集合的基本运算PPT优秀课件

合集下载

集合的基本运算课件(共11张PPT)

集合的基本运算课件(共11张PPT)

解析: M={x|-1≤x≤3},M∩N={1,3},有2个.
3:(必修1第一章复习参考题B组练习1) 学校举办运动会时,高一(1)班有28名同学参 加比赛,有15人参加游泳比赛,有8人参加田径比 赛,14人参加球类比赛,同时参加游泳和田径比赛的 有3人,同时参加游泳和球类比赛的有3人,没有人 同时参加三项比赛。问同时参加田径和球类比赛的 有_____人? 解析:设同时参加田径和球 类比赛的有x人,则 9+3+3+(8-3-x)+x+(14-3-x)=28
二:以点集为背景的集合运算:
例1:(必修1习题1.1B组练习2)在平面直角坐标系中,
集合 C ( x, y ) y x表示直线 y
x, 从这个角度看,集合
2 x y 1 D ( x, y ) ,表示什么?集合C , D之间有什么关系? x 4 y 5
(1) A B A, A B B; A A B, B A B
A (CU A) , A (CU A) U
( 2) A B A A B;
A B B A B
(3)德摩根定律: CU ( A B ) (CU A) (CU B ) CU ( A B ) (CU A) (CU B )
【解题回顾】将两集合之间的关系转化为两曲线之 间的位置关系,然后用数形结合的思想求出 的范围 (准确作出集合对应的图形是解答本题的关键).
a
课堂总结:
1、集合的基本运算:
2、集合的运算性质:
3、注重数形结合思想的应用:
(1)韦恩(Venn)图 (2)连续的数集——数轴 (3)点集的运算——曲线位置关系
游泳 田径

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

课件集合的基本运算_人教版高中数学必修一PPT课件_优秀版

(3)(∁SA)∪(∁SB);
6
解析:
• 【解析】(1)由并集的概念可知A∪B={1,2,3,4,5,6};

(2)借助数轴(如图)


∴M∪N={x|x<-5或x>-3}.
• 【答案】(1){1,2,3,4,5,6} (2)A
7
方法归纳:
• 并集的运算技巧: • (1)若集合中元素个数有限,则直接根据并集的定义求解,但要注意集合中元素的
互异性. • (2)若集合中元素个数无限,可借助数轴,利用数轴分析法求解,但是要注意含“=”
用实心点表示,不含“=”用空心点表示.
8
探究一 并集的运算
9
解析:
10
探究二 交集的运算
• 【例】(1)已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则A∩B=________.

(2)已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=
________.

11
解析:
• 【解析】(1)A={x|x=1或x=-2},B={x|x=-2或x=3},

∴A∩B={-2}.

(2)结合数轴:


由图可知m=6.
• 【答案】(1){-2} (2)6
是否存在?若存在,求出x;
∴(∁RA)∩B={x|2<x<3或7≤x<10}.
由此可得:(1)(∁SA)∩(∁SB)={x|1<x<2}∪{7}.(2)∁S(A∪B)={x|1<x<2}∪{7};
(3)(∁SA)∪(∁SB)={x|1<x<3}∪{x|5≤x≤7}={x|1<x<3,或5≤x≤7};

《集合的基本运算》课件

《集合的基本运算》课件

分配律
集合的分配律指对于三个集 合A、B、C,(A∪B)∩C = (A∩C)∪(B∩C),(A∩B)∪C = (A∪C)∩(B∪C)。
实例演练
针对不同场景的集合问题进行解答,帮助大家更好地应用集合运算法则。
小结
1 集合的基本运算
包括并集、交集、差集和互补集。
2 集合的运算律
包括交换律、结合律和分配律。
用符号表示为C。
并集
集合的并集是指将两个集合中的所有 元素合并在一起的运算,用符号表示 为∪。
差集
集合的差集是指从一个集合中减去另 一个集合中共有的元素所得到的集合, 用符号表示为\-。
集合的运算律
交换律
集合的交换律指交换并集和 交集的顺序不会集合进 行并集或交集运算时,可以 按照任意顺序进行,结果不 变。
《集合的基本运算》PPT 课件
本节课将介绍集合的基本运算,帮助大家更好地理解集合的概念和运算法则。
什么是集合?
集合的定义
集合是由一组元素组成的整体,元素与集合的关 系由包含和不包含来决定。
元素与集合的关系
元素可以属于一个集合,也可以不属于一个集合。 这种关系通过包含和不包含来描述。
集合的表示形式
3 实例演练回顾
通过实例演练加深对集合的基本运算和运算律的理解。
Q&A
回答听众提出的问题,帮助大家进一步理解集合的基本运算和运算律。
列举法
通过列举集合中的元素来 表示。适用于元素个数较 少的情况。
描述法
通过描述元素的特征或性 质来表示。适用于元素个 数较多的情况。
Venn图
通过画图的方式来表示集 合和元素之间的关系。直 观且易于理解。
集合的基本运算
1

集合的基本运算(共18张PPT)

集合的基本运算(共18张PPT)
(2)设A={4,5,6,8},B={3,5,7,8},C={1,3}, 求
A∪(B∩C) A∪(B∩C)={3,4,5,6,8}
(3)设集合A={x|-1<x<2},集合B={x|1<x<3},求
A∩B
A∩B={x|1<x<2}
(4)设集合A={x|-1<x≤2},集合B={x|x<0或x≥2},
Venn图


AB


B A
AB AB
学习新知

交集的性质
Venn图



B A
AB
AB
A∩A = A A∩φ = φ
AB
A∩B =B∩A
A∩B A A∩B B 若A∩B=A,则A B.反之,亦然.
应用新知
典例分析
例2.(1)设A={4,5,6,8},B={3,5,7,8},求A∩B
A∩B={5,8}
B={x| x是鄂州二中2021年9月在校的高一同学} C={x| x是鄂州二中2021年9月在校的高一女 同学}
集合C是由那些既属于集合A且属于集合B的所有 元素组成
学习新知
交集
交集:由AB 所有属于集合A且属于集合B的元素组成的集合,称
为集合A与B的交集记做 A B (读做A交B)
A B x x A,且x B
典例分析
例4 设平面内直线l1上点的集合为L1,直线l2 上点的集合为L2,试用集合的运算表示l1,l2的 位置关系
答:平面内直线l1与l2可能有三种位置关系,即相 交于一点,平行或重合。
(1)l1与l2交于一点P
L1∩L2={点P}
(2)l1与l2平行 (3)l1与l2重合

集合的基本运算ppt课件

集合的基本运算ppt课件

A={x|x是揭阳一中高一级参加篮球比赛的同学},
B={x|x是揭阳一中高一级参加跳远比赛的同学},
求A∩B。
参赛共100人
A
B
篮:54人 跳:68人
参加篮
参加跳
A∩B
球比赛
远比赛
篮+跳:_2_2__人
揭阳一中高一级既参加篮球比赛又参加跳远比赛的同学
阅读与思考:集合中元素的个数
把含有有限个元素的集合A叫做有限集; 用card来表示有限集合A中的元素个数.
加法运算
“相加”
问题导入
类比实数的加法运算,你能否尝试定义集合间 “相加”运算?
观察下列各个集合,你能说出集合C与集合A,B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数};
(3)A={1,2,3},B={2,3,5,9},C={1,2,3,5,9}
作业: (1)整理本节课的题型; (2)课本P12的练习1~4题; (3)课本P14的习题1.3的1、2、3、5题.
的补集❷,记作∁UA 符号语言 ∁UA=_{_x_|x_∈__U_,__且_x_∉_A_}_____
图形语言
运算性质
A∪(∁UA)=__U__,A∩(∁UA)=___∅_,∁U(∁UA)=____,A ∁UU=∅,∁U∅=U
题型 1 补集的运算
例1 (1)若全集U={x∈R|-2≤x≤2},则集合A={x∈R|-2≤x≤0}的
如:A={1,2,3,5},则card(A)=4.
一般地,对于任意两个集合A、B,有: card(A∪B)=card(A)+ card(B)-card(A∩B).

1.3 集合的基本运算(第一课时) 课件(共15张PPT)

1.3 集合的基本运算(第一课时)  课件(共15张PPT)

课堂小结
并集的概念: 一般地,由所有属于集合A或属于集合B的元素所组成的 集合,称为集合A与B的并集.记作:A∪B(读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A; (3)若A⊆(A∪B),B⊆(A∪B); (4)若A⊆B,则A∪B=B,反之也成立
交集的概念:一般地,由所有属于集合A且属于集合B的元素组成的集合, 称为集合A与B的交集.记作:A∩B(读作:“A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.
交集的性质:(1)A∩A=A; (2)A∩ = ; (3)(A∩B)⊆B,(A∩B)⊆A; (4)若A⊆B,则A∩B=A,反之也成立.
解:A∩B就是立德中学高一年级中那些既参加百米赛跑又参加跳高 比赛的同学组成的集合.所以,
A∩B={x|x是立德中学高一年级既参加百米赛跑又参加跳高比赛的 同学}.
例题精讲
【例4】设平面内直线l1上的点的集合为L1, 直示线l1,l2上l2的点位的置集关合系为.L2,试用集合的运算表
解:(1)直线l1与直线l2相交于一点P可表示为:L1∩L2={P};
上述两个问题中,集合A、B和C之间都具有这样一种关系:集合C是 由所有属于A或属于集合B的元素组成的.
并集
一般地,由所有属于集合A或属于集合B的元素所
组成的集合,称为集合A与B的并集。
记作:A∪B(读作:“A并B”)
即:
A∪B ={ x | x ∈ A ,或 x ∈ B}
这说明:两个集合求并集,结果还是一个集合,是由集合A与B 的所有 元素组成的集合(由集合的互异性,重复元素只看成一个元素,不能重复写出).
思考
下列关系式成立吗? (1)A∪A=A;(2)A∪ =A

《集合的基本运算》新教材PPT完美课件

《集合的基本运算》新教材PPT完美课件

归纳小结
问题9 本节课你有哪些收获?可以从以下两个方面思考:
(1)两个集合间的基本运算有哪些? 略 (2)求解集合运算问题,你获得了哪些经验? ①集合中的元素若是离散的,一般采用什么方法;集合中的元素若是 连续的实数,则用什么方法,此时要注意端点的情况. ②已知集合的运算结果求参数,要注意检验参数的值是否满足题意, 或者是否满足集合中元素的互异性.
目标检测
1 设全集U={1,2,3,4,5,6},A={1,2,3,4},则CUA等于 ( B) A.{1,2,5,6} B.{5,6} C.{2} D.{1,2,3,4}
2 如图所示,阴影部分表示的集合是__{_7_,__9_}__,
全集是__U_=__{_1_,__2_,__3_,__4_,__5_,__6_,__7_,__8_,__9_,__1_0_}_____. 或写成 {n∈N|1≤n≤10}
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
作业布置
作业:教科书习题1.3的第4,5,6题.
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
人教A版高一数学1.3集合的基本运算 (2) 课件(共20张PPT)
新知探究
例2 设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+ m=0},若(CUA)∩B=∅,则m=__________.
问题8 本题中两个集合可否化简?集合B化简之后有几种 情况?待求解的问题是否可以化简?

集合的基本运算ppt课件

集合的基本运算ppt课件

(2) ∪ = ⟺ ____
A
(3) ∪ ∅ = ____

(4) ∩ = ____

(5) ∩ = ⟺ ____

(6) ∩ ∅ = ____
概念应用
概念应用
例1:设 A 4,
5,
6,
8,B 3,
5,
7,
8 , 求 A B。
解:A B {4,5, 6,8} {3,5, 7,8} {3, 4,5, 6, 7,8} 。
3,
4},A B ;
综上所述,当 a 3时,A B {1,
3,
4},A B {1};
当 a 1 时,A B {1,
3,
4},A B {4};
当 a 4 时,A B {1,
当 a 1, a 3且 a 4 时, A B {1,3, a, 4},A B 。
概念生成
交集:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与B的并集,
记作 A B
问题4:你能用符号语言及Venn图表示交集吗?
符号语言:
A B x | x A, 且x B
图形语言:
概念深化
概念深化
问题1:如何理解并集概念中的“或”字?
“或”字说明并集中的元素可以分为三种情况:
x A, x B; x A, x B; x A, x B
问题2:Байду номын сангаас交集概念中的“且”字又该如何理解?
“且”字说明并集中的元素只能来源于集合A和B的共同元素
问题3:集合 A,A B,A B 的关系是?
A
B A A B

《集合间的基本运算》课件

《集合间的基本运算》课件

集合运算的应用
计算机科学
集合运算在计算机科学中广泛应 用于数据处理、数据库查询和算 法设计。
市场分析
通过对集合的交集、并集和差集 进行分析,可以帮助企业了解市 场规模、竞争对手和目标受众。
概率论
集合运算在概率论中用于计算事 件之间的关系和相互排斥的概率。
并集的定义和性质
1
定义
两个集合并集的元素是属于任一集合的。
2
性质
并集运算满足交换律和结合律,并且集合与其并集之间的包含关系是集合间包含 关系的父关系。
3
应用
并集可以用于合并多个集合中的元素,例如在数据库查询中对多个结果集进行合 并。
差集的定义和性质
1 定义
两个集合差集的元素是属 于第一个集合而不属于第 二个集合的。
交集关系
两个集合中共同包含的元素构成的集合。
子集关系
一个集合中的所有元素都是另一个集合的成员 时,它被称为另一个集合的子集。
并集关系
两个集合中所有的元素构的集合。
交集的定义和性质
定义
两个集合交集的元素是同时属于这两个集合的。
性质
交集运算满足交换律和结合律,并且集合与其交集 之间的包含关系是集合间包含关系的子关系。
《集合间的基本运算》 PPT课件
欢迎来到《集合间的基本运算》PPT课件!在这个课程中,我们将探索集合的 定义和不同运算。通过丰富的案例和图像,让我们一起探索这个有趣的主题 吧!
集合的定义
集合是由元素组成的一个整体。学会识别和描述集合对于进行更深入的分析和计算至关重要。
集合间的关系
相等关系
当两个集合中的元素完全相同时,它们被认为 是相等的。
2 性质
差集运算与交换律和结合 律无关,并且差集可以用 于从一个集合中排除另一 个集合的元素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 设集合A={|2a-1|,2},B={2,3,a2+2a-3} 且CBA={5},求实数a的值。
3. 已知全集U={1,2,3,4,5}, 非空集A={xU|x2-5x+q=0}, 求CUA及q的值。
5.反馈演练
1已 . A 知 { x|x2p x 2 0 }B , { x|x2 q x r 0 } 且 A B { 2 ,1 ,5 }A , B { 2 }求 ,p ,q ,r的 . 值
解: A B {9}, 9 A 所以 a 2 9或 2a 1 9, 解得 a 3或a 5 当 a 3时, A {9,5,4}, B {2,2,9}, B中元素违 背了互异性,舍去 . 当 a 3时, A {9,7,4}, B {8,4,9}, A B {9} 满足题意,故 A B {7,4,8,4,9}. 当 a 5时, A {25 ,9,4}, B {0,4,9}, 此时 A B {4,9}, 与 A B {9}矛盾,故舍去 . 综上所述, a 3且 A B {7,4,8,4,9}.
3 .已 A { 知 x|x 2 3 x 2 0 }B , { x|x 2 a x a 1 0 } 若 A B A ,求a 的 实 . 值 数
4 .设A 集 {x| 2 合 x 1 } {x|x 1 }B , {x|axb } 若 A B {x|x 2 }A , B {x|1x3 }求 ,a ,b 的 . 值
求A∩B,CU(A∪B).
解:根据三角形的分类可知 AB, AB{x| x是锐角三角形或角 钝形 角 },三
CUAB{x| x直角三角}.形
练习:判断正误
(1)若U={四边形},A={梯形}, 则CUA={平行四边形}
(2)若U是全集,且AB,则CUACUB (3)若U={1,2,3},A=U,则CUA=
(解 :p 得 1 ,q 3 ,r 1)0
2 .设 A { 4 ,2 a 1 ,a 2}B , { a 5 ,1 a ,9 }已 , A 知 B { 9 }求 ,a 的 ,并 值A 求 B . 出
解 a 3 且 A 得 B { 8 , 4 , 4 , 7 , 9 }
求A∩B.
解:A∩B={x|x是平乡中学高一年级既参加百米赛 跑又参加跳高比赛的同学}.
例7设平面内 l1上直 的线 点的L1集 ,直合 线 l2上 为点 的集合 L2,试 为用集合的l1,运 l2的算 位表 置.示 关
解 : (1)直线l1,l2相交于一点P可表示为 L1 L2 {点P};
(2)直线l1 , l2平行可表示为 L1 L2 ;
(解a得 1,b3)
解: A {1, 2 }, A B A ,
B A B 或 B {1} 或 B { 2 } 或 B {1, 2 }. 当 B 时, 0 , a 不存在 .

B
{1}
时,
1
a
0
a
1
0
a2

B
{
2
}
时,
4
0 2a
a
1
0
a 不存在

B
{1,2Байду номын сангаас
例5 设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B. 解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
={x|-1<x<3}
2.交集
考察下列各个集合,你能说出集合A,B与集合C 之间的关系吗?
(1)A={2,4,6,8,10}, B={3,5,8,12} ,C={8}; (2) A={x|x是平乡中学2012年9月在校的女同学}, B={x|x是平乡中学2012年9月入学的高一级同学},
(3)直线l1 , l2重合可表示为 L1 L2 L1 L2.
3.并集与交集的性质
(1) AA A (2) A A (3) ABBA (4) AAB,BAB, ABAB (5) AB则ABB
(1) A A A (2) A (3) A B B A (4) A B A, A B B (5) A B 则 A B A
C={x|x是平乡中学2012年9月入学的高一级女同学}.
一般地,由属于集合A且属于集合B的所有 元素组成的集合,称为A与B的交集,记作 A∩B,(读作“A交B”),即
A∩B={x|x∈A,且x∈B}.
例6平乡中学开运动会,设 A={x|x是平乡中学高一年级参加百米赛跑的同学}
B={x|x是平乡中学高一年级参加跳高比赛的同学},
U A
CUA
例8 设U={x|x是小于9的正整数},A={1,2,3} B={3,4,5,6},求CUA,CUB.
解:根据题意可知,U={1,2,3,4,5,6,7,8}, 所以 CUA={4,5,6,7,8}
CUB={1,2,7,8} .
例9 设全集U={x|x是三角形},A={x|x是锐 角三角形},B={x|x是钝角三角形}
集合的基本运算PPT优秀课件
1.并集
一般地,由所有属于集合A或属于集合B的元素所 组成的集合,称为集合A与B的并集,记作A∪B,(读作 “A并B”).即
A∪B={x|x∈A,或x∈B}
例4 设A={4,5,6,8}, B={3,5,7,8},求A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8} ={3,4,5,6,7,8}
4.补集
一般地,如果一个集合含有我们所研究问题中 所涉的所有元素,那么就称这个集合为全集,通常 记作U.
对于一个集合A,由全集U中不属于A的所有元 素组成的集合称为集合A相对于全集U的补集,简 称为集合A的补集.
记 C U A 作 { x |x U ,且 x A }
补集可用Venn图表示为:
} 时,
1 1
2 2
a a
1
a
3
综上所述, a 2 或 a 3 .
相关文档
最新文档