个交点为B,连接BC(1)线段BC地长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点 A 为圆心,以线段BC 地长为半径画弧,与射线BA交于点D,使线段OD地长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【考点】作图—复杂作图.【分析】(1)由圆地半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;(2)①结合勾股定理求出AD地长度,从而找出点D地位置,根据画图地步骤,完成图形即可;②根据线段地三等分点地画法,结合OA=2AC,即可得出结论.【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC地长为半径画弧,与射线BA交于点D,使线段OD地长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找地点.依此画出图形,如图2所示.23.某校为了解全校学生上学期参加社区活动地情况,学校随机调查了本校50名学生参加社区活动地次数,并将调查所得地数据整理如下:参加社区活动次数地频数、频率分布表活动次数x 频数频率0<x≤3 10 0.203<x≤6 a 0.246<x≤9 16 0.329<x≤12 6 0.1212<x≤15 m b15<x≤18 2 n(1)表中a= 12 ,b= 0.08 ;(2)请把频数分布直方图补充完整(画图后请标注相应地数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次地学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)直接利用已知表格中3<x≤6范围地频率求出频数a即可,再求出m地值,即可得出b地值;(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次地学生所占频率乘以总人数进而求出答案.【解答】解:(1)由题意可得:a=50×0.24=12(人),∵m=50﹣10﹣12﹣16﹣6﹣2=4,∴b==0.08;故答案为:12,0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次地学生有:1200×(1﹣0.20﹣0.24)=648(人),答:该校在上学期参加社区活动超过6次地学生有648人.24.甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局地队为获胜队,假如甲、乙两队之间每局比赛输赢地机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜地概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【分析】根据甲队第1局胜画出第2局和第3局地树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有4种情况,确保两局胜地有4种,所以,P=.25.某公司今年如果用原线下销售方式销售一产品,每月地销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月地销售额y(万元)与月份x(月)之间地函数关系地图象如图1中地点状图所示(5月及以后每月地销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系地图象图2中线段AB 所示.(1)求经销成本p(万元)与销售额y(万元)之间地函数关系式;(2)分别求该公司3月,4月地利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得地利润总额至少多出200万元?(利润=销售额﹣经销成本)【考点】一次函数地应用.【分析】(1)设p=kx+b,,代入即可解决问题.(2)根据利润=销售额﹣经销成本,即可解决问题.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得地利润总额至少多出200万元,列出不等式即可解决问题.【解答】解:(1)设p=kx+b,,代入得解得,∴p=x+10,.(2)∵x=150时,p=85,∴三月份利润为150﹣85=65万元.∵x=175时,p=97.5,∴四月份地利润为175﹣97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得地利润总额至少多出200万元∵5月份以后地每月利润为90万元,∴65+77.5+90(x﹣2)﹣40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得地利润总额至少多出200万元26.已知二次函数y=ax2﹣2ax+c(a>0)地图象与x轴地负半轴和正半轴分别交于A、B两点,与y轴交于点C,它地顶点为P,直线CP与过点B且垂直于x轴地直线交于点D,且CP:PD=2:3(1)求A、B两点地坐标;(2)若tan∠PDB=,求这个二次函数地关系式.【考点】抛物线与x轴地交点;二次函数地性质;待定系数法求二次函数解析式.【分析】(1)由二次函数地解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG地长度,进而求出a地值,最后将A(或B)地坐标代入解析式即可求出c地值.【解答】解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数地对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.27.如图,已知▱ABCD地三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD地对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S地最大值;(2)若点B1恰好落在y轴上,试求地值.【考点】坐标与图形性质;勾股定理;相似三角形地判定与性质.【分析】(1)如图1,易证S▱BCEF =S▱BCDA=S▱B1C1DA=S▱B1C1EF,从而可得S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9,根据二次函数地最值性就可解决问题;(2)如图2,易证△AOD∽△B1OB,根据相似三角形地性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题.【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF =S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称地性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.28.如图1是一个用铁丝围成地篮框,我们来仿制一个类似地柱体形篮框.如图2,它是由一个半径为r、圆心角90°地扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边地矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、Cn和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框地边Cn Dn与点E间地距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn(1)求d地值;(2)问:Cn Dn与点E间地距离能否等于d?如果能,求出这样地n地值,如果不能,那么它们之间地距离是多少?【考点】垂径定理.【分析】(1)根据d=FH2,求出EH2即可解决问题.(2)假设Cn Dn与点E间地距离能等于d,列出关于n地方程求解,发现n没有整数解,由r÷r=2+2≈4.8,求出n即可解决问题.【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设Cn Dn与点E间地距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时Cn Dn与点E间地距离=r﹣4×r=r.。

2023年无锡市中考数学试卷附答案

2023年无锡市中考数学试卷附答案

2023年无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1. 实数9的算术平方根是( ) A. 3 B. 3±C.19D. 9-2. 函数y =12x -中自变量x 的取值范围是( ) A. x >2B. x≥2C. x≠2D. x <23. 下列4组数中,不是二元一次方程24x y +=的解是( )A. 12x y =⎧⎨=⎩ B.20x y =⎧⎨=⎩ C. 0.53x y =⎧⎨=⎩ D. 24x y =-⎧⎨=⎩ 4. 下列运算正确的是( )A. 236a a a ⨯=B. 235a a a +=C. 22(2)4a a -=-D. 642a a a ÷= 5. 将函数21y x =+的图像向下平移2个单位长度,所得图像对应的函数表达式是( ) A. 21y x =- B. 23y x =+ C. 43y x =- D. 45y x =+6. 2020年—2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x ,下列方程正确的是( ) A. 25.76(1) 6.58x += B. ()25.7616.58x+=C. 5.76(12) 6.58x +=D. 25.76 6.58x =7. 如图,ABC ∆中,55BAC ∠=︒,将ABC ∆逆时针旋转(055),αα︒<<︒得到ADE ∆,DE 交AC 于F .当40α=︒时,点D 恰好落在BC 上,此时AFE ∠等于( )A. 80︒B. 85︒C. 90︒D. 95︒8. 下列命题:①各边相等的多边形是正多边形;②正多边形是中心对称图形;③正六边形的外接圆半径与边长相等;④正n 边形共有n 条对称轴.其中真命题的个数是( ) A. 4B. 3C. 2D. 19. 如图,在四边形ABCD 中,AD BC ∥,30DAB ∠=︒,602ADC BC CD ∠=︒==,,若线段MN 在边AD 上运动,且1MN =,则222BM BN +的最小值是( )A.132B.293C.394D. 1010. 如图ABC ∆中,90,4,,ACB AB AC x BAC α︒∠===∠=,O 为AB 中点,若点D 为直线BC 下方一点,且BCD △与ABC ∆相似,则下列结论:①若45α=︒,BC 与OD 相交于E ,则点E 不一定是ABD △的重心;②若60α=︒,则AD 的最大值为60,ABC CBD α=︒∽,则OD 的长为ABC BCD △∽△,则当2x =时,AC CD +取得最大值.其中正确的为( )A. ①④B. ②③C. ①②④D. ①③④二、填空题(本大题共8小题,每小题3分,共24分.)11. 分解因式:244x x -+=__________.12. 废旧电池含有少量重金属,随意丢弃会污染环境有资料表明,一粒纽扣大的废旧电池,大约会污染水600000L .数据600000用科学记数法可表示__________. 13. 方程3221x x =--的解是:x =__________. 14. 若直三棱柱的上下底面为正三角形,侧面展开图是边长为6的正方形,则该直三棱柱的表面积为__________.15. 请写出一个函数的表达式,使得它的图象经过点(20),:__________.16. 《九章算术》中提出了如下问题:今有户不知高、广,竿不知长短,横之不出四尺,从之不出二尺,邪之适出,问户高、广、邪各几何?这段话的意思是:今有门不知其高宽:有竿,不知其长短,横放,竿比门宽长出4尺:竖放,竿比门高长出2尺:斜放,竿与门对角线恰好相等.问门高、宽和对角线的长各是多少?则该问题中的门高是__________尺. 17. 已知曲线12C C 、分别是函数2(0),(0,0)ky x y k x x x=-<=>>的图像,边长为6的正ABC ∆的顶点A 在y 轴正半轴上,顶点B 、C 在x 轴上(B 在C 的左侧),现将ABC ∆绕原点O 顺时针旋转,当点B 在曲线1C 上时,点A 恰好在曲线2C 上,则k 的值为__________. 18. 二次函数1(1)(5)2y a x x a ⎛⎫=-->⎪⎝⎭的图像与轴交于点A ,B ,与y 轴交于点C ,过点()31M ,的直线将ABC ∆分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为__________.三、解答题(本大题共10小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19. (1)计算:2(3)|4|--- (2)化简:(2)(2)()x y x y x x y +--- 20. (1)解方程:2220x x +-=(2)解不等式组:32251x xx +>-⎧⎨-<⎩21. 如图,ABC ∆中,点D 、E 分别为AB AC 、的中点,延长DE 到点F ,使得EF DE =,连接CF .求证:(1)CEF AED △≌△;(2)四边形DBCF 是平行四边形.22. 为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A.宜兴竹海,B.宜兴善卷洞,C.阖闾城遗址博物馆,D.锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.(1)小明获得一次抽奖机会,他恰好抽到景区A门票的概率是_________.(2)小亮获得两次抽奖机会,求他恰好抽到景区A和景区B门票的概率.23. 某初中在全校开展知识竞赛活动现采用简单随机抽样的方法从每个年级抽取相同数量的学生答题成绩进行分析,绘制成下列图表,请根据图表提供的信息,解答下列问题:学生参加知识竞赛成绩频数分布表学生参加知识竞赛成绩统计表(1)=(2)请根据“学生参加知识竞赛成绩统计表”对本次竞赛中3个年级的总体情况做出评价,并说明理由.24. 如图,已知APB ∠,点M 是PB 上的一个定点.(1)尺规作图:请在图1中作O ,使得O 与射线PB 相切于点M ,同时与PA 相切,切点记为N ;(2)在(1)的条件下,若603APB PM ∠=︒=,,则所作的O 的劣弧MN 与PM PN、所围成图形的面积是_________. 25. 如图,AB 是O 的直径,CD 与AB 相交于点E .过点D 的线DF AB ∥,交CA 的延长线于点F ,CF CD =.(1)求F ∠的度数; (2)若8DE DC ⋅=,求O 的半径.26. 某景区旅游商店以20元/kg 的价格采购一款旅游食品加工后出售,销售价格不低于22元/g ,不高于45元g ,经市场调查发现每天的销售量(kg)y 与销售价格x (元g )之间的函数关系如图所示.(1)求y 关于x 的函数表达式:(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润=(销售价格一采购价格)×销售量】27. 如图,四边形ABCD 是边长为4的菱形,60A ∠=︒,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时,求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时,设BP x =,四边形BB C C ''的面积为S ,求S 关于x 的函数表达式.28. 已知二次函数)2y x bx c =++的图像与y 轴交于点A ,且经过点B 和点(C -.(1)请直接写出b ,c 的值;(2)直线BC 交y 轴于点D ,点E 是二次函数)22y x bx c =++图像上位于直线AB 下方的动点,过点E 作直线AB 的垂线,垂足为F . ①求EF 的最大值;②若AEF △中有一个内角是ABC ∠的两倍,求点E 的横坐标.2023年无锡市中考数学试卷答案一、选择题1. A2. C3. D4. D5. A6. A7. B解:由旋转性质可得:55BAC DAE ∠=∠=︒,AB AD = ∵40α=︒∵15DAF ∠=︒,70B ADB ADE ∠=∠=∠=︒ ∵85AFE DAF ADE ∠=∠+∠=︒, 故选:B . 8. C解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形,如菱形,故①是假命题;正三角形和正五边形就不是中心对称图形,故②为假命题;正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故③为真命题;根据轴对称图形的定义和正多边形的特点,可知正n 边形共有n 条对称轴,故④为真命题. 故选:C . 9. B解:过点C 作CE AD ⊥∵60D ∠=︒,2CD =∴sin 60CE CD =⋅︒=过点B 作BF AD ⊥ ∵AD BC ∥∴四边形BCEF 是矩形∴BF CE ==需使222BM BN +最小,显然要使得BM 和BN 越小越好. ∴显然点F 在线段MN 的之间 设MF x =,则1FN x =-∴22222229232(1)334113323BM BN x x x x x ⎛⎫⎡⎤+=++-+=-+=+ ⎪-⎣⎦⎝⎭ ∴当23x =时取得最小值为293.故选:B . 10. A解:①有3种情况,如图1,BC 和OD 都是中线,点E 是重心; 如图2,四边形ABDC 是平行四边形,F 是AD 中点,点E 是重心; 如图3,点F 不是AD 中点,所以点E 不是重心; ①正确②当60α=︒,如图4时AD 最大,4AB =∴2AC BE ==,BC AE ==,6BD ==∴8DE =∴AD =≠∴②错误;③如图5,若60α=︒,C ABC BD ∽△△∴60BCD ∠=︒,90CDB ∠=︒,4AB =,2AC =,BC =OE =1CE =∴CD =2GE DF ==,32CF =∴52EF DG ==,OG =∴OD =≠ ∴③错误;④如图6,ABC BCD ∽△△∴CD BC BC AB=即214CD BC =在Rt ABC △中,2216BC x =-∴()221116444CD x x =-=-+ ∴22114(2)544AC CD x x x +=-+=--+当2x =时,AC CD +最大为5 ∴④正确. 故选:C .二、填空题11. ()22x -12. 5610⨯ 13. -114. 36+解:∵侧面展开图是边长为6的正方形 ∴底面周长为6, ∵底面为正三角形 ∴正三角形的边长为2 作CD AB ⊥ABC 是等边三角形,2AB BC AC ===1AD ∴=∴在直角ADC ∆中CD ==122ABCS∴=⨯=∴该直三棱柱的表面积为6636⨯+=+故答案为:36+ 15. 2y x =-(答案不唯一) 16. 8解:设门高x 尺,依题意,竿长为()2x +尺,门的对角线长为()2x +尺,门宽为24x +-=()2x -尺.∴()()22222x x x +=+-解得:8x =或0x =(舍去)故答案为:8.17. 6解:当点A 在y 轴上,点B 、C 在x 轴上时,连接AOABC ∆为等边三角形且AO BC ⊥,则30BAO ∠=︒∴tan tan30BAO ∠=︒=3OB OA =, 如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E FAO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒∴90BOF AOE EAO ∠=︒-∠=∠,∴BFO OEA ∽ ∴213BFO AOE S OB SOA ⎛⎫== ⎪⎝⎭ ∴212BFO S -==∴3AOE S =△∴6k=.18. 910或25+或12 解:由(1)(5)y a x x =--,令0x =,解得:5y a =,令0y =,解得:121,5x x ==. ∵1,0A ,()5,0B ,()0,5C a设直线BM解析式为y kx b=+∴50 31 k bk b+=⎧⎨+=⎩解得:1252 kb⎧=-⎪⎪⎨⎪=⎪⎩∴直线BM解析式为1522y x=-+,当0x=时,52y=,则直线BM与y轴交于50,2⎛⎫⎪⎝⎭∵12 a>∴5 52 a>∴点M必在ABC∆内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线.设直线AM的解析式为y mx n=+∴0 31 k bk b+=⎧⎨+=⎩解得:1212 mn⎧=⎪⎪⎨⎪=-⎪⎩则直线AM的解析式为1122 y x=-①如图1,直线AM过BC中点BC中点坐标为55,22a⎛⎫⎪⎝⎭,代入直线求得31102a=<,不成立.②如图2,直线BM过AC中点,直线BM解析式为1522y x=-+,AC中点坐标为15,22a ⎛⎫ ⎪⎝⎭,待入直线求得910a =. ③如图3,直线CM 过AB 中点,AB 中点坐标为()3,0∴直线MB 与y 轴平行,必不成立.2)、当分成三角形和梯形时,过点M 的直线必与ABC 一边平行,所以必有“”A 型相似,因为平分面积,所以相似比为④如图4,直线EM ∥AB∴CEN COA ∽ ∴CE CN CO CA == ∴515a a -=解得25a =.⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO ∽ ∴BE AB =,又4AB =∴BE =∵532BN =-=<∴不成立.⑥如图6,直线ME ∥BC ,同理可得AE AB =∴AE =2NE =,tan tan MEN CBO ∠∠=55a=,解得a=综上所述,910a=或25+或12.三、解答题19.(1)8(2)24y xy-+20. (1)114x-+=,214x-=(2)13x-<<21. 【小问1详解】证明:∵点D、E分别为AB AC、的中点∴AE CE=,DE BC∥∴ADE F∠=∠在CEF△与AED△中,ADE FAED CEFAE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AASCEF AED≌.【小问2详解】证明:由(1)证得CEF AED△≌△∴A FCE∠=∠,∴BD CF∥∵DF BC∥,∴四边形DBCF是平行四边形.22. (1)14(2)18【小问1详解】解:∵共有4张相同的卡片且任意抽取一张卡片,记录后放回.∴每张卡片抽到的概率都是1 4 .设小明恰好抽到景区A门票为事件A,则1 ()4 P A=.故答案为:1 4 .【小问2详解】解:根据题意,画树状图如下:∴一共有16种等可能的情况,恰好抽到景区A和景区B门票的情况有2种.∴他恰好抽到景区A和景区B门票的概率为21 168=.23. (1)90;10(2)七年级的平均分最高;八年级的中位数最大;九年级的众数最大【小问1详解】解:∵抽取的总人数为217%300÷=(人)∴C组的人数为30030%90a=⨯=(人)100%7%32%30%19%2%10%m=-----=故答案为:90,10.【小问2详解】解:七年级的平均分最高;八年级的中位数最大;九年级的众数最大.(答案不唯一).24.(1)见解析(2)π【小问1详解】解:如图,O 为所作.【小问2详解】解:∵PM 和PN 为O 的切线∴OM PB ⊥,ON PN ⊥,1302MPO NPO APB ∠=∠=∠=︒ ∴90OMP ONP ∠=∠=︒∴180120MON APB ∠=︒-∠=︒在Rt POM 中,030=∠MPO∴tan 303OM PM =⋅︒==∴O 的劣弧MN 与PM PN 、所围成图形的面积PMON MON S S =-四边形扇形21201232360π⨯⨯=⨯⨯π=.故答案为:π.25. (1)67.5︒(2)2【小问1详解】如图,连接OD .FD为O的切线∴90ODF∠=︒.DF AB∥∴90AOD∠=︒.AD AD=∴1452ACD AOD∠=∠=︒.CF CD=∴1(180)67.52F ACD∠∠=⨯-=︒.【小问2详解】如图,连接ADAO OD=,90AOD∠=︒∴45EAD∠=︒.45ACD∠=︒∴ACD EAD∠=∠,且ADE CDA∠=∠∴DAE DCA∽∴DE DADA DC=,即28DA DE DC=⋅=∴DA=∴2OA OD AD===,即半径为2.26. (1)()7022302100(3045)x xyx x⎧-+≤≤=⎨-+<≤⎩(2)销售价格为35元/kg时,利润最大为450【小问1详解】当2230x ≤≤时,设y 关于x 的函数表达式为y kx b =+,将点()()22,48,30,40代入得: ∵22483040k b k b +=⎧⎨+=⎩ 解得:170k b =-⎧⎨=⎩∴70y x =-+()2230x ≤≤当3045x <≤时,设y 关于x 的函数表达式为11y k x b =+,将点()()30,40,45,10代入得: 111145103040k b k b +=⎧⎨+=⎩ 解得:112100k b =-⎧⎨=⎩ ∴2100y x =-+()3045x <≤()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩. 【小问2详解】设利润为w当2230x ≤≤时,22(20)(70)901400(45)625w x x x x x =--+=-+-=--+ ∵在2230x ≤≤范围内,w 随着x 的增大而增大∴当30x =时,w 取得最大值为400; 当3045x <≤时,22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+ ∴当35x =时,w 取得最大值为 450450400>∴当销售价格为35元/kg 时,利润最大为450.27. (1)8(2)S = 【小问1详解】如图,连接BD 、BQ四边形ABCD 为菱形∴4CB CD ==,60A C ∠=∠=︒∴BDC 为等边三角形 Q 为CD 中点∴2CQ =,BQ CD ⊥∴BQ =QB PB ⊥.45QPB ∠=︒∴PBQ 为等腰直角三角形∴PB =PQ =翻折∴90BPB ∠='︒,PB PB '=∴BB '=PE =同理2CQ =∴CC '=QF =∴((2211122228222PBB CQC BB C C PBCQ S S SS ''''=-+=⨯⨯+⨯⨯+⨯=四边形梯形.【小问2详解】如图2,连接BQ、B Q',延长PQ交CC'于点F.PB x=,BQ=90PBQ∠=︒∴PQ=.∵1122PBQS PQ BE PB BQ=⨯=⨯∴BQ PBBEPQ⨯==∴QE=∴21212QEBSx==+.90BEQ BQC QFC∠=∠=∠=︒,则90EQB CQF FCQ∠=︒-∠=∠∴BEQ QFC~∴2213QFCBEQS CQS QB⎛⎫===⎪⎝⎭∴212QFCSx=+.∵122BQCS=⨯⨯=∴()22222121212QEB BQC QFC S S S S x x x ⎛⎫=++=+=+ ⎪ ⎪+++⎝⎭. 28. (1)3b =-,2c =-(2)①3;②2或175 【小问1详解】∵二次函数)22y x bx c =++的图像与y 轴交于点A ,且经过点B和点(C -∴()()244212b c b c =++⎨=-+ 解得:32b c =-⎧⎨=-⎩∴3b =-,2c =-,)232y x x =--. 【小问2详解】①如图1,过点E 作y 轴平行线分别交AB 、BD 于G 、H .∵()2322y x x =-- 当0x =时,y =∴(0,A∴AD =4BD =∴AB =∴cos BD ABD AB ∠== ∵90GFE GHB ∠=∠=︒,FGE HGB ∠=∠ ∴FEG ABD ∠=∠∴cos FEG ∠=∴3EF EG =∴3EF EG =.∵(0,A B设直线AB 的解析式为y kx d =+∴4d k d ⎧=⎪⎨+=⎪⎩解得:2k d ⎧=⎪⎨⎪=⎩∴直线AB解析式为y x =.设2,22E m m m ⎛- ⎝∴,2G m m ⎛- ⎝∴222)22EG m m =-+=--+∴当2m =时,EG取得最大值为EF ∴=②如图2,已知tan 2ABC ∠=令AC =,则2BC =在BC 上取点D ,使得AD BD =∴2ADC ABC ∠=∠设CD x =,则2AD BD x ==-则222(2)x x +=- 解得12x =.∴tan AC ADC CD ∠==,即()tan 2ABC ∠= 如图3构造AMF FNE ∽,且MN x ∥轴,相似比为:AF EF又∵tan tan tan MFA CBA FEN ∠∠∠===设AM =,则2MF a =.分类讨论:ⅰ当2FAE ABC ∠=∠时,则tan EF FAE AF∠==∴AMF 与FNE ∆的相似比为1:∴4FN a ==,NE ==∴()6,E a 代入抛物线求得113a =,20a =(舍). ∴E 点横坐标为62a =.ⅱ当2FEA ABC ∠=∠时,则tan AF FEA EF ∠==∴相似比为∴12FN a ==,2NE a ==∴5,22E a a ⎛⎫ ⎪ ⎪⎝⎭ 代入抛物线求得13425a =,20a =(舍). ∴E 点横坐标为51725a =. 综上所示,点E 的横坐标为2或175.。

江苏省无锡市中考数学试题(解析)

江苏省无锡市中考数学试题(解析)

江苏省无锡市中考数学试卷一.选择题(共10小题)1.(无锡)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数。

专题:探究型。

分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选A.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(无锡)sin45°的值等于()A.B.C.D. 1考点:特殊角的三角函数值。

分析:根据特殊角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记特殊角度的三角函数值即可.3.(无锡)分解因式(x﹣1)2﹣2(x﹣1)+1的结果是()A.(x﹣1)(x﹣2)B. x2C.(x+1)2D.(x﹣2)2考点:因式分解-运用公式法。

分析:首先把x﹣1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.解答:解:(x﹣1)2﹣2(x﹣1)+1=(x﹣1﹣1)2=(x﹣2)2.故选:D.点评:此题主要考查了因式分解﹣运用公式法,关键是熟练掌握完全平方公式:a2±2ab+b2=(a±b)2.4.(无锡)若双曲线y=与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1 B. 1 C.﹣2 D. 2考点:反比例函数与一次函数的交点问题。

专题:计算题。

分析:将x=1代入直线y=2x+1,求出该点纵坐标,从而得到此交点的坐标,将该交点坐标代入y=即可求出k的值.解答:解:将x=﹣1代入直线y=2x+1得,y=﹣2+1=﹣1,则交点坐标为(﹣1,﹣1),将(﹣1,﹣1)代入y=得,k=﹣1×(﹣1)=1,故选B.点评:本题考查了反比例函数与一次函数的交点问题,知道交点坐标符合两函数解析式是解题的关键.5.(无锡)下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况考点:全面调查与抽样调查。

江苏省无锡市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

江苏省无锡市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

2020年某某省某某市中考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.(3分)﹣7的倒数是()A.7 B.C.D.﹣7【解答】解:﹣7的倒数是.故选:C.2.(3分)函数y=2中自变量x的取值X围是()A.x≥2B.x C.x D.x【解答】解:由题意得,3x﹣1≥0,解得x.故选:B.3.(3分)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A.24,25 B.24,24 C.25,24 D.25,25【解答】解:这组数据的平均数是:(21+23+25+25+26)÷5=24;把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25,则中位数是25;故选:A.4.(3分)若x+y=2,z﹣y=﹣3,则x+z的值等于()A.5 B.1 C.﹣1 D.﹣5【解答】解:∵x+y=2,z﹣y=﹣3,∴(x+y)+(z﹣y)=2+(﹣3),整理得:x+y+z﹣y=2﹣3,即x+z=﹣1,则x+z的值为﹣1.故选:C.5.(3分)正十边形的每一个外角的度数为()A.36°B.30°C.144°D.150°【解答】解:正十边形的每一个外角都相等,因此每一个外角为:360°÷10=36°,故选:A.6.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.圆B.等腰三角形C.平行四边形D.菱形【解答】解:A、圆既是中心对称图形,也是轴对称图形,故此选项不合题意;B、等腰三角形是轴对称图形但不是中心对称图形,故本选项符合题意;C、平行四边形是中心对称图形但不是轴对称图形,故此选项不合题意;D、菱形是中心对称图形但不是轴对称图形,故此选项不合题意.故选:B.7.(3分)下列选项错误的是()A.cos60°B.a2•a3=a5C.D.2(x﹣2y)=2x﹣2y【解答】解:A.cos60°,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.,故本选项不合题意;D.2(x﹣2y)=2x﹣4y,故本选项符合题意.故选:D.8.(3分)反比例函数y与一次函数y的图形有一个交点B(,m),则k的值为()A.1 B.2 C.D.【解答】解:∵一次函数y的图象过点B(,m),∴m,∴点B(,),∵反比例函数y过点B,∴k,故选:C.9.(3分)如图,在四边形ABCD中(AB>CD),∠ABC=∠BCD=90°,AB=3,BC,把Rt△ABC沿着AC翻折得到Rt△AEC,若tan∠AED,则线段DE的长度()A.B.C.D.【解答】解:方法一:如图,延长ED交AC于点M,过点M作MN⊥AE于点N,设MN m,∵tan∠AED,∴,∴NE=2m,∵∠ABC=90°,AB=3,BC,∴∠CAB=30°,由翻折可知:∠EAC=30°,∴AM=2MN=2m,∴AN MN=3m,∵AE=AB=3,∴5m=3,∴m,∴AN,MN,AM,∵AC=2,∴CM=AC﹣AM,∵MN,NE=2m,∴EM,∵∠ABC=∠BCD=90°,∴CD∥AB,∴∠DCA=30°,由翻折可知:∠ECA=∠BCA=60°,∴∠ECD=30°,∴CD是∠ECM的角平分线,∴,∴,解得ED.方法二:如图,过点D作DM⊥CE,由折叠可知:∠AEC=∠B=90°,∴AE∥DM,∵∠ACB=60°,∠ECD=30°,∴∠AED=∠EDM=30°,设EM m,由折叠性质可知,EC=CB,∴CM=3m,∴tan∠MCD,解得m,∴DM,EM,在直角三角形EDM中,DE2=DM2+EM2,解得DE.故选:B.10.(3分)如图,等边△ABC的边长为3,点D在边AC上,AD,线段PQ在边BA上运动,PQ,有下列结论:①CP与QD可能相等;②△AQD与△B CP可能相似;③四边形PCDQ面积的最大值为;④四边形PCDQ周长的最小值为3.其中,正确结论的序号为()A.①④B.②④C.①③D.②③【解答】解:①利用图象法可知PC>DQ,故①错误.②∵∠A=∠B=60°,∴当∠ADQ=∠CPB时,△ADQ∽△BPC,故②正确.③设AQ=x,则四边形PCDQ的面积32x3×(3﹣x)x,∵x的最大值为3,∴x时,四边形PCDQ的面积最大,最大值,故③正确,如图,作点D关于AB的对称点D′,作D′F∥PQ,使得D′F=PQ,连接CF交AB于点P′,此时四边形P′CD′Q′的周长最小.过点C作CH⊥D′F交D′F的延长线于H,交AB于J.由题意,DD′=2AD•sin60°,HJ DD′,CJ,FH,∴CH=CJ+HJ,∴CF,∴四边形P′CDQ′的周长的最小值=3,故④错误,故选:D.二、填空题(本大题共8小题,每小题2分,共计16分.不需要写出解答过程,只需把答案直接填写在答题卷相应的位置)11.(2分)因式分解:ab2﹣2ab+a=a(b﹣1)2.【解答】解:原式=a(b2﹣2b+1)=a(b﹣1)2;故答案为:a(b﹣1)2.(2分)2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000是 1.2×104.12.【解答】解:12000=1.2×104.故答案为:1.2×104.13.(2分)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=2πcm2.【解答】解:根据题意可知,圆锥的底面半径r=1cm,高h cm,∴圆锥的母线l2,∴S侧=πrl=π×1×2=2π(cm2).故答案为:2π.14.(2分)如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=115 °.【解答】解:∵四边形ABCD是菱形,∴AC平分∠BCD,AB∥CD,∴∠BAE+∠AEC=180°,∠B+∠BCD=180°,∴∠BCD=180°﹣∠B=180°﹣50°=130°,∴∠ACE∠BCD=65°,∵AE=AC,∴∠AEC=∠ACE=65°,∴∠BAE=180°﹣∠AEC=115°;故答案为:115.15.(2分)请写出一个函数表达式,使其图象的对称轴为y轴:y=x2.【解答】解:∵图象的对称轴是y轴,∴函数表达式y=x2(答案不唯一),故答案为:y=x2(答案不唯一).16.(2分)我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,井深几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,井深几尺?则该问题的井深是8 尺.【解答】解:设绳长是x尺,井深是y尺,依题意有,解得.故井深是8尺.故答案为:8.17.(2分)二次函数y=ax2﹣3ax+3的图象过点A(6,0),且与y轴交于点B,点M在该抛物线的对称轴上,若△ABM是以AB为直角边的直角三角形,则点M的坐标为(,﹣9)或(,6).【解答】解:把点A(6,0)代入y=ax2﹣3ax+3得,0=36a﹣18a+3,解得:a,∴y x2x+3,∴B(0,3),抛物线的对称轴为x,设点M的坐标为:(,m),当∠ABM=90°,过B作BD⊥对称轴于D,则∠1=∠2=∠3,∴tan∠2=tan∠12,∴2,∴DM=3,∴M(,6),当∠M′AB=90°,∴tan∠3tan∠12,∴M′N=9,∴M′(,﹣9),综上所述,点M的坐标为(,﹣9)或(,6).18.(2分)如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.【解答】解:如图,过点D作DF∥AE,则,∵,∴DF=2EC,∴DO=2OC,∴DO DC,∴S△ADO S△ADC,S△BDO S△BDC,∴S△ABO S△ABC,∵∠ACB=90°,∴C在以AB为直径的圆上,设圆心为G,当CG⊥AB时,△ABC的面积最大为:4×2=8,此时△ABO的面积最大为:4.故答案为:.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)(﹣2)2+|﹣5|;(2).【解答】解:(1)原式=4+5﹣4=5;(2)原式.20.(8分)解方程:(1)x2+x﹣1=0;(2).【解答】解:(1)∵a=1,b=1,c=﹣1,∴△=12﹣4×1×(﹣1)=5,x,∴x1,x2;(2),解①得x≥0,解②得x<1,所以不等式组的解集为0≤x<1.21.(8分)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.22.(8分)现有4X正面分别写有数字1、2、3、4的卡片,将4X卡片的背面朝上,洗匀.(1)若从中任意抽取1X,抽的卡片上的数字恰好为3的概率是;(2)若先从中任意抽取1X(不放回),再从余下的3X中任意抽取1X,求抽得的2X卡片上的数字之和为3的倍数的概率.(请用“画树状图”或“列表”等方法写出分析过程)【解答】解:(1)从中任意抽取1X,抽的卡片上的数字恰好为3的概率;故答案为;(2)画树状图为:共有12种等可能的结果数,其中抽得的2X卡片上的数字之和为3的倍数的结果数为4,所以抽得的2X卡片上的数字之和为3的倍数的概率.23.(6分)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)年份2014年2015年2016年2017年2018年2019年收入 3 8 9 a 14 18支出 1 4 5 6 c 6存款余额 2 6 10 15 b 34(1)表格中a=11 ;(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?【解答】解:(1)10+a﹣6=15,解得a=11,故答案为11;(2)根据题意得,解得,即存款余额为22万元,条形统计图补充为:(3)小李在2018年的支出最多,支出了为7万元.24.(8分)如图,已知△ABC是锐角三角形(AC<AB).(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C两点的距离相等;设直线l与AB、BC分别交于点M、N,作一个圆,使得圆心O在线段MN上,且与边AB、BC相切;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM,BC=2,则⊙O的半径为.【解答】解:(1)如图直线l,⊙O即为所求.(2)过点O作OE⊥AB于E.设OE=ON=r,∵BM,BC=2,MN垂直平分线段BC,∴BN==1,∴MN,∵s△BNM=S△BNO+S△BOM,∴11×r r,解得r.故答案为.25.(8分)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D=30°,DC.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.【解答】证明:(1)∵DC是⊙O的切线,∴∠OCD=90°,∵∠D=30°,∴∠BOC=∠D+∠OCD=30°+90°=120°,∵OB=OC,∴∠B=∠OCB=30°,∴∠DCB=120°=∠BOC,又∵∠B=∠D=30°,∴△BOC∽△BCD;(2)∵∠D=30°,DC,∠OCD=90°,∴DC OC,DO=2OC,∴OC=1=OB,DO=2,∵∠B=∠D=30°,∴DC=BC,∴△BCD的周长=CD+BC+DB2+1=3+2.26.(10分)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值X围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.【解答】解:(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2(EH+AD)×20x+2(GH+CD)×x×60+EF•EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;(2)EF=20﹣2x,EH=30﹣2x,参考(1),由题意得:y=(30×30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40=﹣400x+24000(0<x<10);(3)S甲=2(EH+AD)×2x=(30﹣2x+30)x=﹣2x2+60x,同理S乙=﹣2x2+40x,∵甲、乙两种花卉的种植面积之差不超过120米2,∴﹣2x2+60x﹣(﹣2x2+40x)≤120,解得:x≤6,故0<x≤6,而y=﹣400x+24000随x的增大而减小,故当x=6时,y的最小值为21600,即三种花卉的最低种植总成本为21600元.27.(10分)如图,在矩形ABCD中,AB=2,AD=1,点E为边CD上的一点(与C、D不重合),四边形ABCE关于直线AE的对称图形为四边形ANME,延长ME交AB于点P,记四边形PADE的面积为S.(1)若DE,求S的值;(2)设DE=x,求S关于x的函数表达式.【解答】解:(1)当DE,∵AD=1,∴tan∠AED,AE,∴∠AED=60°,∵AB∥CD,∴∠BAE=60°,∵四边形ABCE关于直线AE的对称图形为四边形ANME,∴∠AEC=∠AEM,∵∠PEC=∠DEM,∴∠AEP=∠AED=60°,∴△APE为等边三角形,∴S()21;(2)过E作EF⊥AB于F,由(1)可知,∠AEP=∠AE D=∠PEA,∴AP=PE,设AP=PE=a,AF=ED=x,则PF=a﹣x,EF=AD=1,在Rt△PEF中,(a﹣x)2+1=a2,解得:a,∴S.28.(10分)在平面直角坐标系中,O为坐标原点,直线OA交二次函数y x2的图象于点A,∠AOB=90°,点B在该二次函数的图象上,设过点(0,m)(其中m>0)且平行于x 轴的直线交直线OA于点M,交直线OB于点N,以线段OM、ON为邻边作矩形OMPN.(1)若点A的横坐标为8.①用含m的代数式表示M的坐标;②点P能否落在该二次函数的图象上?若能,求出m的值;若不能,请说明理由.(2)当m=2时,若点P恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线OA的函数表达式.【解答】解:(1)①∵点A在y x2的图象上,横坐标为8,∴A(8,16),∴直线OA的解析式为y=2x,∵点M的纵坐标为m,∴M(m,m).②假设能在抛物线上,∵∠AOB=90°,∴直线OB的解析式为y x,∵点N在直线OB上,纵坐标为m,∴N(﹣2m,m),∴MN的中点的坐标为(m,m),∴P(m,2m),把点P坐标代入抛物线的解析式得到m.(2)①当点A在y轴的右侧时,设A(a,a2),∴直线OA的解析式为y ax,∴M(,2),∵OB⊥OA,∴直线OB的解析式为y x,可得N(,2),∴P(,4),代入抛物线的解析式得到,4,解得a=4±4,∴直线OA的解析式为y=(±1)x.②当点A在y轴的左侧时,即为①中点B的位置,∴直线OA 的解析式为y x=﹣(±1)x,综上所述,满足条件的直线OA的解析式为y=(±1)x或y=﹣(±1)x.。

2022年江苏省无锡市中考数学附解析

2022年江苏省无锡市中考数学附解析

2022年江苏省无锡市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图中,属于相似形的是()A.①和②,④和⑥B.②和③,⑧和⑨C.④和⑤,⑦和⑨D.①和③,⑧和⑨2.下列各条件不能确定圆的是()A.已知直径B.已知半径和圆心C.已知两点D.已知不在一条直线上的三点3.如图,在正方形ABCD中,CE=DF,∠BCE=40°,则∠ADF=()A.50° B.40° C.50°或40° D.不能确定4.如图,Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确...的是()A.∠ACD=∠B B.CH=CE=EF C.AC=AF D.CH=HD5.如图所示,△DEF是由边长为2 cm的等边△ABC平移3cm得到的,则AD为()A.1 cm B.2 cm C.3 cm D.无法确定6.蜗牛在井里距井口 lm 处,它每天白天向上爬行 30 cm,每天夜晚又下滑 20 cm,则蜗牛爬出井口需要的天数是( )A .11 天B .10 天C .9 天D .8 天二、填空题7.如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 . 8.太阳光线所形成的投影称为 . 9.如图,已知一坡面的坡度1:3i =,则坡角α为 . 10. 立方体的一边长为xcm ,那么它的表面积ycm 2关于xcm 的函数解析式是 . y =6x 211.当m 取 时,232(3)m m y m x -+=-是二次函数.12.已知a 与b 2成反比例,且当 a=6 时,b=3,则b=-2时,a= .13.请写出命题“直角三角形的两个锐角互余”的逆命题: .14.判断题(对的打“√”,错的打“×”(1)5116021530450663⨯=⨯= ( ) (2)1333113÷=÷== ( ) (3)22752791623103102⨯=⨯== ( ) (4)772995.210 5.210410201.3101.310⨯⨯==⨯=⨯⨯ ( ) 15. 如图,从左图到右图的变换是 .16.如图,AD 是线段BC 的垂直平分线.已知△ABC 的周长为14cm ,BC =4cm ,则AB =__________cm .17.已知2a b +=-,3b c +=,7a c +=,则a b c ++的值为 .18.一个立方体由 个面围成;有 条棱(面与面的交线叫做棱);有 个顶点(棱与棱的交点叫顶点).19.整数和分数统称为 .三、解答题红红 红白白 蓝20.下面三张卡片上分别写有一个整式,把它们背面朝上洗匀,小明闭上眼睛,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张.第一次抽取的卡片上的整式做分子,第二次抽取的卡片上的整式做分母,用列表法或树形图法求能组成分式的概率是多少?21.如图,已知图中的两个正五边形是位似图形.(1)AE的对应线段是哪条线段?(2)请在图中画出位似中心 0,并说明画法.22.某校为了解九年级学生的学习情况,在这个年级段中抽取50名学生,对某学科进行测试,将成绩整理后如下数:请回答下列问题:(1)70~79分出现的频率为;(2)90分以上的人数(包括90分)为人;(3)本次测试50名学生成绩的及格率为是(60分以为及格,包括60分).分组频率50~590.0460~690.0470~7980~890.3490~990.4223.试证明:不论m为何值,方程22----=总有两个不相等的实数根.2(41)0x m x m m224241>0-=+b ac m24.某商场摘摸奖促销活动,商场在一只不透明的箱子里放了 3个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样. 规定:顾客在本商场同一日内,每消费满 100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品. 现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率.25.如图,直线a是一个轴对称图形的对称轴,画出这个轴对称图形的另一半,并说明这个轴对称图形是一个什么图形,它一共有几条对称轴.(不写作法,保留作.图痕迹.)26.计算:(1)(-2x)3·(4x2y) (2)(4×106)(8×104)·105(3)(m3)4+m10·m2+m·m5·m627.根据下列要求,在图中作图.(1)作线段AB和射线CA;(2)作直线BC,过点A 作,MN∥BC;(3)过点A 作AD⊥BC,垂足为点 D.28.如图,AB、CD相交于点0,∠FOC=90°,∠1=100°,∠2=20°,求∠3、∠4、∠5、∠6的度数.29.已知 m、n互为相反数.(1)在如图的数轴上标出数n;(2)在如图的数轴上补上原点 0,并标出数n.30.为调动销售人员的积极性,A、B两公司采取如下工资支付方式:A公司每月2000元基本工资,另加销售额的2%作为奖金;B公司每月l600元基本工资,另加销售额的4%作为奖金.已知A、B公司两位销售员小李、小张l~6月份的销售额如下表:(1)请问小李与小张3月份的工资各是多少?(2)小李l~6月份的销售额y1与月份x的函数解析式是y1=l200x+10400,小张1~6月份的销售额y2也是月份x的一次函数,请求出y2与x的函数解析式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小张的工资高于小李的工资.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.A4.D5.C6.D二、填空题7.18.2平行投影9.3010.11.13. 513.两个角互余的三角形是直角三角形14.(1)× (2)×(3)× (4)×15.轴对称变换16.517.418.6,12,819.有理数三、解答题20.解:树形图:第一张卡片上的整式 x 1x - 2第二张卡片上的整式 1x - 2 x 2 x 1x -所有可能出现的结果 1x x - 2x 1x x - 12x - 2x 21x - ∴P (能组成分式)4263==. 21. (1)FG .(2)连结两个对应点的两条线段的交点即为位似中心0.22.(1) 0.16 (2)21 (3)96%224241>0b ac m-=+24.列树状图如下:两次摸奖结果共有 9种情况,其中两次奖品价格之和超过 40 元的有 3种情况.故所求概率为 P=31 93 =25.是一个正五角星,它共有五条对称轴. 如图所示:26.(1)-32x5y,(2)3.2×1016,(3)3m1227.如图,(1)线段AB和射线CA 即为所求;(2)直线BC和直线MN即为所求;(3)AD即为所28.∠3=∠6=60°,∠4=30°,∠5=90°29.略30.(1)2280元,2040元;(2)y2=1800x+5600;(3)9月份。

2023-2024学年江苏省无锡市滨湖区九年级(上)期中数学试卷[含答案]

2023-2024学年江苏省无锡市滨湖区九年级(上)期中数学试卷[含答案]

2023-2024学年江苏省无锡市滨湖区九年级(上)期中数学试卷一.选择题(共10小题)1.(3分)下列方程是一元二次方程的是( )A.2x+1=0B.x2﹣3x+1=0C.x2+y=1D.2.(3分)若方程x2﹣2x﹣3=0的一个实数根为m,则2026﹣m2+2m的值是( )A.2024B.2023C.2022D.20213.(3分)用配方法解方程x2+8x+7=0,则配方正确的是( )A.(x+4)2=9B.(x﹣4)2=9C.(x﹣8)2=16D.(x+8)2=574.(3分)下列说法正确的是( )A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等5.(3分)在△ABC中,D、E分别在△ABC的边AB、AC上,下列条件中不能判定DE∥BC的是( )A.B.C.∠AED=∠C D.6.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若CD=6,AB=10,则AE的长为( )A.1B.2C.3D.47.(3分)如图,AB是⊙O的直径,C,D为⊙O上的点,且点D在上.若∠D=130°.则∠CAB的度数为( )A.30°B.40°C.50°D.60°8.(3分)如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为( )A.8B.4C.3.5D.39.(3分)如图,将5个全等的等腰三角形拼成内外两个大小不同的正五边形图案,设小正五边形边长为1,则大正五边形边长为( )A.B.C.D.10.(3分)如图,AB为⊙O直径,C为圆上一点,I为△ABC内心,AI交⊙O于D,OI⊥AD于I,若CD=4,则AC为( )A.B.C.D.5二.填空题(共8小题)11.(3分)若方程x2﹣ax+3=0的一个根为1,则a= .12.(3分)已知圆锥的底面半径是5cm,母线长10cm,则侧面积是 cm2.13.(3分)如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,则m的取值范围是 .14.(3分)如图,扇形OAB的半径为1,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点P,∠BOP=35°,则的长l= (结果保留π).15.(3分)已知⊙O的半径是4,圆心O到直线l的距离d为方程x2﹣4x﹣5=0的一个根,则⊙O与直线l的位置关系为 .16.(3分)如图,在△ABC中,点D、E为边AB三等分点,点F、G在边BC上,AC∥DG∥EF,点H 为AF与DG的交点.若HD=3,则AC的长为 .17.(3分)如图,点O是矩形ABCD对角线BD上的一点,⊙O经过点C,且与AB边相切于点E,若AB=4,BC=5,则⊙O的半径长为 .18.(3分)如图,AB是⊙O的直径,C是⊙O上的一动点,以AC为边在其左侧作正方形ACEF.连接BF,则的最大值为 .三.解答题(共10小题)19.解方程:(1)(x﹣1)2=36;(2)2x2﹣7x+3=0.20.解方程:(1)(x﹣5)2=2x﹣10;(2)(2x﹣5)2﹣(2x﹣5)﹣2=0.21.关于x的一元二次方程x2﹣(m+3)x+m﹣1=0.(1)试判断该方程根的情况并说明理由;(2)若x1,x2是该方程的两个实数根,且3x1﹣x1x2+3x2=12,求m的值.22.如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.23.某商店销售一款工艺品,平均每天可销售20件,每件盈利40元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,在一定范围内,每件工艺品的单价每降价1元,商场平均每天可多售出2件.(1)如果商店通过销售这种工艺品每天想盈利1050元,那么每件工艺品单价应降多少元?(2)能否通过降价使商店每天盈利达到1600元?请说明理由.24.等腰△ABC中,AB=AC,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据下列条件分别在图1、图2中画一条弦,使这条弦的长度等于弦BD.(保留作图痕迹,不写作法)(1)如图1,∠A<90°;(2)如图2,∠A>90°.25.如图,以△ABC的边AB为直径的半圆O分别交BC,AC于点D,E,已知,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若AB=10,BC=12,求DF和AE的长.26.如图,平行四边形ABCD的面积为96,AB=10,BC=12,∠B为锐角.点E在边BC上,过点E作边BC的垂线,交平行四边形的其它边于点F,在EF的右侧作正方形EFGH.(1)如果点G在对角线AC上,则正方形EFGH的面积为 ;(2)设EF与对角线AC交于点P,如果点G与点D重合,求AP:CP的值;(3)如果点F在边AB上,且△GCH与△BEF相似,求BE的长.27.【问题发现】(1)如图1,将正方形ABCD和正方形AEFG按如图所示的位置摆放,连接BE和DG,延长DG交BE的延长线于点H,请直接写出BE与DG的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD和正方形AEFG“;改成“矩形ABCD和矩形AEFG,且矩形ABCD∽矩形AEFG,AE=3,AG=4”,如图,点E、D、G三点共线,点G在线段DE上时,若,求BE的长.【拓展延伸】(3)若将“正方形ABCD和正方形AEFG改成“菱形ABCD和菱形AEFG,且菱形ABCD∽菱形AEFG,如图3,AD=5,AC=6,AG平分∠DAC,点P在射线AG上,过点P作PQ⊥AF,垂足为点Q,连接QC,当∠PQC=∠DAC时,求AP的长.28.如图1,在△ABC中,∠C=90°,AC=8,BC=6,D、E分别是AB,AC上的点,DF∥BC交AC 于F点,过点D,E,F的外接圆于AB相切于点D,交BE于G,连结DE.(1)求证:∠AED=∠ABC.(2)若,求CE的长.(3)如图2,M为BE的中点,连结FG,DM.①当FG与△DMB的一边平行时,求所有满足条件的DM的长.②连结FM交DE于点H,若,求△EFM的面积.参考答案与试题解析一.选择题(共10小题)1.(3分)下列方程是一元二次方程的是( )A.2x+1=0B.x2﹣3x+1=0C.x2+y=1D.【分析】根据一元二次方程的定义,逐项判断即可求解.【解答】解:A、2x+1=0,不是一元二次方程,故本选项不符合题意;B、x2﹣3x+1=0,是一元二次方程,故本选项符合题意;C、x2+y=1,不是一元二次方程,故本选项不符合题意;D、,不是一元二次方程,故本选项不符合题意.故选:B.【点评】本题考查了一元二次方程的定义,属于基础概念题型,只含有一个未知数,并且含未知数的项的最高次数是2的整式方程叫做一元二次方程,熟知一元二次方程的概念是解题关键.2.(3分)若方程x2﹣2x﹣3=0的一个实数根为m,则2026﹣m2+2m的值是( )A.2024B.2023C.2022D.2021【分析】依据题意,根据方程的根满足方程,进而将m代入方程得m2﹣2m﹣3=0,再整体代入即可得解.【解答】解:∵方程x2﹣2x﹣3=0的一个实数根为m,∴m2﹣2m﹣3=0.∴m2﹣2m=3.∴2026﹣m2+2m=2026﹣(m2﹣2m)=2026﹣3=2023.故选:B.【点评】本题主要考查一元二次方程的解,解题时要熟练掌握并理解是关键.3.(3分)用配方法解方程x2+8x+7=0,则配方正确的是( )A.(x+4)2=9B.(x﹣4)2=9C.(x﹣8)2=16D.(x+8)2=57【分析】本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:∵x2+8x+7=0,∴x2+8x=﹣7,⇒x2+8x+16=﹣7+16,∴(x+4)2=9.∴故选:A.【点评】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.(3分)下列说法正确的是( )A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等【分析】根据确定圆的条件对A进行判断;根据三角形外心的定义对B进行判断;根据圆心角、弦、弧的关系对C、D进行判断.【解答】解:A、经过不共线的三点可以作一个圆,所以A选项错误;B、三角形的外心到这个三角形的三个顶点的距离相等,所以B选项错误;C、等弧所对的圆心角相等,所以C选项正确;D、在同圆或等圆中,相等的圆心角所对的弧相等,所以D选项错误.故选:C.【点评】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.原式考查了圆心角、弦、弧的关系和三角形的外接圆.5.(3分)在△ABC中,D、E分别在△ABC的边AB、AC上,下列条件中不能判定DE∥BC的是( )A.B.C.∠AED=∠C D.【分析】根据平行线分线段成比例定理对各个选项进行判断即可.【解答】解:如图:A、,不能判定DE∥BC,故A符合题意;B、∵,∴DE∥BC,故B不符合题意;C、∵∠AED=∠C,∴DE∥BC,故C不符合题意;D、∵,∴DE∥BC,故D不符合题意.故选:A.【点评】本题主要考查了平行线分线段成比例定理,平行线的判定,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.6.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若CD=6,AB=10,则AE的长为( )A.1B.2C.3D.4【分析】连接OC,由垂径定理求出EC的长,由勾股定理求出OE的长,即可得到AE的长.【解答】解:连接OC,∵直径AB⊥CD,∴EC=CD=×6=3,∵AB=10,∴OC=OA=5,∴OE==4,∴AE=OA﹣OE=1.故选:A.【点评】本题考查垂径定理,勾股定理,关键是通过作辅助线构造直角三角形,应用垂径定理求出CE 的长,由勾股定理求出OE的长.7.(3分)如图,AB是⊙O的直径,C,D为⊙O上的点,且点D在上.若∠D=130°.则∠CAB的度数为( )A.30°B.40°C.50°D.60°【分析】利用圆内接四边形的性质求出∠B=50°,再求出∠CAB即可.【解答】解:∵∠D+∠B=180°,∠D=130°,∴∠B=50°,∵AB是直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°.故选:B.【点评】本题考查圆周角定理,圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(3分)如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为( )A.8B.4C.3.5D.3【分析】根据垂径定理得到AD=BD,AF=CF,BE=CE,根据三角形的中位线定理得到DE+DF+EF=(AB+BC+AC)==10.5,于是得到结论.【解答】解:∵OD⊥AB,OE⊥BC,OF⊥AC,∴AD=BD,AF=CF,BE=CE,∴DE,DF,EF是△ABC的中位线,∴DE=,∴DE+DF+EF=(AB+BC+AC)==10.5,∵DE+DF=6.5,∴EF=10.5﹣6.5=4,故选:B.【点评】本题考查了三角形外接圆与外心,三角形中位线定理,垂径定理,熟练掌握三角形中位线定理是解题的关键.9.(3分)如图,将5个全等的等腰三角形拼成内外两个大小不同的正五边形图案,设小正五边形边长为1,则大正五边形边长为( )A.B.C.D.【分析】根据多边形的内角和定理得到∠ABE==108°,等量代换得到∠CBE+∠ABC=∠BAC+∠ABC=108°,如图,作∠ACB的平分线CD交AB于D,根据相似三角形的性质即可得到结论.【解答】解:在正五边形ABEFG中,∠ABE==108°,∵将5个全等的等腰三角形拼成内外两个大小不同的正五边形图案,∴∠CBE+∠ABC=∠BAC+∠ABC=108°,如图,作∠ACB的平分线CD交AB于D,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB+∠BAC+∠ABC=108°+∠ACB=180°,∴∠ABC=∠ACB=72°,∴∠BAC=36°,∴∠ACD=∠BCD=∠BAC=36°,∴∠BCD=∠BAC,AD=CD=BC,∴△ABC∽△CBD,∴=,∵AB=BC+1,∴BD=AB﹣AD=AB﹣BC=1,∴=,∴BC=,∴AB=BC+1=,故选:D.【点评】本题考查了正多边形与圆,等腰三角形的性质,全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.10.(3分)如图,AB为⊙O直径,C为圆上一点,I为△ABC内心,AI交⊙O于D,OI⊥AD于I,若CD=4,则AC为( )A.B.C.D.5【分析】连接BD、CD、BI,由已知可得BD=CD=4,进而可证ID=BD=4,勾股定理计算AB,连接OD交BC于点E,则OD⊥BC,设DE=x,利用OB2﹣OE2=BD2﹣DE2求x,再利用勾股定理求AC即可.【解答】解:连接BD、CD、BI,∵I为△ABC内心,∴∠BAD=∠CAD,∠ABI=∠CBI,∴,∴BD=CD=4,∵∠DBI=∠DBC+∠CBI=∠DAC+∠CBI=∠DAB+∠ABI=∠BID,∴ID=BD=4,∵OI⊥AD,∴AD=2ID=8,∴AB=,连接OD交BC于点E,则OD⊥BC,设DE=x,则OE=AB﹣x=2﹣x,∵OB2﹣OE2=BD2﹣DE2,∴(2)2﹣(2﹣x)2=42﹣x2,解得:x=,∴BE=,∴BC=2BE=,∵AB为⊙O直径,∴∠ACB=90°,∴AC=,故选:A.【点评】本题考查了三角形的内切圆和内心,三垂径定理,圆周角定理,三角形外角性质,等知识点的应用,正确作出辅助线后求出AD=2BD是解此题的关键,有一定的难度.二.填空题(共8小题)11.(3分)若方程x2﹣ax+3=0的一个根为1,则a= 4 .【分析】把x=1代入原方程得到关于a的方程1﹣a+3=0,然后解方程即可.【解答】解:把x=1代入原方程得,1﹣a+3=0,解得a=4.故答案为4.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义:使方程左右两边成立的未知数的值叫方程的解.12.(3分)已知圆锥的底面半径是5cm,母线长10cm,则侧面积是 50π cm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的底面周长是:2×5π=10π(cm),则圆锥的侧面积是:.故答案为:50π.【点评】本题考查了扇形的面积公式,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.13.(3分)如果关于x的一元二次方程(m﹣1)x2+2x+1=0有两个不相等的实数根,则m的取值范围是 m<2且m≠1 .【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且Δ=22﹣4(m﹣1)>0,然后求出两不等式解集的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=22﹣4(m﹣1)>0,解得m<2且m≠1.故答案为m<2且m≠1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.14.(3分)如图,扇形OAB的半径为1,分别以点A、B为圆心,大于AB的长为半径画弧,两弧相交于点P,∠BOP=35°,则的长l= π (结果保留π).【分析】由等腰三角形的性质求出∠AOB的度数,由弧长公式即可计算.【解答】解:由作图知:OP垂直平分AB,∵OA=OB,∴∠AOB=2∠BOP=2×35°=70°,∵扇形的半径是1,∴的长==π.故答案为:π.【点评】本题考查弧长的计算,关键是掌握弧长公式.15.(3分)已知⊙O的半径是4,圆心O到直线l的距离d为方程x2﹣4x﹣5=0的一个根,则⊙O与直线l的位置关系为 相离 .【分析】首先求出方程的根,得到圆心O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离,从而得出答案.【解答】解:∵x2﹣4x﹣5=0,∴(x+1)(x﹣5)=0,解得:x1=﹣1,x2=5,∵点O到直线l距离是方程x2﹣4x﹣5=0的一个根,∴x=5,∴点O到直线l的距离d=5,∵r=4,∴d>r,∴直线l与圆相离,故答案为:相离.【点评】本题主要考查了直线与圆的位置关系,一元二次方程的解,解一元二次方程﹣因式分解法,解决问题的关键是掌握比较圆心到直线的距离d与圆的半径r大小关系判定直线与圆的位置关系.16.(3分)如图,在△ABC中,点D、E为边AB三等分点,点F、G在边BC上,AC∥DG∥EF,点H 为AF与DG的交点.若HD=3,则AC的长为 18 .【分析】首先根据点D、E为边AB的三等分点得AB=3BE,AE=2AD,根据DG∥EF得△ADH和△AEF相似,可求出EF的长,再根据EF∥AC得△BEF和△BAC相似,从而可求出AC的长.【解答】解:∵点D、E为边AB的三等分点,∴AD=DE=EB,∴AB=3BE,AE=2AD,∵DG∥EF,∴△ADH∽△AEF,∴DH:EF=AD:AE,∵HD=3,AE=2AD,∴3:EF=AD:2AD,∴EF=6,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BE:AB,∵EF=6,AB=3BE,∴6:AC=BE:3BE,∴AC=18,故答案为:18.【点评】此题主要考查了相似三角形的判定和性质,解答此题的关键是理解平行于三角形一边的直线截其它两边,所截得的三角形与原三角形相似,相似三角形的对应边成比例.17.(3分)如图,点O是矩形ABCD对角线BD上的一点,⊙O经过点C,且与AB边相切于点E,若AB=4,BC=5,则⊙O的半径长为 .【分析】连接OE,并延长EO交点CD于点F,连接OC,根据FE//BC得△DOF∽△DBC,然后设圆的半径为r,OE=OC=r,求出r=5﹣x,用含x的式子表示出OF,CF,OC,再在△OCF中,利用勾股定理构建方程求出x,继而可得答案.【解答】解:连接OE,并延长EO交点CD于点F,连接OC,设半径为r,AE=x,则BE=4﹣x,则EF⊥AB,∵四边形ABCD是矩形,∴BC⊥AB,∴EF∥BC,∴△DOF∽△DBC,四边形BCFE是矩形,∴,即=,CF=BE=4﹣x,∴r=5﹣x,则OF=x,CF=4﹣x,在Rt△OCF中,∵CF2+OF2=OC2,∴(4﹣x)2+(x)2=(5﹣x)2,解得x=或x=﹣6(舍),则r=5﹣x=,故答案为:.【点评】本题考查的是切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18.(3分)如图,AB是⊙O的直径,C是⊙O上的一动点,以AC为边在其左侧作正方形ACEF.连接BF,则的最大值为 .【分析】连接OC,把△AOC绕点A顺时针旋转90°,得到△AO1F,连接O1B,先求出点F在以r为半径的⊙O上运动,取得BF最大值为BO1+r,再根据勾股定理求出BO1=r,最后代入化简即可.【解答】解:连接OC,把△AOC绕点A顺时针旋转90°,得到△AO1F,连接O1B.设AO=OC=r,则AB=2r,∴O1F=OC=r,∴点F在以r为半径的⊙O上运动,∴当点F运动至BO1的延长线与⊙O1的交点处(B,O1,F三点共线)时,BF取得最大值,最大值为BO1+r.在Rt△AO1B中,BO1==r,∴BF的最大值为(+1)r,∴的最大值为.故答案为:.【点评】本题考查了旋转的性质,勾股定理,正方形的性质,求圆上一点到圆外一点的最短距离,熟练掌握各知识点是解题的关键.三.解答题(共10小题)19.解方程:(1)(x﹣1)2=36;(2)2x2﹣7x+3=0.【分析】(1)根据直接开平方法解方程即可;(2)根据因式分解法解方程即可.【解答】解:(1)x﹣1=±6,∴x1=7,x2=﹣5;(2)(2x﹣1)(x﹣3)=0,2x﹣1=0或x﹣3=0,∴x1=,x2=3.【点评】本题考查了解一元二次方程﹣因式分解法,解一元二次方程﹣直接开平方法,解决本题的关键是掌握因式分解法和直接开平方法.20.解方程:(1)(x﹣5)2=2x﹣10;(2)(2x﹣5)2﹣(2x﹣5)﹣2=0.【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程.【解答】解:(1)方程整理,得:(x﹣5)2﹣2(x﹣5)=0,因式分解,得:(x﹣5)(x﹣5﹣2)=0.于是,得:x﹣5=0或x﹣7=0,解得x1=5,x2=7;(2)(2x﹣5)2﹣(2x﹣5)﹣2=0.因式分解得:(2x﹣5+1)(2x﹣5﹣2)=0,即(2x﹣4)(2x﹣7)=0,∴2x﹣4=0或2x﹣7=0,解得:x1=2,x2=.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解答本题的关键.21.关于x的一元二次方程x2﹣(m+3)x+m﹣1=0.(1)试判断该方程根的情况并说明理由;(2)若x1,x2是该方程的两个实数根,且3x1﹣x1x2+3x2=12,求m的值.【分析】(1)利用一元二次方程根的判别式即可求解.(2)利用一元二次方程根与系数的关系即可求解.【解答】解:(1)有两个不相等的实数根,理由如下:Δ=[﹣(m+3)]2﹣4(m﹣1)=m2+2m+13=(m+1)2+12,∵(m+1)2≥0,∴(m+1)2+12≥12,∴原方程有两个不相等的实数根.(2)由题意得:x1x2=m﹣1,x1+x2=m+3,∴3x1﹣x1x2+3x2=3(x1+x2)﹣x1x2=3(m+3)﹣(m﹣1)=12,解得:m=1.【点评】本题考查了一元二次方程根与系数的关系及根的判别式,熟练掌握一元二次方程根与系数的关系及根的判别式是解题的关键.22.如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.【分析】(1)先由角平分线的定义说明∠BAC=∠EAD,再由已知可得结论;(2)先由(1)三角形相似得∠B=∠E,再由已知角平分线的定义、公共角可得△BDF∽△BAD,代入计算得结论.【解答】(1)证明:∵AD平分∠BAC,AF平分∠EAD,∴∠BAC=2∠EAB=2∠BAD,∠EAD=2∠BAD.∴∠BAC=∠EAD.又∵,∴△AED∽△ABC.(2)解:由(1)知△AED∽△ABC,∴∠B=∠E.又∵∠EFA=∠BFD,∴∠EAB=∠EDB.∵∠EAB=∠BAD,∴∠EDB=∠BAD.又∵∠B=∠B,∴△BDF∽△BAD.∴=.∴AB===.答:AB的长为.【点评】本题主要考查了相似三角形的性质与判定,掌握角平分线的定义和相似三角形的性质与判定是解决本题的关键.23.某商店销售一款工艺品,平均每天可销售20件,每件盈利40元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,在一定范围内,每件工艺品的单价每降价1元,商场平均每天可多售出2件.(1)如果商店通过销售这种工艺品每天想盈利1050元,那么每件工艺品单价应降多少元?(2)能否通过降价使商店每天盈利达到1600元?请说明理由.【分析】(1)设每件工艺品单价应降x元(x<40),则当天销售量为(20+2x)件,根据题意列出一元二次方程,解方程即可求解.(2)解:设每件工艺品单价应降为y元(y<40),则当天的销售量为(20+2y)件,根据题意列出一元二次方程,解方程即可求解.【解答】解:(1)设每件工艺品单价应降x元(x<40),则当天销售量为(20+2x)件,依题意,得:(40﹣x)(20+2x)=1050,整理,得x2﹣30x+125=0,解得:x1=25,x2=5(不合题意,舍去).答:商店想通过销售这种工艺品每天想盈利1050元,每件工艺品单价应降25元;(2)不能,理由如下:设每件工艺品单价应降为y元(y<40),则当天的销售量为(20+2y)件,依题意,得:(40﹣y)(20+2y)=1600,整理,得:y2﹣30y+400=0.∵Δ=(﹣30)2﹣4×1×400=﹣700<0,∴该方程无实数根,即不能通过降价使商店每天盈利达到1600元.【点评】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.24.等腰△ABC中,AB=AC,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据下列条件分别在图1、图2中画一条弦,使这条弦的长度等于弦BD.(保留作图痕迹,不写作法)(1)如图1,∠A<90°;(2)如图2,∠A>90°.【分析】(1)如图1,连接AD,由于AB为直径,则∠ADB=90°,由于AB=AC,所以AD平分∠BAC,即∠BAD=∠EAD,于是得到BD=DE;(2)如图2,延长CA交圆于E,连接BE、DE,与(1)一样得到∠BAD=∠DAC,而∠DAC=∠DBE,所以∠DBE=∠BAD,所以DE=BD.【解答】解:(1)如图1,DE为所作:(2)如图2,DE为所作:【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.25.如图,以△ABC的边AB为直径的半圆O分别交BC,AC于点D,E,已知,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若AB=10,BC=12,求DF和AE的长.【分析】(1)连接OC,由题意易得∠ADB=∠ADC=90°,然后可得OC是△ABC的中位线,进而根据平行线的性质可进行求证;(2)由(1)知,则根据勾股定理可得AD=8,然后根据等积法可得,进而可得△CDE∽△CAB,则根据相似三角形的性质可进行求解.【解答】(1)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵,∴∠CAD=∠BAD,∴∠B=∠C,∴AC=AB,∴DC=DB,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∴DF是⊙O的切线;(2)解:由(1)知,在△ABD中,由勾股定理得,,由得,;∵∠DCE=∠ACB,∠CED=∠CBA,∴△CDE∽△CAB,∴,∴,∴,∴.【点评】本题主要考查切线的性质与判定、圆周角的性质及相似三角形的性质与判定,熟练掌握切线的性质与判定、圆周角的性质及相似三角形的性质与判定是解题的关键.26.如图,平行四边形ABCD的面积为96,AB=10,BC=12,∠B为锐角.点E在边BC上,过点E作边BC的垂线,交平行四边形的其它边于点F,在EF的右侧作正方形EFGH.(1)如果点G在对角线AC上,则正方形EFGH的面积为 ;(2)设EF与对角线AC交于点P,如果点G与点D重合,求AP:CP的值;(3)如果点F在边AB上,且△GCH与△BEF相似,求BE的长.【分析】(1)过A作AM⊥BC垂足为M,根据面积计算出AM=8,根据勾股定理计算出,从而得到AM垂直平分BC,再证明△BEF≌△CHG得到BE=HC,设FE=x,分别得到,根据BC=BE+EH+HC建立方程,解方程即可得到答案;(2)根据矩形的性质推到得EF=AM=8,得出AF=AD﹣FD=12﹣8=4,再根据勾股定理计算出CH=6,通过AF∥EC证明△AFP∽△CEP,通过三角形的相似比计算出AP:CP;(3)根据∠B=∠HCG和∠B=∠HGC两种情况进行讨论,当∠B=∠HCG可利用(1)得结论得到答案,当∠B=∠HG C时,EF=x,得;,EH=GH=x,根据HC=BC﹣BE﹣EH得到,再根据相似三角形的相似比建立方程,解方程即可得到答案.【解答】解:(1)如图所示,过A作AM⊥BC垂足为M,∵AM⊥BC,平行四边形ABCD的面积为96,∴BC•AM=96,∴AM=8,∴,∴MC=6,∴AM垂直平分BC,∴AB=AC,∠B=∠ACB,设FE=x,∵AM⊥BC,EF⊥BC,∴AM∥EF,∴△BFE∽△BAM,∴,∴,∴,在△BEF和△CHG中,∴△BEF≌△CHG(AAS),∴,∵EH=EF=x,BC=BE+EH+HC,∴,∴S正方形EFGH=;(2)如图所示,过A作AM⊥BC垂足为M,∴AM∥EF,AM⊥BC,∵平行四边形ABCD,∴AF∥BC,∴四边形AMEF为矩形,∴EF=AM=8,∵AD=BC=12,FD=EF,∴AF=AD﹣FD=12﹣8=4,∵CD=10,DH=8,∴CH=6,∴EC=EH﹣CH=8﹣6=2,∵AF∥EC,∴∠FAP=∠PCE,∠AFP=∠PEC,∴△AFP∽△CEP,∴,∴AP:CP=2:1;(3)如图所示,∵△BEF∽△CHG,当∠B=∠HCG时,点G在AC上时,由(1)得△BEF≌△CHG,;当∠B=∠HGC时,点G不在AC上,如图所示,∵△BEF∽△CHG,∴,设EF=x,得,EH=GH=x,∴,∴,,∴,∴,∴.【点评】本题考查正方形的性质、平行四边形的性质、全等三角形性质和判定和相似三角形的性质和判定,解题的关键是灵活运用相似三角形的相似比建立方程.27.【问题发现】(1)如图1,将正方形ABCD和正方形AEFG按如图所示的位置摆放,连接BE和DG,延长DG交BE的延长线于点H,请直接写出BE与DG的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD和正方形AEFG“;改成“矩形ABCD和矩形AEFG,且矩形ABCD∽矩形AEFG,AE=3,AG=4”,如图,点E、D、G三点共线,点G在线段DE上时,若,求BE的长.【拓展延伸】(3)若将“正方形ABCD和正方形AEFG改成“菱形ABCD和菱形AEFG,且菱形ABCD∽菱形AEFG,如图3,AD=5,AC=6,AG平分∠DAC,点P在射线AG上,过点P作PQ⊥AF,垂足为点Q,连接QC,当∠PQC=∠DAC时,求AP的长.【分析】(1)证明两三角形全等,证得相关线段与角的关系,进一步证明相似,进而得出位置关系;(2)由矩形相似得出对应边成比例且夹角相等,证得相似得出比例线段,再根据勾股定理求出关键线段,即可求解;(3)根据题意进行分类讨论,画出图形,运用解直角三角形、勾股定理、相似三角形、特殊四边形、角平分线特性,求出关键线段即可求解.【解答】解:(1)BE=DG,BE⊥DG.证明:在正方形ABCD和正方形AEFG中,AB=AD,AE=AG,∠EAG=∠BAD=90°,∴∠EAG﹣∠BAG=∠BAD﹣∠BAG,即∠EAB=∠GAD,∴△EAB≌△GAD(SAS),∴∠EBA=∠GDA,BE=DG,∵∠BOH=∠AOD,∴△BHO∽△DAO,∴∠BHO=∠BAD=90°,∴BE⊥DG;(2)过点A作AM⊥DE于点M,∵矩形ABCD∽矩形AEFG,AE=3,AG=4,∴,∠EAG=∠BAD=90°,∴∠EAG﹣∠BAG=∠BAD﹣∠BAG,即∠EAB=∠GAD,∴△EAB∽△GAD,∴,在Rt△AEG中,=5,,∴AM=,MG=,MD=,∴GD=MD﹣MG=4,∵,∴BE=3;(3)①当点P在线段AG上时,根据题意作图如下:连接BD交AC于点O,作CM⊥AF,交AF的延长线于点M,作CN∥AG交AF 于点N,∵菱形ABCD∽菱形AEFG,∴∠DAB=∠GAE,∠DAC=∠BAD,∠GAF=∠GAE,BD⊥AC,AO=AC=3,∴∠DAC=∠GAF,∴∠DAG=∠CAF,∵AG平分∠DAC,∴∠DAG=∠DAC,∴∠GAC=∠CAF=∠GAF,∵CN∥AG,∴∠GAC=∠ACN,∠CNM=∠GAF,∴∠CAF=∠ACN,∴AN=CN,在Rt△ADO中,cos∠DAC=,∴cos∠CNM=cos∠PQC=cos∠PAQ=,∴tan∠APQ==,∵PQ⊥AF,∴∠PAQ+∠APQ=∠PQC+∠CQM=90°,∴∠APQ=∠CQM,∴tan∠CQM=tan∠APQ==,即,在Rt△CNM中,可得三边比值为:MN:CM:CN=3:4:5,∵AN=CN,∴CM:AM=1:2,在Rt△CAM中,设CM为3x,则QM=4x,AM=6x,根据勾股定理得:AM2+CM2=AC2,即(6x)2+(3x)2=62,解得:x=,∴AQ=AM﹣QM=2x=,∴AP=AQ=;②当点P在线段AG的延长线上时,根据题意作图如下:过点C作CM⊥AF于点M,同①可知:此时AQ=AM+MQ=10x,∴AQ=10×=,∴AP=AQ=,所以AP的长为或.【点评】本题综合考查了全等三角形的判定与性质、相似三角形的判定与相似、正方形、矩形、菱形的性质、勾股定理、角平分线性质、等腰三角形的性质、解直角三角形等知识和技能,根据图形进行分类讨论是解题的关键.28.如图1,在△ABC中,∠C=90°,AC=8,BC=6,D、E分别是AB,AC上的点,DF∥BC交AC 于F点,过点D,E,F的外接圆于AB相切于点D,交BE于G,连结DE.(1)求证:∠AED=∠ABC.(2)若,求CE的长.(3)如图2,M为BE的中点,连结FG,DM.①当FG与△DMB的一边平行时,求所有满足条件的DM的长.②连结FM交DE于点H,若,求△EFM的面积.【分析】(1)由DF∥BC可知∠DFE=∠AFD=∠C=90°,再由过点D,E,F的外接圆于AB相切于点D得出∠ADE=90°,从而利用同角的余角相等即可得证;(2)取DE的中点O,连接EO,GO,则点O是过点D,E,F的外接圆的圆心,DO=FO=EO=GO,证明∠BEC=∠ABC从而得到△BEC∽△ABC,由相似三角形的性质得出,从而得解;(3)①分FG∥BD和FG∥DM两种情况讨论,当FG∥BD时,利用垂径定理得到EF=EG,再利用平行线分线段成比例得到证明AE=BE,从而设AE=BE=x,根据勾股定理列方程得到62+(8﹣x)2=x2,求出BE的长,利用直角三角形斜边上的中线等于斜边的一半求出DM即可;当FG∥DM时,先利用平行线的性质和等腰三角形的性质证明,再过点M作MP⊥BE,构造垂直平分线,从而得到PE=PB,有利用AAS证明△PDE≌△ADE,从得到AD=PD,DE=3x可得AD=PD=4x,PB=5x,利用AB的长度列方程可求出x,利用勾股定理得到BE,最后利用直角三角形斜边上的中线等于斜边的一半求出DM即可;②过点E作EQ∥BC,FM于点Q,延长FM交BC于点R,取CE的中点S,则SM是△CEB的中位线,则有MS⊥AC,,设AF=4a,则CF=8﹣4a利用EQ∥DF求出EQ,求出DF和EF 的长,利用SSA证明△EQM≌△BRM,从而得到EQ=BR=2a,CR=BC﹣BR=6﹣2a,最后利用△EFQ∽△CFR得到,解出a,得到EF的长度,根据三角形面积公式可得出答案.【解答】(1)证明:∵DF∥BC,∴∠DFE=∠AFD=∠C=90°,∴线段DE是过点D,E,F的外接圆的直径,又∵过点D,E,F的外接圆于AB相切于点D,∴∠ADE=90°,∠AED+∠A=90°,又∵∠C=90°,∴∠ABC+∠A=90°,∴∠AED=∠ABC;(2)解:取DE的中点O,连接FO,GO,则点O是过点D,E,F的外接圆的圆心,DO=FO=EO=GO,∵∠DFE=∠ADE=90°,∴∠AED+∠EDF=∠AED+∠A=90°,∴∠EDF=∠A,∠AED=90°﹣∠A,又∵DO=FO=EO=GO,∴∠DFO=∠EDF=∠A,∵=,∴FD=FG,∵FD=FG,DO=GO,FO=FO,∴△DFO≌△GFO(SSS),∴∠DFO=∠GFO=∠A,∴∠DEG=∠DFG=∠DFO+∠GFO=2∠A,∴∠BEC=180°﹣∠DEG﹣∠AED=180°﹣2∠A﹣(90°﹣∠A)=90°﹣∠A=∠AED=∠ABC,∵∠BEC=∠ABC,∠BCE=∠ACB=90°,∴△BEC∽△ABC,∴,。

2023无锡中考数学试题及答案

2023无锡中考数学试题及答案

2023无锡中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 以下哪个数是正整数?A. -3B. 0C. 2D. -2答案:C2. 计算下列哪个表达式的结果为负数?A. 3 - 5B. 4 + 2C. 6 × 2D. 8 ÷ 2答案:A3. 哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形答案:B4. 以下哪个方程的解是x = 2?A. x + 3 = 5B. x - 4 = 2C. 2x = 4D. 3x - 6 = 0答案:C5. 以下哪个函数是一次函数?A. y = 2x^2B. y = 3x + 1C. y = x^3D. y = 1/x答案:B6. 以下哪个图形的面积最大?A. 边长为2的正方形B. 半径为2的圆C. 长为4,宽为2的矩形D. 底为3,高为4的三角形答案:B7. 以下哪个选项是不等式2x - 3 < 5的解?A. x = 2B. x = 4C. x = 1D. x = 0答案:C8. 以下哪个选项是等腰三角形?A. 两边长分别为3和5的三角形B. 三边长分别为3、3、5的三角形C. 三边长分别为2、4、6的三角形D. 三边长分别为1、1、2的三角形答案:B9. 以下哪个选项是锐角三角形?A. 角度分别为90°、45°、45°的三角形B. 角度分别为30°、60°、90°的三角形C. 角度分别为20°、70°、90°的三角形D. 角度分别为80°、80°、20°的三角形答案:D10. 以下哪个选项是反比例函数?A. y = 2xB. y = 1/xC. y = x^2D. y = 3x + 2答案:B二、填空题(本题共5小题,每小题4分,共20分)11. 计算 (-2)^3 的结果是 _______。

无锡中考数学试题及答案

无锡中考数学试题及答案

无锡中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 7B. 3x - 2 = 4x + 1C. 5x - 3 = 2x + 4D. 6x + 8 = 7x - 2答案:C2. 圆的周长公式是:A. C = πdB. C = 2πrC. C = πr²D. C = 4πr答案:B3. 一个三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 720°答案:B4. 以下哪个是二次方程?A. x + 2 = 0B. x² - 4x + 4 = 0C. 2x - 3 = 0D. x³ - 2x² + 1 = 0答案:B5. 绝对值的定义是:A. 一个数的正值B. 一个数的负值C. 一个数距离0的距离D. 一个数的相反数答案:C6. 以下哪个是正比例关系?A. 速度一定,路程和时间B. 总价一定,单价和数量C. 圆的面积和半径D. 正方形的周长和边长答案:D7. 以下哪个是反比例关系?A. 速度一定,路程和时间B. 总价一定,单价和数量C. 圆的面积和半径D. 正方形的面积和边长答案:A8. 以下哪个是相似三角形?A. 两个三角形的对应角相等B. 两个三角形的对应边成比例C. 两个三角形的对应角相等且对应边成比例D. 两个三角形的对应边成比例且对应角不相等答案:C9. 以下哪个是等腰三角形的性质?A. 两底角相等B. 两腰相等C. 两底边相等D. 两顶角相等答案:B10. 以下哪个是勾股定理?A. a² + b² = c²B. a² - b² = c²C. a² + b² = 2c²D. a² - b² = 2c²答案:A二、填空题(每题3分,共30分)11. 一个数的平方根是它本身的数是______。

2022年江苏省无锡市中考数学试卷-含答案详细解析校正版

2022年江苏省无锡市中考数学试卷-含答案详细解析校正版

第1页,共27页绝密★启用前2022年江苏省无锡市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −15的倒数是( ) A. −15B. −5C. 15D. 52. 函数y =√4−x 中,自变量x 的取值范围( ) A. x >4B. x <4C. x ≥4D. x ≤43. 已知一组数据:111,113,115,115,116,这组数据的平均数和众数分别是( )A. 114,115B. 114,114C. 115,114D. 115,1154. 分式方程2x−3=1x 的解是( ) A. x =1B. x =−1C. x =3D. x =−35. 在Rt △ABC 中,∠C =90°,AC =3,BC =4,以AC 所在直线为轴,把△ABC 旋转1周,得到圆锥,则该圆锥的侧面积为( )A. 12πB. 15πC. 20πD. 24π6. 雪花、风车……展示着中心对称的美,利用中心对称,可以探索并证明图形的性质.请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )A. 扇形B. 平行四边形C. 等边三角形D. 矩形7. 如图,AB 是圆O 的直径,弦AD 平分∠BAC ,过点D 的切线交AC 于点E ,∠EAD =25°,则下列结论错误的是( )第2页,共27页A. AE ⊥DEB. AE//ODC. DE =ODD. ∠BOD =50°8. 下列命题中,是真命题的有( )①对角线相等且互相平分的四边形是矩形 ②对角线互相垂直的四边形是菱形 ③四边相等的四边形是正方形 ④四边相等的四边形是菱形A. ①②B. ①④C. ②③D. ③④9. 一次函数y =mx +n 的图象与反比例函数y =mx 的图象交于点A 、B ,其中点A 、B 的坐标为A(−1m,−2m)、B(m,1),则△OAB 的面积是( )A. 3B. 134 C. 72D. 15410. 如图,在▱ABCD 中,AD =BD ,∠ADC =105°,点E 在AD 上,∠EBA =60°,则EDCD的值是( )第3页,共27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………A. 23B. 12C. √32D. √22第II 卷(非选择题)二、填空题(本大题共8小题,共24.0分)11. 分解因式:2a 2−4a +2=______.12. 高速公路便捷了物流和出行,构建了我们更好的生活.交通运输部的数据显示,截止去年底,我国高速公路通车里程16.1000万公里,稳居世界第一.这个数据用科学记数法可表示为______.13. 二元一次方程组{3x +2y =12,2x −y =1的解为______.14. 请写出一个函数的表达式,使其图象分别与x 轴的负半轴、y 轴的正半轴相交:______.15. 请写出命题“如果a >b ,那么b −a <0”的逆命题:______.16. 如图,正方形ABCD 的边长为8,点E 是CD 的中点,HG 垂直平分AE 且分别交AE 、BC 于点H 、G ,则BG =______.17. 把二次函数y =x 2+4x +m 的图象向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:______.第4页,共27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………18. △ABC 是边长为5的等边三角形,△DCE 是边长为3的等边三角形,直线BD 与直线AE 交于点F.如图,若点D 在△ABC 内,∠DBC =20°,则∠BAF =______°;现将△DCE 绕点C 旋转1周,在这个旋转过程中,线段AF 长度的最小值是______.三、解答题(本大题共10小题,共96.0分。

无锡市中考数学试卷及答案(Word解析版)

无锡市中考数学试卷及答案(Word解析版)

无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑) 1.2-的值等于( ▲ ) A .2B .-2C .2±D .2答案:A解析:负数的绝对值是它的相反数,所以|-2|=2,选A 。

2.函数y=1-x +3中自变量x 的取值范围是( ▲ )A .x >1B .x ≥1C .x ≤1D .1≠x 答案:B解析:由二次根式的意义,得:x -1≥0,所以,x ≥1,选B 。

3.方程0321=--xx 的解为 ( ▲)A .2=xB .2-=xC .3=xD .3-=x答案:C解析:去分母,得:x -3(x -2)=0,即x -3x +6=0,解得:x =3,经检验x =3是原方程的解,选C >4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是( ▲)A .4,15B .3,15C .4,16D .3,16答案:A解析:极差为:17-13=4;数据15出现的次数最多,故众数为15,选A 。

5.下列说法中正确的是 ( ▲)A .两直线被第三条直线所截得的同位角相等B .两直线被第三条直线所截得的同旁内角互补C .两平行线被第三条直线所截得的同位角的平分线互相垂直D .两平行线被第三条直线所截得的同旁内角的平分线互相垂直 答案:D解析:A 、B 都漏掉关键词“平行”,应该是“两条平行直线”,故错;两平行直线被第三条直线所截得的同位角的平分线互相平行,不垂直,故C 错;由两直线平行,同旁内角互补,及角平分线的性质,可得D 是正确的。

6.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是 ( ) A .30cm 2 B .30πcm 2 C .15cm 2 D .15πcm 2 答案:B解析:圆柱侧面展开图为长方形,长为圆柱的底面圆周长:6π,因此,侧面积为S =6π⨯5=30πcm 27.如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是 ( ) A .35° B .140° C .70° D .70°或140° 答案:B解析:同弧所对圆周角是它所对圆周角的一半,所以,∠AOC =2∠ABC =140°,选B 。

最新江苏省无锡市中考数学测评试卷附解析

最新江苏省无锡市中考数学测评试卷附解析

江苏省无锡市中考数学测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( )A .4B .0或2C .1D .1-2.下列说法:①代数式21a +的值永远是正的;②代数式2a b +中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x-中字母x 可以是 0 以外的任何数. 其中正确的有( ) A .1 个 B .2 个 C .3 个 D .4 个3.如图①,在△ABC 中,D ,E 分别是AB ,AC 的中点,把△ADE 沿线段DE 向下折叠.使点A 落在BC 上,记作点A ′,得到图②,下列四个结论中,不一定成立的是( )A .DB=DAB .∠B+∠C+∠l=180°C .BA=CAD .△ADE ≌△A ′DE4.某市按以下标准收取水费:用小不超过20吨,按每吨1.2元收费,超过20吨,则超过部分按每吨1.5元收费.某家庭五月份的水费是平均每吨1.25元,那么这个家庭五月份应交水费( )A .20元B .24元C .30元D .36元5.已知方程组234(1)21(2)x y y x -=⎧⎨=-⎩,把②代入①,正确的是( ) A .4234y y --=B .2614x x -+=C .2614x x --=D .2634x x -+= 6.下列事件中,属于必然事件的是( )A .明天一定是晴天B .异号两数相乘,积为负数C .买一张彩票中特等奖D .负数的绝对值是它本身7.下列说法错误的是( )A .任何有理数都有倒数B .互为倒数的两个数的积为1C .互为倒数的两数符号相同D .1 和-1 互为负倒数8.已知等腰三角形的顶角为l00°,则该三角形两腰的垂直平分线的交点位于( )A .三角形内部B .三角形的边上C .三角形外部D .无法确定9.如图,在一块长方体的木块上放一个圆柱,那么它的三视图是( ) A . B . C . D .10.如果抛物线24(1)y x m =++的图象与x 轴有两个交点,那么 m 的取值范围是( ) A .m>0 B .m<0 C .m<-1D .m>-1 11. 在△ABC 中,∠C=900,若∠B=2∠A ,则tanA =( )A .3B . 33C .21D . 112.如图, AP 为圆O 的切线, P 为切点, OA 交圆O 于点B , 若40A ∠=, 则APB ∠等于( )A .25B .20C .40D .3513.在△ABC 中,∠C= 90°,如果∠B = 60°,那sinA+cosB=( )A .14B .1C .122+D .132+ 14.河堤的横断面如图所示,堤坝 BC 高 5m ,迎水斜坡的长是 10 m ,则斜坡 AB 的坡度是( )A .1:2B .2:3C .`13D .1:3 15.生活处处皆学问.如图,眼镜镜片所在的两圆的位置关系是( )A .外离B .外切C .内含D .内切 16.如图,a ∥b ,∠2是∠1的3倍,则∠ 2等于( )A °45°B . 90°C . 135°D .150°二、填空题17.在△ABC 中,∠C= 90°,若37AC BC =,则sinA= ,cosA= , tanA= . 18.当k= 时,函数2(21)k k y k x -=-有最大值.19.某集团公司计划生产化肥 500t ,则每天生产化肥 y(t)与生产天数 x(天)之间的函数 .20.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的21.。

无锡市初三数学试卷(含答案解析)

无锡市初三数学试卷(含答案解析)

无锡市初三数学试卷(2018.12)(满分130,考试时间120分钟) 班级________姓名________一、填空题(每题3分,共30分)1.若∠A=60°,则sinA=________. A.1 B22 C.23 D.3 ( ▲ )2. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( ▲ ) A. B. 1 C. D.3.已知点A 在半径为r 的⊙O 内,点A 与点O 的距离为6,则r 的取值范围是( ▲ ). A .r > 6 B .r ≥ 6 C .r < 6 D .r ≤ 6 4. 抛物线4)3(22+-=x y 的顶点坐标是( ▲ )A .)4,3(B .)4,3(-C .)4,3(-D .)4,2(5.将抛物线y = -x 2向上平移2个单位,再向右平移3个单位,得到的抛物线的解析式为( ▲ ) A .2(3)2y x =--- B .2(3)2y x =--+ C .2(3)2y x =-+- D .2(3)2y x =-++ 6.圆锥的底面半径为2,母线长为6,则圆锥的侧面积为( ▲ ) A .4π B .6π C .12π D .16π7.若抛物线822++=mx x y 的顶点在x 轴的负半轴上,则m 的值是( ▲ )A.-8B.8C. 8±D.68.如图所示,已知△ABC 中,BC=12,BC 边上的高h=6,D 为BC 上一点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x .则△DEF 的面积y 关于x 的函数图象大致( ▲ )A .B .C.D .9.如图,在△ABC 中∠A=60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,连接PM ,PN ,则下列结论:①PM=PN ;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC .其中正确的个数是A .1个B .2个C .3个D . 4个 ( ▲ )10.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数________.A .1.2B .2C .2或3D . 1.2或3( ▲ )二、填空题(每空2分,共16分)(第9题)(第10题)11.抛物线y =﹣x 2+6x ﹣9的顶点坐标为_____________12.若两个相似三角形的周长之比为2:3,较小三角形的面积为8cm 2,则较大三角形面积是 cm 2..13. 如图,在⊙O 中,0,70OA BC AOB ⊥∠=,则ADC ∠的度数为________14、某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是__________.15. 如图,在△ABC 中,点P 在AB 上,下列四个条件中:①∠ACP=∠B ;②∠APC=∠ACB ;③AC 2=AP •AB ;④AB •CP=AP •CB ,能满足△APC 与△ACB 相似的条件有第13题图 第15题图 第17题图16.当x m =或x n =(m n ≠)时,代数式322+-x x 的值相等,则n m x +=时,代数式322+-x x 的值为 .17.已知抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a ﹣b+c <0;④抛物线的顶点坐标为(2,b );⑤当x <2时,y 随x 增大而增大.其中结论正确的有______________.18.如图,在平面直角坐标系中,点A (0,MN 所在圆的圆心在x 轴上,其中M (0,3),N (4,5),点P 为弧MN 上一点,则线段AP 长度的最小值为___ ____. 三、解答题(共84分)19. 计算或化简(本题满分8分) (1); (2).20.解方程:(本题满分8分)(1)x 2=8x+9. (2)3x 2-6x +1=0(用公式法)21.(8分)如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A 1B 1C 1及△A 2B 2C 2; (1)若点A 、C 的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B 的坐标; (2)画出△ABC 关于y 轴对称再向上平移1个单位后的图形△A 1B 1C 1;(3)以图中的点D 为位似中心,将△A 1B 1C 1作位似变换且把边长放大到原来的两倍,得到△A 2B 2C 2.22.(本题满分7分)如图,防洪大堤的横断面是梯形ABCD ,其中AD ∥BC ,坡角α=60°,汛期来临前对其进行了加固,改造后的坡长为AE ,背水面坡角β=45°.若原坡长AB =16m ,求改造后的坡长AE (结果保留根号).23.(本题7分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点M 在⊙O 上,MD 恰好经过圆心O ,连接MB . (1)若CD=16,BE=4,求⊙O 的直径; (2)若∠M=∠D ,求∠D 的度数.24.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC,点D 在边AB 上,连接CD ,将线段CD 绕点C 顺时针旋转90°至CE 的位置,连接AE. (1)求证:AB ⊥AE;(2)若BC 2=AD ·AB, 求∠ACE 的度数.25.(8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m (30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元. (1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.A B C DE αβ26.(10分)在矩形ABCD 中,AB =3,AD =4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD .若两个点同时运动的时间为x 秒(0<x ≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最值?并求出最值; (2)是否存在x 的值,使得QP ⊥DP ?试说明理由.27.(10分)如图,是将抛物线2y x =-平移后得到的抛物线,其对称轴为1x =,与x 轴的一个交点为(1,0)A -,另一交点为B ,与y 轴交点为C .(1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC NC ⊥,求点N 的坐标;(3)点P 是抛物线上一点,点Q 是一次函数3322y x =+的图象上一点,若四边形OAPQ 为平行四边形,这样的点P Q 、是否存在?若存在,分别求出点P Q 、的坐标,若不存在,说明理由.28.(10分)如图1,图形ABCD 是由两个二次函数y 1=kx 2+m (k <0)与y 2=ax 2+b (a >0)的部分图象围成的封闭图形.已知A (1,0)、B (0,1)、D (0,﹣3). (1)直接写出这两个二次函数的表达式;(2)判断图形ABCD 是否存在内接正方形(正方形的四个顶点在图形ABCD 上),并说明理由; (3)如图2,连接BC ,CD ,AD ,在坐标平面内,求使得△BDC ∽ △ADE 的点E 的坐标.参考答案一、选择:C A A A C C B D D D二、填空:11.(3,0) 112.18 13.35% 14.50︒ 15.①②③ 16.2 17.①②④ 18.3三、解答:19.(1)4 (2)12x+18 20.(1)x1=9 x2=-1 (2)363±=x21.略 22.68 23.(1)10 (2)30︒24.提示:(1)证△CBD≌△CAE,得∠CBD=∠CAE (2)由BC2=AD·AB得AC2=AD·AB,得△ACD≌△ABC25.【答案】(1)y=120 (030)[120(30)] (30)[120(30)] (100)x xx x x mm x m x<≤⎧⎪--<≤⎨⎪--<≤⎩;(2)30<m≤75.26.【解析】(2)存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴BQ PCPC CD=,即343x xx-=-,解得x=(舍去)或x= x时,QP⊥DP.27.(1)()412+--=xy (2)N(1,4) (3)P(0,3)Q(1,3)或P(415,21)Q(415,23)28.(1)y1=﹣x2+1,y2=3x2﹣3;(2)设M(m,﹣m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2﹣3)为第四象限的图形上一点,∴MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,由抛物线的对称性知,若有内接正方形,∴2m=4﹣4m2,∴m=或m=(舍),∵0<<1,∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,﹣3),∴E(0,﹣),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,﹣1),综上,使得△BDC∽△ADE的点有(0,﹣)或(,﹣1)。

2022年江苏省无锡市中考数学测试试卷附解析

2022年江苏省无锡市中考数学测试试卷附解析

2022年江苏省无锡市中考数学测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.将一个圆盘,一个皮球和一个长方体模型按如图所示的方:式摆放在一起,其左视图是( )A .B .C .D .2.张华的哥哥在西宁工作,今年“五.一”期间,她想让哥哥买几本科技书带回家,于是发短信给哥哥,可一时记不清哥哥手机号码后三位数的顺序,只记得是0,2,8三个数字,则张华一次发短信成功的概率是( )A .16B .13C .19D .123.如图所示,如果∠1=∠2,那么( )A .AB ∥CD (内错角相等,两直线平行)B .AD ∥BC (内错角相等,两直线平行)C .AB ∥CD (两直线平行,内错角相等)D .AD ∥BC (两直线平行,内错角相等)4.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A .10B .11C .10或11D .3或115.52+ 3(52)5252(52)(52)-==++-(52)(52)5252(52)+-==++对于他们的解法,正确的判断是( )A . 甲、乙的解法都正确B . 甲的解法正确,乙的解法不正确C . 乙的解法正确,甲的解法不正确D . 甲、乙的解法都不正确6.已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( )A .3B .5C .6D .7 7.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于( ) A . 3B .12C . 7D . 4 8.关于200920091()22⨯计算正确的是( )A . 0B .1C .-1D .2 9.当n 为整数时,212(1)(1)n n --+-的值为( )A .-2B .0C .1D . 2 10. 下列各式中,运算结果为负数的是( )A .(-2)×(-3)÷(+4)B .(+1)÷(-1)×(-1)÷(+1)C .1111()()()24816-⨯-÷-⨯D .(-3)×(-5)×(-7)÷(-9)11.现有两个有理数 a 、b ,它们的绝对值相等,则这两个有理数( )A .相等B .相等或互为相反数C .都是零D .互为相反数二、填空题12.如图,P 是α 的边上一点,且 P 点坐标为(3,4),则tan α = .13.在边长为 3 cm 、4cm 、5 cm 的三角形白铁皮上剪下一个最大 的圆,此圆的半径为 cm .14.小王去参军,需要一张身份证复印件,则身份证复印件和原身份证 相似形 ( 填“是”或“不是”).15.在Rt △ABC 中,∠C=90°,∠A=41°,则∠B= .16.如果一个角的两边分别与另一个角的两边平行,并且这两个角相差 90°,那么这两个角的度数分别是 .17.在243y x =-中,如果6x =,那么x = . 18.四条长度分别是2,3,4,5的线段,任选3条可以组成 个三角形.19.若代数式23x y +的值是4,则369x y --的值是 .20.如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是_______________(将你认为正确的结论序号填上).三、解答题B CA E D 21.已知△ABC 的三边比为a :b :c=5:4:6,三边上的高为 h a 、h b 、hc ,求:ha :hb :hc .22.已知: 如图, 在梯形ABCD 中, AD ∥BC, AB=CD, E 是底边BC 的中点, 连接AE 、DE. 求证: △ADE 是等腰三角形.23.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF 是矩形.请你只用无刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹).24.如图,已知在△ABC 中,D 是边BC 上一点,且CD=AC ,∠ACB 的平分线交AD 于点E ,点F 是AB 边的中点.求证:EF ∥BC .25.在某城市中,体育场在火车站以西4000 m 再往北2000 m 处,华侨宾馆在火车站以西3000 m 再往南2000 m 处,汇源超市在火车站以南3000 m 再往东2000 m 处,请建立适当的平面直角坐标系,分别写出各地的坐标.26.如图①,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连结AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图②,将图①中点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?并证明你的猜想.27.如图,请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.28.如图,AD,CE分别是△ABC的两条高,问∠BAD与∠BCE相等吗?请说明理由.AEB CD29.如下图在10×10的正方形网格中,每个小正方形的边长均为1个单位,将△ABC作相似变换得到△A1B1C1,使得边长扩大2倍,再将△A1B1C1绕点C1顺时针旋转900,得到△A2B2C1请你画出△A1B1C1和△A2B2C1 (不要求写出画法),并写出△A2B2C1的面积.30.说说你从下图中获得了哪些信息.各电视节目最爱看的人数统计表电视节目名称新闻文艺体育少儿军事爱看人数男生(人)5010200535女生(人)3518045155从中你可以得到哪些信息?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.B5.A6.A7.B8.B9.B10.C11.B二、填空题12.4313. 答案114.是15.49°16.135°、45°17.5x γ+=0;318.319.1520.①②③三、解答题21.设a= 5x ,则 b= 4x ,c=6x ,∵111222ABC a h C s ah bh ch ∆===,∴a b c ah bh ch ==, 546a b c xh xh xh ==,即546a b C h h h ==,∴::12:15:10a b c h h h = 22.证: ∵ABCD 是等腰梯形 ,∴∠B=∠C, AB=CD∵E 是BC 中点 ,∴BE=CE ,∴△ABE ≌△DCE,∴AE=DE ∴△AED 是等腰三角形23.连结AB ,EF 相交于点O ,OC 就是∠AOB 的平分线,图略. 24.证EF 是△ABD 的中位线即可25.26.略27.略28.相等,理由略29.略.30.例:男生爱看体育节目,不爱看少儿节目;女生爱看文艺节目,不爱看军事节目。

2023年江苏省无锡市中考数学真题 (解析版)

2023年江苏省无锡市中考数学真题  (解析版)

2023年无锡市初中毕业升学考试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.【答案】A3=,故选:A .2.【答案】C【解析】由题意得x-2≠0,∴x≠2.故选C .3.【答案】D【解析】解:A 选项,当12x y =⎧⎨=⎩时,24x y +=,则12x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;B 选项,当20x y =⎧⎨=⎩时,24x y +=,则20x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;C 选项,当0.53x y =⎧⎨=⎩时,24x y +=,则0.53x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;D 选项,当24x y =-⎧⎨=⎩时,20x y +=,则24x y =-⎧⎨=⎩不是二元一次方程24x y +=的解,符合题意;故选:D .4.【答案】D【解析】解:A 选项,235a a a ⨯=,故该选项不正确,不符合题意;B 选项,2a 与3a 不能合并,故该选项不正确,不符合题意;C 选项,22(2)4a a -=,故该选项不正确,不符合题意;D 选项,642a a a ÷=,故该选项正确,符合题意;故选:D .5.【答案】A【解析】解:∵函数21y x =+的图像向下平移2个单位长度,∴21221y x x =+-=-,故答案为:A .6.【答案】A【解析】解:由题意得:25.76(1) 6.58x +=.故选:A .7.【答案】B【解析】解:由旋转性质可得:55BAC DAE ∠=∠=︒,AB AD =,∵40α=︒,∴15DAF ∠=︒,70B ADB ADE ∠=∠=∠=︒,∴85AFE DAF ADE ∠=∠+∠=︒,故选:B .8.【答案】C【解析】解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形,如菱形,故①是假命题;正三角形和正五边形就不是中心对称图形,故②为假命题;正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故③为真命题;根据轴对称图形的定义和正多边形的特点,可知正n 边形共有n 条对称轴,故④为真命题.故选:C .9.【答案】B【解析】解:过点C 作CE AD ⊥,∵60D ∠=︒,2CD =,∴sin 60CE CD =⋅︒=过点B 作BF AD ⊥,∵AD BC ∥,∴四边形BCEF 是矩形,∴BF CE ==,需使222BM BN +最小,显然要使得BM 和BN 越小越好,∴显然点F 在线段MN 的之间,设MF x =,则1FN x =-,∴22222229232(1)334113323BM BN x x x x x ⎛⎫⎡⎤+=++-+=-+=+ ⎪-⎣⎦⎝⎭,∴当23x =时取得最小值为293.故选:B .10.【答案】A【解析】①有3种情况,如图1,BC 和OD 都是中线,点E 是重心;如图2,四边形ABDC 是平行四边形,F 是AD 中点,点E 是重心;如图3,点F 不是AD 中点,所以点E 不是重心;①正确②当60α=︒,如图4时AD 最大,4AB =,∴2AC BE ==,BC AE ==6BD ==,∴8DE =,∴AD =≠∴②错误;③如图5,若60α=︒,C ABC BD ∽△△,∴60BCD ∠=︒,90CDB ∠=︒,4AB =,2AC =,23BC =,3OE =1CE =,∴3CD =32GE DF ==,32CF =,∴52EF DG ==,32OG =,∴723OD =≠,∴③错误;④如图6,ABC BCD ∽△△,∴CD BC BC AB =,即214CD BC =,在Rt ABC △中,2216BC x =-,∴()221116444CD x x =-=-+,∴22114(2)544AC CD x x x +=-+=--+,当2x =时,AC CD +最大为5,∴④正确.故选:C .二、填空题(本大题共8小题,每小题3分,共24分.)11.【答案】()22x -##()22x -【解析】解:244x x -+=()22x -;故答案为:()22x -.12.【答案】5610⨯【解析】解:56000006100000610=⨯=⨯.故答案为:5610⨯.13.【答案】1-【解析】解:去分母得:3(1)2(2)x x -=-,去括号得:3324x x -=-,移项得:3243x x -=-+,合并同类项得:=1x -,检验:把=1x -代入最简公分母中:20,10x x -≠-≠,∴原分式方程的解为:=1x -,故答案为:1-14.【答案】36+##36+【解析】解:∵侧面展开图是边长为6的正方形,∴底面周长为6,∵底面为正三角形,∴正三角形的边长为2作CD AB ⊥,ABC 是等边三角形,2AB BC AC ===,1AD ∴=,∴在直角ADC ∆中,CD ==,122ABC S ∴=⨯=∴该直三棱柱的表面积为6636⨯+=+,故答案为:36+.15.【答案】2y x =-(答案不唯一)【解析】解:设1k =,则y x b =+,∵它的图象经过点(20),,∴代入得:20b +=,解得:2b =-,∴一次函数解析式为2y x =-,故答案为:2y x =-(答案不唯一).16.【答案】8【解析】解:设门高x 尺,依题意,竿长为()2x +尺,门的对角线长为()2x +尺,门宽为24x +-=()2x -尺,∴()()22222x x x +=+-,解得:8x =或0x =(舍去),故答案为:8.17.【答案】6【解析】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan 30BAO ∠=︒=33OB OA =,如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒-∠=∠,∴BFO OEA ∽ ,∴213BFO AOE S OB S OA ⎛⎫== ⎪⎝⎭ ,∴212BFO S -== ,∴3AOE S =△,∴6k =.18.【答案】910或25或212【解析】解:由(1)(5)y a x x =--,令0x =,解得:5y a =,令0y =,解得:121,5x x ==,∴()1,0A ,()5,0B ,()0,5C a ,设直线BM 解析式为y kx b =+,∴5031k b k b +=⎧⎨+=⎩解得:1252k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BM 解析式为1522y x =-+,当0x =时,52y =,则直线BM 与y 轴交于50,2⎛⎫ ⎪⎝⎭,∵12a >,∴552a >,∴点M 必在ABC 内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线AM 的解析式为y mx n=+∴031k b k b +=⎧⎨+=⎩解得:1212m n ⎧=⎪⎪⎨⎪=-⎪⎩则直线AM 的解析式为1122y x =-①如图1,直线AM 过BC 中点,,BC 中点坐标为55,22a ⎛⎫ ⎪⎝⎭,代入直线求得31102a =<,不成立;②如图2,直线BM 过AC 中点,直线BM 解析式为1522y x =-+,AC 中点坐标为15,22a ⎛⎫ ⎪⎝⎭,待入直线求得910a =;③如图3,直线CM 过AB 中点,AB 中点坐标为()3,0,∴直线MB 与y 轴平行,必不成立;2)、当分成三角形和梯形时,过点M 的直线必与ABC 一边平行,所以必有“”A 型相似,因为平分面积,所以相似比为④如图4,直线EM ∥AB ,∴CEN COA∽∴CE CN CO CA ==,∴515a a -=解得25a =;⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴2BE =,∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得2AE AB =∴22AE =222NE =-,tan tan MEN CBO ∠∠=,55222a =-,解得212a =;综上所述,910a =或225+或212+.三、解答题(本大题共10小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【答案】(1)8;(2)24y xy-+【解析】解:(1)2(3)25|4|--954=-+8=;(2)(2)(2)()x y x y x x y +---2224x y x xy=--+24y xy =-+.20.【答案】(1)11174x -+=,21174x --=;(2)13x -<<【解析】(1)2220x x +-=解:∵2,1,2a b c ===-,∴24142217b ac ∆=-=+⨯⨯=0>,∴411724b x a -±-±==解得:11174x -+=,21174x -=;(2)32251x x x +>-⎧⎨-<⎩①②解不等式①得:1x >-解不等式②得:3x <∴不等式组的解集为:13x -<<21.【答案】(1)见解析(2)见解析【解析】(1)证明:∵点D 、E 分别为AB AC 、的中点,∴AE CE =,DE BC ∥,∴ADE F ∠=∠,在CEF △与AED △中,ADE F AED CEF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS CEF AED ≌;(2)证明:由(1)证得CEF AED △≌△,∴A FCE ∠=∠,∴BD CF ∥,∵DF BC ∥,∴四边形DBCF 是平行四边形.22.【答案】(1)14(2)18【解析】(1)解:∵共有4张相同的卡片且任意抽取一张卡片,记录后放回,∴每张卡片抽到的概率都是14,设小明恰好抽到景区A 门票为事件A ,则1()4P A =,故答案为:14;(2)解:根据题意,画树状图如下:∴一共有16种等可能的情况,恰好抽到景区A 和景区B 门票的情况有2种,∴他恰好抽到景区A 和景区B 门票的概率为21168=;23.【答案】(1)90;10(2)七年级的平均分最高;八年级的中位数最大;九年级的众数最大【解析】(1)解:∵抽取的总人数为217%300÷=(人),∴C 组的人数为30030%90a =⨯=(人),100%7%32%30%19%2%10%m =-----=;故答案为:90,10;(2)解:七年级的平均分最高;八年级的中位数最大;九年级的众数最大.(答案不唯一).24.【答案】(1)见解析(2)π【解析】(1)解:如图,O 为所作;;(2)解:∵PM 和PN 为O 的切线,∴OM PB ⊥,ON PN ⊥,1302MPO NPO APB ∠=∠=∠=︒,∴90OMP ONP ∠=∠=︒,∴180120MON APB ∠=︒-∠=︒,在Rt POM 中,MPO 30∠=︒,∴3tan 3033OM PM =⋅︒=⨯=,∴O 的劣弧 MN与PM PN 、所围成图形的面积PMON MONS S =-四边形扇形21201232360π⨯⨯=⨯⨯-π=.故答案为:π-.25.【答案】(1)67.5︒(2)2【解析】(1)如图,连接OD .FD 为O 的切线,∴90ODF ∠=︒.DF AB ∥,∴90AOD ∠=︒.AD AD =,∴1452ACD AOD ∠=∠=︒. CF CD =,∴1(180)67.52F ACD ∠∠=⨯-=︒.(2)如图,连接AD ,AO OD =,90AOD ∠=︒,∴45EAD ∠=︒.45ACD ∠=︒,∴A C D E A D ∠=∠,且ADE CDA ∠=∠,∴DAE DCA ∽ ,∴DE DA DA DC=,即28DA DE DC =⋅=,∴2DA =,∴222OA OD AD ===,即半径为2.26.【答案】(1)()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩(2)销售价格为35元/kg 时,利润最大为450【解析】(1)当2230x ≤≤时,设y 关于x 的函数表达式为y kx b =+,将点()()22,48,30,40代入得,∴22483040k b k b +=⎧⎨+=⎩解得:170k b =-⎧⎨=⎩∴70y x =-+()2230x ≤≤,当3045x <≤时,设y 关于x 的函数表达式为11y k x b =+,将点()()30,40,45,10代入得,111145103040k b k b +=⎧⎨+=⎩解得:112100k b =-⎧⎨=⎩∴2100y x =-+()3045x <≤,()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩(2)设利润为w当2230x ≤≤时,22(20)(70)901400(45)625w x x x x x =--+=-+-=--+∵在2230x ≤≤范围内,w 随着x 的增大而增大,∴当30x =时,w 取得最大值为400;当3045x <≤时,22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+∴当35x =时,w 取得最大值为450450400>,∴当销售价格为35元/kg 时,利润最大为450.27.【答案】(1)8+(2)212S x =++【解析】(1)如图,连接BD 、BQ ,四边形ABCD 为菱形,∴4CB CD ==,60A C ∠=∠=︒,∴BDC 为等边三角形.Q 为CD 中点,∴2CQ =,BQ CD ⊥,∴23BQ =,QB PB ⊥.45QPB ∠=︒,∴PBQ 为等腰直角三角形,∴3PB =,62PQ = 翻折,∴90BPB ∠='︒,PB PB '=,∴26BB '=,6PE =;.同理2CQ =,∴22CC '=2QF =∴((221112222323232438222PBB CQC BB C C PBCQ S S S S ''''=-+=⨯⨯+⨯-⨯+⨯=+ 四边形梯形;(2)如图2,连接BQ 、B Q ',延长PQ 交CC '于点F .PB x =,23BQ =,90PBQ ∠=︒,∴212PQ x =+∵1122PBQ S PQ BE PB BQ =⨯=⨯ ∴22312BQ PB BE PQ x ⨯==+,∴212QE x =+,∴222123121232121212QEB S x x x ==+++ . 90BEQ BQC QFC ∠=∠=∠=︒,则90EQB CQF FCQ ∠=︒-∠=∠,∴BEQ QFC ~ ,∴2221323QFCBEQS CQ S QB ⎛⎫=== ⎪⎝⎭ ,∴24312QFC S x =+ .∵122332BQC S =⨯⨯= ∴()222123433232233121212QEB BQC QFC x x S S S S x x x ⎛⎫=++=++=+ ⎪⎪+++⎝⎭ .28.【答案】(1)3b =-,2c =-(2)①3;②2或175【解析】(1)∵二次函数()222y x bx c =++的图像与y 轴交于点A,且经过点B和点(C -∴()()244212b c b c =++⎨=-+解得:32b c =-⎧⎨=-⎩∴3b =-,2c =-,()2322y x x =--;(2)①如图1,过点E 作y 轴平行线分别交AB 、BD 于G 、H.∵()2322y x x =--,当0x =时,y =,∴(0,A ,∴AD =4BD =,∴AB ==,∴6cos 3BD ABD AB ∠==.∵90GFE GHB ∠=∠=︒,FGE HGB ∠=∠,∴FEG ABD ∠=∠,∴cos 3FEG ∠=,∴3EF EG =,∴3EF EG =.∵(0,A B 设直线AB 的解析式为y kx d=+∴4d k d ⎧=⎪⎨+=⎪⎩解得:2k d ⎧=⎪⎨⎪=⎩∴直线AB解析式为22y x =-.设2232,22E m m m ⎛-- ⎝,∴2,2G m m ⎛⎝,∴22(2)22EG m m =-+=--+∴当2m =时,EG取得最大值为,EF ∴的最大值为33⨯=.②如图2,已知tan 2ABC ∠=,令AC =,则2BC =,在BC 上取点D ,使得AD BD =,∴2ADC ABC ∠=∠,设CD x =,则2AD BD x ==-,则222(2)(2)x x +=-,解得12x =,∴tan 2AC ADC CD∠==,即()tan 22ABC ∠=.如图3构造AMF FNE ∽ ,且MN x ∥轴,相似比为:AF EF ,又∵2tan tan tan 2MFA CBA FEN ∠∠∠===,设2AM a =,则2MF a =.分类讨论:ⅰ当2FAE ABC ∠=∠时,则tan 2EF FAE AF ∠==∴AMF 与FNE V 的相似比为1:22,∴224FN a ==,2242NE MF a ==,∴()6,232E a a -,代入抛物线求得113a =,20a =(舍).∴E 点横坐标为62a =.ⅱ当2FEA ABC ∠=∠时,则tan AF FEA EF ∠==,∴相似比为,∴12FN a ==,22NE a ==,∴5,22E a a ⎛⎫+ ⎪ ⎪⎝⎭,代入抛物线求得13425a =,20a =(舍).∴E 点横坐标为51725a =.综上所示,点E 的横坐标为2或175.。

无锡市2021-2022学年九年级上学期期末数学试题(含解析)

无锡市2021-2022学年九年级上学期期末数学试题(含解析)
16.一个直角三角形的斜边长 cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________ .
17.古代数学家曾经研究过一元二次方程的几何解法.以方程 为例,三国时期的数学家赵爽在其所著的《勾股圆方图注》中记载的方法是:构造如图所示的大正方形ABCD,它由四个全等的矩形加中间小正方形组成,根据面积关系可求得AB的长,从而解得x.根据此法,图中正方形ABCD的面积为________,方程 可化为________.
A.平均数是3B.中位数是3C.方差是3D.众数是3
【答案】C
【解析】
【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】A、平均数为 ,故此选项不符合题意;
B、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;
C、方差为 ,故此选项符合题意;
D、众数为3,故此选项不符合题意.
【答案】D
【解析】
【分析】由BC两点的坐标可以得到直线BC∥y轴,则直线BC的垂直平分线为直线y=1,再由外心的定义可知△ABC外心的纵坐标为1,则设△ABC的外心为P(a,-1),利用两点距离公式和外心的性质得到 ,由此求解即可.
【详解】解:∵B点坐标为(2,-1),C点坐标为(2,3),
∴直线BC∥y轴,
A. B. C. D.
9.定义一种新运算: , ,则方程 解是()
A. , B. , C. , D. ,
10.如图,在Rt△ABC中, , ,点D、E分别是AB、AC 中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为 ;③BP存在最小值为 ;④点P运动的路径长为 .其中,正确的()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无锡市初三数学试卷(2018.12)(满分130,考试时间120分钟) 班级________姓名________一、填空题(每题3分,共30分)1.若∠A=60°,则sinA=________. A.1 B22 C.23 D.3 ( ▲ )2. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a 的值为( ▲ ) A. B. 1 C. D.3.已知点A 在半径为r 的⊙O 内,点A 与点O 的距离为6,则r 的取值范围是( ▲ ). A .r > 6 B .r ≥ 6 C .r < 6 D .r ≤ 6 4. 抛物线4)3(22+-=x y 的顶点坐标是( ▲ )A .)4,3(B .)4,3(-C .)4,3(-D .)4,2(5.将抛物线y = -x 2向上平移2个单位,再向右平移3个单位,得到的抛物线的解析式为( ▲ ) A .2(3)2y x =--- B .2(3)2y x =--+ C .2(3)2y x =-+- D .2(3)2y x =-++ 6.圆锥的底面半径为2,母线长为6,则圆锥的侧面积为( ▲ ) A .4π B .6π C .12π D .16π7.若抛物线822++=mx x y 的顶点在x 轴的负半轴上,则m 的值是( ▲ )A.-8B.8C. 8±D.68.如图所示,已知△ABC 中,BC=12,BC 边上的高h=6,D 为BC 上一点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x .则△DEF 的面积y 关于x 的函数图象大致( ▲ )A .B .C.D .9.如图,在△ABC 中∠A=60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,连接PM ,PN ,则下列结论:①PM=PN ;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC .其中正确的个数是A .1个B .2个C .3个D . 4个 ( ▲ )10.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数________.A .1.2B .2C .2或3D . 1.2或3( ▲ )二、填空题(每空2分,共16分)(第9题)(第10题)11.抛物线y =﹣x 2+6x ﹣9的顶点坐标为_____________12.若两个相似三角形的周长之比为2:3,较小三角形的面积为8cm 2,则较大三角形面积是 cm 2..13. 如图,在⊙O 中,0,70OA BC AOB ⊥∠=,则ADC ∠的度数为________14、某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是__________.15. 如图,在△ABC 中,点P 在AB 上,下列四个条件中:①∠ACP=∠B ;②∠APC=∠ACB ;③AC 2=AP •AB ;④AB •CP=AP •CB ,能满足△APC 与△ACB 相似的条件有第13题图 第15题图 第17题图16.当x m =或x n =(m n ≠)时,代数式322+-x x 的值相等,则n m x +=时,代数式322+-x x 的值为 .17.已知抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a ﹣b+c <0;④抛物线的顶点坐标为(2,b );⑤当x <2时,y 随x 增大而增大.其中结论正确的有______________.18.如图,在平面直角坐标系中,点A (0,MN 所在圆的圆心在x 轴上,其中M (0,3),N (4,5),点P 为弧MN 上一点,则线段AP 长度的最小值为___ ____. 三、解答题(共84分)19. 计算或化简(本题满分8分) (1); (2).20.解方程:(本题满分8分)(1)x 2=8x+9. (2)3x 2-6x +1=0(用公式法)21.(8分)如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A 1B 1C 1及△A 2B 2C 2; (1)若点A 、C 的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B 的坐标; (2)画出△ABC 关于y 轴对称再向上平移1个单位后的图形△A 1B 1C 1;(3)以图中的点D 为位似中心,将△A 1B 1C 1作位似变换且把边长放大到原来的两倍,得到△A 2B 2C 2.22.(本题满分7分)如图,防洪大堤的横断面是梯形ABCD ,其中AD ∥BC ,坡角α=60°,汛期来临前对其进行了加固,改造后的坡长为AE ,背水面坡角β=45°.若原坡长AB =16m ,求改造后的坡长AE (结果保留根号).23.(本题7分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点M 在⊙O 上,MD 恰好经过圆心O ,连接MB . (1)若CD=16,BE=4,求⊙O 的直径; (2)若∠M=∠D ,求∠D 的度数.24.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC,点D 在边AB 上,连接CD ,将线段CD 绕点C 顺时针旋转90°至CE 的位置,连接AE. (1)求证:AB ⊥AE;(2)若BC 2=AD ·AB, 求∠ACE 的度数.25.(8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m (30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元. (1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.A B C DE αβ26.(10分)在矩形ABCD 中,AB =3,AD =4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD .若两个点同时运动的时间为x 秒(0<x ≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最值?并求出最值; (2)是否存在x 的值,使得QP ⊥DP ?试说明理由.27.(10分)如图,是将抛物线2y x =-平移后得到的抛物线,其对称轴为1x =,与x 轴的一个交点为(1,0)A -,另一交点为B ,与y 轴交点为C .(1)求抛物线的函数表达式;(2)若点N 为抛物线上一点,且BC NC ⊥,求点N 的坐标;(3)点P 是抛物线上一点,点Q 是一次函数3322y x =+的图象上一点,若四边形OAPQ 为平行四边形,这样的点P Q 、是否存在?若存在,分别求出点P Q 、的坐标,若不存在,说明理由.28.(10分)如图1,图形ABCD 是由两个二次函数y 1=kx 2+m (k <0)与y 2=ax 2+b (a >0)的部分图象围成的封闭图形.已知A (1,0)、B (0,1)、D (0,﹣3). (1)直接写出这两个二次函数的表达式;(2)判断图形ABCD 是否存在内接正方形(正方形的四个顶点在图形ABCD 上),并说明理由; (3)如图2,连接BC ,CD ,AD ,在坐标平面内,求使得△BDC ∽ △ADE 的点E 的坐标.参考答案一、选择:C A A A C C B D D D二、填空:11.(3,0) 112.18 13.35% 14.50︒ 15.①②③ 16.2 17.①②④ 18.3三、解答:19.(1)4 (2)12x+18 20.(1)x1=9 x2=-1 (2)363±=x21.略 22.68 23.(1)10 (2)30︒24.提示:(1)证△CBD≌△CAE,得∠CBD=∠CAE (2)由BC2=AD·AB得AC2=AD·AB,得△ACD≌△ABC25.【答案】(1)y=120 (030)[120(30)] (30)[120(30)] (100)x xx x x mm x m x<≤⎧⎪--<≤⎨⎪--<≤⎩;(2)30<m≤75.26.【解析】(2)存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴BQ PCPC CD=,即343x xx-=-,解得x=(舍去)或x= x时,QP⊥DP.27.(1)()412+--=xy (2)N(1,4) (3)P(0,3)Q(1,3)或P(415,21)Q(415,23)28.(1)y1=﹣x2+1,y2=3x2﹣3;(2)设M(m,﹣m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2﹣3)为第四象限的图形上一点,∴MM'=(1﹣m2)﹣(3m2﹣3)=4﹣4m2,由抛物线的对称性知,若有内接正方形,∴2m=4﹣4m2,∴m=或m=(舍),∵0<<1,∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,﹣3),∴E(0,﹣),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,﹣1),综上,使得△BDC∽△ADE的点有(0,﹣)或(,﹣1)。

相关文档
最新文档