江苏省灌云县四队中学 选修2-2教案 3.1《复数的概念》

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 复数的概念教案

教学目标

1.经历数的概念的发展和数系扩充的过程,体会数学发展和创造的过程,以及数学发生、发展的客观需求。

2.理解复数的基本概念以及复数相等的充要条件。

重点难点重点复数的基本概念.

难点虚数单位i的引进及复数的概念。

教学过程

学生探究过程

数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展

为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然N Q.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有Z Q、N Z.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集

有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集

因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i,叫做虚数单位.并由此产生的了复数

讲解新课

1.虚数单位i:

(1)它的平方等于-1,即21

i=-;

(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.

2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i !

3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1

4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*

3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a+bi 的形式,叫做复数的代数形式

4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b=0时,复数a+bi(a 、b ∈R )是实数a ;当b≠0时,复数z=a+bi 叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;当且仅当a=b=0时,z 就是实数0.

5.复数集与其它数集之间的关系:N Z Q R C .

6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等

这就是说,如果a ,b ,c ,d ∈R ,那么a+bi=c+di ⇔a=c ,b=d

复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i 与4+3i 不能比较大小.

现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小

例1请说出复数i i i i 53,3

1,213,32---+-+的实部和虚部,有没有纯虚数?

相关文档
最新文档