中考数学概率统计知识点总结
中考数学概率知识点归纳

中考数学概率知识点归纳一天天积累,一点点努力,一步步前进,一滴滴汇聚,终于到了中考这一天。
放松心情,面带微笑,保持信心,你必将拥有灿烂的人生。
祝中考顺利!下面是小编给大家带来的中考数学概率知识点,欢迎大家阅读参考,我们一起来看看吧!中考数学概率知识点:随机事件1.随机事件的定义.2·计算简单事件概率的方法,重点学习了两种随机事件概率的计算方法,第一种,只涉及一步实验的随机事件发生的概率,如根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种,通过列表法、列举法、树形图来计算涉及两步或两步以上实验的随机事件发生的概率,如配紫色,对游戏是否公平的计算.3·利用频率估计概率,分为如下两种情况:第一种,利用实验的方法进行概率估算;第二种,利用模拟实验的方法进行概率估算.如利用计算器产生随机数来模拟实验的方法.4.体会大量重复实验中的频率与事件发生的概率之间的关系,通过设计简单的概率模型.重在对事件发生可能性的刻画,来帮助人们在不确定的情境中做出合理的决策,如通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型.中考数学备考知识点:随机事件发生的可能性随机事件发生的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
中考数学知识点总结:概率统计的9个考点考点1:确定事件和随机事件考核要求:(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率考核要求:(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
2022版中考数学总复习第一部分考点知识梳理 第八章 统计与概率 概率

8.2 概 率◎能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.◎知道通过大量地重复试验,可以用频率来估计概率.概率问题是安徽中考近几年必考内容之一,以填空题和解答题为主.2021年单独考查了概率计算(2021年第9题),2017~2020年概率与统计相结合在解答题中考查(2020年第21题,2019年第21题,2018年第21题,2017年第21题),一般都是两步概率,难度在中等或中等以上.解答此类问题一般要先用画树状图或列表法分析所有等可能出现的结果.十年真题再现命题点1 概率的计算[10年6考] 1.(2021·安徽第9题)如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( D )A.14 B.13 C.38 D.49【解析】根据题意,图中共可围成9个矩形,而含点A 的矩形有4个,∴P (所选矩形含点A )=49. 2.(2013·安徽第8题)如图,若随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B )A.16 B.13 C.12 D.23【解析】用画树状图或列表法可知,共有3种等可能的情况为K 1K 2,K 1K 3,K 2K 3,其中让两盏灯泡同时发光的只有K 1K 3这1种情况,即让两盏灯泡同时发光的概率为13.3.(2012·安徽第8题)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为( B ) A.16 B.13 C.12 D.23【解析】第一个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,∴第一个打电话给甲的概率是13.4.(2016·安徽第21题)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.解:(1)用树状图表示所有可能结果:∴得到所有可能的两位数为11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88.(2)共有16个两位数,其中算术平方根大于4且小于7的有6个,分别为17,18,41,44,47,48,所求概率P=616=38.5.(2014·安徽第21题)如图,管中放置着三根同样的绳子AA1,BB1,CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随机选两个打一个结,求这三根绳子连接成一根长绳的概率.解:(1)共有3种等可能情况,其中恰好选中绳子AA1的情况为1种,∴小明恰好选中绳子AA1的概率P=13.(2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种等可能情况,列表或画树状图表示如下:或其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳,所以能连接成为一根长绳的情况有6种:①左端连AB,右端连A1C1或B1C1;②左端连BC,右端连A1B1或A1C1;③左端连AC,右端连A1B1或B1C1.故这三根绳子连接成为一根长绳的概率P=69=23.命题点2统计与概率相结合的问题[10年4考]6.(2020·安徽第21题)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.解:(2)由图可知被抽取的240人中最喜欢B套餐的人数为84,∴最喜欢B套餐的频率为84240=0.35, ∴估计全体960名职工中最喜欢B套餐的人数为960×0.35=336.(3)由题意,从甲、乙、丙、丁四人中任选两人,总共有6种等可能的不同结果,列举如下:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁.其中甲被选到的结果有甲乙、甲丙、甲丁,共3种,故所求概率P=36=12.7.(2019·安徽第21题)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸.个数据按从小到大的顺序整理成如下表格:按照生产标准,注:在统计优等品个数时,)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9 cm.(ⅰ)求a的值;(ⅱ)将这些优等品分成两组,一组尺寸大于9 cm,另一组尺寸不大于9 cm.从这两组中各随机抽取1件进行复检,求抽取到的2件产品都是特等品的概率.解:(1)∵抽检的合格率为80%,∴合格产品有15×80%=12个,即非合格品有3个.∵编号①至编号对应的产品中,只有编号①与编号②对应的产品为非合格品,∴编号为的产品不是合格品.(2)(ⅰ)∵从编号⑥到编号对应的6个产品为优等品,中间两个产品的尺寸数据分别为8.98和a ,∴中位数为8.98+a 2=9,则a =9.02.(ⅱ)优等品当中,编号⑥、编号⑦、编号⑧对应的产品尺寸不大于9 cm,分别记为A 1,A 2,A 3,编号⑨、编号、编号对应的产品尺寸大于9 cm,分别记为B 1,B 2,B 3,其中的特等品为A 2,A 3,B 1,B 2.从两组产品中各随机抽取1件,有如下9种不同的等可能结果:A 1B 1,A 1B 2,A 1B 3,A 2B 1,A 2B 2,A 2B 3,A 3B 1,A 3B 2,A 3B 3,其中2件产品都是特等品的有如下4种不同的等可能结果:A 2B 1,A 2B 2,A 3B 1,A 3B 2,∴抽到的2件产品都是特等品的概率P =49.8.(2017·安徽第21题)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5.(1)(2)依据表中数据分析,(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.解:(1)提示:甲的方差:110×[(9−8)2+2×(10−8)2+4×(8−8)2+2×(7−8)2+(5−8)2]=2.把丙运动员的射靶成绩从小到大排列:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6.(2)∵甲的方差是2,乙的方差是2.2,丙的方差是3,∴s 甲2<s 乙2<s 丙2,∴甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙丙甲),(乙甲丙),(丙甲乙),(丙乙甲). ∵共有6种情况,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率=46=23.教材知识网络重难考点突破考点1确定性事件与随机事件典例1(2021·湖南怀化)“成语”是中华文化的瑰宝,是中华文化的微缩景观.下列成语:①“水中捞月”,②“守株待兔”,③“百步穿杨”,④“瓮中捉鳖”描述的事件是不可能事件的是() A.① B.② C.③ D.④【解析】①“水中捞月”是不可能事件;②“守株待兔”是随机事件;③“百步穿杨”是随机事件;④“瓮中捉鳖”是必然事件.【答案】A提分1(2021·广西玉林)一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( A )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球考点2频率与概率典例2(2021·江苏盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表法求解) 【答案】(1)110.(2),列表如下:∵共有12种等可能的结果,612=12.(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有等可能的结果,再求出概率.(2)当一个事件涉及三个或更多元素时,为了不重不漏地列出所有等可能的结果,通常采用画树状图法求概率.的概率是 0.8 .数点后一位)【解析】根据表格数据可知频率稳定在0.8,所以估计这名运动员射击一次时“射中9环以上”的概率是0.8. 提分3 (2021·河北)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同. (1)求嘉淇走到十字道口A 向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.解:(1)嘉淇走到十字道口A向北走的概率为13.(2)补全树状图如下:共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,∴向西参观的概率为39=13,向南参观的概率=向北参观的概率=向东参观的概率=29,∴嘉淇经过两个十字道口后向西参观的概率较大.。
中考数学概率与统计问题的解题思路总结与应用

中考数学概率与统计问题的解题思路总结与应用概率与统计是数学中的重要分支,也是中考数学题中常见的考点之一。
对于解题的思路和方法,下面将进行总结与应用。
一、概率问题的解题思路概率问题主要是考察事件发生的可能性大小。
解决概率问题的思路主要包括以下几个步骤:1.明确问题:首先,要仔细阅读题目,理解问题的背景和要求。
明确题目中给出的条件和所求的结果。
2.确定事件:根据题目中的信息,确定相关的事件,例如抛硬币正面朝上、抽到红色扑克牌等。
3.计算可能性:根据所求事件的可能性和总事件的可能性,计算概率。
可能性可以通过等可能原理、频率和样本空间等概念进行计算。
4.化简计算:如果题目复杂,可以通过化简计算简化问题。
例如,可以利用互斥事件、相对补事件等化简问题。
二、统计问题的解题思路统计问题主要是考察一组数据的分布情况和统计性质。
解决统计问题的思路主要包括以下几个步骤:1.整理数据:首先,要对题目中给出的数据进行整理和归类。
可以使用表格、直方图等方式对数据进行展示。
2.提取关键信息:根据题目中的要求,提取所需的关键信息。
例如,计算平均值、中位数、众数等。
3.计算统计性质:根据提取的关键信息,进行计算。
例如,可以计算某个区间的频数、频率、方差等。
4.数据分析:对统计结果进行分析和解释。
可以给出结论,分析数据的特点和规律。
三、概率与统计问题的应用概率与统计的思路和方法不仅可以用于解题,还可以应用到生活实际中。
例如:1.调查问卷:在进行调查问卷时,可以使用统计方法对数据进行整理和分析,得出相关结论。
2.赌博和投资:在赌博和投资中,可以利用概率进行决策,评估风险和可能性。
3.产品质量管理:企业可以利用统计方法对产品质量进行抽样检验,评估产品合格率和不合格率。
4.医学研究:在医学研究中,可以利用统计方法对患者的生存率、治疗效果等进行分析和比较。
综上所述,概率与统计问题的解题思路可以通过明确问题、确定事件、计算可能性、化简计算等步骤进行,而在实际生活中也能够应用到各个领域中。
中考数学概率与统计的重要公式及应用

中考数学概率与统计的重要公式及应用概率与统计是数学的一个重要分支,广泛应用于各个领域。
在中考数学中,概率与统计也是一个重点考察的内容。
本文将介绍一些中考概率与统计中的重要公式及其应用。
一、概率公式1. 事件的概率公式概率是一个事件发生的可能性,通常用P(A)表示。
对于一个随机试验,若事件A有m种情况中的一种,总的可能情况有n种,那么事件A的概率可以用以下公式表示:P(A) = m / n2. 互斥事件的概率公式互斥事件指的是两个事件不能同时发生的情况。
若事件A和事件B 是互斥事件,那么事件A或事件B发生的概率可以用以下公式表示:P(A或B) = P(A) + P(B)3. 独立事件的概率公式独立事件指的是两个事件的发生不会相互影响的情况。
若事件A和事件B是独立事件,那么事件A和事件B同时发生的概率可以用以下公式表示:P(A且B) = P(A) × P(B)二、统计公式1. 众数众数指的是一组数据中出现次数最多的数值。
对于一组数据集合,若某个数值出现的次数最多,那么这个数值就是众数。
2. 中位数中位数指的是一组数据中处于中间位置的数值。
对于一组有序的数据集合,若数据个数为奇数,则中位数为排序后处于中间位置的数值;若数据个数为偶数,则中位数为排序后位于中间的两个数值的平均值。
3. 平均数平均数指的是一组数据的总和除以数据的个数所得到的值。
对于一组数据集合,设数据的个数为n,数据之和为sum,则平均数可以用以下公式表示:平均数 = sum / n三、应用1. 概率应用概率在现实生活中有广泛应用。
例如,在购买彩票时,我们可以利用概率计算中奖的可能性;在赌场游戏中,可以通过概率来决策;在投资时,可以利用概率评估风险和回报等。
2. 统计应用统计在现实生活中也有广泛应用。
例如,在调查民意时,可以利用统计方法对样本数据进行分析,从而推断出整个人群的情况;在质量控制中,可以利用统计方法对生产过程中的数据进行分析,从而进行质量改进;在市场调研中,可以利用统计方法对市场需求进行预测。
中考数学统计与概率基础知识

中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。
本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。
一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。
概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。
一般情况下,概率用一个介于0和1之间的实数表示。
2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。
统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。
二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。
数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。
收集到的数据应具有代表性,以确保统计结果准确可靠。
2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。
通过数据的整理,可以更好地进行后续的统计分析。
3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。
描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。
推论性统计则是通过样本数据的分析来推断总体的特征。
三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。
在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。
2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。
频率法是指通过大量实验或观测数据来计算概率。
几何法是指通过对几何模型进行分析和推理来计算概率。
四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。
使用随机抽样的方法可以减小误差,提高结果的可靠性。
2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。
中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。
以下是对这些知识点的详细梳理。
1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。
概率的计算方法包括:理论概率、几何概率和频率概率。
-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。
-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。
-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。
2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。
统计的主要目的是对研究对象进行客观的描述和分析。
-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。
-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。
-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。
3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。
抽样调查的方法包括概率抽样和非概率抽样。
-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。
-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。
4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。
中考数学中的概率与统计问题解题方法总结

中考数学中的概率与统计问题解题方法总结概率与统计是中考数学中重要的考点之一,掌握相关解题方法对于获得高分至关重要。
本文将总结中考数学中的概率与统计问题解题方法,帮助同学们更好地备考。
一、概率问题解题方法1.1 随机事件的概率计算在解决概率问题时,首先要明确问题中所涉及的随机事件,然后确定事件的样本空间和事件的可能数。
计算概率时,可采用“有利结果数与总结果数比”或“频率”两种方法。
1.2 事件的排列与组合当问题中涉及的事件是有序排列或无序组合时,可以使用排列组合的方法来计算概率。
对于有序排列的事件,可以使用全排列的方法,对于无序组合的事件,可使用组合数的方法。
1.3 复合事件的概率计算当问题中的事件是复杂的复合事件时,可以使用独立事件的概率乘法原理或互斥事件的概率加法原理来计算概率。
需要注意确定事件之间的独立性或互斥性。
二、统计问题解题方法2.1 数据的整理与描述在解决统计问题时,首先需要对给定的数据进行整理和描述。
可通过制表、绘图等方式对数据进行整理,计算出均值、中位数、众数、极差等统计量,从而有助于进一步分析和解决问题。
2.2 统计规律的探究通过观察和分析给定的统计数据,寻找其中的规律和趋势,可以通过绘制直方图、折线图等来展示数据的变化趋势和分布情况。
这有助于深入理解数据的特点,并根据规律解决问题。
2.3 数据的分析与推理在统计问题中,常常需要根据已经给定的数据进行推理和判断。
这时需要通过归纳、分析,利用已知的统计规律和统计方法来判断未知的事物或问题的解答。
三、应用举例3.1 概率问题的应用例如,某次抽奖活动,参与抽奖的人数为100人,其中60人是女性,40人是男性。
如果从中随机抽取一人,求抽中女性的概率。
解题时,可根据女性人数占总人数的比例,得出概率为60/100=0.6。
3.2 统计问题的应用例如,某班级同学的考试成绩如下:74, 68, 82, 90, 76, 84, 78, 86, 92, 80。
人教版中考数学第一轮复习第八章 统计与概率

第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
数学中考统计与概率题型解题方法总结

数学中考统计与概率题型解题方法总结统计与概率是数学中考试中常出现的题型之一,通过掌握一些解题方法和技巧,能够帮助我们更好地应对这类题目。
本文将对中考统计与概率题型的解题方法进行总结,希望对同学们的备考有所帮助。
一、频数统计题频数统计题是统计与概率题型中最为基础和常见的一类题目。
在这类题目中,通常会给出一组数据,要求我们统计某个数值或某个范围内数据出现的次数。
解题方法:1. 仔细读题,理解题意。
确定需要统计的数值或范围,并分析给定数据的特点。
2. 建立频数统计表格。
将给定数据按照一定的顺序排列,并在表格中记录每个数值或范围的出现次数。
3. 统计频数。
根据数据进行计数,并记录在频数统计表格中。
4. 统计完成后,根据题目要求回答相关问题。
举例说明:例如,某题目给出以下一组数据:3, 4, 3, 2, 5, 4, 3, 1, 2, 4。
题目要求统计数据中各个数字出现的次数。
解题步骤:1. 建立频数统计表格如下:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | | | | | |2. 对数据进行计数:数字1出现1次,数字2出现2次,数字3出现3次,数字4出现3次,数字5出现1次。
3. 填入频数统计表格:数字 | 1 | 2 | 3 | 4 | 5 |------|---|---|---|---|---|频数 | 1 | 2 | 3 | 3 | 1 |4. 统计完成后,根据需要回答相关问题,比如出现次数最多的数字是3,共出现了3次。
二、频率与百分数计算题在统计与概率题型中,频率与百分数计算题目是针对概率进行计算和比较的题目。
通常会给出一组数据,并要求我们计算某个数值或范围的频率或百分数。
解题方法:1. 读题,理解题意。
确定频率或百分数的计算对象,并分析给定数据的特点。
2. 计算频率或百分数。
使用给定数据和统计结果计算所需的频率或百分数。
3. 根据题目要求,回答相关问题或进行比较。
中考复习初中数学概率与统计复习重点整理

中考复习初中数学概率与统计复习重点整理概率与统计是初中数学的一个重要分支,也是中考数学考试中的一大重点内容。
复习概率与统计不仅要熟悉基本概念和公式,还要能够灵活运用,解决实际问题。
下面是中考复习初中数学概率与统计的重点内容整理。
一、概率1. 基本概率公式基本概率公式为:P(A) = 事件A的可能性/总的可能性其中,事件A的可能性是指事件A发生的次数或数目,总的可能性是指所有可能事件发生的次数或数目。
2. 事件间的关系- 互斥事件:两个事件不能同时发生。
- 互逆事件:事件A发生的概率与事件A不发生的概率之和为1。
- 独立事件:事件A的发生与事件B的发生没有关系。
3. 概率的应用- 抽样:从一大群体中取出一小部分进行调查,通过样本推断总体特征。
- 排列与组合:计算不同元素的排列和组合个数。
- 条件概率:在已知其他事件发生的条件下,某个事件发生的概率。
二、统计1. 统计调查统计调查是通过对一定数量的个体进行观察和测量,并对结果进行整理与分析,得出总体特征的方法。
2. 数据的收集与整理- 原始数据:未经处理的数据。
- 频数与频率:频数是指每个数值出现的次数,频率是指频数与总数的比值。
- 统计表与统计图:用于展示统计数据的表格和图形。
3. 数据的分析与应用- 平均数:一组数的算术平均值,用于表现数据的集中趋势。
- 中位数:将一组数据从小到大排列,位于中间的数据。
- 众数:出现频率最高的数值。
- 极差:一组数的最大值与最小值的差别。
4. 直方图与折线图- 直方图:用于表示连续数据的统计图,横轴表示分组区间,纵轴表示频率或频数。
- 折线图:用于表示离散数据的统计图,横轴表示数据类别,纵轴表示频率或频数。
总结:中考复习初中数学概率与统计重点内容主要包括概率的基本概念与公式、事件间的关系、概率的应用,以及统计的统计调查、数据的收集与整理、数据的分析与应用,以及直方图与折线图的应用。
熟练掌握这些内容,能够解决与概率与统计相关的实际问题,对应试有很大帮助。
中考数学解题技巧概率与统计

中考数学解题技巧概率与统计中考数学解题技巧——概率与统计概率与统计是数学中考试中的重点内容之一,掌握解题技巧对于取得优异成绩至关重要。
本文将介绍一些常见的概率与统计解题技巧,帮助同学们在中考中取得好成绩。
一、概率解题技巧概率解题主要涉及到事件的发生可能性计算和概率的相加相乘规则。
下面将介绍几种常见的情况及其解题技巧。
1. 抽奖问题抽奖问题是概率解题中常见的一类问题。
其中包括有放回和无放回两种情况。
在有放回的情况下,每次抽取后将所抽取的物品放回,下次抽取时物品的种类和数量都不会发生改变;而在无放回的情况下,每次抽取后所抽取的物品不会放回,下次抽取物品的种类和数量都会发生改变。
解决抽奖问题的关键在于确定抽取每个物品的概率。
通过计算每个物品被选中的次数占总次数的比例,即可得到概率。
2. 事件的互斥与独立在概率解题中,我们经常会遇到事件的互斥与独立问题。
互斥指的是两个事件不可能同时发生,而独立指的是一个事件的发生不影响另一个事件的发生。
解决互斥问题的关键是利用概率的相加规则,即将各个互斥事件发生的概率相加即可。
解决独立问题的关键是利用概率的相乘规则,即将各个独立事件发生的概率相乘即可。
二、统计解题技巧统计解题主要涉及到数据的收集、整理和分析。
下面将介绍几种常见的统计解题技巧。
1. 数据的整理与分组在统计解题中,经常需要整理和分组数据。
整理数据包括去掉重复数据、列出各个数据的频数等。
分组数据则是将数据按照一定的范围进行分组,并计算出每组数据的频数。
对于大量数据的整理与分组,可以使用表格或直方图等形式进行展示,以便更好地分析和理解数据的规律。
2. 数据的分析与推理在统计解题中,我们常常需要根据给定的数据进行一些分析和推理。
比如判断数据的分布趋势、找出数据中的异常值等。
在进行数据分析与推理时,应该注重观察数据的规律,运用一些统计方法和技巧,如算术平均数、中位数、众数等,以便更好地理解数据。
三、实例分析为了更好地理解和应用上述的概率与统计解题技巧,下面我们将通过一个实例进行分析。
中考数学中的概率与统计实际问题解决实例总结

中考数学中的概率与统计实际问题解决实例总结概率与统计是数学中的重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计,我们可以应用数学知识解决实际问题,下面将通过实例总结几种常见的中考数学概率与统计实际问题的解决方法。
一、抽签问题抽签问题是概率与统计中常见的问题之一。
考生在中考数学中经常会遇到类似的问题,例如:某班有30个学生,其中有10名男生、20名女生,现在从中随机抽取一位学生,求抽到男生的概率。
解决这类问题的方法是先计算男生和女生的人数比例,然后利用概率的定义,男生的数量除以总人数,即可得到抽到男生的概率。
二、频率与统计问题频率与统计问题是指根据已有的数据进行分析与描述。
例如:某班有40名学生,学校要了解学生住校的比例,并调查了其中20名学生的住校情况,得知住校学生有14名,那么班上住校学生的估计人数是多少?解决这类问题的方法是利用已知数据进行比例估计。
已知住校学生与非住校学生的比值是14:6,可得比值为7:3,因此班上住校学生的估计人数为总人数乘以比值,即40 ×(7/10)= 28人。
三、骰子问题骰子问题是概率与统计中较为常见的问题之一。
例如:某游戏中,玩家需要掷两个骰子,求两个骰子的点数之和为7的概率。
解决这类问题的方法是可以列出所有掷骰子的可能数,然后计算出点数之和为7的情况数量,再利用概率的定义,点数之和为7的次数除以总次数,即可得到所求的概率。
四、问卷调查问题问卷调查问题是概率与统计中常见的实际问题之一。
例如:某班有50名学生,学校要了解学生是否有养宠物,并进行问卷调查,问卷结果显示有30名学生有养宠物,那么班上养宠物学生的估计人数是多少?解决这类问题的方法是利用问卷调查结果进行比例估计。
已知养宠物学生与非养宠物学生的比值是30:20,可得比值为3:2,因此班上养宠物学生的估计人数为总人数乘以比值,即50 ×(3/5)= 30人。
通过以上实例的总结,我们可以看到概率与统计在中考数学中具有重要作用。
九年级数学统计知识点

九年级数学统计知识点数学统计是数学的一个重要分支,主要研究数据的整理、分析和推断。
在九年级数学学习中,统计知识点是必不可少的。
本文将围绕九年级数学统计知识点展开论述,分别介绍数据收集、数据整理、数据分析以及概率等方面的内容。
一、数据收集数据收集是统计的基础步骤,主要包括调查、观察和实验三种方式。
调查是指通过问卷调查或面对面的访谈方式,收集样本数据;观察是指通过对现象或行为进行观察,收集数据;实验是指安排实验条件进行探究,收集数据。
在数据收集过程中,需要注意采样方法的选择、调查问题的设计以及数据的真实性和可靠性。
二、数据整理数据整理是对收集到的原始数据进行整理和归类的过程,主要包括数据的分类、数据的表格形式展示以及数据的图表形式展示等方面。
数据的分类是将数据按照某种特征或属性进行分类;数据的表格形式展示是将数据整理到表格中,便于对数据进行分析;数据的图表形式展示是通过直方图、折线图、饼图等方式将数据在平面上形象地展示出来。
三、数据分析数据分析是统计的核心内容,通过对数据进行整理、描述和推理,得出结论并进行预测。
数据分析方法主要有统计量的计算、数据的描述、相关性的分析和预测等。
统计量的计算包括众数、中位数、平均数等统计指标的计算;数据的描述是通过频数分布表、频数分布图等方式对数据进行描述;相关性的分析是研究两个或多个变量之间的关联程度;预测是通过对已有数据进行分析,运用数学模型对未来数据进行预测。
四、概率概率是统计学中的重要概念,用来描述随机事件发生的可能性。
在概率的学习中,主要包括样本空间、事件、概率计算以及概率的运算规则等方面。
样本空间是所有可能结果的集合;事件是样本空间的子集,表示某种特定的结果;概率计算是通过等可能性原则或频率计算来确定事件发生的可能性;概率的运算规则包括加法规则、乘法规则以及互斥事件的概率计算等。
综上所述,九年级数学统计知识点涉及到数据的收集、整理、分析以及概率的计算等方面。
新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。
中考数学专题复习—— 概率与统计

中考数学专题复习——概率与统计概率的本质随机现象用以下两个特征来刻划:一个是结果的随机性,即在相同条件下作重复实验时,实验的结果不止一个,在实验之前无法预知那一个结果会发生;另一个是频率的稳定性,既大量实验时,任一结果(事件)出现的频率尽管是随机的,却稳定在这个事件发生的概率的附近,实验次数越多,频率与概率偏差大的可能性越小。
一、你会玩摸球游戏吗?例1、一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外都相同。
(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球是等可能的。
你同意他的说法吗?为什么?(2)搅均后从中一把摸出两个球,请通过列表或树状图求两个球都是白球的概率;(3)搅均后从中任意摸出一个球,要使摸出红球的概率为23,应如何添加红球?二、你会玩中学吗?命题趋势分析:1、概率与其它知识点的有机结合是近年来中考命题的热点和今后的方向,值得我们关注。
2、结合具体问题,直接考查统计与概率的有关概念、图象信息捕捉运用能力。
命题趋势一:概率与其它知识点的有机结合例2、有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.(一)方程一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率;(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.(二)不等式已知关于x的不等式ax+3>0(a≠0).(1)当a=-2时,求此不等式的解,并在数轴上表示此不等式的解集;(2)小明准备了十张形状、大小完全相同的不透明卡片,上面分别写有整数-10、-9、-8、-7、-6、-5、-4、-3、-2、-l,将这10张卡片写有整数的一面向下放在桌面上.从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率.(三)二元一次方程的整数解不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为0.5.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?(四)完全平方数在a2□4a□4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是()A、1B、12C、13D、14(五)相似三角形如图,在梯形ABCD中,若AB//DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少(注意:全等看成相似的特例)?(2)请你任选一组相似三角形,并给出证明.命题趋势二:结合具体问题,直接考察统计与概率的有关概念、图象信息捕捉运用能力基本概念有三数(平均数、中位数、众数)、三差(极差、方差、标准差)、对事件和概率的理解,主要考查形式以填空题和选择题为主。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学概率统计知识点总结
考点1:确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点2:事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点3:等可能试验中事件的概率问题及概率计算
考核要求
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点4:数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点5:统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的
思想方法。
考点6:平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。
注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点7:中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点8:频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解
决有关的实际问题。
解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点9:中位数、众数、方差、标准差、频数、频率的应用考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,
研究解决有关的实际生活中问题,然后作出合理的解决。