(三)生物电现象的产生机制.
(三)生物电现象的产生机制
AP机制2:
下降支:钠通道关闭,钾通道开放,钾外流引起。 随后钠泵工作,泵出钠、泵入钾,恢复膜两侧原 浓度差。
静息期:膜电位最后恢复到静 息时的极化状态,由于膜内 +增加、膜外K+增加,激活 Na + - K+泵 ,泵出三个Na+ , Na 泵入二个K+ 。 AP产生机制
膜片钳实验
钠电流
3. Na +通道的失活和膜电位复极
兴奋性与Na +通道的性状
绝对不应期与Na +通道的性状:Na +通道失活
相对不应期与Na +通道的性状:部分复活(备用)
超常期的机制: Na +通道备用,膜电位与阈电位较近
低常期的机制: Na +通道备用,膜电位与阈电位较远
静息期与Na +通道的性状:备用(关闭)
兴奋性的变化
三、动作电位引起及其在同一细 胞的传导
(一)阈电位和锋电位的引起
阈电位:膜内负电位去极化到能引起动 作电位的临界值。
(二)局部兴奋及其特性
局部兴奋:细胞受刺激时膜电位的轻微 去极化。 特性: 1 随阈下刺激增大而增大 2 电紧张性扩布 3 总和现象(时间性、空间性)
局部反应与AP的区别
局部反应
阈下刺激引起 钠通道少量开放 反应等级性 有总和效应 衰减性传播
动作电位
阈(上)刺激引起 钠通道大量开放 “全或无” 无 非衰减性传播
(三)兴奋在同一细胞上的传导机制
传导:兴奋在同一细胞上传播的过程。
局部电流:已兴奋处和未兴奋处因电位 差而引起的电荷移动。
有髓神经纤维传导兴奋的方式是跳跃式传导
1.进入“细胞4” 2.返回“细胞2” 3.结束
生物电现象的产生机制
(二)静息电位的产生机制
1.静息电位的产生条件
(1)静息状态下细胞膜内、外离子分布不匀 [K+]i>[K+]o≈30∶1
主要离子分布: 膜内:
膜外:
(2)静息状态下细胞膜对离子的通透性具有选择性 通透性:K+ > Cl- > Na+ > A-
静息状态下细胞膜内外主要离子分布 及膜对离子通透性
[K+]i↓、[A-]i↑→膜内电位↓(负电场)
•
[K+]o↑→膜内电位↑(正电场)
膜外为正、膜内为负的极化状态
当扩散动力与阻力达到动态平衡时=RP
结论:RP的产生主要是K+向膜外扩散的结果。
∴RP=K+的平衡电位
生物电现象的产生机制
(一)化学现象
要在膜两侧形成电位差,必须具备两个条件:①膜两侧的离子分布不均,存在 浓度差;
②对离子有选择性通透的膜。
K K K 膜两侧[ +]差是促使 +扩散的动力,但随着 +的不断扩散,膜两侧不断 K K 加大的电位差是 +继续扩散的阻力,当动力和阻力达到动态平衡时, +的净
主要 离子
离子浓度
(mmol/L)
膜内 膜外
膜内与膜 外离子比 例
膜对离子通 透性
Na+ 14
142 1:10 通透性很小
K+ 155 5
31:1
通透性大Βιβλιοθήκη Cl- 8 A- 60110 1:14 15 4:1
通透性次之 无通透性
2.RP产生机制的膜学说:
[K+]i顺浓度差向膜外扩散 [A-]i不能向膜外扩散
什么是人体生物电及其产生的原因
什么是人体生物电及其产生的原因 1、什么是生物电? 生物电是生物体所呈现的电现象。
其主要基础是细胞膜内外有电位差,即膜电位。
安静时膜电位之值通常为数十毫伏,内负外正,称〝静息电位〞。
当细胞膜被损伤时,膜电位减少或损失。
当可兴奋细胞(如神经元或肌肉细胞)受刺激而传导冲动时,其膜电位发生急剧变化,暂时可变为内正外负,称〝动作电位〞。
脑和心脏等器官所表现的复杂电变化,是它们的组成细胞电变化的总和。
脑电图和心电图等可以反映这些器官的功能状态,在临床诊断上被广泛地应用。
2、人体生物电产生的原因: 目前被公认的一种基本观点是:生物电来源于细胞的功能。
细胞是有细胞膜、细胞核和细胞质组成。
细胞膜的结构很复杂,它一方面把细胞与外界环境分开,同时膜上又存在一些孔道,允许细胞与周围环境交换某些物质。
实验测得在细胞内、外存在多种离子,膜内主要是钾离子(K+)及一些大的负离子基团(A-)(A-不能通过细胞膜),膜外主要是钠离子(Na+)和氯负离子(Cl-)。
在不受外界刺激的静息状态下,实验测得活细胞的细胞膜外部带正电、内部带负电,即膜内侧电位约为-90~70毫伏。
这种电位称为静息电位。
当细胞受外界刺激时,能作出主动反应,称为细胞的兴奋。
生理学上将那些兴奋较强的组织,如神经、肌肉和腺体等统称为可兴奋组织。
它们的细胞所作出的主动反应是表现在当外界刺激强度达到一定阈值时,细胞膜对离子的通透性会发生突然变化,最后使电位发生改变。
细胞内的电位可从负电位突然变为正电位(约20~30毫伏),大约在不到1豪秒的时间内,很快又恢复到原来的静息电位。
这种变化的电位称为动作电位。
有些细胞(如神经细胞和心机细胞)不仅在外界刺激下能产生动作电位,而且有传导兴奋的功能。
神经系统正是靠传导各种兴奋对人体各器官的生理过程起到了调节作用,使人体生命活动正常进行。
生物电传导的机制
生物电传导的机制生物电传导是指在生物体内,通过电信号的方式传递信息的过程。
可以说,生物电传导对于人类的健康和生命过程起着至关重要的作用。
这一现象早在19世纪就被人们所认识到,但是直到近十几年来,由于先进的技术手段的运用,人类对于生物电传导的了解才得以深入和完善。
本文将简要介绍生物电传导的机制。
1. 生物电现象的基础生物电现象的基础是离子平衡的不稳定性。
通俗地说,生物体内的细胞、组织和器官,都包含有不同种类的离子。
而这些离子之间的平衡状态是动态地变化着的。
当某些外部刺激作用于细胞膜或者离子通道时,离子的平衡状态就会被破坏,导致一种生物电现象的产生。
这些生物电现象能够被记录下来,称为电生理信号。
2. 电生理信号的产生和传导电生理信号的产生和传导是由离子通道的开闭来完成的。
离子通道是细胞膜上的特殊蛋白质。
当离子通道被激活时,它会束缚一定数量的离子进入细胞内部或者释放离子到外部。
这种离子的移动,就会导致负电位或正电位的变化,产生电生理信号。
这些信号可以在神经元之间、心脏组织、肌肉组织和其他器官中传递,从而影响身体各个方面的功能。
3. 细胞膜的特殊作用细胞膜是生物电传导过程中重要的组成部分,因为它充当了传递信号的通道。
细胞膜为我们提供了一个独特的电荷屏障,使离子不会直接通过细胞膜而散发到细胞外或内。
此外,细胞膜上的离子通道可以帮助细胞感知到外部环境的变化,并对这些变化做出反应。
4. 神经传递的生物电机制神经传递是指,由神经元向其他神经元、肌肉和腺体发送信号,使生物体在各个层面上进行协调和适应。
神经传递的生物电机制中,神经元吸收的钠离子和外排的钾离子能够造成负电荷和正电荷之间的差异。
这些差异可以在突触处向另一个神经元传递,形成了一个电生理信号,进而触发下一个神经元的兴奋。
5. 心脏跳动的生物电机制心脏是身体中最重要的器官之一,它的跳动是由电生理信号控制的。
心脏的电生理信号来自于心脏起搏器和心脏肌肉细胞。
心脏起搏器是位于心脏右房壁上的一组细胞,它们会周期性地形成电流,使心脏肌肉细胞产生周期性的收缩。
复旦大学医学历年试题(包括生理学生物化学病理学内科学外科学)
复旦大学医学历年试题(包括生理学生物化学病理学内科学外科学)生理学( 一 ) 绪论1. 内环境相对恒定 ( 稳态 ) 的重要意义。
2. 生理功能的神经调节、体液调节和自身调节。
3. 体内的反馈控制系统。
( 二 ) 细胞的基本功能1. 细胞膜的物质转运:单纯扩散、易化扩散、主动转运 ( 原发性和继发性 ) 、出胞与人胞。
2. 细胞膜受体。
3. 神经和骨骼肌细胞的生物电现象:细胞膜的静息电位和动作电位。
4. 兴奋、兴奋性和可兴奋细胞 ( 或组织 ) 。
5. 生物电现象产生的机制:静息电位和钾平衡电位。
动作电位和电压门控离子通道。
6. 兴奋在同一细胞上的传导机制。
7. 神经—骨骼肌接头的兴奋传递。
( 三 ) 血液1. 细胞内液与细胞外液。
2. 血液的组成和理化特性。
3. 血细胞及其机能。
4. 红细胞的生成与破坏。
5. 血液凝固与止血。
6. ABO 和 Rh 血型系统及其临床意义。
( 四 ) 血液循环1. 心脏的本泵血功能:心动周期,心脏泵血的过程和原理,心脏泵血功能的评价和调节 , 心音。
2. 心肌的生物电现象和生理特性:心肌的生物电现象及其简要原理,心肌的电生理特性,自主神经对心肌生物电活动和收缩功能的影响。
3. 血管生理:动脉血压相对稳定性及其生理意义,动脉血压的形成和影响因素。
静脉血压、中心静脉压及影响静脉自流的因素。
微循环。
组织液和淋巴液的生成和回流。
4. 心血管活动的调节:心脏及血管的神经支配及作用,心血管中枢、颈动脉窦和主动脉弓压力感受性反射、化学感受性反射及其他反射。
心脏和血管的体液调节和自身调节。
动脉血压的长期调节。
5. 冠脉循环和脑循环的特点和调节。
( 五 ) 呼吸1. 肺通气:肺通气的动力和阻力。
肺容量、肺通气量和肺泡通气量。
2. 呼吸气体的交换:气体交换的原理。
气体在肺的交换。
通气/血流的比值及其意义。
气体在组织的交换。
3. 气体在血液中的运输:物理溶解、化学结合及它们的关系。
氧的运输及氧解离曲线。
生物电的原理
生物电的原理生物电是指在生物体内部产生的电流现象,是生物体内部电生理活动的一种表现形式。
生物电现象最早被发现于动物体内,后来又在植物体内得到证实。
生物电的产生和传导是生物体内部正常生理活动的重要表现,对于维持生物体内部稳态具有重要的作用。
生物电的产生主要来源于细胞膜上的离子通道和离子泵。
在细胞膜上存在着多种离子通道,这些离子通道能够让特定的离子在细胞膜上快速通透,从而改变细胞内外离子浓度的分布。
而离子泵则是利用ATP能量将离子从低浓度区域转移到高浓度区域,从而维持细胞内外离子浓度的稳定。
这些离子通道和离子泵的活动,使得细胞内外的离子浓度产生差异,形成了细胞膜的电位差,从而产生了生物电现象。
生物电在生物体内部的传导主要依赖于神经元和心肌细胞。
神经元是生物体内传导生物电的主要细胞类型,它们具有高度的兴奋性和传导性,能够快速传导生物电信号。
神经元之间通过突触连接,形成了复杂的神经网络,能够实现信息的传递和处理。
而心肌细胞则是心脏内传导生物电的主要细胞类型,它们通过特定的传导系统,使得心脏能够产生规律的心跳,维持血液的循环。
生物电在生物体内部具有重要的生理功能。
在神经系统中,生物电是信息传递的基础,通过神经元之间的生物电信号传导,实现了感觉的感知、运动的执行和思维的产生。
在心脏中,生物电是心跳的基础,通过心肌细胞之间的生物电传导,实现了心脏的收缩和舒张,维持了血液的循环。
此外,生物电还参与了细胞的代谢、细胞内外物质的交换等生理活动。
生物电的异常会导致多种疾病的发生。
比如,在神经系统中,生物电异常可能导致感觉障碍、运动障碍和认知障碍等症状的出现。
在心脏中,生物电异常可能导致心律失常、心脏骤停等严重的心血管疾病。
因此,研究生物电的产生和传导机制,对于预防和治疗相关疾病具有重要的意义。
总之,生物电是生物体内部电生理活动的重要表现形式,它的产生和传导依赖于细胞膜上的离子通道和离子泵,在神经系统和心脏中具有重要的生理功能,同时也与多种疾病的发生相关。
生物电的原理
生物电的原理
生物电是指生物体内产生的电信号或电现象。
它主要与生物体的神经、肌肉和细胞之间的通讯和传导有关。
生物电产生的原理可以归结为以下几个方面。
1. 离子的扩散:生物体内的细胞膜上存在各种离子通道,这些通道可以控制离子的进出。
当细胞受到刺激时,离子通道会打开或关闭,使得特定类型的离子在细胞内外之间扩散。
这种离子扩散的过程产生了微弱的电流。
2. 离子泵:细胞膜上还存在着一种叫做“离子泵”的特殊蛋白质。
离子泵能够主动地将某些离子从低浓度的区域输送到高浓度的区域,消耗能量产生电流。
这种通过离子泵产生的电流在生物体内发挥重要的调节作用。
3. 细胞膜电位:细胞膜是一个具有电阻和电容特性的结构。
当细胞在静息状态时,细胞膜内外的电荷差异形成一个静息膜电位。
当细胞受到外界刺激时,细胞膜电位会发生短暂的变化,形成动作电位传递信号。
4. 神经传导:神经细胞是生物体内传导生物电的主要组织。
当神经细胞受到刺激时,细胞膜上的离子通道会打开,使得钠离子进入细胞内。
这导致了细胞内外电荷平衡的紊乱,进而形成动作电位。
动作电位在神经细胞内传导,从而使得信号得以传递。
总体而言,生物电的产生依赖于离子通道的开闭、离子扩散、
离子泵的作用以及细胞膜的电位变化等因素。
这些生物电信号在生物体内发挥重要的调控和传递作用,参与了多种生理过程和行为的调节。
生物电现象的原理及应用
生物电现象的原理及应用一、生物电现象的概述生物体内存在着复杂的生物电现象,即生物体产生的电力信号。
这些电力信号是由生物细胞和组织中的离子流动产生的结果。
生物电现象是生命活动的基础,而且也在医学、生物学以及工程领域有着广泛的应用。
二、生物电现象的原理生物电现象的原理可以从离子通道、电位差和电流三个方面进行解释。
1. 离子通道离子通道是生物体内实现离子流动的通道。
生物细胞的细胞膜上存在钾、钠、钙等离子通道,通过这些通道使离子进出细胞。
当细胞膜上的离子通道打开或关闭时,离子在细胞内外之间发生流动,产生电流。
2. 电位差电位差是指细胞内外离子的电荷差异。
细胞膜上的离子通道使细胞内外的离子电荷产生不平衡,形成电位差。
这种电位差在生物细胞中起到了传递信息的作用。
3. 电流电流是指电荷在单位时间内通过一个截面的量。
在生物体内,当离子通道打开时,离子会通过细胞膜,形成电流。
这种电流在神经系统中传递神经冲动,在心脏中传递心脏节律信号。
三、生物电现象的应用生物电现象的研究及应用涵盖了医学、生理学、神经科学以及生物医学工程等领域。
1. 医学应用•电生理学:通过记录和测量生物电信号来诊断疾病和监测生理功能的变化。
例如,心电图(ECG)用于检测心脏功能,脑电图(EEG)用于检测脑部活动。
•生物电刺激:利用外部电刺激手段来治疗一些疾病。
例如,电疗法和电针灸。
2. 生理学研究•神经生理学:研究神经元及其电活动对行为和感觉的影响。
例如,使用神经元电生理记录来研究神经网络的功能和电信号传递的机制。
•肌肉电活动:研究肌肉的电活动对力量和协调性的影响。
例如,肌电图(EMG)用于评估肌肉活动和研究肌肉病理生理学。
3. 生物医学工程•假肢控制:通过记录肌电信号来驱动假肢,实现运动功能的恢复。
•脑机接口:通过记录大脑电活动来实现对计算机和其他外部设备的控制。
例如,脑机接口可以帮助与残疾人士沟通。
四、总结生物电现象的原理和应用在医学、生理学和生物医学工程等领域有着广泛的应用。
细胞的生物电现象
• 动作电位和静息电位不同,是一个电位连 续变化的过程,动作电位是细胞兴奋的标
(二)动作电位的 形成过程
• 在给神经纤维一 次有效的刺激后, 示波器上会显示 出一个动作电位 的波形,即在受 刺激局部的细胞 膜上产生了一次 快速的,连续的 电位变化。该电 位变化主要由两 部分构成:锋电 位和后电位。
• 当促使Na+内流的浓度差和阻止Na+内流的电位差,这两种拮抗力量相 等时,Na+的净内流停止,此时膜电位达到峰值。
• 因此,可以说动作电位的峰值相当于Na+内流所形成的电-化学平衡电 位。
2.复极化过程 • 当膜电位达到峰值时,细胞膜的Na+通道迅速关闭,而K+通道开放,于
是细胞内的K+顺浓度差向细胞外扩散,导致膜内负电位增大,直至恢复 到静息时的数值。
第三节 细胞的生物电现象
• 在生命活动的过程中,细胞始终存在着电, 我们把这种电现象称为生物电现象。
• 生物电是一切活细胞存在的基本生命现象, 也是生理学重要的基础理论。它主要包括静 息电位和动作电位两部分
一、静息电位及其产生机制
(一)静息电位的概念
• 静息电位(resting potential,RP)是指细胞 处于静息状态下,细胞膜两侧存在的电位 差。它是一切生物电产生或变化的基础。
• 静息电位的大小,主要由细胞内外K+的浓度决定。
– 通常,细胞内的K+浓度变动很小,因此造成细胞内外K+浓度差改变 的主要是细胞外的K+浓度。如细胞外K+增高,会使细胞内外K+浓度 差减小,从而使K+外流的动力减小,K+外流减少,最终导致静息电 位减小。
细胞的生物电现象
细胞的生物电现象
静息电位及其产生机制:静息电位是指细胞在未受刺激时存在于细胞膜内、外两侧的电位差。
多数细胞的静息电位是稳定的负电位。
机制:①钠泵主动转运造成的细胞膜内、外Na+和K+ 的不均匀分布是形成生物电的基础。
②静息状态下细胞膜主要是K+通道开放,K+受浓度差的驱动向膜外扩散,膜内带负电荷的大分子蛋白质与K+隔膜相吸,形成膜外为正,膜内为负的跨膜电位差。
当达到平衡状态时,K+电―化学驱动力为零,此时的跨膜电位称为K+平衡电位。
动作电位及其产生机制:在静息电位
的基础上,可兴奋细胞膜受到一个适当的刺激,膜电位发生迅速的一过性的波动,这种膜电位的波动称为动作电位。
锋电位、去极化、复极化和后电位。
产生机制:①上升支的形成:当细胞受到阈刺激时,引起Na+内流,去极化达阈电位水平时,Na+通道大量开放,Na+迅速内流的再生性循环,造成膜的快速去极化,使膜内正电位迅速升高,形成上升支。
当Na+内流达到平衡时,此时存在于膜内外的电位差即Na+的平衡电位。
动作电位的幅度相当于静息电位的绝对值与超射值之和。
动作电位上升支主要是Na+的平衡电位。
②下降支的形成:钠通道为快反应通道,激活后很快失活,随后膜上的电压门控K+通道开
放,K+顺梯度快速外流,使膜内电位由正变负,迅速恢复到刺激前的静息电位水平,形成动作电位下降支。
生理学重点知识总结笔记
第一章绪论一、什么是生理学?生理学是生物科学中的一个分支,是一门实验性科学,它以生物机体的功能为研究对象。
生理学的任务就是研究这些生理功能的发生机制、条件、机体的内外环境中各种变化对这些功能的影响以及生理功能变化的规律。
二、内环境与稳态的概念(1)内环境的概念内环境指细胞直接生存并与之进行物质交换的环境,主要由组织液和血浆组成。
(2)稳态内环境理化性质维持相对恒定的状态,称为稳态,它是一种动态平衡。
细胞的正常代谢活动需要稳态,而代谢活动本身又经常破坏稳态,生命活动正是在稳态不断破坏和不断恢复的过程中维持和进行的。
三、人体生理功能三大调节方式?各有何特点?1.神经调节指通过神经系统的活动,对生物体各组织、器官、系统所进行的调节。
特点是准确、迅速、持续时间短暂。
2、体液调节体内产生的一些化学物质(激素、代谢产物)通过体液途径(血液、组织液、淋巴液)对机体某些系统、器官、组织或细胞的功能起到调节作用。
特点是作用缓慢、持久而弥散。
3.自身调节组织和细胞在不依赖于神经和体液调节的情况下,自身对刺激发生的适应性反应过程。
特点是调节幅度小。
四、什么是反射?反射指生物体在中枢神经系统参与下对刺激产生的规律性反应。
五、正、负反馈的概念.负反馈凡是反馈信息与控制信息的作用性质相反的反馈,称为负反馈,起纠正、减弱控制信息的作用。
正反馈凡是反馈信息与控制信息的作用性质相同的反馈,称为正反馈,起加强控制信息的作用。
第二章细胞的基本功能一、细胞膜的跨膜物质转运形式有哪些?各有何特点?细胞膜对物质转运形式有单纯扩散、易化扩散、主动转运和人胞、出胞。
从能量的角度来看,单纯扩散与易化扩散时,物质是顺电—化学梯度通过细胞膜的,不耗能,属于被动转运。
主动转运是指物质逆电化学梯度通过细胞膜的耗能的转运过程。
这里,电—化学梯度包括电学梯度(电位差)和化学梯度(浓度差)两层含义。
1、细胞膜转运物质的方式及其各自的特点归纳如下:表2-1 细胞膜转运物质的方式及特点转运方式单纯扩散主动转运载体运输通道转运出胞入胞转运物质小分子脂溶性小分子非脂溶性小分子非脂溶性小分子非脂溶性大分子团块大分子团块转运特点顺浓度差顺电位差不耗能逆浓度差逆电位差利用生物泵耗能①结构特异性②饱和现象③竞争性抑制顺浓度差顺电位差不耗能①化学门控通道②电压门控通道③机械门控通道顺浓度差顺电位差不耗能耗能耗能二、细胞的生物电现象1.兴奋性的概念1) 兴奋性:活细胞或组织对外界刺激具有发生反应的能力或特性称为兴奋性。
生物电的产生
生物电的产生生物电是指生物体内产生的电信号,是生命活动中重要的一部分。
生物电的产生可以追溯到几百年前,但直到现在仍有很多未解之谜。
本文将介绍生物电的产生机制、应用和未来研究方向。
一、生物电的产生机制生物电的产生主要依靠细胞膜上的离子通道,这些通道可以控制离子在细胞内外的流动。
细胞膜上的离子通道有多种类型,如钙离子通道、钾离子通道和钠离子通道等。
这些离子通道的开闭状态可以受到细胞内外环境的影响,如温度、pH值、化学物质等。
当细胞膜上的离子通道打开时,离子会通过通道从细胞内流向细胞外或从细胞外流向细胞内,从而产生电信号。
生物电的产生与神经元活动密切相关。
神经元是产生和传递电信号的细胞,当神经元受到刺激时,细胞膜上的离子通道会打开,离子会流动,从而产生电信号。
这些电信号可以在神经元之间传递,形成神经网络,控制生物体的各种活动。
二、生物电的应用生物电在医学、生物学等领域有着广泛的应用。
以下是几个典型的应用场景:1. 神经科学研究:生物电的产生与神经元活动密切相关,因此生物电在神经科学研究中有着重要的应用。
通过记录神经元产生的电信号,可以研究神经元之间的相互作用和信息传递机制,从而深入了解神经系统的功能和疾病发生机制。
2. 心电图检查:心电图是记录心脏电信号的一种方法,可以用于检查心脏的健康状况。
心脏电信号是由心肌细胞产生的生物电信号,记录心电图可以检测心脏节律和心脏病变等情况。
3. 脑机接口技术:脑机接口技术是一种将人脑信号转化为机器指令的技术。
这种技术可以帮助残疾人士进行肢体康复和交流,也可以用于智能机器人等领域。
4. 细胞活动研究:生物电可以用于研究细胞的活动情况,如细胞分裂、细胞凋亡等。
通过记录细胞产生的电信号,可以了解细胞的生理状态和病理机制。
三、未来研究方向生物电在医学、生物学等领域有着广泛的应用,但仍有很多未解之谜。
以下是几个未来研究方向:1. 生物电与疾病关系的研究:生物电在许多疾病的发生和发展中起着重要作用,如癫痫、帕金森病等。
生物电现象的产生机制
生物电现象的产生机制细胞膜电位变化是指由细胞膜上离子通道的开关调控所引起的电势的变化。
在细胞膜上,存在着许多种类的离子通道,如钾离子通道、钠离子通道、钙离子通道等。
这些离子通道的开关状态可以受到细胞内外环境信号的调控。
当细胞受到刺激时,离子通道会发生开关状态的改变,导致离子通过通道流动,从而改变细胞膜上的电势。
这种电势变化可以传播到细胞的其他部位,形成了生物电信号。
例如,神经细胞通过细胞膜上的钠离子通道和钾离子通道的开关调控,产生电势变化,从而传递神经信号。
同样地,心肌细胞通过细胞膜上的钠离子通道、钾离子通道和钙离子通道的开关调控,产生电势变化,使心脏能够收缩和舒张。
细胞外基质电势变化是指生物体内细胞外基质中的电势的变化。
生物体内的细胞外基质中存在着许多种离子,如钠离子、钾离子、氯离子等。
这些离子是通过细胞膜上的离子通道和转运蛋白进行扩散和运输的。
当细胞外基质中的离子浓度发生改变时,会引起细胞外基质中的电势发生变化。
这种电势变化可以传播到细胞的其他部位,形成了生物电信号。
例如,心肌细胞的收缩和舒张是通过细胞外基质中的钙离子浓度变化来调控的。
当钙离子浓度升高时,心肌细胞收缩,电势发生变化;当钙离子浓度降低时,心肌细胞舒张,电势再次发生变化。
此外,细胞内外环境的酸碱度、温度和机械刺激等因素也可以影响生物电信号的产生。
例如,酸碱度的改变可以改变细胞膜上离子通道的开关状态,从而影响电势的变化和生物电信号的传递。
温度的改变可以改变离子通过细胞膜上通道的速率,从而影响电势变化和生物电信号的传播。
机械刺激可以引起细胞膜离子通道的形变,从而影响电势的变化和生物电信号的传递。
总结起来,生物电现象产生的机制主要有两种:细胞膜电位变化和细胞外基质电势变化。
细胞膜电位变化是因为细胞膜上离子通道的开关调控引起的电势变化,而细胞外基质电势变化是因为细胞外基质中离子浓度的改变引起的电势变化。
此外,细胞内外环境的酸碱度、温度和机械刺激等因素也可以影响生物电信号的产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AP机制2:
下降支:钠通道关闭,钾通道开放,钾外流引起。 随后钠泵工作,泵出钠、泵入钾,恢复膜两侧原 浓度差。
静息期:膜电位最后恢复到静 息时的极化状态,由于膜内 + + Na 增加、膜外K 增加,激活 + + + Na - K 泵 ,泵出三个Na , 泵入二个K+ 。 AP产生机制
膜片钳实验
钠电流
3. Na +通道的失活和膜电位复极
Na +通道的性状: 激活、失活、 备用 、 Na +通道的失活
通道失活的特点:它的失活出现较其它离子通 道为快;通道失活表现为通道不因为尚存在的去极 化而继续开放,也不因为新的去极化再开放;只有 当去极化消除后,通道才可能解除失活,才可能由 于新出现的去极化而再进入开放状态。
(三)生物电现象的产生机制
膜 学 说
1. 在静息状态下,细胞内钾浓度高于细胞外,安静时 膜对钾的通透性较大,故钾外流聚于膜外,带负电的蛋 白不能外流而滞于膜内, 使膜外带正电,膜内带负电。 2. 当促使钾外流的钾浓度势能差同阻碍钾外流的电势 能差(钾外流导致的外正内负)相等时,钾跨膜净移 动量为零,故RP相当于Ek—K+平衡电位。
兴奋性的变化
三、动作电位引起及其在同一细 胞的传导
(一)阈电位和锋电位的引起
阈电位:膜内负电位去极化到能引起动 作电位的临界值。
(二)局部兴奋及其特性
局部兴奋:细胞受刺激时膜电位的轻微 去极化。 特性: 1 随阈下刺激增大而增大 2 电紧张性扩布 3 总和现象(时间性、空间性)
局部反应与AP的区别
静息电位-—K+平衡电位
1.实验证实 2.Nernst公式
R—通用气体常数(8.31) T—绝对温度(237+摄氏温度) Z— 离子价 F—Faraday常数
RP产生机制
2 锋电位和 钠平衡电位
AP机制1:
上升支: 细胞受刺激达到一定程度时,膜上的钠 通开放, 因膜外钠浓度高于膜内且受膜内负电的 吸引,故钠内流引起上升支直至内移的钠在膜内形 成的正电位足以阻止钠的净移入时为止。 (ENa)。
1.进入“细胞4” 2.返回“细胞2” 3.结束
4.返回主菜单
请返回调用处!
局部反应
阈下刺激引起 钠通道少量开放 反应等级性 有总和效应 衰减性传播
动作电位
阈(上)刺激引起 钠通道大量开放 “全或无” 无 非衰减性传播
(三)兴奋在同一细胞上的传导机制
传导:兴奋在同一细胞上传播的过程。
局部电流:已兴奋处和未兴奋处因电位 差而引起的电荷移动。
有髓神经纤维传导兴奋的方式是跳跃式传导
动作电位上升支时Na +通道的性状:激活、开 放
兴奋性与Na +通道的性状
绝对不应期与Na +通道通道的性状:部分复活(备用)
超常期的机制: Na +通道备用,膜电位与阈电位较近
低常期的机制: Na +通道备用,膜电位与阈电位较远
静息期与Na +通道的性状:备用(关闭)