椭圆的定义及其标准方程

合集下载

2.1.1 椭圆及其标准方程

2.1.1 椭圆及其标准方程

(3)已知两圆 C1:(x-4) +y =169,C2:(x+
2 2
2
2
4) +y =9,动圆和圆 C1 内切,和圆 C2 外切,求 动圆圆心的轨迹方程.
解:如图所示,设动圆圆心为 M(x,y),半径为 r. 由题意得动圆 M
和内切于圆 C1, ∴|MC1|=13-r. 圆 M 外切于圆 C2, ∴|MC2|=3+r. ∴
一、椭圆的定义
平面内到两个定点F1,F2的 定义
距离之和等于常数
(大于| F1F2|)的点的集合叫作椭圆 两个 定点 F1,F2叫作椭圆的焦点 两焦点F1,F2间的 距离 叫作椭圆的焦距 P={M| |MF1|+|MF2|=2a, >| F1F2|}
焦点 焦距 集合语

椭圆的标准方程
焦点在x轴上
解: 设圆 P 的半径为 r ,又圆 P 过点 B , ∴ |PB| =r,又∵圆P与圆A内切,圆A的半径为10. ∴两圆的圆心距|PA|=10-r, 即|PA|+|PB|=10(大于|AB|). ∴点P的轨迹是以A、B为焦点的椭圆. ∴2a=10,2c=|AB|=6, ∴a=5,c=3.∴b2=a2-c2=25-9=16.
以过 B、C 两点的直线为 x 轴,线段 BC 的垂直平分线为 y 轴,建立直 角坐标系 xOy,如图所示.由|BC|=8,可知点 B(-4,0),C(4,0),c =4. 由|AB|+|AC|+|BC|=18,|BC|=8,得|AB|+|AC|=10.因此,点 A
的轨迹是以 B,C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之
a2= 15, 解得 2 b = 5.
x2 y2 所以所求椭圆的方程为 + = 1. 15 5 y2 x2 ②当焦点在 y 轴上时,设椭圆的标准方程为 2+ 2=1(a> b> 0).依题 a b

椭圆及其标准方程

椭圆及其标准方程

例: ( 1 ) 已知 F , F 是两定点, F F 6 ,动点 M 满足 1 2 1 2
线段 MF MF 6 ,则动点的轨迹为 ___ 1 2
(2 ) 已知 A ( -1 ,0 ), B ( 1 ,0 ), M 是一个动点 M 到 AB 两点的距离之和为 6 ,
椭圆 则 M 的轨迹为 ______
3 2 2
+
2 5 +2 2
+
3 2 2
+
2 5 -2 =2 2
10.即
������2 ������2 ∴ 所求椭圆的方程为 + =1. 10 6
反思根据已知条件,判定焦点的位置,设出椭圆的方程是解决此
题的关键.
“神五”飞船的运行轨道是以地心为一个焦点的椭圆,地 球半径为R公里,飞船的近地点距地球地面200公里,远 地点距地球地面350公里,则飞船的椭圆轨道的标准方程 为——
♦自然界处处存在着椭圆,我们如
何用自己的双手画出椭圆呢?
先 回 忆 如 何 画 圆
·
· F
1
·
F2
一、椭圆的定义
椭圆定义的文字表述:
• 平面内到两个定点F1,F2的距离的和等于定长 (2a)(大于|F1F2 |)的点的轨迹叫椭圆。
• 定点F1、F2叫做椭圆的焦点。 • 两焦点之间的距离叫做焦距(2c)。
������2 ������2 A 的轨迹方程是 + =1(y≠0). 25 16
【典型例题 2】 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点 P 到两焦点的 距离的和等于 10; (2)两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过点 - ,

椭圆及标准方程

椭圆及标准方程

5、若某个椭圆的长轴、短轴、焦距依次成等差数列, 3 5 则其离心率e=__________
点 6、 P是椭圆
x2 a2 y2
(±a,0) b2 1上的动点,当P的坐标为时,
(0, ±b) a P到原点O的最大距离为;当P的坐标为时,
b P到原点O的最小距离为-------------;设F1 (c,0),则当P的 坐标为 (-a,0) 时, 的最大值为 a+c ;则当P的 PF
|x|≤ b,|y|≤ a
同前
(b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c) 同前 同前
对称性
顶点坐标 焦点坐标 半轴长 离心率 a、b、c的关 系
(a,0)、(-a,0)、 (0,b)、(0,-b) (c,0)、(-c,0) 长半轴长为a,短 半轴长为b. a>b
练习2 给定B、C两点,且 BC 8,△ABC 的周长为18。建立合适的坐标系,求动点A 的轨迹方程?
y A
AB AC 10
x
B (-4, 0)
O
C (4, 0)
x y 1 y 0 25 9
2
2
题型三
椭圆定义的应用
2 2
例3
x y 已知椭圆 2 2 (a>b>0), 1 a b F1 ,F2是它的焦点,AB是过F1的 直线与椭圆交于A、B两点,求 ABF2的周长。
a 2 b2 c 2
B1F1 B1F2 B2 F1 B2 F2 a
4、椭圆的离心率 (刻画椭圆扁平程度的量)
c 椭圆的焦距与长轴长的比e a 叫做椭圆的离心率。 [1]离心率的取值范围: 0<e<1

2.1,1椭圆的定义与标准方程

2.1,1椭圆的定义与标准方程

♦再认识!
标准方程
x2 y2 + 2 = 1 a > b > 0 2 a b
y P
x2 y2 + 2 = 1 a > b > 0 2 b a y
F2 P
不 同 点


F1

F2
x
O
F1
x
焦点坐标 相 同 点 定 义
F1 -c , 0 ,F2 c , 0
F1 0,- c ,F2 0,c
(2)当椭圆的焦点在y轴上时,设椭圆的标准方程为
y2 x 2 2 1 (a>b>0). 2 a b 1 2 1 2 2 1 ( ) ( ) a , 依题意,知 3 3 1, ⇒ 4 2 2 a b 1 2 b . 1 2 ( ) 5 2 1 2 a y2 x 2 1. 故所求椭圆的标准方程为 1 1 4 5
x2 y2 (1) 1 (4)9 x 2 25y 2 225 0 16 16 x2 y2 2 2 ( 5 ) 3 x 2 y 1 ( 2) 1 25 16 x2 y2 x2 y2 1 (3) 2 1(6) 2 24 k 16 k m m 1
M xx x
O
M
O F2
x F1
x
方案一
方案二
原则:尽可能使方程的形式简单、运算简单; (一般利用对称轴或已有的互相垂直的线段所在的 直线作为坐标轴.) (对称、“简洁”)
y
设P (x, y)是椭圆上任意一点, 椭圆的焦距|F1F2|=2c(c>0), 则F1、F2的坐标分别是(c,0)、(c,0) . P与F1和F2的距离的和为固定值 2a(2a>2c)

椭圆及其标准方程

椭圆及其标准方程

2.2 椭 圆2.2.1 椭圆及其标准方程1.了解椭圆的实际背景,理解从具体情境中抽象出椭圆的过程.2.掌握椭圆的定义与标准方程.3.通过对椭圆及其标准方程的学习,了解用坐标法研究曲线的基本步骤., [学生用书P24])1.椭圆的定义(1)定义:平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹. (2)焦点:两个定点F 1,F 2.(3)焦距:两焦点间的距离|F 1F 2|.(4)几何表示:|MF 1|+|MF 2|=2a (常数)且2a >|F 1F 2|.1.判断(正确的打“√”,错误的打“×”)(1)到平面内两个定点的距离之和等于定长的点的轨迹叫做椭圆.( ) (2)椭圆标准方程只与椭圆的形状、大小有关,与位置无关.( )(3)椭圆的两种标准形式中,虽然焦点位置不同,但都具备a 2=b 2+c 2.( ) 答案:(1)× (2)× (3)√2.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10 答案:D3.已知两焦点坐标分别为(2,0)和(-2,0),且经过点(5,0)的椭圆的标准方程为( ) A .x 216+y 225=1B .x 225+y 216=1C .x 225+y 221=1D .x 29+y 225=1答案:C4.椭圆x 225+y 2169=1的焦点坐标是________.答案:(0,±12)5.下列命题是真命题的是________(将所有真命题的序号都填上).①已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆; ②已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段; ③到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹为椭圆;④若点P 到定点F 1(-4,0),F 2(4,0)的距离的和等于点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离的和,则点P 的轨迹为椭圆.解析:①因为2<2,所以点P 的轨迹不存在;②因为|F 1F 2|=4,所以点P 的轨迹是线段F 1F 2;③到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹是线段F 1F 2的垂直平分线(y 轴);④因为点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离的和为410>8,所以点P 的轨迹为椭圆.故填②④.答案:②④求椭圆的标准方程[学生用书P25](1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程;(2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程.【解】 (1)法一:因为椭圆的焦点在x 轴上,所以设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义知 2a =⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+ ⎝⎛⎭⎫52-22+⎝⎛⎭⎫-322=210, 所以a =10.又因为c =2,所以b 2=a 2-c 2=10-4=6. 因此,所求椭圆的标准方程为x 210+y 26=1.法二:设标准方程为x 2a 2+y 2b 2=1(a >b >0).依题意得⎩⎪⎨⎪⎧254a 2+94b 2=1,a 2-b 2=4,解得⎩⎪⎨⎪⎧a 2=10,b 2=6.所以所求椭圆的标准方程为x 210+y 26=1.(2)法一:当椭圆的焦点在x 轴上时,设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).因为椭圆经过两点(2,0),(0,1),所以⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,则⎩⎪⎨⎪⎧a =2,b =1.所以所求椭圆的标准方程为x 24+y 2=1;当椭圆的焦点在y 轴上时,设所求椭圆的方程为y 2a 2+x 2b 2=1(a >b >0)因为椭圆经过两点(2,0),(0,1), 所以⎩⎨⎧0a 2+4b 2=1,1a 2+0b 2=1,则⎩⎪⎨⎪⎧a =1,b =2,与a >b 矛盾,故舍去.综上可知,所求椭圆的标准方程为x 24+y 2=1.法二:设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 因为椭圆过(2,0)和(0,1)两点,所以⎩⎪⎨⎪⎧4m =1,n =1,所以⎩⎪⎨⎪⎧m =14,n =1.综上可知,所求椭圆的标准方程为x 24+y 2=1.求椭圆标准方程的方法(1)定义法:根据椭圆定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程. (2)待定系数法:先判断焦点位置,设出标准方程形式,最后由条件确定待定系数即可.即“先定位,后定量”.当所求椭圆的焦点位置不能确定时,应按焦点在x 轴上和焦点在y 轴上进行分类讨论,但要注意a >b >0这一条件.(3)当已知椭圆经过两点,求椭圆的标准方程时,把椭圆的方程设成mx 2+ny 2=1(m >0,n >0,m ≠n )的形式有两个优点:①列出的方程组中分母不含字母;②不用讨论焦点所在的位置,从而简化求解过程.求适合下列条件的标准方程:(1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0);(2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离之和为26. 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为x 2a 2+y 2b2=1(a >b >0).因为2a =(5+3)2+02+(5-3)2+02=10,2c =6,所以a =5,c =3,所以b 2=a 2-c 2=52-3=16.所以所求椭圆的标准方程为x 225+y 216=1.(2)因为椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为2a =26,2c =10,所以a =13,c =5.所以b 2=a 2-c 2=144.所以所求椭圆标准方程为y 2169+x 2144=1.椭圆定义的应用[学生用书P25]已知P 为椭圆x 212+y 23=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.【解】 在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即36=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|.①由椭圆的定义得|PF 1|+|PF 2|=43, 即48=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|.② 由①②得|PF 1|·|PF 2|=4. 所以S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°= 3.1.[变条件]若将本例中“∠F 1PF 2=60°”变为“∠F 1PF 2=90°”,求△F 1PF 2的面积. 解:由椭圆x 212+y 23=1知|PF 1|+|PF 2|=43,|F 1F 2|=6,因为∠F 1PF 2=90°,所以|PF 1|2+|PF 2|2=|F 1F 2|2=36, 所以|PF 1|·|PF 2|=6, 所以S △F 1PF 2=12|PF 1|·|PF 2|=3.2.[变条件]若将本例中“∠F 1PF 2=60°”变为“∠PF 1F 2=90°”,求△F 1PF 2的面积. 解:由已知得a =23,b =3,所以c =a 2-b 2=12-3=3.从而|F 1F 2|=2c =6. 在△PF 1F 2中,由勾股定理可得 |PF 2|2=|PF 1|2+|F 1F 2|2, 即|PF 2|2=|PF 1|2+36,又由椭圆定义知|PF 1|+|PF 2|=2×23=43, 所以|PF 2|=43-|PF 1|.从而有(43-|PF 1|)2=|PF 1|2+36.解得|PF 1|=32.所以△PF 1F 2的面积S =12·|PF 1|·|F 1F 2|=12×32×6=332,即△PF 1F 2的面积是332.椭圆定义的应用技巧(1)椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .(2)椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,再结合正弦定理、余弦定理等知识求解.已知AB 是过椭圆49x 2+y 2=1的左焦点F 1的弦,且|AF 2|+|BF 2|=4,其中F 2为椭圆的右焦点,则|AB |=________.解析:由椭圆定义知|AF 1|+|AF 2|=2a , |BF 1|+|BF 2|=2a ,所以|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =6. 所以|AF 1|+|BF 1|=6-4=2,即|AB |=2. 答案:2求与椭圆有关的轨迹方程[学生用书P26]如图所示,已知动圆P 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其内切,求动圆圆心P 的轨迹方程.【解】 设动圆P 和定圆B 内切于点M ,动圆圆心P 到两定点A (-3,0)和B (3,0)的距离之和恰好等于定圆半径,即|P A |+|PB |=|PM |+|PB |=|BM |=8>|AB |,所以动圆圆心P 的轨迹是以A ,B 为左,右焦点的椭圆,其中c =3,a =4,b 2=a 2-c 2=42-32=7,其轨迹方程为x 216+y 27=1.利用椭圆定义求动点轨迹方程的三个步骤已知B ,C 是两个定点,|BC |=8,且△ABC 的周长等于18,求这个三角形的顶点A 的轨迹方程.解:以过B ,C 两点的直线为x 轴,线段BC 的垂直平分线为y 轴,建立直角坐标系xOy ,如图所示.由|BC |=8,可知点B (-4,0),C (4,0).由|AB |+|AC |+|BC |=18,|BC |=8,得|AB |+|AC |=10.因此,点A 的轨迹是以B ,C 为焦点的椭圆,这个椭圆上的点与两焦点的距离之和2a =10,c =4,但点A 不在x 轴上.由a =5,c =4,得b 2=a 2-c 2=25-16=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).1.对椭圆定义的三点说明(1)椭圆是在平面内定义的,所以“平面内”这一条件不能忽视. (2)定义中到两定点的距离之和是常数,而不能是变量.(3)常数(2a )必须大于两定点间的距离,否则轨迹不是椭圆,这是判断一曲线是否为椭圆的限制条件.2.对椭圆标准方程的两点认识(1)标准方程的几何特征:椭圆的中心在坐标原点,焦点在x 轴或y 轴上.(2)标准方程的代数特征:方程右边为1,左边是关于x a 与yb 的平方和,并且分母为不相等的正值.注意:焦点所在坐标轴不同,其标准方程的形式也不同. 3.解决与椭圆有关的轨迹问题的两种方法 (1)定义法用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法(代入法)有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.注意:求轨迹方程时注意求得的方程中的自变量的取值范围.1.“平面内一动点到两定点的距离之和为一定值”是“这个动点的轨迹为椭圆”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选A.若动点的轨迹为椭圆,则根据椭圆的定义,得平面内一动点到两定点的距离之和为一定值.平面内一动点到两定点的距离之和为一定值时,动点轨迹的情况有三种.所以“平面内一动点到两定点的距离之和为一定值”是“这个动点的轨迹为椭圆”的必要不充分条件.2.已知椭圆x 225+y 216=1上一点P 到椭圆的一个焦点的距离为3,则点P 到另一个焦点的距离为( )A .2B .3C .5D .7 解析:选D.由椭圆方程知a =5,根据椭圆定义有|PF 1|+|PF 2|=2a =10.若|PF 1|=3,则|PF 2|=7.3.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解析:选B.由4=25-m 2(m >0),解得m =3.4.若方程x 2m +y 22m -1=1表示椭圆,则m 满足的条件是______.解析:由方程x 2m +y 22m -1=1表示椭圆,知⎩⎪⎨⎪⎧m >0,2m -1>0,m ≠2m -1,解得m >12且m ≠1.答案:⎩⎨⎧⎭⎬⎫m ⎪⎪m >12且m ≠1 5.求与椭圆x 225+y 29=1有相同焦点,且过点(3,15)的椭圆的标准方程.解:因为所求椭圆与椭圆x 225+y 29=1的焦点相同,所以其焦点在x 轴上,且c 2=25-9=16.设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).因为c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.①又点P (3,15)在所求椭圆上,所以32a 2+(15)2b 2=1,即9a 2+15b2=1.② 由①②得a 2=36,b 2=20,所以所求椭圆的标准方程为x 236+y 220=1., [学生用书P105(单独成册)])[A 基础达标]1.平面内,若点M 到定点F 1(0,-1),F 2(0,1)的距离之和为2,则点M 的轨迹为( ) A .椭圆 B .直线F 1F 2 C .线段F 1F 2 D .直线F 1F 2的垂直平分线解析:选C.由|MF 1|+|MF 2|=2=|F 1F 2|知,点M 的轨迹不是椭圆,而是线段F 1F 2.2.方程x 2k -4+y 210-k =1表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .(4,+∞)B .(4,7)C .(7,10)D .(4,10)解析:选C.由题意可知⎩⎪⎨⎪⎧k -4>0,10-k >0,k -4>10-k ,所以7<k <10.3.(2017·郑州高二检测)椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .6D .32解析:选B.设椭圆的另一个焦点为F 2,因为椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,即|MF 1|=2,又|MF 1|+|MF 2|=2a =10,所以|MF 2|=8.因为N 是MF 1的中点,O 是F 1F 2的中点,所以|ON |=12|MF 2|=4.4.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A .x 212+y 29=1B .x 212+y 29=1或x 29+y 212=1C .x 29+y 212=1D .x 248+y 245=1或x 245+y 248=1解析:选B.由已知2c =|F 1F 2|=23,所以c = 3. 因为2a =|PF 1|+|PF 2|=2|F 1F 2|=43, 所以a =23,所以b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.5.已知椭圆C :x 22+y 2=1的焦点F (1,0),直线l :x =2,点A ∈l ,线段AF 交C 于点B ,若F A →=3FB →,则|AF →|=( )A . 3B .2C . 2D .3解析:选C.如图所示,设l 与x 轴交于点A 1,过B 点作x 轴的垂线BB 1,交x 轴于点B 1,设|AF →|=t ,则|FB →|=t 3,得:|AA 1→|=t 2-1,|BB 1→|=t 2-13,|FB 1→|=13,故B ⎝ ⎛⎭⎪⎫43,t 2-13, 代入椭圆方程得:⎝⎛⎭⎫4322+t 2-19=1,得:t = 2.6.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.解析:由已知2a =8,2c =215, 所以a =4,c =15,所以b 2=a 2-c 2=16-15=1. 又椭圆的焦点在y 轴上, 所以椭圆的标准方程为y 216+x 2=1.答案:y 216+x 2=17.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.解析:由|PF 1|+|PF 2|=6,且|PF 1|=4,知|PF 2|=2. 在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.所以∠F 1PF 2=120°.答案:2 120°8.已知椭圆的焦点F 1,F 2在x 轴上,且a =2c ,过F 1的直线l 交椭圆于A ,B 两点,且△ABF 2的周长为16,那么椭圆的标准方程为________.解析:根据椭圆的焦点在x 轴上,可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),根据△ABF 2的周长为16得4a =16,则a =4,因为a =2c ,所以c =22,则b 2=a 2-c 2=16-8=8.故椭圆的标准方程为x 216+y 28=1.答案:x 216+y 28=19.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N内切,圆心P 的轨迹为曲线C .求C 的方程.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点的椭圆(点x =-2除外),其方程为x 24+y 23=1(x ≠-2). 10.求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,且经过两个点(0,2)和(1,0); (2)经过两点(2,-2),⎝⎛⎭⎫-1,142. 解:(1)因为椭圆的焦点在y 轴上,所以设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为椭圆经过点(0,2)和(1,0), 所以⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.所以所求椭圆的标准方程为y 24+x 2=1.(2)法一:若焦点在x 轴上,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由已知条件得⎩⎨⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.若焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由已知条件得⎩⎨⎧4b 2+2a 2=1,1b 2+144a 2=1,解得⎩⎨⎧1b 2=18,1a 2=14.即a 2=4,b 2=8,则a 2<b 2,与a >b >0矛盾,舍去. 综上可知,所求椭圆的标准方程为x 28+y 24=1.法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).分别将两点的坐标(2,-2),⎝⎛⎭⎫-1,142代入椭圆的一般方程,得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1, 解得⎩⎨⎧A =18,B =14, 所以所求椭圆的标准方程为x 28+y 24=1. [B 能力提升] 11.(2017·唐山高二检测)已知椭圆x 23+y 24=1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形解析:选B.由椭圆定义知|MF 1|+|MF 2|=2a =4,因为|MF 1|-|MF 2|=1,所以|MF 1|=52,|MF 2|=32. 又|F 1F 2|=2c =2,所以|MF 1|2=|MF 2|2+|F 1F 2|2,即∠MF 2F 1=90°,所以△MF 1F 2为直角三角形.12.已知椭圆C 1:mx 2+y 2=8与椭圆C 2:9x 2+25y 2=100的焦距相等,则m 的值为________. 解析:将椭圆C 1化成标准方程为x 28m+y 28=1, C 2化成标准方程为x 21009+y 24=1. 设椭圆C 2的焦距为2c ,则c 2=1009-4=649. 当椭圆C 1的焦点在x 轴上时,因为椭圆C 1与椭圆C 2的焦距相等. 所以8m -8=649,解得m =917. 当椭圆C 1的焦点在y 轴上时,因为椭圆C 1与椭圆C 2的焦距相等. 所以8-8m =649,解得m =9. 综上可知,m =9或m =917. 答案:9或91713. 如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆上,若△POF 2为面积是3的正三角形,试求椭圆的标准方程.解:由△POF 2为面积是3的正三角形得,|PO |=|PF 2|=|OF 2|=2,所以c =2. 连接PF 1,在△POF 1中,|PO |=|OF 1|=2,∠POF 1=120°,所以|PF 1|=2 3.所以2a =|PF 1|+|PF 2|=2+23,所以a =1+3,所以b 2=a 2-c 2=4+23-4=2 3. 所以所求椭圆的标准方程为x 24+23+y 223=1. 14.(选做题)设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,B 为椭圆上的点且坐标为(0,-1).(1)若P 是该椭圆上的一个动点,求|PF 1|·|PF 2|的最大值.(2)若C 为椭圆上异于B 的一点,且BF →1=λ CF →1,求λ的值.(3)设P 是该椭圆上的一个动点,求△PBF 1的周长的最大值.解:(1)因为椭圆的方程为x 24+y 2=1,所以a =2,b =1,c =3, 即|F 1F 2|=23,又因为|PF 1|+|PF 2|=2a =4,所以|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=⎝⎛⎭⎫422=4,当且仅当|PF 1|=|PF 2|=2时取“=”,所以|PF 1|·|PF 2|的最大值为4.(2)设C (x 0,y 0),B (0,-1),F 1(-3,0),由BF →1=λ CF →1得x 0=3(1-λ)λ,y 0=-1λ. 又x 204+y 20=1,所以有λ2+6λ-7=0, 解得λ=-7或λ=1,C 异于B 点,故λ=1舍去.所以λ=-7.(3)因为|PF 1|+|PB |=4-|PF 2|+|PB |≤4+|BF 2|,所以△PBF 1的周长≤4+|BF 2|+|BF 1|=8,所以当P 点位于直线BF 2与椭圆的交点处时,△PBF 1周长最大,最大值为8.。

椭圆的标准方程及性质

椭圆的标准方程及性质

椭圆的标准方程及性质1. 椭圆的两种定义:(1)平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M ={P | |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹).其中两定点F 1,F 2叫焦点,定点间的距离叫焦距.(2)平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M ={P | e dPF=,0<e <1的常数}.2. 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0).其中22b a c -=(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c ).其中22b a c -=3.椭圆一般方程两种标准方程可用统一形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B 当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上),已知椭圆上的两个点这种形式用起来更方便. 4.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同。

与椭圆12222=+b y a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解。

5.共离心率椭圆方程的椭圆标准方程共离心率,则e 相同。

与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为 ,6:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221=范围 a x ≤,b y ≤b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称顶点)0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace 准线方程 ca x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=x y O F F PA AB 11121222M M K K7.性质:对于椭圆12222=+by a x (a >b >0)如下性质必须熟练掌握:1.范围;②对称轴、对称中心;③顶点;④焦点、焦距;⑤准线方程;⑥离心率. 焦半径c a PF c a PF -=+=min max,. 2.焦准距c b p 2=;两准线间的距离c a 22=;通径长22b a⨯.半通径.3.最大角()12122max F PF F B F ∠=∠4.8.点),(00y x P 与椭圆)0(12222>>=+b a by ax 的位置关系:当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;9.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔10.弦长公式11.对椭圆方程22221x ya b +=作三角换元可得椭圆的参数方程:⎩⎨⎧θ=θ=sin cos b y a x ,θ为参数.12.有关圆锥曲线弦的中点和斜率问题可利用“点差法”及结论:13对椭圆:12222=+b x a y ,则k AB =2020a xb y -.第三章:直线与方程的知识点倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l 12k k =;(2)12l l ⊥121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;….直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:0y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x B B=--,表示斜率为A B -,y 轴上截距为C B -的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠;(3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A B A B ⇔≠.两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP . 特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离 1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-.这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d =-----精心整理,希望对您有所帮助!。

椭圆的标准方程

椭圆的标准方程

椭圆的标准方程首先,让我们来看一下椭圆的定义。

椭圆可以被定义为平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

这两个定点被称为焦点,常数2a被称为椭圆的主轴长度。

椭圆还有一个重要的参数e,称为离心率,它可以用来描述椭圆的偏心程度。

离心率e的取值范围为0到1,当e=0时,椭圆退化为一个圆,当e=1时,椭圆变成一条直线。

接下来,我们来看一下椭圆的标准方程。

椭圆的标准方程可以表示为:(x-h)²/a² + (y-k)²/b² = 1。

其中(h,k)为椭圆的中心坐标,a和b分别为椭圆在x轴和y轴上的半轴长度。

根据标准方程,我们可以轻松地确定椭圆的中心、半轴长度和离心率等重要参数。

椭圆的标准方程还可以通过焦点和顶点的坐标来表示。

假设椭圆的焦点坐标分别为(F1x, F1y)和(F2x, F2y),顶点坐标分别为(V1x, V1y)和(V2x, V2y),则椭圆的标准方程可以表示为:(x-F1x)² + (y-F1y)² + (x-F2x)² + (y-F2y)² = 2a²。

通过这种表示方式,我们可以更直观地理解椭圆的形状和位置关系。

在实际问题中,椭圆的标准方程可以帮助我们解决许多与椭圆相关的数学和物理问题。

例如,在天文学中,椭圆轨道被广泛应用于描述行星和卫星的运动轨迹;在工程学中,椭圆的形状被用于设计汽车和飞机的零部件;在艺术领域中,椭圆的美学特性被用于构图和设计。

总之,椭圆的标准方程是描述和理解椭圆的重要工具,它可以帮助我们准确地描述椭圆的形状、大小和位置关系,解决与椭圆相关的各种实际问题。

通过学习和掌握椭圆的标准方程,我们可以更深入地理解椭圆的数学本质和实际应用,为我们的学习和工作带来更多的启发和帮助。

希望本文对您有所帮助,谢谢阅读!。

椭圆的定义及其标准方程

椭圆的定义及其标准方程

标准方程 及图形
条件 范围
2a>2c,a2=b2+c2,a>0,b>0,c>0
|x|≤a;|y|≤b
|x|≤b;|y|≤a
曲线关于 对称性
x轴

y 轴、原点 对称
曲线关于

x轴、y轴、原点

顶点 焦点
长轴顶点( ±a,0 ) 短 轴顶点(0,±b )
( ±c,0 )
长轴顶点( 0,±a)短轴顶点 ( ±b,0 )
13.1 椭圆的定义及其标准方程
一、椭圆的定义
平面内到两个定点F1,F2的距离之 等和于常数 ( 大于|F1F2)|的点的集合叫作椭圆,这两个定点F1,F2 叫作椭圆的 焦点,两焦点F1,F2间的距离叫做椭圆的 焦距 .
二、椭圆的标准方程及其几何
意义
条件
2a>2c,a2=b2+c2,a>0,b>0,c>0
()
A.椭圆
B.线段
C.椭圆或线段或不存在 D.不存在
解析:当a<6时,轨迹不存在;
当a=6时,轨迹为线段;
当a>6时,轨迹为椭圆. 答案:C
3.已知椭圆
上一点P到椭圆一个焦点的距离
为3,则P到另一个焦点的距离为 ( )
A.2
B.3
C.5
D.7
解析:

答案:D
4.椭圆
的焦点坐标为________.
【解】 设所求的椭圆方程为 =1(a>b>0),
由已知条件得解得 故所求方程为
a=4,c=2,b2=12,
练习1.已知椭圆的中心在原点,以坐标轴为对称轴,且经
过两点 P1( 6,1), P2( 3, ,2求) 椭圆的方程.
解:设椭圆的方程为mx2+ny2=1(m>0,n>0且m≠n).

椭圆的定义及标准方程

椭圆的定义及标准方程
椭圆及其标准方程
1、椭圆的定义: 、椭圆的定义:
椭圆定义
平面内到两个定点 的距离之和等于常 平面内到两个定点F1、F2的距离之和等于常 大于|F 椭圆。 数(大于 1F2|)的点的轨迹叫做椭圆。 )的点的轨迹叫做椭圆 这两个定点叫做椭圆的焦点, 这两个定点叫做椭圆的焦点,两焦点间的距离 焦点 M 叫做椭圆的焦距。 叫做椭圆的焦距。 焦距
y x + 2 =1 2 a b
2
2
(a > b > 0 )
它也是椭圆 的标准方程。 的标准方程。
这样建立平面直角坐标系椭圆方程会是什 么样? 么样?
y
M ( x, y )
F1 O F2
x
( x − c) y + 2 = 1 (a > b > 0 ) 2 a b
2 2
椭圆的标准方程
思考四: a、 思考四: a、b、c的几何意义
M
F1 F2
动画
椭圆的标准方程
2、椭圆的标准方程 、
怎样建立平面直角坐标系呢? 怎样建立平面直角坐标系呢?
y
M ( x, y )
F1
O
F2
x
椭圆的标准方程
x y + 2 =1 2 a b
2
2
(a > b > 0)
y
M ( x, y )
F1
O
F2
x
这个方程叫做椭圆的标准方程, 这个方程叫做椭圆的标准方程, 椭圆的标准方程 它所表示的椭圆的焦点在 轴上。 它所表示的椭圆的焦点在x 轴上。 焦点在x 如果椭圆的焦点在y 轴上, 如果椭圆的焦点在y 轴上,用类似的 方法,可得出它的方程为: 方法,可得出它的方程为:

椭圆知识点总结

椭圆知识点总结

椭圆知识点总结【椭圆】一、椭圆的定义 1、椭圆的第一定义:平面内一个动点到两个定点、的距离之和等于常数,这个动点的轨迹叫椭圆。

这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。

注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形。

二、椭圆的方程 1、椭圆的标准方程(端点为a、b,焦点为c)(1)当焦点在轴上时,椭圆的标准方程:,其中;(2)当焦点在轴上时,椭圆的标准方程:,其中;2、两种标准方程可用一般形式表示:或者 mx2+ny2=1 三、椭圆的性质(以为例) 1、对称性:对于椭圆标准方程:是以轴、轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

2、范围:椭圆上所有的点都位于直线和所围成的矩形内,所以椭圆上点的坐标满足,。

3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为,,,。

③线段,分别叫做椭圆的长轴和短轴,,。

和分别叫做椭圆的长半轴长和短半轴长。

4、离心率:① 椭圆的焦距与长轴长度的比叫做椭圆的离心率,用表示,记作。

② 因为,所以的取值范围是。

越接近1,则就越接近,从而越小,因此椭圆越扁;反之,越接近于0,就越接近0,从而越接近于,这时椭圆就越接近于圆。

当且仅当时,,这时两个焦点重合,图形变为圆,方程为。

③ 离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

注意:椭圆的图像中线段的几何特征(如下图):5、椭圆的第二定义:平面内与一个定点(焦点)和一条定直线(准线)的距离的比为常数e,(0<e<1)的点的轨迹为椭圆()。

即:到焦点的距离与到准线的距离的比为离心率的点所构成的图形,也即上图中有。

①焦点在x轴上:(a>b>0)准线方程:②焦点在y轴上:(a>b>0)准线方程:6、椭圆的内外部(1)点在椭圆的内部(2)点在椭圆的外部四、椭圆的两个标准方程的区别和联系标准方程图形性质焦点,,焦距范围,,对称性关于轴、轴和原点对称顶点,,轴长长轴长=,短轴长= 离心率准线方程焦半径,,五、其他结论 1、若在椭圆上,则过的椭圆的切线方程是2、若在椭圆外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是3、椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为4、椭圆(a>b>0)的焦半径公式:,( , )5、设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF。

椭圆及其标准方程

椭圆及其标准方程

椭圆及其标准方程1.椭圆的定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.注意:定义中的常数用2a表示,|F1F2|用2c表示,当2a>2c>0时,轨迹为椭圆,当2a=2c 时,轨迹为线段F1F2;当2a<2c时,无轨迹.这样,椭圆轨迹一定要有2a>2c这一条件.另外,应用定义来求椭圆方程或解题时,往往比较简便.2.椭圆的标准方程当焦点在x轴上时:+ =1(a>b>0)当焦点在y轴上时:+ =1(a>b>0)注意:(1)三个量之间的关系:a2=b2+c2(2)由x2,y2的分母大小确定焦点在哪条坐标轴上,x2的分母大,焦点就在x轴上,y2的分母大,焦点就在y轴上.(3)在方程Ax2+By2=C中,只有A、B、C同号时,才可能表示椭圆方程.(4)当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.典型例题例1 求与椭圆+ =1共焦点,且过点M(3,-2)的椭圆方程.解法一:(待定系数法)由已知椭圆方程+ =1得C2=9-4=5,且焦点在x轴上,设所求椭圆方程为+ =1又∵点M(3,-2)在椭圆上∴+ =1,得a4-18a2+45=0∴a2=15或a2=3<5=C2(舍)∴所求椭圆方程为+ =1解法二:(定义法)椭圆两焦点为F1(- ,0),F2( ,0),点M(3,-2)到这两个焦点距离之和是2a,即2a=|M1F1|+|M1F2|= + =2∴a2=15 b2=a2-c2=15-5=10∴所求椭圆方程为+ =1例2 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1( ,1),P2(- ,- ),求椭圆的方程.解:设椭圆方程为mx2+ny2=1,(m>0,n>0)由题意有解得m= ,n=∴所求椭圆方程为+ =1说明:设椭圆方程为mx2+ny2=1(m>0,n>0)可免讨论焦点的位置,而且计算简便.例3 已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作焦点所在轴的垂线恰好过椭圆的一个焦点,求椭圆方程.解:设两个焦点为F1F2,且|PF1|= ,|PF2|=由椭圆定义知2a=|PF1|+|PF2|=2 ∴a=而|PF1|>|PF2|知PF2与焦点所在的对称轴垂直.∴Rt△PF2F1中,sin∠PF1F2= =∴∠PF1F2=2C=|PF1|cos =∴b2=a2-c2=故所求方程为+ y2=1或x2+ =13.(代入法)与椭圆有关的轨迹问题:常用的方法有定义法,坐标转移法,交轨法,点差法. 例4 已知圆C1:x2+y2+4x-12=0与圆C2:x2+y2-4x=0,动圆C与C1相内切,且与C2相外切,求动圆圆心的轨迹方程.解:圆C1与C2的标准方程是(x+2)2+y2=16,(x-2)2+y2=4圆心分别为C1(-2,0),C2(2,0)设动圆P的圆心为P,半径为r,有|PC1|=4-r,|PC2|=2+r∴|PC1|+|PC2|=6>|C1C2|=4∴P点在椭圆上运动,又2a=6,2c=4,∴b2=a2-c2=5∴P的轨迹为+ =1(在已知圆C1内)例5 已知MN是椭圆+ =1(a>b>0)中垂直于长轴的动弦,AB是椭圆长轴的两端点,求直线MA与NB的交点P的轨迹方程.解:设M、N的坐标为M(x0,y0),N(x0,-y0),又A(-a,0),B(a,0)所以直线AM的方程为y= (x+a) ①直线BN的方程为:y= ②①×②得:y2= (x2-a2) ③∵点M(x0,y0)在椭圆上,∴b2x20+a2y20=a2b2∴x20-a2=- y02,代入得③得:y2= (x2-a2)∴交点P的轨迹方程为- =1例6已知椭圆+y2=1(1)求斜率为2的平行弦的中点轨迹方程(2)过A(2,1)引椭圆的割线,求截得的弦中点轨迹方程(3)求过点P( ,),且被P平分的弦所在的直线方程.解:(点差法)设弦的两端点分别为M(x1,y1)N(x2,y2)、MN的中点为P(x,y),则x21+2y21=2,x22+2y22=2,两式相减弄除以(x2-x1)得:x1+x2+2(y1+y2) =0而x1+x2=2x,y1+y2=2y∴x+2y· =0 (*)(1)将=2代入(*)式得所求的轨迹方程为x+4y=0(椭圆内部分)(2)将= 代入(*)式,得所求的轨迹方程为x2+2y2-2x-2y=0(椭圆内部分)(3)将x1+x2=1,y1+y2=1代入(*)式,得=-∴所求的直线方程为2x+4y-3=0例7已知中心在原点,一焦点为F(0,)的椭圆被直线l:y=3x-2截得弦的中点横坐标为,求椭圆方程.解:∵C= ,∴a2=b2+50∴可设椭圆方程为+ =1把直线y=3x-2代入椭圆方程整理得10(b2+5)x2-12b2x-b4-46b2=0∴x1+x2=又∵=∴12b2=10b2+50解得b2=25 a2=75∴所求的椭圆方程为+ =1例8已知P为椭圆+ =1上的一点,F1F2是椭圆上的两焦点,∠F1PF2=60°,求△F1PF2的面积.解:∵= |PF1|·|PF2|sin∠F1PF2∴只需求|PF1|·|PF2|即可又|PF1|+|PF2|=10|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°=4C2=64解得|PF1|·|PF2|=12∴= ×12× =3例9已知方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,求实数k的取值范围.解:结合椭圆的变形方程式a2y2+b2x2-a2b2=0从而有:2(k2-2)>0 k<- 或k>k2≠0解得k≠0k2-k-6<0 -2<k<32(k2-2)≠k2k≠±2∴k∈(-2,- )∪( ,2)∪(2,3)例10△ABC的三边a>b>c,且a+c=2b,|AC|=2,求顶点B的轨迹.解:以AC的中点为坐标原点建立坐标系,则A(-1,0),C(1,0),又a+c=2b=4由椭圆的定义知B点在椭圆上运动.∵a>b>c,且A、B、C三点不共线∴B点的轨迹方程是椭圆+ =1,在y轴左侧的部分,但要去掉点(-2,0),(0,),(0,- )核心知识1.椭圆+ =1(a>b>0),范围:椭圆位于直线x=±a和y=±b所围成的矩形里,即|x|≤a,|y|≤b.2.对称性:椭圆关于x轴,y轴和原点都是对称的.坐标轴为椭圆的对称轴,原点是椭圆的对称中心,即为椭圆的中心.3.顶点:椭园与坐标轴的交点为椭圆的顶点为A1(-a,0),A2(a,0),B1(0,b),B2(0,-b)4.离心率:e= ,(o<e<1),e越接近于1,则椭圆越扁;e越接近于0,椭圆就越接近于圆.5.椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(0<e<1=的点的轨迹.定点即为椭圆的焦点,定直线为椭圆的准线.6.椭圆的焦半径公式:设P(x0,y0)是椭圆+ =1(a>b>0)上的任意一点,F1、F2分别是椭圆的左、右焦点,则|PF1|=a+ex0,|PF2|=a-ex0.7.椭圆的参数方程典型例题例1 设直线l过点P(-1,0),倾角为,求l被椭圆x2+2y2=4所截得的弦长.解:直线l的方程为y= x+ ,代入椭圆方程,得7x2+12x+2=0,∵△=144-4×7×2=88∴弦长= =例2 求椭圆+ =1上的点到直线3x+4y-64=0的最长距离与最短距离.解:设椭圆上的点为(5cosθ,9sinθ),则d= ==∴d max=例3 已知椭圆+ =1内有一点P(1,-1),F是右焦点,M是椭圆上的动点,求|MP|+2|MF|的最小值,并求此时M的坐标.解:过M作右准线x=4的垂线,垂足为M1,由椭圆第二定义,有= ∴2|MF|=|MM1|∴|MP|+2|MF|=|MP|+|MM1|过P作右准线的垂线交椭圆于N,垂足为N1,垂线方程为y=-1.显然|MP|+|MM1|≥|NP|+|NN1|(当M与N重合时等号成立)而|NP|+|NN1|=|PN1|=3由方程组得N( ,-1)∴|MP|+2|MF|的最小值是3,此时M的坐标是( ,-1)例4 P是椭圆方程为+ =1上的任意一点,F1,F2是椭圆的两个焦点,试求|PF1|·|PF2|的取值范围.解:设|PF1|=t,则t∈[a-c,a+c],即t∈[4- ,4+ ]且|PF2|=2a-t=8-t.∴|PF1|·|PF2|=t(8-t)=-(t-4)2+16 t∈[4- ,4+ ]当t=4时,取最大值为16当t=4± 时,取最小值为9.∴所求范围为[9,16]例5 F1、F2是椭圆的两个焦点,过F2作一条直线交椭圆于P、Q两点,使PF1⊥PQ,且|PF1|=|PQ|,求椭圆的离心率e.解:如下图,设|PF1|=t,则|PQ|=t,|F1Q|= t,由椭圆定义有:|PF1|+|PF2|=|QF1|+|QF2|=2a∴|PF1|+|PQ|+|F1Q|=4a 即( +2)t=2a,t=(4-2 )a∴|PF2|=2a-t=(2 -2)a在Rt△PF1F2中,|F1F1|2=(2c)2∴[(4-2 )a]2+[(2 -2)a]2=(2c)2∴=9-6 ∴e= = -双曲线1.双曲线的定义平面内与两定点F1、F2的距离差的绝对值是常数(大于零小于|F1F2|)的点的轨迹叫双曲线.两定点F1、F2是焦点,两焦点间的距离|F1F2|是焦距,用2c表示.常数用2a表示.(1)若|MF1|-|MF2|=2a时,曲线只表示焦点F2所对应的一支双曲线.(2)若|MF1|-|MF2|=-2a时,曲线只表示焦点F1所对应的一支双曲线.(3)若2a=2c时,动点的轨迹不再是双曲线,而是以F1、F2为端点向外的两条射线.(4)若2a>2c时,动点的轨迹不存在.2.双曲线的标准方程- =1(a>0,b>0)焦点在x轴上的双曲线;- =1(a>0,b>0)焦点在y轴上的双曲线.判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上.典型例题例1 若方程+ =1表示双曲线,则实数m的取值范围是( )A.-3<m<2或m>3B.m<-3或m>3C.-2<m<3D.-3<m<3或m>3分析该方程表示双曲线,则x2与y2项的系数的符号相反,即(2-m)(|m|-3)<0,将问题转化为不等式的求解.答:A例2 求与椭圆+ =1共焦点,且过点(3 ,)的双曲线的方程.分析一由题意知所求双曲线的焦点在x轴上,且焦距为8,∴c=4,设所求双曲线方程为- =1代入点(3 ,),得λ2=7,故所求双曲线方程为- =1.分析二运用与椭圆共焦点的曲线系方程.设所求双曲线方程为+ =1,代入点(3 ,),得λ=16或λ=-7(舍),故所求双曲线方程为- =1.例3 课本第108页习题8.3第一题:△ABC一边的两个端点是B(0,6)和C(0,-6),另两边所在直线的斜率之积是,求顶点A的轨迹.分析其顶点A的轨迹方程求得:- =1(x≠0).若将问题一般化:B(0,a)、C(0,-a)·k AB·k AC= ,则顶点A的轨迹方程为:- =1(x≠0).若B(bcotφ,acosφ)、C(-cotφ,-acscφ).k AB·k AC= ,则顶点A的轨迹会是怎样?反之,双曲线- =1(x≠0)上任一点到B(0,a),C(0,-a)两点的连线的斜率之和,等于;若改变B、C的位置保持B、C两点关于原点对称于双曲线上,k AB·k AC是否成立.总之,同学们在学习过程中要多动手、多思考,举一反三,做到“以点代面,以少胜多”.例4一动圆与圆(x+3)2+y2=1外切又与圆(x-3)2+y2=9内切,求动圆圆心轨迹方程.分析如图,设动圆M与⊙O外切于A,与⊙O2内切于B,由位置关系可得数量关系:|MO1|=|MA|+1 |MO2|=|MB|-3由|MA|=|MB|可得|MO1|-|MO2|=4由定义可知M点轨迹为双曲线的一支.解:如图,设动圆圆心M坐标为M(x,y),圆M与圆O1外切于A,与圆O2内切于B,则,MO1=|MA|+1,①|MO2|=|MB|=3②,①-②:|MO1|-|MO2|=4由双曲线定义知,M点轨迹是以O1(-3,0)O2(3,0)为焦点2a=4的双曲线的右支∴b2=32-23=5∴所求轨迹方程为:- =1(x≥2)说明:在求轨迹方程时,要注意使用曲线的定义,此时的思路:位置关系(内切,外切)数量关系(|MO1|=r1+r0,|MO2|=r-r2其中r为动圆半径曲线形状写出标准方程,可以简化运算.同时应注意定义中是到两定点距离的绝对值,此时不含绝对值,要求|MO1|>|MO2|,所以是双曲线的右支,而不是整个双曲线.例5过双曲线- =1的右焦点作倾角为45°的弦,求弦AB的中点C到右焦点F 的距离,并求弦AB的长.分析将直线方程与双曲线方程联立,求出A、B两点的坐标,再求其中点,由两点的距离公式求出|CF|.解:∵双曲线的右焦点为F(5,0),直线AB的方程为y=x-5,故16x2-9y2-144=0 ①y=x-5 ②消去y,并整理得7x2+90x-369=0 ③此方程的两个根x1、x2是A、B两点的横坐标,设AB的中心点C的坐标为(x,y),则x===- .C点的坐标满足方程②,故y=- -5=-∴|CF|==(5+ )=又设A点坐标为(x1,y1),B点坐标为(x2,y2),则y1=x1-5,y2=x2-5.∴y1-y2=x1-x2,|AB|====由方程③知x1+x2=- ,x1·x2=-∴|AB|====27点评:利用韦达定理及两点间距离公式求弦长核心知识1.双曲线- =1的简单几何性质(1)范围:|x|≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。

高中数学椭圆及其标准方程知识点

高中数学椭圆及其标准方程知识点

椭圆知识点知识要点小结: 知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

01.椭圆的定义、标准方程(讲解1)

01.椭圆的定义、标准方程(讲解1)
解 1]
(ⅱ)具有某共同特征的椭圆求标准方程时,可根据它们的共同特征设出椭圆的标准方程,再根据其它条件确 定方程,如例 2(1). (ⅲ)用待定系数法求椭圆标准方程的一般步骤: ①作判断:根据条件判断椭圆的焦点在 x 轴上还是在 y 轴上,还是两个坐标轴都有可能; x² y² y² x² ②设方程:根据上述判断设方程a² +b² =1 (a>b>0)或a² +b² =1 (a>b>0),当焦点位置不确定时,可设为 mx² +ny² =1 (m>0,n>0,m≠n),如例 2(2). ③找关系:根据已知条件,建立方程组; ④得方程:解方程组,将解代入所设方程,即为所求.
1
椭圆的定义、标准方程
[讲解 1]
∴(PF1+PF2)² -2PF1· PF2=4c² , ∴2PF1· PF2=4a² -4c² =4b² . 1 1 ∴S△PF1F2=2PF1· PF2=2×2b² =b² =9, ∴ b=3.
∴PF1· PF2=2b² .
★考向 2 求椭圆的标准方程 〔例 2〕求满足下列条件的椭圆的标准方程: x² y² (1) 与椭圆 4 + 3 =1 有相同的离心率且经过点(2,- 3); (2) 已知点 P 在以坐标轴为对称轴的椭圆上,且 P 到两焦点的距离分别为 5, 3,过 P 且与长轴垂直的直 线恰过椭圆的一个焦点; 3 5 (3) 经过两点(-2, 2),( 3, 5).
〔点拨〕本题主要考查椭圆标准方程的求法,解题的关键是正确选择椭圆标准方程的形式,利用待定系数 法求解.在求椭圆标准方程时应注意椭圆的焦点位置是否确定,焦点位置未确定的可设统一方程式分类讨 论,以免漏解. x² y² y² x² 〔解析〕(1)由题意,设所求椭圆的方程为 4 + 3 =t1 或 4 + 3 =t2 (t1, t2>0), (- 3)² 2² 25 2² (- 3)² ∵椭圆过点(2,- 3), ∴t1= 4 + 3 =2,或 t2= 4 + 3 =12. x² y² y² x² 故所求椭圆的方程为 8 + 6 =1 或25+25=1. 3 4 x² y² y² x² (2)由于焦点的位置不确定,∴设所求椭圆的方程为 + =1 (a>b>0)或 + =1 (a>b>0), a² b² a² b²

椭圆的定义和标准方程

椭圆的定义和标准方程
2 2
1. 已知椭圆经过点P(3,0), 且a 3b, 求椭圆的标准方程。
变式训练
(2)当椭圆的焦点在y轴上时 y x 设方程为 2 2 1(a b 0) a b 9 1 y2 x2 2 则 b 得a 9, b 3, 1 81 9 a 3b x2 y2 x2 综合(1)( 2)得椭圆的标准方程为 y 2 1或 1 9 81 9
2
2
2
例 1 已知动点 P 到点 F1 (0, 2) , F2 (0, 2) 的距离之 和为 12,求动点 P 的轨迹方程.
解:⑴由椭圆定义可知,动点 P 的轨迹是椭圆, 且焦点是 F1 (0, 2) , F2 (0, 2) ,∴ c 2 . ∵ PF1 PF2 12 ,∴ 2a 12 ,∴ a 6 , ∴ b2 a 2 c 2 36 4 32 x2 y2 1. ∴所求的轨迹方程为 32 36
例 2 已知 B、C 是两个定点, BC 6 ,且△ABC 的周长 等于 16,求顶点 A 的轨迹方程.
解:如图,以直线 BC 为 x 轴,线段 BC 的中点为原点,建立 平面直角坐标系,则 B(3,0), C (3,0) .
设顶点 A 的坐标为 ( x , y )
∵ AB AC BC 16 , ∴ BA CA 10 . x2 y2 ∴由椭圆定义及标准方程知识可知 1 25 16 又∵A、B、C 三点不共线,∴ y 0 .
2
o
M
x
F1

b a o c F2 x

F1
y2 x2 2 1(a b 0) 2 a b
其中F1(-c,0),F2(c,0)
b2=a2— c2 其中F1(0,-c),F2(0,c) 共同点:椭圆的标准方程表示焦点在坐标轴上,中心 在坐标原点的椭圆;方程的左边是平方和,右边是1.

§2.2.1 椭圆及其标准方程

§2.2.1  椭圆及其标准方程

b 2 a 2 c 2 10 4 6.
y2 x2 1. 所以所求椭圆的标准方程为 10 6
5、回顾小结 一种方法: 求椭圆标准方程的方法 二类方程:
x2 y2 y2 x2 2 1 2 2 1 a b 0 2 a b a b
三个意识: 求美意识, 求简意识,前瞻意识
M
立坐标系才能使 椭圆的方程简单?
y
M
y M
F1o
y
F2
x
F1 o
y
F2
x
F1 o
yF2xຫໍສະໝຸດ F2F2M
F2
M
o
M
x
F1
o
x
F1
o
x
F1
以 F1 , F2 的中点为坐标原点, F1 , F2 所在直线为 设M(x,y)是椭圆上任意一点 x轴建立直角坐标系,
F1F2 =2C,那么F1 ,F2的坐标分别是 -c,0 , c,0
圆的标准方程?哪些是椭圆的方程。
练习2比较椭圆的两种标准方程并填表
标准方程 不 同 点 图形
焦点坐标 定义 共 同 a、b、c 点 的关系
F1 c,0
F2 c,0
F1 0, c
F2 0, c
c 2 a 2 b2 (a b 0, c 0)
焦点位置 的判定
y A
F1 o F2
B
x
例1 已知△ABC的一边BC固定,长为6,周长为16, 求顶点A的轨迹方程。
解: AB BC AC 16, BC 6
.
y
A
AB AC 10, 且10 BC 根据椭圆的定义知所求轨迹是椭圆, B o C 且B、C为焦点 以BC的中点为原点,BC所在的直线为x轴建立直 角坐标系。 所以可设椭圆的标准方程为 : x2 y2 2 1(a b 0) 2 a b

椭圆及其标准方程

椭圆及其标准方程
2.1.1 椭圆及其标准方程(一)
要点 1
椭圆的定义 (大于
平面内与两定点 F1、F2 的距离之和 等于常数 |F1F2|)的点的轨迹叫做椭圆。 这两个定点 点. 两焦点间的距离 叫做椭圆的焦距.
叫做椭圆的焦
要点 2
椭圆的标准方程
(1)这里的“标准”指的是中心在 原点 ,对称轴为 坐标轴. x2 y2 (2)焦点在 x 轴时,标准方程为a2+b2=1(a>b>0);焦点在 y y2 x2 轴时,标准方程为a2+b2=1(a>b>0).为了计算上的方便,有时将 方程写为 mx2+ny2=1(m>0,n>0,m≠n). (3)标准方程中的两个参数 a 和 b, 确定了椭圆的形状和大小, 是椭圆的定形条件.
(4)椭圆的两种标准方程中,如果 x2 的分母大,焦点就在x 轴 上;如果 y2 的分母大,则焦点就在 y 轴 上. (5)椭圆的方程中,a、b、c 三者之间 a 最大,且满足
a2=b2+c2 .
1.椭圆定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小 于|F1F2|”的常数,其他条件不变点的轨迹是什么?
解析
设椭圆方程为 mx2+ny2=1(m>0,n>0 且 m≠n),
椭圆经过 P1,P2 点,所以 P1,P2 点坐标适合椭圆方程,
6m+n=1 有 3m+2n=1
① ②
1 1 x2 y2 解得 m= ,n= ,∴所求椭圆方程为 + =1 9 3 9 3
探究 3
方程 mx2+ny2=1(m>0,n>0 且 m≠n)表示椭圆:若
m<n,则焦点在 x 轴上;若 n<m,则焦点在 y 轴上。 思考题 3 求经过两点 A(3, 3),B(2,3)的椭圆标准方程.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的定义及其标准方程教学课题椭圆及其标准方程所属学科数学课时安排1课时年级高二所选教材《普通高中课程标准实验教科书数学》人民教育出版社课程教材研究所中学数学课程教材研究开发中心编著选修2-1第二章第二节《椭圆及其标准方程》教学目标1.知识与技能理解椭圆的概念,掌握椭圆的定义及其标准方程,能够准确的推导出椭圆的标准方程。

2.过程与方法通过椭圆标准方程的推导,能运用坐标法解决简单的几何问题;通过椭圆的学习,进一步体会数形结合的思想。

3.情感态度和价值观感受数学在其他领域的广泛运用,培养对数学的热爱。

教学重难点重点:椭圆的定义,椭圆的标准方程的推导。

难点:对椭圆定义的理解,椭圆标准方程的推导。

学情分析本节课是圆锥曲线的第一课时。

它是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线。

椭圆的学习为后面研究双曲线、抛物线提供了基本模式和理论基础。

因此这节课有承前启后的作用,是本章和本节的重点内容。

从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。

从学生现有的学习能力看,通过一年多的实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述?如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。

他们渴望将感性认识理性化,渴望通过自己动手作图、观察、辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。

因此,本节课关注的重点:知识上是椭圆的定义和标准方程;从学生的情感态度上,关注学生的全方位参与,特别是思维起点和思维发展点。

教学方法探究式教学法,通过教师引导学生自主探究、合作学习完成本节课的学习,是学生在获得知识的同时能够掌握学习方法,提高自主学习能力。

教学过程1.联系实际、引入课题火腿是受到大家广泛喜爱的一种食品,在食用时我们有时我们会把它切成片吃,那么不知道大家有没有发现切火腿也是一门学问,我们都知道火腿具有轴对称性,当我们垂直于火腿的轴线切下去时,截面曲线为圆;倾斜一定角度之后,截面曲线就变成了另外的一种曲线,这是一种我们没有研究过的曲线,现在我们把火腿近似的看成一个圆柱,用截面去截圆锥,所得到的截面曲线就是我们切火腿时形成的截面曲线——椭圆,今天我们就来学习椭圆及其标准方程。

(说明:从生活实际出发,引发对于椭圆的思考,培养学生从生活中发现数学问题的能力,同时激发学生的学习激情。

)2.回顾复习,温故知新在之前的学习中我们已经认识了圆,研究了圆的定义、标准方程、和其他几何性质。

那么请大家回忆圆的定义是什么?其标准方程是什么?求曲线方程的方法步骤是什么?(请同学复述圆的定义、其标准方程、曲线方程的推导方法,如果学生复述有困难,需教师引导学生进行回顾)圆的定义:平面内到定点的距离等于常数r(r>0)的点的轨迹叫做圆。

圆的标准方程:(x-a)²+(y-b)²=r²,圆心O(a,b),半径r。

圆的标准方程的推导过程:(建设限代化)(1)建系设点,(2)写出点的集合,(3)写出代数方程,(4)化简方程。

好,这是圆的定义和标准方程,以及在研究曲线方程中我们用到的方法。

那我们接下来学习本节课的新内容。

(说明:通过对圆的定义及标准方程的复习,为本节课研究椭圆几何性质时需要先研究椭圆的定义及标准方程做铺垫,同时暗示研究圆锥曲线的一般过程。

回顾圆的标准方程的建立过程,可以为本节课椭圆的标准方程的推导提供基础。

能够培养学生利用坐标系解决几何问题的能力)3.合作学习,形成概念我们知道在平面内到一定点的距离为常数的点的轨迹是圆,那么平面内到两个定点的距离和等于定长的点的是什么呢?现在我想请三位同学来为我们做一个实验,我这边有一根绳子,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆。

如果把细绳的两端拉开一段距离,分别一个圆。

如果把细绳的两端拉开一段距离,分别固定在图板的两点处套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是椭圆。

根据刚才的实验请同学们回答下面几个题:1在画椭圆的过程中,细绳的两端的位置是固定的还是运动的?2在画椭圆的过程中,绳子的长度变了没有?说明了什么?3在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?现在请大家结合我们刚刚的讨论问题,小组讨论尝试给出椭圆的定义:归纳出椭圆的定义:平面内到两个定点1F 、2F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(一般用c 2表示)。

(教师需要在学生自主探究过程中了解各个小组的讨论情况,并适时给予指导,在学生自主归纳之后再次强调椭圆的定义)(板书椭圆的定义)(02221>>=+c a PF PF )那有了椭圆的定义后,大家需要思考一个问题,是否平面内到两定点之间的距离和为定长的点的轨迹就是椭圆?轴,线段2F 的垂直平分线为ay c x y c x 2)(2222=+-+++)(2222)(2y c x a y c x +--=++⇒)(1a 22222=-+⇒ca y x 记222a cb =+则12222=+by a x (a>b>0)22+ba 1方程的形式:左边是两个分式的平方和,右边是1;2三个参数c b a 、、的关系222c b a +=;ba、接下来我们通过一个动画演示,看看c、的几何意义是什么?a、bc椭圆的半焦距;b椭圆的短半轴长;a椭圆的长半轴长。

以上是我们通过探究得出的椭圆的定义、标准方程、以及标准方程的特点。

接下来我们一起做一些简单的练习吧!练习2:若方程13222=-+-ky k x 表示焦点在y 轴上的椭圆,求k 的取值范围。

二、求椭圆中的cb a 、、1.已知椭圆方程1162522=+y x ,则=a =b 。

2.已知椭圆方程13622=+y x ,则=a =b 。

3.已知椭圆方程116922=+y x ,则=a =b 。

练习:(1)椭圆171622=+y x 的焦距是;焦点坐标是;(2)一直线过1F 交椭圆于两点B A 、则2ABF ∆的周长为。

例题:椭圆两个焦点的坐标是)0,2()0,2(和-,并且经过点)23,25(-P ,求椭圆的标准方程。

方法一:解:设椭圆的方程为12222=+b y a x )0(>>b a ,且2=c ,因为222c b a +=①,又因为点)23,25(-P 在椭圆上,代入椭圆方程则有123-252222=+b a )()(②,联立①、②得,⎪⎩⎪⎨⎧==61022b a 则椭圆的标准方程为161022=+y x方法二:因为椭圆的焦点x 轴上,设椭圆方程为12222=+b y a x )0(>>b a ,又因为点)23,25(-P 在椭圆上,由椭圆定义得:102)23()225()23()225(22222=-+-+-++=a 10=∴a 又因为2=c ,所以6410222=-=-=c a b 则椭圆的标准方程为161022=+y x 。

三、椭圆定义的考察例题:椭圆13610022=+y x 上一点P 到焦点1F 的距离等于6,则点6到另一焦点2F 的距离为14.四、利用椭圆定义求轨迹方程例题:已知点)(),(0,20,2-B A ,动点P满足ABC∆的周长为10,求动点P的轨迹方程。

解析:根据题意,知ABPB PA AB PB PA =>=+=++46,10即,故P点的轨迹是椭圆,且5,2,342,62===⇒==b c a c a 因此此方程为)(015922≠=+y y x 小结好的,大家掌握的不错哦!现在有同学愿意帮我们总结一下这节课所学的内容吗?(先请学生总结,然后教师回顾总结)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数a 2(大于21,F F 间距离2c )的点的轨迹叫做椭圆.椭圆的标准方程:焦点在X 轴上:)0a (,12222>>=+b by a x焦点在Y 轴上:)0(,12222>>=+b a bx a y 本节课学习了椭圆的定义及标准方程,大家应理解并注意以下几点:①椭圆的定义中02c 2a >>。

②椭圆的标准方程的4条特点。

作业1.思考椭圆与圆有什么样的关系?2.课本42页,练习:1,2,3,4,板书设计(副板书)练习题(主板书)椭圆及其标准方程(1)1.椭圆定义:2.椭圆的标准方程3.椭圆的标准方程的特点(副板书)椭圆标准方程的推导过程。

相关文档
最新文档